
Assembly Academy: Using Video Games and
Virtual Robots to Teach Assembly Programming

Kaden Gryphon
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, United States

kb0125@uah.edu

Haeyong Chung
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, United States

hc0021@uah.edu

Abstract—Assembly is underutilized as a beginner program-
ming language. Its simple and repetitive syntax allows students
to focus on logic and problem-solving. While the low level of
abstraction causes Assembly to be challenging to work with,
using Assembly gives students better insights into how computers
operate and more fundamental skills for procedural program-
ming. This paper introduces Assembly Academy, a programming
puzzle game utilizing a virtual robot. We include a use case
demonstrating how the game provides feedback to students to
keep them engaged and motivated while learning Assembly.

Index Terms—assembly programming, learning programming,
programming game, virtual robot

I. INTRODUCTION

Computer programming has increasingly become a core part

of education, and as such, there have been many efforts to

improve methods of teaching programming [1], [2]. While

a multitude of tools and games are available for visual and

scripting languages, there are few for assembly programming.

Assembly language is usually considered more challenging to

learn as it is harder to visualize its lower abstraction level than

high-level programming languages like Python or JavaScript.

Assembly programming is important for students to learn

despite these challenges. Assembly’s simple syntax can make

for a good beginner language as the students can focus on

solving logic problems instead of fixing syntax errors. It gives

greater insight on how a PC operates and executes commands

and gives students the problem-solving skills to write high-

performance code for embedded systems [3].

In this paper, we introduce Assembly Academy, a game that

walks students through learning assembly programming with

a virtual robot and progressively more challenging puzzles.

Robots can be a powerful tool for learning programming.

Using a robot makes programming more tangible, as the

student’s code is executed in a real-world environment. This

makes learning more engaging as the student can directly see

the effects of their code [4]. We believe a virtual robot has

these same advantages but is more accessible. Code can be

edited and executed more quickly in a virtual environment

where the student does not have to reset the robot by hand.

This creates less downtime between testing each code iteration,

This work was partially supported by National Science Foundation Grant
HCC-2146523.

helping keep students in a flow state. Assembly Academy

is designed to provide a fun and engaging way to learn

programming and develop fundamental skills using a robot.

We aim to keep students focused and motivated and negate the

challenges of visualizing assembly code. Our use case shows

how our game accomplishes this by providing feedback to the

student to help walk them through using their newly learned

skills to complete programming puzzles.

II. RELATED WORK

Assembly Academy’s main design goal is to give students

a virtual robot to help visualize their code, with game-like

puzzles to keep them focused and motivated.

Professional programming environments and high-level lan-

guages can be intimidating for new students. Mobile robots

were tested against traditional methods as a means to address

this [4]. Students felt that using robots made the course more

enjoyable and less difficult, as a result, they were absent less

often and had higher programming self-concept. We designed

Assembly Academy’s user interfaces to clearly show the pro-

gram state and provide constructive error messages to reinforce

this idea. Thus, students can focus on problem-solving without

getting overwhelmed by a complex environment.

Multiple studies have linked using robots or games in

teaching to increased student motivation and programming

self-concept [1], [2], [5]. This includes SPIMbot, a simulator

that lets students write MIPS assembly to control virtual robots

[6]. However, SPIMbot lacks the constructive feedback and

guidance that Assembly Academy aims to provide.

Combéfis et al. [1] suggest that games need feedback to help

motivate students to improve, and that guidance helps keep the

students from feeling confused and demotivated. They also

say that using scoring or contests motivates self-improvement

through competition. Assembly Academy also gives students

scores on their code. Using assembly means that the scoring

and efficiency can be more precisely measured, encouraging

students to be more competitive.

The general consensus on beginner programming education

is that the focus should be on teaching and strengthening

problem-solving and logical thinking over the syntax of any

one programming language [2], [4], [5]. This is the goal of

using assembly as the target language. It has a simple and

108

2023 IEEE International Conference on Advanced Learning Technologies (ICALT)

2161-377X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICALT58122.2023.00037

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
d

Le
ar

ni
ng

 T
ec

hn
ol

og
ie

s
(IC

A
LT

) |
 9

79
-8

-3
50

3-
00

54
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
A

LT
58

12
2.

20
23

.0
00

37

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on April 25,2024 at 21:39:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The three robot commands, (a)botmove: if R0 is positive the robot
moves right, else it moves left. (b)botgrab: the robot picks up a block and
sets R1 to 1, or puts down a block and set R1 to 2. (c)botlook: the robots
sets R1 to the ASCII value of the held letter block.

repetitive syntax that can let students focus on logic and

problem-solving.

III. DESIGN OF ASSEMBLY ACADEMY

Assembly Academy is a game that walks the student

through the basics of assembly programming by having the

student program a virtual robot. The game uses commands

and syntax based on the ARM assembly language. The robot

is based on a final programming assignment of a beginner

programming class where the student has to write code for a

virtual robot that can move left and right, carry blocks, and

compare the values of blocks. The game is implemented in

the Unity game engine using the C# programming language.

A. General Structure and Mechanics

Assembly Academy consists of short tutorials that explain a

new ARM command, followed by puzzles that have the student

use the newly learned commands to program the robot. The

game contains a compiler that converts the student’s code into

ARM machine code, reporting any syntax errors it finds and

their line numbers. An emulator then runs the machine code

and sends commands to the virtual robot.

Each level gives the player an increasingly difficult puzzle

to solve. Most puzzles have a dynamic element that is ran-

domized each run to encourage the student to make a general

solution to the puzzle. Part of the puzzle is managing the

computer’s eight registers, R0-R7. Registers act as variables

and hold a small amount of data (2 bytes). The first two

registers are often reserved for function input and output. This

creates a challenge for the programmer who has to juggle this

limited resource. An example puzzle is “Move the block to

the position given in R2”. Every time the student runs their

program, the value in register two will be randomized.

Assembly Academy uses a limited instruction set of the

ARM language found in the ARM 7TDMI data sheet [7].

There are a few commands that are added in order to control

the robot: botmove, botgrab, botlook (Fig. 1).

When the execution of the student’s program is complete,

the game will evaluate if the program completed the puzzle.

Fig. 2. Assembly Academy’s user interface during one of the levels.

If the program fails, the game will ask the student to try again

and give a hint. If the program succeeds, the game will show

the student’s memory and clock cycle usage.

B. User Interface

Fig. 2 shows the user interface for the puzzles. The top left

has a row of buttons to control the game (Fig. 2a).

• Build: Complies student’s program and checks for errors.

• Run: Executes the student’s program start to finish.

• Step: Advance the execution of program by one step.

• Reset: Clears the registers memory, resets the robot’s

position, and randomizes the dynamic parts of the puzzle.

• Goal: Toggles a pop up showing the puzzle’s goal.

• Help: shows list of ARM commands and their syntax.

Below the buttons is the text area where the student writes

their code solution to the level’s puzzle (Fig. 2b). On The

right is the robot view, where the student can watch the

virtual robot execute their program (Fig. 2c). Below this is

the current contents of the emulator’s registers. This includes

an interpretation of the currently executed command, registers

R0-R7, the program counter (PC), and the configuration and

control register (CCR) (Fig. 2d). These get updated in real-

time as the emulator executes the student’s program. Below

this is where error messages are displayed (Fig. 2e).

IV. USE CASE

To illustrate the learning process supported by Assembly

Academy, it was used by a beginner programmer. The student

has already completed the early tutorials and puzzles and has

made it to the tutorial on “labels, loops, and branches.” First,

the student reads through the tutorial. It introduces the idea

of labels and their use. Labels mark locations in the code that

loops and functions can jump to. The tutorial explains the

syntax for labels and gives a simple example of an infinite

loop (Fig. 3a). The tutorial then explains the CCR flags and

conditional branch commands with similar syntax explanations

and examples. After the tutorial, the student is given a puzzle

based on the newly learned commands. “Use a loop to move

the robot off the right side of the screen.” The student writes

their first attempt and hits build (Fig. 4a). The compiler finds

109

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on April 25,2024 at 21:39:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. (a) The tutorial’s example code for an infinite loop. (b) The student’s
first compile attempt with error messages. (c) The student’s first run attempt,
the robot did not travel far enough, and the game gives a hint. (d) The student’s
program succeeded, and the game scores the memory and clock cycle use.

two errors in the student’s code and reports them to the debug

console (Fig. 3b). The first error: “Error line 1: unknown reg”

was caused because the student did not write a number for

the register, and the second one: “Error line 3: unknown com-

mand” was from misspelling ‘botmove’. Using these messages

the student can quickly find their mistakes and correct them.

The student runs their code but it only moves the robot over by

two spaces. The game asks the student to try again and gives

them a hint, “use a b command to create an infinite loop” (Fig.

3c). The student remembers the example code given in the

tutorial for an infinite loop and recreates that structure but with

the botmove command (Fig. 4b line 3). Their new program

complies without error and the robot successfully completes

the puzzle. Finally, the end screen congratulates the player

and gives the program’s memory usage and clock cycles used

(Fig. 3d). The next puzzle reinforces the skills the student

just learned. Giving them a similar puzzle to keeps them from

getting overwhelmed, but it adds some extra complexity to

keep the student from getting bored, hopefully keeping them

in a flow state.

V. DISCUSSION AND FUTURE WORK

Assembly programming is a good candidate for teaching

programming and computer hardware due to its simple struc-

ture. Learning assembly programming helps students under-

stand how the computer works at a low level and write

code that is optimized for efficiency. Because of its limited

instruction set and consistent syntax, less time needs to be

spent fixing syntax errors when using this language. This

allows students to spend more time developing their problem-

solving and logical thinking abilities.

An advantage of using a complete emulator for running the

student’s code is that the quirks of writing and debugging

real ARM assembly carry over. The ARM instruction set does

not have a mov command. mov gets replaced with add #0
by the compiler. Functionally this does the same thing, but

when debugging the code the mov will show up as add in

(a) First (b) Final

0: .text 0: .text
1: mov r, #1 1: mov r0, #1
2: botmove 2: loop:
3: btmove 3: botmove
4: botmove 4: b loop

Fig. 4. (a) the student’s first attempt that produced compiler errors. (b) the
student’s code that completed the puzzle.

the debugger. By using a complete emulator, students can get

used to seeing quirks like these.

We found that using a virtual robot has advantages over

using a physical robot. One advantage is that setting up and

calibrating a physical robot can take a lot of time, while a

virtual robot can eliminate this issue. Additionally, a virtual

robot is available to students at any time, unlike a physical

robot that may only be accessible during lab hours. These

limitations and delays can lead to student frustration, as

highlighted in Fernández’s study [8].

One area we would like to expand upon is visualization

of the hardware. Showing how the commands are being

decoded and moved around the registers and ALU during the

fetch-execute cycle. This could further improve the students’

understanding of low-level programming and could open the

game up to supporting micro-programming puzzles.

The assembly language is a powerful tool for students to

learn. It gives them the freedom to focus on problem-solving

rather than fixing syntax errors. We believe that Assembly

Academy can serve as the foundation for an educational game

that can introduce beginner programmers to the assembly

language by visualizing their code through the use of virtual

robots.

REFERENCES

[1] S. Combéfis, G. Beresnevičius, and V. Dagienė, ”Learning programming
through games and contests: overview, characterisation and discussion,”
Olympiads in Informatics, vol. 10, no. 1, pp.39-60, 2016.

[2] F. Kalelioğlu, ”A new way of teaching programming skills to K-12
students: Code.org,” Computers in Human Behavoir, 52, Nov., pp.200-
210, 2015.

[3] R. Logozar, M Horvatic, I Sumiga, M Mikac, ”Challenges in teaching
assembly language programming - desired prerequisites vs. students’
initial knowledge,” IEEE Global Engineering Education Conference,
pp.1689-1698, 2022.

[4] A. Pásztor, R. Pap-Szigeti, E. Torok, ”Mobile robots in teaching pro-
gramming for IT engineers and its effects,” International Journal of
Advanced Computer Science and Applications, vol. 4, no. 11, pp.162-
168, 2013.

[5] R. Rajaravivarma, ”A games-based approach for teaching the introduc-
tory programming course,” ACM SIGCSE Bulletin, vol. 37, no. 4, Dec.,
pp.98-102, 2005.

[6] C. Zilles, ”SPIMbot: an engaging, problem-based approach to teaching
assembly language programming,” Proceedings of the 2005 Workshop
on Computer Architecture Education: Held in Conjunction with the 32nd
International Symposium on Computer Architecture, June, pp.4-es, 2005

[7] ARM 7TDMI Data Sheet, Advanced RISC Machines Ltd, Cambridge,
United Kingdom, pp.5-1 - 5-46, 1995.

[8] B.G. Fernández, et al. ”Robotics vs. game-console-based platforms to
learn computer architecture,” IEEE Access, vol. 8, May, pp.95153-95169,
2020.

110

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on April 25,2024 at 21:39:38 UTC from IEEE Xplore. Restrictions apply.

