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Abstract: To increase the number of potential materials for application as MRI contrast agents, several
Cu(II) complexes were synthesized. Cu(II) complexes were chosen because they are less expensive in
comparison with the presently used Gd(III), Mn(II) and other agents. Pyridine-2-carboximidamide (1),
pyrimidine-2-carboximidamide (2) and pyrazole-2-carboximidamide (3) in the form of different salts
along with CuCl2 and NaCl or CuBr2 and NaBr were used to obtain four Cu(II) complexes: dichloro-
pyrimidine-2-carboximidamide copper(II) (4), dibromo-pyrimidine-2-carboximidamide copper(II)
(5), dichloro-pirazole-2-carboximidamide copper(II) (6), and dibromo-pirazole-2-carboximidamide
copper(II) (7). X-ray diffraction analysis revealed that molecular complexes 4–7 contain square
planar coordinated Cu(II) atoms and their structures are very similar, as well as their packing
in crystals, which allows us to consider them isomorphs. The same synthetic approach to com-
plex preparation where NaCl or NaBr was not used brought us to the formation of dimeric com-
plexes µ-chloro{chloro(pyridine-2-carboximidamide)copper(II)} (8) and µ-chloro{chloro(pyrimidine-
2-carboximidamide)copper(II)} (9). In the dimeric complexes, two fragments which were the same
as in monomeric complexes 4–7 are held together by bridging Cu-Cl bonds making the coordina-
tion of Cu equal to 5 (square pyramid). In dimeric complexes, axial Cu-Cl bonds are 2.7360 and
2.854 Å. These values are Cu-Cl bonds on the edge of existence according to statistical data from
CSD. Synthesized complexes were characterized by IR spectroscopy, TGA, PXRD, EPR, and quantum
chemical calculations. The higher thermal stability of monomer pyrimidine-based complexes with Cl
and Br substituents makes them more prospective for further studies.

Keywords: isomorphs; polymorphs; Cu(II) complexes; EPR

1. Introduction

Research in magnetic resonance imaging (MRI) over the last forty years has developed
into a large field, which includes explorations in different areas of science and clinical
diagnosis [1–3]. The major reasons for this growth are its ionizing radiation-free nature
and its capability to create 3D images of organisms [4]. For enhancing imaging accuracy
and improving imaging, quality contrast agents are used [5]. Despite the widespread
use of Gadolinium (III)-based agents, concerns have arisen regarding their toxicity, for
instance, in patients with renal issues [6]. These concerns are linked to the thermodynamic
instability and kinetic lability of these agents, prompting a search for safer MRI contrast
agents capable of targeting specific organs and tumors while being safe for individuals
with kidney disorders [6,7]. Despite the fact that Gd-based complexes are the main contrast
MRI agents in clinical use, their potential toxicity provokes a search for contrast agents
with alternative metal-ions such as Mn(II), Ln(III), and Fe clusters [8–12].

To increase the number of potential prototypes of pharmaceutical materials that
can serve as imaging agents during MRI procedures, we synthesized and characterized
several Cu(II) complexes with three ligands: pyridine-2-carboximidamide (1), pyrimidine-
2-carboximidamide (2) and pyrazole-2-carboximidamide (3) (Schemes 1 and 2). As MRI
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contrast agents, Cu(II) complexes are much less studied because of their low total spin
(S = ½), but they bring unique opportunities, as Cu(II) can be reduced to a diamagnetic
state, allowing building contrast agents that can be turned off and on. Antimicrobial and
antiviral activities of pyridine, pyrimidine, and pyrazole derivatives are also discussed in
the literature [13–15]. These prototype materials can help us to figure out possibilities of the
formation of similar metal complexes with other metals utilizing ligands which we used in
this study. It is known that such ligands can form different types of chelate complexes using
active N atoms in heterocycles and carboximidamide groups [16]. In addition, two different
halogens, Cl and Br, were used for complex formation. Corresponding to reaction condi-
tions and reagents used for complex synthesis, the number and position of chelate ligands
can differ, so it was important to support data on their structure using X-ray analysis. From
the literature, it is known that, in many cases, variation of halogen in haloorganic crystals
brings on the formation of isostructural crystals [17–23]. The existence of isostructural
solids gives a serious lead to the search for materials (in our case pharmaceutical materials)
with similar properties that allow us to find the best representatives in the series studied
for further applications.
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Several other methods such as IR spectroscopy, NMR, PXRD, TGA, EPR, and quantum
chemical calculations were used for the characterization of obtained materials.

2. Materials and Methods
2.1. General

Most of the materials used for synthesis were purchased from commercial sources and
used without further purification. Ligand 1 in the form of picolinimidamide hydrochlo-
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ride salt was purchased from AMBEED. Ligand 2 was synthesized using the procedure
described in [24], and ligand 3 was obtained using a similar procedure modified by us.
As neutral molecules 2 and 3 naturally decompose, they were stabilized by making them
trifluoroacetate salts. Complexes 4–9 were synthesized as described below.

IR spectra for all ligands and crystals were recorded using Pea rkin Elmer—Spectrum
Two FT-IR Spectrophotometer (4000–450 cm−1) loaded with Perkin Elmer UATR Two,
featuring a diamond prism center for solid-state IR measurements. 1H and 13C NMR
measurements were performed for [2]+[O2C2F3]− and [3]+[O2C2F3]− in DMSO-d6 as
well as 1H NMR measurements were performed using Bruker b300 MHz and 75MHz
spectrometer at 25 ◦C. TGA measurement for all crystals was performed using Hitachi
STA7200 Thermal Analysis System loaded with N2 gas and TGA Measure Software (TA7000
Standard Analysis, Version 10.1 Build 2001). EPR measurements were performed using
Bruker EMXplus EPR Spectrometer with a Microwave Frequency Range (CW X-Band) of
9–9.8 GHz.

2.2. Synthesis of Pyrimidine-2-Carboximidamide Salt [2]+[O2C2F3]−

Synthesis of Pyrimidine-2-carboximidamide was performed following the synthetic
procedure described by Safin et al. [24]. The salt was made by dissolving 2 (8.3399 mmol,
1018.3 mg) in 6 mL of a 1:1 ethanol to trifluoroacetic acid solution. A white crystalline
precipitate started to form immediately. The product yield was 67% (1.2676 g). Decompo-
sition temperature at 5% weight loss (TGA) was 215.3 ◦C. IR ν cm−1: 3325 (m), 2989 (m),
1704 (s), 1668 (s), 1564 (s), 1538 (m), 1433 (m), 1404 (s), 1286 (w), 1239 (w), 1168 (s), 1118 (s),
1098 (s), 998 (m), 829 (s), 797 (s), 720 (s), 658 (s), 632 (s), 597 (m), 518 (m), 431 (s). 1H-NMR
(300 MHz, DMSO-d6) δ: 9.92 (s, 1H), 9.70 (s, 1H), 9.15-9.13 (d, 2H), 7.93-7.90 (t, 1H). 1H-
NMR (300 MHz, D2O) δ: 8.91 (d, 2H), 7.67 (t, 1H) 13C-NMR (75 MHz, DMSO-d6) δ: 125.29,
153.34, 158.78, 160.17.

2.3. Synthesis of Pyrazine-2-Carboximidamide Salt [3]+[O2C2F3]−

Synthesis of pyrazine-2-carboximidamide salt [3]+[O2C2F3]− was performed using
the following procedure similar to the synthetic procedure described by Safin et al. [24].
Cyanopyrazine purchased from TOKYO CHEMICAL INDUSTRY Co., Ltd. 6-15-9 TOSHIMA,
KITA-KU, TOKYO, JAPAN (55.8516 mmol, 5870.0 mg) was dissolved in 50 mL of acetonitrile
while stirring for 30 s in a 125 mL pressure vessel. The pressure vessel containing the
mixture was placed in an ice bath and ammonia gas bubbled in the vessel for 10 min.
The pressure vessel was tightly sealed and placed in an oil bath at 110 ◦C for 3 days. A
ground coffee-colored product was obtained with a crude yield of 5.3322 g. The crude
product (2239.7 mg) was dissolved in 16 mL of ethanol while stirring in a 50 mL Erlenmeyer
flask. Trifluoroacetic acid (16 mL) was slowly added into the solution and the flask was
capped and allowed to react for one day. Colorless needles were obtained the next day
and filtered out and rinsed with ethanol. The product yield was 2.0035 g (8.52 mmol, 67%).
Decomposition at 5% weight loss (TGA) was 212.3 ◦C. IR ν cm−1: 3281 (w), 3021 (m),
1663 (s), 1580 (w), 1525 (m), 1461 (m), 1442 (m), 1405 (m), 1191 (s), 1134 (s), 1041 (w),
1017 (s), 873 (m), 843 (s), 797 (s), 759 (s), 774 (m), 722 (s), 515 (w), 425 (s). 1H-NMR (300 MHz,
DMSO-d6) δ 9.68 (s, 2H), 9.39-9.38 (d, 2H), 9.05-9.04 (d, 1H), 8.94-8.93 (dd, 1H). 13C-NMR
(75 MHz, DMSO-d6) δ: 141.04, 144.56, 145.00, 149.65, 161.54.

2.4. Synthesis of Complex 4

The salt of ligand 2 [2]+[O2C2F3]− (2.263 mmol, 534.8 mg) was dissolved in 4 mL of
methanol. In a separate vial, copper(II) chloride dihydrate (2.263 mmol, 386.70 mg) was
dissolved in 5 mL of a saturated NaCl methanol solution. The copper(II) chloride solution
was filtered on top of the ligand solution, and crystallization began immediately. Ligand’s
molar ratio to CuCl2 was 1:1. The mixture was sealed with parafilm and crystallized for
one day. The greenish-brownish crystals were filtered out, rinsed with isopropanol, and
weighed. After filtration, the product yield was 430.9 mg (1.68 mmol, 74%). Decomposition
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at 5% weight loss (TGA) was 266.0 ◦C. IR ν cm−1: 3382 (m), 3255 (m), 1652 (s), 1583 (s),
1563 (s), 1506 (m), 1448 (w), 1406 (s), 1246 (w), 1197 (w), 1131 (w), 1061 (w), 1020 (w),
828 (m), 816 (s), 793 (s), 698 (w), 672 (w), 655 (s), 643 (m), 575 (s), 477 (w).

2.5. Synthesis of Complex 5

The salt of ligand 2 [2]+[O2C2F3]− (1.271 mmol, 300.1 mg) was dissolved in 4 mL
of methanol. In a separate vial, copper(II) bromide, CuBr2 (1.271 mmol, 284.0 mg) was
dissolved in 4 mL of a saturated NaBr methanol solution. The copper(II) bromide solution
was filtered on top of the ligand solution, and crystals began to form immediately and after
one-day crystallization was completed. The ligand’s molar ratio to CuBr2 was 1:1. The
mixture was sealed with parafilm and allowed to crystallize for one day. The greenish-
brownish crystals were filtered out, rinsed with isopropanol, and weighed. The product
yield after filtration was 343 mg (0.99 mmol, 78%). Decomposition at 5% weight loss (TGA)
was 262.7 ◦C. IR ν cm−1: 3373 (m), 3253 (m), 1654 (s), 1580 (s), 1565 (m), 1500 (m), 1405 (s),
1245 (w), 1193 (w), 1125 (w), 1078 (w), 1058 (s), 1017 (w), 817 (s), 788 (s), 683 (w), 672 (w),
654 (s), 639 (m), 561 (s), 476 (w).

2.6. Synthesis of Complex 6

The salt of ligand 3 [3]+[O2C2F3]− (0.212 mmol, 50.1 mg) was dissolved in 2 mL
of methanol. In a separate vial, copper(II) chloride dihydrate (0.212 mmol, 37.10 mg)
was dissolved in 2 mL of a saturated NaCl methanol solution. The copper(II) chloride
solution was filtered on top of the ligand solution, and crystals began to form immediately.
Ligand’s molar ratio to CuCl2 was 1:1. The mixture was sealed with parafilm and allowed
to crystallize for a day. The greenish-brownish crystals were filtered out, rinsed with
isopropanol, and weighed. The product yield after filtration was 49.1 mg (0.19 mmol,
60%). Decomposition at 5% weight loss (TGA) was 199.5 ◦C; IR ν cm−1: 3361 (w), 3289 (w),
1648 (s), 1570 (m), 1534 (w), 1501 (w), 1451 (s), 1399 (s), 1304 (w), 1237 (w), 1190 (w), 1073
(w), 1048 (m), 1037 (s), 860 (m), 816 (s), 764 (m), 681 (w), 627 (w), 544 (s), 482 (m), 450 (s).

2.7. Synthesis of Complex 7

The salt of ligand 3 [3]+[O2C2F3]− (0.212 mmol, 50.1 mg) was dissolved in 2 mL of
methanol. In a separate vial, copper(II) bromide (0.212 mmol, 47.30 mg) was dissolved in
2 mL of a saturated NaBr methanol solution. The copper(II) bromide solution was filtered
on top of the ligand solution, and crystals began to form immediately, and after one-day
crystallization was completed. Ligand’s molar ratio to CuBr2 was 1:1. The mixture was
sealed with parafilm and allowed to crystallize for a day. The greenish-brownish crystals
formed were filtered out, rinsed with isopropanol, and weighed. The product yield after
filtration was 63.6 mg (018 mmol, 58%). Decomposition at 5% weight loss (TGA) was
238.2 ◦C. IR ν cm−1: 3366 (w), 3270 (w), 1645 (s), 1567 (m), 1531 (w), 1497 (w), 1447 (m),
1397 (m), 1302 (w), 1229 (w), 1172 (w), 1067 (w), 1049 (w), 1035 (m), 859 (w), 802 (m),
798 (m), 762 (m), 677 (w), 609 (w), 478 (s), 444 (s).

2.8. Synthesis of Complex 8

The reaction was conducted under atmospheric conditions. In separate vials, pyridine-
2-amidine hydrochloride (0.1460 g, 0.92 mmol) and copper(II) chloride dihydrate
(0.1579 g; 0.92 mmol) were dissolved using 6 mL and 5 mL of methanol, respectively.
Then both solutions were combined, and the flask was capped with a rubber stopper. The
green crystals formed were filtered out, rinsed with isopropanol, and weighed. The product
yield after filtration was 0.1771 g (0.69 mmol, 75%). Decomposition (weight loss) by TGA
was 361.7 ◦C IR ν cm−1: 3373 (m), 3326 (w), 3278 (m), 3215 (w), 3195 (w), 1656 (s), 1585 (m),
1570 (m), 1506 (w), 1451 (s), 1437 (m), 1304 (m), 1275 (w), 1238 (m), 1196 (w), 1177 (w), 1160
(w), 1115 (w), 1080 (w), 1053 (w), 1020 (s), 900 (m), 821 (s), 795 (s), 747 (s), 680 (w), 663 (w),
643 (m), 571 (m), 535 (s), 506 (s).
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2.9. Synthesis of 9

The ligand 2 (0.371 mmol, 44.50 mg) was dissolved in 3 mL of dichloromethane. In a
separate vial copper(II) chloride dihydrate (0.371 mmol, 63.7 mg) was dissolved in 3 mL
of methanol. The copper(II) chloride solution was filtered on top of the ligand solution.
Ligand’s molar ratio to CuCl2 was 1:1. The resultant solution was placed in a vial, sealed
with parafilm, and allowed to crystallize. After one day the green crystals were formed,
filtered out, rinsed with isopropanol, and weighed. The product yield after filtration was
47.1 mg (0.09 mmol, 50%. Decomposition at 5% weight loss (TGA) was 226.0 ◦C. IR ν cm−1:
3378 (m), 3279 (m), 1658 (s), 1581 (s), 1502 (w), 1440 (w), 1400 (s), 1242 (m), 1199 (w), 1118
(w), 1063 (w), 1017 (m), 829 (s), 801 (m), 679 (w), 652 (s), 578 (s), 538 (s), 476 (m), 426 (w).

2.10. X-ray Structure Analysis

Single-crystal XRD data of 5 and 7 were collected using Rigaku XtaLAB Synergy
(Dualflex): HyPix 6000, rail XtaLab Synergy Standard with CuKα (λ = 1.54184) at 100 K.
Absorption correction was applied using the Gaussian technique. The structure was solved
and refined with ShelXT and ShelXL [25] refinement packages. Single-crystal XRD data
collection of [2]+[O2C2F3]−, 4, 6, 8 and 9 was performed on a Bruker Smart APEX-II CCD
diffractometer with MoKα (λ = 0.71073) at 100 K temperature. The absorption correction
was performed by a multi-scan method using SADABS-2016/2 (Bruker, Madison, WI,
USA, 2016/2). The diffraction measurement method was ϕ and ω-scans. The structures
were solved with the ShelXT [25] and refined with the ShelXL [25] refinement package.
In complex 7 positions of H atoms in amino group N(4) were found to be disordered,
located above and below the plane of symmetry and their positions were refined with 50%
probability. Important details of X-ray data collection and structure solution are presented
in Table 1 (complexes 4–9) and Table S1 (ligand [2]+[O2C2F3]−).

Table 1. Crystallographic data collection and refinement for 4–9.

4 5 6 7 8 9

Formula C5H6Cl2CuN4 C5H6Br2CuN4 C5H6Cl2CuN4 C5H6Br2CuN4 C12H14Cl4Cu2N6 C10H12Cl4Cu2N8

Formula weight 256.58 345.484 256.58 345.50 255.59 256.581

Temperature/K 100 100 100 100 100 100

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic Monoclinic Monoclinic

Space group, Z Pnma, 4 Pnma, 4 Pnma, 4 Pnma, 4 P21/n, 4 P21/n, 4

a/Å 8.710 (6) 8.924 (2) 8.6664 (2) 8.98 (5) 8.3731 (4) 8.4622 (12)

b/Å 6.292 (5) 6.3937 (16) 6.2964 (2) 6.43 (3) 10.9315 (6) 10.6392 (14)

c/Å 15.260 (11) 15.626 (4) 14.8940 (4) 15.22 (14) 9.5637 (3) 9.6678 (13)

α/◦ 90 90 90 90 90 90

β/◦ 90 90 90 90 103.022 (4) 99.036 (5)

γ/◦ 90 90 90 90 90 90

Volume/Å3 836.4 (11) 891.5 (4) 812.72 (4) 879 (11) 852.86 (7) 859.6 (2)

ρcalcg/cm3 2.038 2.574 2.097 2.610 1.991 1.983

µ/mm−1 3.193 11.359 9.398 13.745 3.127 3.106

F(000) 508.0 652.1 508.0 652.0 508.0 508.0

Crystal
size/mm3

0.3 × 0.09 ×
0.04

0.4 × 0.15 ×
0.05

0.06 × 0.03 ×
0.01

0.05 × 0.02 ×
0.01

0.5 × 0.25 ×
0.15

0.4 × 0.15 ×
0.15
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Table 1. Cont.

4 5 6 7 8 9

Radiation Mo Kα

(λ = 0.71073)
Mo Kα

(λ = 0.71073)
Cu Kα

(λ = 1.54184)
Cu Kα

(λ = 1.54184)
Mo Kα

(λ = 0.71073)
Mo Kα

(λ = 0.71073)

Reflections
Collected 17,318 11,741 7265 4587 7902 16,659

Independent
Reflections 1376 1167 817 954 2956 2610

Rint 0.0488 0.0522 0.0455 0.0296 0.0463 0.0327

Data/parameters 1376/73 1167/82 817/75 954/76 2956/121 2610/121

Goodness-of-fit
on F2 1.344 1.073 1.103 1.049 1.050 1.017

R1 [I ≥ 2σ (I)] 0.0697 0.0328 0.0604 0.0574 0.0420 0.0269

wR2 [I ≥ 2σ (I)] 0.1601 0.0811 0.1548 0.1527 0.0889 0.0674

R1 [all data] 0.0767 0.0440 0.0658 0.0602 0.0560 0.0343

Powder XRD analysis for all crystals was conducted using a Rigaku Ultima IV diffrac-
tometer equipped with Bragg–Brentano HD optics and Cu Kα radiation. All the complexes
were placed in a flat sample holder for measurements.

Quantum chemical calculations of complex 4 were carried out with GAUSSIAN 16
software [26,27]. Geometry parameters and electronic properties were by using the DFT
method at the B3LYP level of theory with 6–31(d) basis set. Starting molecular geometry was
adopted from the results of X-ray diffraction analysis and fully optimized using the above-
mentioned DFT approach which was successfully used before for Cu(II) complexes [27].

3. Results and Discussion
3.1. Crystal Structure of Ligand

The crystal structure of synthesized trifluoracetic acid (TFA) salts of ligand 2 was stud-
ied using single-crystal X-ray diffraction. Crystallography data for crystal [2]+[O2C2F3]−

are presented in Table S1. Ligand 2 and TFA in crystal form dimers with two hydrogen
bonds N-H. . .O (Figure S1), which in turn form molecular ribbons with the same type of
H-bonds (Figure S2).

3.2. Crystal Structure of Complexes

Depending on complex structures (organic ligands and halogens), the shape and
color of crystals are different. Figure 1 demonstrates these differences for 4–7, which are
most probably related to absorption bands of Cu-Hal bonds. IR spectra of complexes 4–7
are alike (Figures S3–S6) which suggests that their molecular structures are also similar.
This observation is supported by X-ray diffraction data which indicate the similarity of
molecular and crystal structures of complexes 4–7.

Crystals 2024, 14, x FOR PEER REVIEW 6 of 14 
 

 

Crystal 
size/mm3 

0.3 × 0.09 × 0.04 0.4 × 0.15 × 0.05 
0.06 × 0.03 × 

0.01 
0.05 × 0.02 × 0.01 0.5 × 0.25 × 0.15 0.4 × 0.15 × 0.15 

Radiation 
Mo Kα (λ = 

0.71073) 
Mo Kα (λ = 

0.71073) 
Cu Kα (λ = 

1.54184) 
Cu Kα (λ = 

1.54184) 
Mo Kα (λ = 

0.71073) 
Mo Kα (λ = 

0.71073) 
Reflections Col-

lected 
17,318 11,741 7265 4587 7902 16,659 

Independent 
Reflections 

1376 1167 817 954 2956 2610 

Rint  0.0488 0.0522 0.0455 0.0296 0.0463 0.0327 
Data/parame-

ters 
1376/73 1167/82 817/75 954/76 2956/121 2610/121 

Goodness-of-fit 
on F2 

1.344  1.073 1.103 1.049 1.050 1.017 

R1 [I ≥ 2σ (I)] 0.0697 0.0328 0.0604 0.0574 0.0420 0.0269 
wR2 [I ≥ 2σ (I)] 0.1601 0.0811 0.1548 0.1527 0.0889 0.0674 

R1 [all data] 0.0767 0.0440 0.0658 0.0602 0.0560 0.0343 

Powder XRD analysis for all crystals was conducted using a Rigaku Ultima IV dif-
fractometer equipped with Bragg–Brentano HD optics and Cu Kα radiation. All the com-
plexes were placed in a flat sample holder for measurements.  

Quantum chemical calculations of complex 4 were carried out with GAUSSIAN 16 
software [26,27]. Geometry parameters and electronic properties were by using the DFT 
method at the B3LYP level of theory with 6–31(d) basis set. Starting molecular geometry 
was adopted from the results of X-ray diffraction analysis and fully optimized using the 
above-mentioned DFT approach which was successfully used before for Cu(II) complexes 
[27]. 

3. Results and Discussion 
3.1. Crystal Structure of Ligand  

The crystal structure of synthesized trifluoracetic acid (TFA) salts of ligand 2 was 
studied using single-crystal X-ray diffraction. Crystallography data for crystal 
[2]+[O2C2F3]− are presented in Table S1. Ligand 2 and TFA in crystal form dimers with two 
hydrogen bonds N-H…O (Figure S1), which in turn form molecular ribbons with the same 
type of H-bonds (Figure S2).  

3.2. Crystal Structure of Complexes 
Depending on complex structures (organic ligands and halogens), the shape and 

color of crystals are different. Figure 1 demonstrates these differences for 4–7, which are 
most probably related to absorption bands of Cu-Hal bonds. IR spectra of complexes 4–7 
are alike (Figures S3–S6) which suggests that their molecular structures are also similar. 
This observation is supported by X-ray diffraction data which indicate the similarity of 
molecular and crystal structures of complexes 4–7. 

    
(a) (b) (c) (d) 

Figure 1. Microscopic images of complexes 4–7: (a) plate-like crystal 4; (b) plate-like crystal 5;
(c) plate-like crystal 6; (d) plate-like crystal 7.
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It should be mentioned that synthetic procedures to obtain these complexes were the
same. For complexes 4–7, the ligands were brought into reaction in the form of trifluo-
roacetic acid salt, and Hal anions in the form of CuHal2 and NaHal salts (Hal = Cl, Br).
X-ray data for complexes 4–7 demonstrated not only the same molecular structure for all
these complexes (Figure 2) but also the same molecular packing in the crystal which allows
us to consider these crystals isomorphic.
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Figure 2. Molecular structure of complexes 4 (a), 5 (b), 6 (c), and 7 (d) in crystal with thermal ellipsoids
50% probability.

Selected geometry parameters of the complexes 4–9 are presented in Table 2. Usually,
Cu(II), with a d9 electron configuration, has square planar or octahedral geometry. In our
case, complexes of Cu(II) have square planar coordination. It is possible to see (Table 2) that
the coordination of Cu-N distances in complexes 4–7 vary insignificantly with different
halogen Cl and Br ligands and with different 2 and 3 ligands. Distance Cu-Hal corresponds
to the average values of such bonds. All molecules in the crystal lattice are planar since
they are located on crystallographic mirror planes. The sum of bond angles around Cu
atoms is equal to 360◦.

Table 2. Selected bond lengths and bond angles in complexes 4–9.

Complexes

Bond, Å 4 5 6 7 8 9

Cu1-N1 2.058 (7) 2.062 (4) 1.950 (5) 2.071 (15) 2.045 (2) 2.0607 (15)

Cu1-N2 1.973 (7) 1.951 (5) 2.050 (6) 1.958 (12) 1.949 (2) 1.9504 (15)

Cu1-Hal2 2.283 (3) 2.4307 (10) 2.2570 (2) 2.403 (17) 2.2745 (7) 2.2520 (6)

Cu1-Hal1 2.249 (3) 2.3874 (9) 2.2578 (18) 2.396 (12) 2.2747 (7) 2.2540 (5)

Cu1-Hal3 2.7360 (7) 2.854 (6)

Angle, degr.

N1-Cu1-N4 80.62 (3) 80.44 (19) 79.9 (2) 79.2 (6) 80.14 (9) 79.99 (6)

N1-Cu1-Hal1 92.84 (2) 93.99 (13) 93.28 (16) 94.4 (6) 94.83 (6) 93.85 (4)

N4-Cu1-Hal2 91.70 (2) 91.47 (14) 92.87 (17) 93.2 (6) 90.90 (7) 91.10 (5)

Hal1-Cu1-Hal2 94.84 (11) 94.10 (4) 93.94 (7) 93.2 (6) 92.61 (3) 94.23 (19)

Hal1-Cu1-Hal3 91.86 (2) 92.987 (18)

Hal2-Cu1-Hal3 101.08 (3) 106.225 (18)

N1-Cu1-Hal3 92.85 (6) 84.73 (4)

N2-Cu1-Hal3 94.15 (7) 90.09 (5)
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In crystals 4–7, planar molecules are packed in antiparallel layers along axis b. Due
to molecular positions on mirror planes, distances between such layers are equal to b/2
(3.146 (5), 3.1968 (16), 3.1482 (2), 3.22 (3) Å for 4–7, respectively), suggesting significant
intermolecular interactions between complexes in different layers. Relative positions of the
closest molecules from neighboring layers are demonstrated in Figure 3b,c for complexes 4
and 6, and in Table 3 for complexes 4–7.
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Figure 3. (a) Scheme of packing in molecular layers in isomorphic structures 4–7. Short intermolecular
contacts Cl. . .H are shown with green dotted lines. (b) Scheme of molecular positions of complexes 4
from different layers, demonstrating that axial position at Cu atom is taken by Cl atom from complex
in neighboring molecular layer. (c) Same scheme for complex 6.

Table 3. Short intermolecular contacts with Halogen atoms in crystal structures 4–7.

Contact, Å Structure

In Layer 4/Cl 5/Br 6/Cl 7/Br

Hal1. . .H3 (B) 2.612 (3) 2.629 (5) 2.459 (13) 2.589 (8)

Hal1. . .H4A - - 2.501 (16) Disordered H

Hal2. . .H2 2.537 (3) 2.561 (6) 2.517 (15) 2.580 (5)

Hal2. . .H4B(A) 2.615 (3) 2.615 (6) 2.560 (15) Disordered H

Between Layers

Cu. . .Hal * 3.174 (3) 3.210 (8) 3.167 (3) 3.223 (14)
* See these contacts in Figure 3b,c.

The general presentation of molecular positions in layers in crystals 4–7 is shown
in Figure 3a. The structure of this layer is defined by short contacts of Cl. . .H type
(Table 3) which are shorter than the sum of van der Waals radii of Cl/Br and H atoms by
approximately 0.3–0.5 Å [28] depending on which van der Waals radii system is used. The
simple explanation of such short contacts is electrostatic interactions between positively
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charged H and negatively charged Cl atoms (see Figure S10). It should be mentioned that
in these structures it is possible to observe relatively short contacts between complexes in
molecular layers. In Figure 3b,c, molecules from different layers connected by inversion
center are presented. For these molecules, it is possible to speculate that Cu atoms have a
trend to increase their coordination number from 4 to 5 by including into their coordination
sphere additional Cl atoms from neighboring molecules and forming a square-pyramidal
environment with long axial metal–ligand distance. Distances between Cu and Cl at the
vertex of the square pyramid are shown in Figure 3 for molecules 4 and 6 and for molecules
4–7 in Table 3.

Complexes 8 and 9 were synthesized by using slightly different procedures from com-
plexes 4–7; namely, in both reactions, sodium chloride was not added. The green rod-like
complexes 8 and 9 (Figure 4) are significantly different from plate-like yellow-brownish
complexes 4–7. Since complexes 4 and 9 were obtained with ligand 2 and CuCl2, it gave
the possibility to speculate that these materials are polymorphs. However, X-ray analysis
of complexes 8 and 9 indicated that both these complexes are dimers connected by two
long bridging bonds Cu-Cl in the axial position to the square coordination plane of Cu.
Differences in IR solution spectra of complexes 4 and 9 (Figure S9) formed with ligand
2, which allows us to suggest that we are dealing with true dimers, not with just specific
molecular orientations in crystals caused by antiparallel orientations of molecular dipole
moments (see Figure 3b,c). So, in the case of a lower concentration of Cl− anions in the reac-
tion mixture, dimeric complexes with pentacoordinated Cu(II) were obtained (Figure 5). It
should be mentioned that Cu(II) was called, in the literature, a “chameleon” in coordination
chemistry since it can have 4, 5, and 6 coordination numbers depending on ligand types
and reaction conditions [29]. For 5-coordinated Cu(II) trigonal bipyramidal and square
pyramidal coordination are common. In the case of complexes 4–7, restrictions imposed by
polydentate ligands resulted in the formation of planar square Cu(II) coordination, and
square pyramidal coordination for complexes 8 and 9 (Figure 5) with Cu-Cl(axial) distances
2.738 (7) and 2.854 (6) Å, respectively. If, in the complexes 4–7, the Cu atom lays in the same
plane as all ligands forming square planar Cu surrounding, in molecules 8 and 9, Cu atoms
are located slightly above the coordination plane of four kay ligand’s atoms by 0.150 (7)
and 0.144 (4) Å, respectively.
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Figure 4. Microscopic images of green rod-like crystals of complexes 8 (a) and 9 (b).

To find out if dimeric complexes 8 and 9 have coordination distances that are inside
the range of similar Cu-Cl distances in complexes presented in CSD, a statistical analysis
of such bonds was carried out. The histogram for Cu-Cl bonds is shown in Figure 6. It
demonstrates a total of 1046 of such bonds in interval 2.74–2.93 Å as in 8 and 9, but no such
bonds above 3.1 Å as in 4–7.

Unit cell parameters and molecular packing in crystals 8 and 9 demonstrate that
these complexes are isostructural. Molecules in crystals 8 and 9 form ladder-like chains
held together by π-staking interactions between heterocyclic fragments of their molecules
(Figure 7) with distances between ligands mean planes 2.743 (9) and 3.026 (3) Å, respectively.
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Figure 6. Histogram of Cu-Cl distances (Å) from CSD. A CSD search was conducted for all the
structures with a Cu-Cl bond, with the only parameter used being the Cu-Cl distance. The search
included all the oxidation states of copper, and the coordination number was not restricted. None of
the elements were excluded from the search, so the search included ligands with atoms other than
nitrogen. The version of the CSD used was 2023.1.
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The thermal stability of the synthesized complexes was characterized by decomposi-
tion temperature. From the data in Table 4, it is possible to see that the most stable complex
is a complex 8 with ligand 1. The complexes with ligand 2 are more stable than complexes
with ligand 3. However, complexes with ligand 2 have approximately the same stability
with Cl and Br ligands, while for complexes with ligand 3, stability with Br ligands is
higher.

Table 4. The decomposition temperature of complexes 4–7 and 9.

Complex Ligands Temperature, ◦C

4 2, Cl 266

5 2, Br 263

6 3, Cl 199.5

7 3, Br 238

8 1, Cl 362

9 2, Cl 226

To explore the possibility of the practical application of synthesized complexes as
contrast agents for MRI, electron paramagnetic resonance (EPR) analysis was conducted
on the solid-state samples of complexes 4 and 5. Additionally, complexes 4 and 5 were
soluble and stable in a PBS buffer with physiological pH, showing the opportunity to
apply 4 and 5 as MRI contrast agents. On the other hand, 6 and 7 were not soluble
in PBS buffer so they are not soluble in physiological conditions, as they precipitated
and the blue solution disappeared. To better understand the magnetic behavior of 4
and 5, we used PHI [30] to simulate the EPR of 4 and 5 at frequencies of 9.831 GHz for
4 and 9.868 GHz for 5 to delve into the magnetic properties of these complexes. The
consideration of anisotropic and/or isotropic systems was essential, as these terms describe
the magnetic interactions experienced by unpaired electrons in a paramagnetic sample.
In isotropic systems, the magnetic properties are uniform, while in anisotropic systems,
these properties are direction-dependent [31]. Given the distinct shapes of our complexes,
anisotropic systems were chosen for the simulations. For complex 4, the gx, gy, and gz
values were determined as 2.247, 2.054, and 2.031, respectively. On the other hand, the gx,
gy, and gz values for 5 were found to be 2.207, 2.049, and 2.049, respectively. The simulation
calculated for each complex, referred to as 4 RES and 5 RES, was then compared with
the experimental data (4 EXP and 5 EXP). In the case of complex 5, a notable correlation
was observed between the simulated and experimental plots, showcasing close alignment
with a few outliers (Figure 8). Conversely, for complex 4, while some points exhibited
similarity between the two plots, a larger number of outliers were identified (Figure 9).
The discrepancies observed in the plots point to distinctive effects arising from the varied
molecular behavior and magnetic properties exhibited by the complexes. The chemical
environment of 4 and 5 is undoubtedly influenced by the presence of Chlorine and Bromine
atoms within the complexes changing their respective EPR spectra.



Crystals 2024, 14, 319 12 of 14
Crystals 2024, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 8. EPR plots of complex 4: calculated (RES) and experimental (EXP). 

 
Figure 9. EPR plots of complex 5: calculated (RES) and experimental (EXP). 

4. Conclusions 
Six Cu(II) complexes, namely dichloro(pyrimidine-2-carboximidamide)copper(II) 

(4), dibromo(pyrimidine-2-carboximidamide)copper(II) (5), dichloro(pirazole-2-car-
boximidamide)copper(II) (6), dibromo(pirazole-2-carboximidamide)copper(II) (7), µ-

Figure 8. EPR plots of complex 4: calculated (RES) and experimental (EXP).

Crystals 2024, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 8. EPR plots of complex 4: calculated (RES) and experimental (EXP). 

 
Figure 9. EPR plots of complex 5: calculated (RES) and experimental (EXP). 

4. Conclusions 
Six Cu(II) complexes, namely dichloro(pyrimidine-2-carboximidamide)copper(II) 

(4), dibromo(pyrimidine-2-carboximidamide)copper(II) (5), dichloro(pirazole-2-car-
boximidamide)copper(II) (6), dibromo(pirazole-2-carboximidamide)copper(II) (7), µ-

Figure 9. EPR plots of complex 5: calculated (RES) and experimental (EXP).

4. Conclusions

Six Cu(II) complexes, namely dichloro(pyrimidine-2-carboximidamide)copper(II) (4),
dibromo(pyrimidine-2-carboximidamide)copper(II) (5), dichloro(pirazole-2-carboximidamide)
copper(II) (6), dibromo(pirazole-2-carboximidamide)copper(II) (7), µ-chloro{chloro(pyridine-2-
carboximidamide)copper(II)} (8) and µ-chloro{chloro(pyrimidine-2-carboximidamide)copper
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(II)} (9), were synthesized in high yields and characterized using several different methods
such as IR spectroscopy, PXRD, TGA, EPR, and quantum chemical calculations. Complexes
were crystallized, and their structures were established by single-crystal diffraction. Cu(II)
in complexes 4–7 has square planar coordination, planar molecules have very similar struc-
tures and crystal packing, which allows us to call these crystals isostructural. Complexes 8
and 9 have a dimeric structure where two monomer-like fragments are bridged by Cu-Cl
bonds, resulting in square pyramidal coordination for the Cu(II) ion and a similar herring-
bone packing motif. Likewise, 8 and 9 are isostructural despite having a different number
of nitrogen atoms. It was found that the thermal stability of pyrimidine complexes (4, 5)
with Cl and Br ligands is higher than the stability of pyrazole complexes (6, 7). Additionally,
complexes 4, 5 and 8 are soluble in a PBS buffer with physiological pH, allowing them to
be tested as future MRI contrast agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst14040319/s1, CIFs and check cif reports for compounds
2–9. Table S1. Crystallography data for crystal [2]+[O2CHCF3]−. Figure S1. Asymmetric unit of
crystal [2]+[O2C2F3]− showing 50% probability ellipsoids. Figure S2. Molecular ribbons in crys-
tal of [2]+[O2CF3]− showing H-bonds. Figures S3–S8. IR spectra for complexes 4–9. Figure S9.
The IR spectra of complexes 4 (green) and 9 (pink) reveal distinct differences, providing confir-
mation that these two complexes are indeed different dimers. Figure S10. Charge distribution in
complex 4 obtained by DFT calculations. Direction of dipole moment is shown with a blue vector.
Figures S11–S15. PXRD plots of calculated (Calc) and experimental (EXP) patterns for complexes 4–8.
Figure S16. Plots of thermogravimetric analysis for complexes 4–9. Figures S17–S20. The H-1 NMR
and Carbon-13 NMR spectra of ligands 2 and 3.
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