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Abstract—Shared information is a measure of mutual depen-
dence among m � 2 jointly distributed discrete random variables.
A new undirected probabilistic graphical model, a cliqueylon
graph, is introduced, with potential applications in leader-follower
swarms and neuron clusters with correlations of varying strength.
Shared information is characterized explicitly for the cliqueylon,
relying on structural properties of an underlying optimization.
Implications for the data compression problem of omniscience
are highlighted.

Index Terms—Shared information, omniscience, cliqueylon
graph, undirected probabilistic graphical model.

I. INTRODUCTION

Suppose that m � 2 parties, possessing varying extents
of partial knowledge such as different parts of a large file,
all wish to acquire full knowledge of the entire file, thereby
achieving omniscience. To this end, the parties communicate
among themselves with minimal interactive exchange of bits on
a public and noiseless broadcast channel. What is the smallest
possible rate of communication using which such omniscience
can be attained by all the parties? A description of omniscience
is provided in Section VII below. Representing the initial
information of party i by a random variable (rv) Xi, 1  i  m,
it was shown in [10] that the shared information (SI) of
X1, . . . , Xm subtracted from the joint entropy H(X1, . . . , Xm)

is a lower bound for this smallest communication rate. Further,
an intrinsic connection was observed between achieving
omniscience and generating a common “secret key” by means
of such interactive communication, with SI serving as an upper
bound for the largest rate of shared common randomness that
the m terminals could generate. Simultaneous tightness of both
bounds was observed for m = 2 and 3 in [10], and established
for arbitrary m � 2 in [2], [4], [8]. It was noted already
in [10] that shared information, for m = 2, particularized
to mutual information between X1 and X2. This led to the
suggestion of SI as a measure of mutual dependence among
multiple rvs [10], [13]. In a significant advance, the role of
SI was enlarged by properties developed in [5], where it is
termed “multivariate mutual information.” Appealing properties
of shared information derived in [5] include a data processing
inequality.

Shared information also appears in a central role in fun-
damental bounds in contexts other than omniscience and
secrecy capacity. These include maximal packing of edge-
disjoint spanning trees in a multigraph ([16], [15], and also
variant models in [3], [9], [5]); optimum querying exponent
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for resolving common randomness [17]; strong converse for
multiterminal secret key capacity [17], [18]; and also undirected
network coding [4], and data clustering [7].

The expression for shared information involves an optimiza-
tion over all possible nontrivial partitions of X1, . . . , Xm. In
general, a computation of SI can be prohibitive for all but the
smallest values of m. An efficient algorithm for computing
SI, when the underlying pmf PX1···Xm of X1, . . . , Xm is
known, has been proposed in [5]. Our approach is based
on a different viewpoint: In specific settings of PX1···Xm ,
can structural insights be drawn concerning the mentioned
optimization or the form of SI itself? Such special structure
could facilitate, for instance, the design of communication
protocols for successive omniscience by achieving it first for a
subset of suitable parties before extending it to all parties [6].
When PX1···Xm is unknown, such structure could point to a
means for estimating SI.

Special models of interest that enable such insights into
explicit characterizations of SI have been considered, for
instance, in [10], [15]. Motivating our present line of work,
a simple formula for SI for tree-structured graphical models,
viz. Markov chain and Markov chain on a tree, was introduced
in [10]. Distinctively separate proofs that relied on special
structural properties were obtained in [1] (see also [7]); also,
these properties led to an algorithm for estimating SI when
PX1···Xm was not known. A similar analysis for characterizing

SI for nontree graphical models was not known.

Main contributions

We introduce a new class of nontree undirected probabilistic
graphical models in which the underlying graph is a cliqueylon,
consisting of a central clique, each vertex of which is also
the root of a tree. Such a graphical model can be used to
describe settings featuring a fully connected “command center”
consisting of leader agents that communicate directly among
themselves, with each such leader overseeing a secondary
group of agents. The probabilistic behavior of each secondary
group and its leader is modeled as a tree-structured undirected
graphical model.

A potential application of the model above is in a swarm
of mobile robots with a small group of freely communicating
leader robots, each of which controls a distinct set of follower
robots with limited communication capabilities. Omniscience
in this setting would provide state information about each
robot to every other robot, enabling, for example, better
routing decisions based on the state of the entire swarm. In
a neuroscience context, a central clique can be considered to
represent a particular lobe of the brain with many strongly
interconnected neurons; several smaller sparsely connected
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Figure 1. Cliqueylon with 6 vertices in the central clique

neurons connected to the lobe are depicted probabilistically as
trees.

In the setting of a cliqueylon graph with known graphical
structure and joint pmf, we obtain a structural result concerning
the optimization inherent in the definition of SI that leads to a
simple and explicit formula. The notion of graph connectivity
plays a material role in our analysis. We first show the
sufficiency of optimizing over a restricted class of partitions
in which atoms and complements of atoms of the partition
are all connected. We then exploit this restriction and special
graph structure of the cliqueylon to simplify further the class
of feasible partitions. The restricted set of partitions underlies
our simple formula for SI of such a graph as the minimum
of SI of the clique and SI of the trees. Our approach affords
a simple method for computing SI when the clique is small;
even if the clique is large, the computational savings can be
significant.

Section II presents the preliminaries, and statements of a key
technical lemma and main results for the shared information
of a cliqueylon graph. Complete proofs of all our results are
presented in Sections III to VI. Section VII contains closing
remarks.

II. PRELIMINARIES AND MAIN RESULTS

Let X1, . . . , Xm, m � 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively, and joint pmf PX1···Xm . For A ✓
M = {1, . . . ,m}, let XA , (Xi, i 2 A). Let ⇡ =

(⇡1, . . . ,⇡k) denote a k-partition of M, 2  k  m, with
atoms ⇡i, 1  i  k. Let ⇧(M) be the set of all nontrivial
partitions of M, i.e., with k � 2 atoms. Hereafter, all partitions
of M, including those with special properties below, will allude
to nontrivial partitions.

Definition 1 (Shared information [10], [14]). The shared
information of X1, . . . , Xm is defined as

SI(XM) = min
⇡2⇧(M)

1

|⇡|� 1
D(PXM k

|⇡|Y

u=1

PX⇡u
). (1)

Given a partition ⇡ 2 ⇧(M), we denote

I⇡(XM) =
1

|⇡|� 1
D(PXM k

|⇡|Y

u=1

PX⇡u
),

so that SI(XM) = min⇡2⇧(M) I⇡(XM).
In general, there can be multiple partitions in ⇧(M) that

attain SI(XM). By [5, Theorem 5.2], there exists a unique
partition ⇡⇤ 2 ⇧(M), termed fundamental partition, with
I⇡⇤(XM) = SI(XM) such that every SI(XM)-attaining
partition is a coarsening of ⇡⇤.

A complete characterization of the properties of ⇡⇤ is in [5].
For our purposes, the following property is pertinent.

Fact [5, Proposition 5.3]: If A ✓ M is such that SI(XA) >
SI(XM), then A is either an atom of ⇡⇤ or a subset of an
atom of ⇡⇤.

The rvs X1, . . . , Xm will be associated with a suitable
underlying graph and endowed with Markov properties based
on the structure of the graph. The notion of separation will
be pertinent. Given a graph G = (M, E) with vertex set
M = {1, . . . ,m} and edge set E , let A, B and S be (pairwise)
disjoint, nonempty subsets of M. Then S separates A and B
if for every a 2 B, b 2 B, any path that connects A to B has
at least one vertex s = s(a, b) in S.

Definition 2 (Global Markov property [12]). Given a graph

G = (M, E), assign rv Xi to vertex i, i 2 M. The pmf

PXM = PX1···Xm satisfies the global Markov property with

respect G if for every triple of disjoint, nonempty subsets A,

B, S of M such that S separates A and B, the following

Markov condition holds:

XA ���XS ���XB .

Hereafter, the global Markov property will be termed simply

the Markov property.

Remark 1. If G = (M, E) is a clique, i.e., with an edge

connecting every pair of vertices, no triple A, B and S as

above exist.

Upon augmenting a clique with appropriate trees, a rich
class of graphs emerge that are compatible with the Markov
property.

Definition 3 (Cliqueylon graph). Let G = (M, E) be a graph

consisting of a (central) clique C, with each vertex i 2 C being

the root of a (hanging) tree Ti. The vertex set M is then given

by

M = C [
 
[

i2C
Ti \ {i}

!
,

and the edge set E is made up of edges between every pair of

vertices in C and the edges in each tree Ti, i 2 C.

Hereafter, we shall sometimes denote a subgraph and also
its vertices by the same symbol. This abuse of notation should
cause no confusion as the distinction will be clear from the
context.
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We recall that given a graph G = (M, E), a subset A ✓ M
is connected if the subgraph of G induced by A is connected.
Let ⇧a(M) ✓ ⇧(M) be the set of partitions of M such that
every atom of a partition is connected. Further, let ⇧ac(M) ✓
⇧a(M) be the set of partitions of M such that every atom of
the partition is connected and the complement of every atom is
also connected. It is clear that ⇧ac(M) 6= � for a cliqueylon.

The notion of maximal connectivity will also be useful.
Given a graph G = (M, E), let A ( A0 ( M. Then, A is
maximally connected in A0 if A is connected and the addition
to A of any vertex u in A0 \A renders A [ {u} disconnected.
Any disconnected subset of M can be written as a disjoint
union of maximally connected subsets in it. For a disconnected

atom (of a partition), the corresponding maximally connected

constituent subsets hereafter will be called subatoms.

A cliqueylon has the following key property that we exploit
repeatedly in our proofs.

Lemma 1. Consider a cliqueylon G = (M, E). Let A be a

disconnected atom of some partition ⇡ 2 ⇧(M). Then there

exists at least one subatom Ai ( A such that cutting a single

boundary edge (one that connects a vertex in Ai to a vertex

in A \Ai) renders A into two connected components, with Ai

lying in one component and every other subatom of A lying

in the other.

Our two main results are the following.

Theorem 2. Let PXM satisfy the Markov property with respect

to the cliqueylon G = (M, E). Then,

SI(XM) = min
⇡2⇧a(M)

I⇡(XM) = min
⇡2⇧ac(M)

I⇡(XM). (2)

4

1

2

3

Figure 2. Graph in Remark 2

Remark 2. Theorem 2 does not hold for general nontree

graphs. For example, let X1, X2 be Bernoulli rvs with

joint pmf given by PX1X2(0, 0) = 0.01, PX1X2(0, 1) = 0.4,

PX1X2(1, 0) = 0.25 and PX1X2(1, 1) = 0.34. Let N1 =

Ber(0.01) and N2 = Ber(0.99) be independent Bernoulli rvs,

and let X3 = X1 � X2 � N1 and X4 = X1 · X2 � N2 (�
denotes mod 2 addition). The rvs X1, X2, X3, X4 satisfy the

Markov property with respect to the graph in Figure 2. Explicit

calculations show that the unique minimizing partition in (1)
is {{3, 4} , {1} , {2}}, and clearly {3, 4} is not a connected

subset.

Remark 3. Theorem 2 asserts that the minimization over

partitions in ⇧(M) can be restricted to partitions in ⇧a(M)

and even further to those in ⇧ac(M).

Theorem 3. Let PXM satisfy the Markov property with respect

to the cliqueylon G = (M, E) in Definition 3. Let EC be the

set of edges in the clique C. Then,

SI(XM) = min

⇢
SI(XC), min

(i,j)2E\EC
I(Xi ^Xj)

�
.

Remark 4. Consider a (new) graph G0
= (M, E 0

) derived

from the cliqueylon G = (M, E) by removing edges from C
so as to turn C into a (connected) tree. If PXM satisfies the

Markov property with respect to G0
= (M, E 0

), then G0
is

termed a Markov Chain on a Tree [11], [10], [1]. For this

particularization, by Theorem 3,

SI(XM) = min
(i,j)2E0

I(Xi ^Xj)

thereby recovering [1, Theorem 3] as a special case.

Remark 5. We note that by [1] (and also the previous remark),

min(i,j)2E\EC I(Xi ^Xj) is the same as mini2C SI(XTi).

III. PROOF OF LEMMA 1
Proof. Let A be a disconnected atom of some partition ⇡ 2
⇧(M), and let A1, . . . , At be subatoms. There must exist at
least one Al, 1  l  t, such that Al\C = �. Otherwise, every
Al \ C 6= �, and since C is a (fully connected) clique and each
Al is connected, A must also be connected, a contradiction.

Next, let Al be a subatom with Al\C = �. Being connected
and not intersecting C, it must lie completely in one of the
trees rooted at the vertices in C. Let this tree be Tl. Note that
any subatom that lies inside a tree must be a connected subtree
of that tree, owing to connectivity.

Since Al is a connected subset fully contained in Tl, it is
easy to see that cutting any boundary edge of Al separates G
into two connected components, one of which is a subtree of
Tl.

Fix l 2 C as the root in Tl, creating a directed tree T ⇤
l .

Because Tl is a tree, exactly one of the boundary edges of Al

is an incoming edge, and in general it may have any number
of outgoing edges.

Case 1: If Al has no outgoing edges, or if none of the
subtrees obtained by cutting an outgoing edge of Al contains
any other subatom of A, then clearly cutting the edge between
the root of the subatom and its parent in Tl creates two
components, one of which contains Al and the other contains
every other subatom.

Case 2: If one of the subtrees obtained by cutting an outgoing
edge of Al does contain a subatom of A, then recursively pick
such a subatom and repeat the argument; since we pick an
outgoing edge every time, the depth (in T ⇤

l ) of the root of the
subatom under consideration increases with every step, and
since each Ti is finite, this process has to terminate after a
finite number of steps, yielding a subatom Al0 , say. Cutting
the edge connecting the root of Al0 to its parent separates the
graph into two connected components T (a subtree of Tl) and
M \ T . Since the process terminated, none of the subtrees
obtained by cutting the outgoing edges from Al0 can contain
a subatom of A, and therefore the only subatom of A that is
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contained in T is Al0 ; the rest of the subatoms of A must be
in M\ T .

IV. PROOF OF THEOREM 2: CONNECTED ATOMS

This is a proof of the first claim in (2). Considering first
the case k = 2, let ⇡ = (⇡1,⇡2) be a 2-partition with at least
one disconnected atom. Suppose that ⇡1 is disconnected; let
A1 be the subatom of ⇡1 with the property in Lemma 1, and
let A1 be a subtree of T1. Let the vertex 1 2 C be the root of
T1, which turns T1 into a directed tree T ⇤

1 . We have two cases
depending on whether A1 has outgoing boundary edges.

Case 1: If A1 has no outgoing boundary edges, let j be the
parent (in T ⇤

1 ) of the root of A1. Owing to maximal connectivity
of A1, j 2 ⇡2, and j separates A1 from M\ A1. Using the
Markov property, I(X⇡1 ^X⇡2) � I(XA1 ^Xj) = I(XA1 ^
XM\A1

), and therefore the partition {A1,M\A1} 2 ⇧a(M)

and is at least as good as ⇡, i.e., with a lower I-value.
Case 2: If A1 has outgoing boundary edges, pick one. The

subtree T obtained by cutting that edge must be a subset of ⇡2,
and A1 separates that subtree from M\ (T [A1). Again, by
the Markov property, I(X⇡1 ^X⇡2) � I(XT ^XA1) = I(XT ^
XM\T ), and therefore the partition {T,M\ T} 2 ⇧a(M)

and is at least as good as ⇡.
Now, let k � 3 and suppose that ⇡ = (⇡1, . . . ,⇡k) is a

partition with ⇡1 being disconnected. Let A1 be the subatom
of ⇡1 with the property in Lemma 1; let A1 be a subtree of T1.
As above, let the vertex 1 2 C be the root of T1, which turns
T1 into a directed tree T ⇤

1 , and let j be the parent of the root
of A1. Because A is maximally connected, j cannot be in ⇡1;
let j 2 ⇡u for some 2  u  k. Back in the undirected tree,
this ⇡u separates A from every other subatom of ⇡1; which is
guaranteed by Lemma 1. Using the Markov property,

A��� ⇡u ��� ⇡1 \A,

we get

I(XA ^X⇡1\A)  I(X⇡u ^X⇡1\A)  I(X⇡u ^X⇡1). (3)

Next, consider the (k�1)-partition ⇡0 and the (k+1)-partition
⇡00 of M, defined by

⇡0
=

⇣
⇡1 [ ⇡u, {⇡v}v 6=1,v 6=u

⌘
, (4)

⇡00
=

⇣
⇡1 \A,A,⇡u, {⇡v}v 6=1,v 6=u

⌘
. (5)

Then

I(⇡) � min {I(⇡0
), I(⇡00

)} (6)

which can be seen in a manner similar to [1, Theorem 3].
Referring to (4) and (5), we infer from (6) that for a given

k-partition ⇡ with a disconnected atom ⇡1 as above, merging
a disconnected atom with another atom (as in (4)) or breaking
it to create a connected atom (as in (5)), lead to partitions
⇡0 or ⇡00, of which at least one has a lower I-value than ⇡.
This argument is repeated until a final partition with connected
atoms is reached which has the following form. Consider the
set of all maximally connected components of the atoms of

⇡ = (⇡1, . . . ,⇡k); a connected ⇡i already constitutes such a
component. The final partition will consist of connected unions
of such components.

V. PROOF OF THEOREM 2: CONNECTED COMPLEMENTS

This proof addresses the second claim in (2). If a par-
tition ⇡ = (⇡1, . . . ,⇡k) has an atom ⇡i such that ⇡c

i is
disconnected, then removing ⇡i must break M into multiple
disconnected components. By the first assertion in (2), it is
sufficient to minimize over partitions in ⇧a(M). For a partition
⇡ = (⇡1, . . . ,⇡k) 2 ⇧a(M) with a (connected) atom ⇡i such
that ⇡c

i is disconnected, every other atom ⇡j , j 6= i must
be entirely contained in one of the disconnected components
obtained by removing ⇡i from M. In particular, if one such
component is the union of atoms ⇡1, . . . ,⇡m, m < k� 1, then
⇡i separates the union of all other atoms from this component.

⇡1 ⇡0
1⇡̄

⇡3

⇡4

⇡5

⇡6

⇡7

⇡0
2

⇡0
3

⇡0
4

⇧ ⇧
0

Figure 3. Illustrative graph for the second claim of Theorem 2

With ⇡̄ in the role of ⇡i above, let

⇡ = {⇡1, . . . ,⇡l, ⇡̄,⇡
0
1, . . . ,⇡

0
l0}

be a partition of M such that ⇡̄ separates ⇧ = [l
j=1⇡j and

⇧
0
= [l0

j=1⇡
0
j in M. Let two other partitions be given by

⇡0
= {⇡̄ [⇧,⇡0

1, . . . ,⇡
0
l0} and ⇡00

= {⇡1, . . . ,⇡l, ⇡̄ [⇧
0}. We

shall show that either I(⇡0
)  I(⇡) or I(⇡00

)  I(⇡).
Assume in contradiction that I(⇡0

) > I(⇡) and I(⇡00
) >

I(⇡). Straightforward manipulation implies that

l0(l + l0)(I(⇡)� I(⇡0
))

= l0
lX

i=1

H(X⇡i)� l
l0X

j=1

H(X⇡0
j
) + l0 H(X⇡̄)

� (l + l0)H(X⇡̄, X⇧) + lH(XM) < 0 (7)

since I(⇡0
) > I(⇡). Similarly, we also get

l(l + l0)(I(⇡)� I(⇡00
))

= l
l0X

j=1

H(X⇡0
j
)� l0

lX

i=1

H(X⇡i) + lH(X⇡̄)

� (l + l0)H(X⇡̄, X⇧0) + l0 H(XM) < 0. (8)

because I(⇡00
) > I(⇡). Adding (7) and (8) and using M =

⇧ [ ⇡̄ [⇧
0, we get that

H(X⇡̄)�H(X⇡̄, X⇧)�H(X⇡̄, X⇧0)

+ H(X⇧, X⇡̄, X⇧0) < 0. (9)
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Since X⇧ ��� X⇡̄ ��� X⇧0 , we get H(X⇧, X⇡̄, X⇧0) =

H(X⇡̄, X⇧0) + H(X⇧ |X⇡̄). As H(X⇡̄, X⇧) = H(X⇡̄) +

H(X⇧ |X⇡̄), we see that the left-side of (9) equals zero, which
is a contradiction. Therefore, at least one of ⇡0 and ⇡00 must
be as good as ⇡.

Repeating this process eventually leads to a partition such
that the subgraph induced by the complement of each atom of
the partition is connected.

VI. PROOF OF THEOREM 3
By Theorem 2, it suffices to minimize in (1) over partitions

in ⇧ac(M) made up of atoms that are each connected and have
connected complements. We first claim that ⇧ac(M) consists
of (only) two types of partitions: (a) 2-partitions obtained upon
cutting an edge that is in some Ti but not in C; and (b) partitions
whose atoms are composed of unions of Tis.

T2T3

T4

T5 T6

1

23

4

5 6

S

S0

S00

Figure 4. Illustrative graph for the proof of Theorem 3

Consider S ( M that contains vertex 1 2 C (also, 1 2 T1),
say, but does not include all the vertices in T1. Let S0 6= �
be the set of vertices in T1 that are not in S, and let S 00

=

M\(S[S0
) 6= �. By construction, S separates S0 and S00 in G,

in which case S cannot be an atom of a partition in ⇧ac(M).
Therefore, for S to be an atom of a partition in ⇧ac(M), at
least one of S0 and S00 must be empty. In case S0 is empty,
S includes the entirety of T1. If S00 is empty, then {S, S0}
partition M. Further, S0 must be obtained by cutting a single
edge in T1 and must also be an atom of the partition. This can
be seen in two steps: if S0 were not obtained by cutting a single
edge (i, j) with i 2 S and j 2 S0, S would separate the atoms
constituting S0, and if S were not an atom of the partition,
the atom of the partition containing j (which is necessarily a
subset of S0 owing to connectivity) would separate the other
atoms constituting S0 from S. Since vertex 1 2 C was chosen
arbitrarily, this argument shows that S ( M which includes
vertex i 2 C can constitute an atom of a partition in ⇧ac(M)

iff {S, Ti \ S} is a partition of M, or S is a union of Ti and
possibly other Tjs. This establishes the claim above.

Next, suppose that SI(XC) is achieved by a partition ⇡C =

(⇡1, . . . ,⇡l) of C. For each atom ⇡i 2 ⇡C , let T⇡i = [u2⇡iTu

be the collection of the vertices of all trees rooted in ⇡i,
1  i  l. Then, ⇡M = {T⇡i , 1  i  l} is in ⇧ac(M). We
have

SI(XC) =
1

l � 1

"
lX

i=1

H(X⇡i)�H(XC)

#
,

and, using the Markov property,

I⇡M(XM) =
1

l � 1

"
lX

i=1

H(XT⇡i
)�H(XM)

#

= SI(XC). (10)

We note that (10) implies SI(XM)  SI(XC). If SI(XM) =

SI(XC), we get that SI(XM), too, is achieved by the partition
⇡M. On the other hand, if SI(XC) > SI(XM), C must be
an atom or a subset of an atom, of the SI(XM)-achieving
fundamental partition (by the fact following Definition 1). The
only partitions in ⇧ac(M) that are coarser than a fundamental
partition with C as a feasible subset of an atom are the 2-
partitions of type (a) above; and the optimal such partition is
obtained by cutting an edge in some Ti \ C with the smallest
mutual information across it.

VII. CLOSING REMARKS

Consider n � 2 independent and identically distributed
repetitions Xn

M , (Xn
1 , . . . , X

n
m) of XM = (X1, . . . , Xm),

with party i observing the component Xn
i , i 2 M. The problem

of omniscience [10] entails each party i 2 M reconstructing
all of Xn

M from Xn
i and interactive communication among

the parties over a public and noiseless broadcast channel. By
[10], [2], the minimal achievable asymptotic (in n) rate of
communication is H(XM) � SI(XM). A two-stage method
for attaining omniscience, introduced in [6] as successive
omniscience, proceeds by the atoms of a partition of M, termed
local groups, first attaining local omniscience, followed by all
the parties in M acquiring global omniscience. Successive
omniscience, in general, is suboptimal in that the minimum
aggregate rate of communication in the two stages can exceed
H(XM)�SI(XM) [6]. However, no penalty in aggregate rate
is suffered if the local groups correspond to the atoms of an
SI(XM)-attaining partition of M. Theorem 3 above implies
that upon choosing the local groups as connected subsets that
are localized in the cliqueylon, it is always possible to attain
omniscience optimally by means of successive omniscience.

Finally, Theorem 3 provides recourse to a relatively efficient
estimation of SI(XM) for a cliqueylon when PXM is unknown.
A naive procedure would consist of estimating PXM from
Xn

M (requiring sample size n to grow exponentially in |M|),
followed by computation of SI(XM) from PXM (for which an
efficient algorithm is known [5]). For a cliqueylon, Theorem 3
leads to significant gains in both steps, particularly when |C| ⌧
|M|. Specifically, it suffices to estimate only PXC and the
minimum mutual information among all edges that are not
contained in C.
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