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ABSTRACT
Two widely considered decentralized learning algorithms are Gossip and random walk-based learning.
Gossip algorithms (both synchronous and asynchronous versions) suffer from high communication cost,
while random-walk based learning experiences increased convergence time. In this paper, we design a fast
and communication-efficient asynchronous decentralized learning mechanism DIGEST by taking advantage
of both Gossip and random-walk ideas, and focusing on stochastic gradient descent (SGD). DIGEST is
an asynchronous decentralized algorithm building on local-SGD algorithms, which are originally designed
for communication efficient centralized learning. We design both single-stream and multi-stream DIGEST,
where the communication overhead may increase when the number of streams increases, and there is a
convergence and communication overhead trade-off which can be leveraged. We analyze the convergence
of single- and multi-stream DIGEST, and prove that both algorithms approach to the optimal solution
asymptotically for both iid and non-iid data distributions. We evaluate the performance of single- and
multi-stream DIGEST for logistic regression and a deep neural network ResNet20. The simulation results
confirm that multi-stream DIGEST has nice convergence properties; i.e., its convergence time is better
than or comparable to the baselines in iid setting, and outperforms the baselines in non-iid setting.

INDEX TERMS Machine learning, distributed learning, decentralized learning, local stochastic gradient
descent (SGD), federated learning.

I. Introduction
Emerging applications such as Internet of Things (IoT),
mobile healthcare, self-driving cars, etc. dictate learning be
performed on data predominantly originating at edge and end
user devices [1]–[3]. A growing body of research work, e.g.,
federated learning [4]–[9] has focused on engaging the edge
in the learning process, along with the cloud, by allowing
the data to be processed locally instead of being shipped to
the cloud. Learning beyond the cloud can be advantageous
in terms of better utilization of network resources, delay
reduction, and resiliency against cloud unavailability and
catastrophic failures. However, the proposed solutions, like
federated learning, predominantly suffer from having a criti-
cal centralized component referred to as the Parameter Server
(PS) organizing and aggregating the devices’ computations.
Decentralized learning, advocating the elimination of PSs,
emerges as a promising solution to this problem.

Decentralized algorithms have been extensively studied in
the literature, with Gossip algorithms receiving the lion’s

share of research attention [10]–[17]. In Gossip algorithms,
each node (edge or end user device) has its own locally
kept model on which it effectuates the learning by talking to
its neighbors. This makes Gossip attractive from a failure-
tolerance perspective. However, this comes at the expense of
high network resource utilization. As shown in Fig. 1a, nodes
in the synchronous Gossip algorithm use a synchronous
clock to perform local model update and aggregation where
aggregation demands receiving model updates from the
neighbors. Until their synchronization clocks expire, the
nodes receive model updates from their neighbors. As seen,
there should be data communication among all nodes after
each model update, which is a significant communication
overhead. Furthermore, some nodes may be a bottleneck for
the synchronization as these nodes (which are also called
stragglers) can be delayed due to computation and/or com-
munication delays, which increases the convergence time.
This is due to the synchronous clock time that is determined
according to the slowest node (or a set of fastest nodes).
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(a) Sync-Gossip

node1

node3

node2

node1

node3

node2




node1

node3

node2

node1

node3

node2




Recv

Recv Recv

Recv Recv

Recv

Recv Recv

Recv Recv

Xmit

Xmit

Xmit

Xmit Xmit

Xmit

Recv Recv

Recv

Recv

A

A

AA

AA

A

A

A A

A A

A

A

A

Recv

A

Recv

A

Xmit

Xmit

A Xmit

(b) Async-Gossip
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(c) Random-Walk
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(d) DIGEST

FIGURE 1: DIGEST in perspective as compared to existing decentralized learning algorithms; (a) synchronous Gossip,
asynchronous Gossip, and random-walk. Note that “∇” represents a model update. “Xmit” represents the transmission of a
model from a node to one of its neighbors. “Recv” represents the communication duration while receiving model updates
from all of a node’s neighbors. “A” represents model aggregation. xv

t shows the local model of node v at iteration t. For
random walk algorithm, the global model iterates are denoted as xt. We note that the absence of blue boxes in all figures
means that nodes do not continue their computations. On the other hand, the absence of red boxes means that there is no
communication among neighboring nodes. We also note that communication (“Xmit”) and computation (“∇”) are parallel
in DIGEST and asynchronous Gossip, but aggregation (“A”) and computation are sequential. The figure shows them as
parallel tasks for the sake of easier presentation and considering that the duration of aggregation (“A”) is negligible as
compared to communication (“Xmit”) and computation (“∇”).

Asynchronous Gossip algorithms, where nodes commu-
nicate asynchronously and without waiting for others are
promising to reduce idle nodes and eliminate the strag-
glers, i.e., delayed nodes [18]–[21]. Indeed, asynchronous
algorithms significantly reduce the idle times of nodes by
performing model updates and model exchanges simultane-
ously as illustrated in Fig. 1b. For example, node 1 can still
update its model from x1

t to x1
t+1 and x1

t+2 while receiving
model updates from its neighbors. When it receives from all
(or some) of its neighbors, it performs model aggregation.
However, nodes still rely on iterative Gossip averaging of
their models, so updates propagate gradually across the
network. Such delayed updates, also referred as gradient
staleness in asynchronous Gossip may lead to high error
floors [22], or require very strict assumptions to converge
to the optimum solution [18]. Moreover, such methods must
be implemented with caution to prevent the occurrence of
deadlocks [19].

In both synchronous and asynchronous Gossip, models
propagate over the nodes and are updated by each node

gradually as seen in Fig. 2a. This may lead to a notion that
we name “diminishing updates”, where a node’s update (e.g.,
node 1 in Fig. 2a), even though crucial for convergence, may
be averaged and mixed with other models in the next node
(e.g., node 2 in Fig. 2a). The diminishing updates are more
emphasized when a model passes through high degree nodes,
and detrimental to the convergence when data distribution is
heterogeneous across the nodes.

If Gossip algorithms are one side of the spectrum of
decentralized learning algorithms, the other side is random-
walk based decentralized learning [23]–[26]. The random-
walk algorithms advocate activating a node at a time, which
would update the global model with its local data as illus-
trated in Fig. 1c. Then, the node selects one of its neighbors
randomly and sends the updated global model. The selected
neighbor becomes a newly activated node, so it updates
the global model using its local data. This continues until
convergence. Random-walk algorithms reduce the communi-
cation cost as well as computation with the price of increased
convergence time due to idle times at nodes.
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The goal of this work is to take advantage of both Gossip
and random-walk ideas to design a fast and communication-
efficient decentralized learning. Our key intuitions are; (i)
Nodes do not need to communicate as much as Gossip
to update their models, i.e., a sporadic exchange of model
updates is sufficient; (ii) the diminishing updates inherent to
Gossip algorithms can be eliminated by employing a global
model (as shown in Fig. 2b) as nodes do not average out
multiple models received from multiple neighbors; they only
add their models to the global model; and (iii) nodes do not
need to wait idle as in random walk.

We design a fast and communication-efficient asyn-
chronous decentralized learning mechanism DIGEST by
particularly focusing on stochastic gradient descent (SGD).
DIGEST is an asynchronous decentralized learning algo-
rithm building on local-SGD algorithms, which are origi-
nally designed for communication efficient centralized learn-
ing [27]–[29]. In local-SGD, each node performs multiple
model updates before sending the model to the PS. The
PS aggregates the updates received from multiple nodes
and transmits the updated global model back to nodes.
The sporadic communication between nodes and the PS
reduces the communication overhead. We exploit this idea
for asynchronous decentralized learning. The following are
our contributions.

• Design of DIGEST. We design a fast and communication-
efficient asynchronous decentralized learning mechanism;
DIGEST by particularly focusing on stochastic gradient
descent (SGD). DIGEST works as follows. Each node
keeps updating its local model all the time as in local-
SGD. Meanwhile, there is an ongoing stream of global
model update among nodes, Fig. 1d. For example, node
1 starts transmitting the global model to node 2 at time
t. When node 2 receives the global model from node
1, it aggregates it with its local model. The aggregated
global model is transmitted to node 3 next. We note that
the exchanged models are global models as each node
adds its own local updates to the received model. A node
that has the global model selects the next node randomly
among its neighbors for global model transmission. After
all the nodes update their models with a global model,
DIGEST pauses global model exchange, while local SGD
computations still continue. The global model exchange
is repeated at every H iterations. We name this algorithm
single-stream DIGEST.

• Multi-Stream DIGEST. We further improve the conver-
gence time of single-stream DIGEST by enabling multiple
streams of global model updates. For example, there are
4 streams working together at Fig. 3, where each stream
operates on a smaller part of the network, so global
model updates can be completed quickly. We identify the
multiple streams using a rooted tree, which is determined
in a decentralized manner via a distance vector algorithm
[30]. Note that two or more streams may intersect at one
node which is how the streams aggregate their global
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FIGURE 2: Spread of information across a decentralized
network.
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FIGURE 3: Example multi-stream DIGEST.

models. The communication overhead may increase when
the number of streams increases, and there is a nice
convergence and communication overhead trade-off which
can be exploited by adjusting H .

• Convergence analysis of DIGEST. We analyze the
convergence of single- and multi-stream DIGEST, and
prove that both algorithms approach the optimal solu-
tion asymptotically. We show that DIGEST’s approach
of simultaneous global model updating and local SGD
iterations does not hurt the convergence rate and does not
create any convergence gap. Furthermore, DIGEST is not
affected by the network topology, i.e., even high degree
nodes do not create any learning bias. We also indicate
how frequently global model updates should be made, i.e.,
what the value of H should be to achieve linear speed-
up O( 1

V T ) in both iid and non-iid cases, where V is the
number of nodes in the network and T is total number of
iterations.

• Evaluation of DIGEST. We evaluate the performance of
single- and multi-stream DIGEST for logistic regression
and a deep neural network ResNet20 [31] for datasets
w8a [32] and MNIST [33], and CIFAR-10 [34]. We con-
sider both iid and non-iid data distributions over various
network topologies with different number of nodes. The
simulation results confirm that DIGEST has nice conver-
gence properties; i.e., its convergence time is better than or
comparable to the baselines in iid setting, and outperforms
the baselines in non-iid setting.

II. Related Work
Decentralized optimization algorithms have been widely
studied in the literature, where nodes interact with their
neighbors to solve an optimization problem [35]–[38]. De-
spite their potential, these algorithms suffer from a bias
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in non-iid data [39], and they require synchronization and
orchestration among nodes, which is costly in terms of
communication overhead.

Decentralized algorithms based on Gossip involve a mix-
ing step where nodes compute their new models by mixing
their own and neighbors’ models [16], [40], [41]. However,
this is costly in terms of communication as every node
requires O(deg(G)) data exchange for every model update
for a graph G. Furthermore, model updates propagate grad-
ually over the network due to iterative gossip averaging.
Such gradual model propagation reduces the convergence
time and makes the learning mechanism very sensitive to
data distribution over nodes. Finally, Gossip algorithms tend
to favor higher-degree nodes while updating models, which
causes slower convergence for non-iid data [42]. Our goal
in this paper is to reduce the communication cost in de-
centralized learning for any data distribution without hurting
convergence.

Asynchronous Gossip algorithms are designed to improve
synchronous Gossip algorithms. The main focus of asyn-
chronous Gossip is the reduction of synchronization costs in
a gossip setting by utilizing non-blocking communication
[18], [19], [43]. This means that nodes could potentially
receive and use the stale versions of neighboring nodes’
models to update their own models. Despite this modifica-
tion, asynchronous Gossip algorithms continue to rely on
the traditional Gossip to spread the information, where each
node sends its model to all of its neighbors, which still
introduces high communication cost. Our goal in this paper
is to reduce the communication cost in an asynchronous
manner for decentralized learning.

A random walk-based decentralized learning is considered
in [24], which is similar to work on random walk data
sampling for stochastic gradient descent, e.g., [25], [26]. Re-
ducing the global averaging rounds as compared to Gossip-
based mechanisms is considered in [44] by one-shot aver-
aging. However, the global averaging rounds require long
synchronization duration for large networks, which increases
the convergence time. Also, strong assumptions and only iid
data is considered [44]. As compared to Gossip and random
walk-based algorithms, DIGEST designs a communication
efficient decentralized learning without hurting convergence
rate for both iid and non-iid data.

III. Design of DIGEST
A. Preliminaries
Network Topology. We model the underlying network topol-
ogy with a connected graph G = (V, E), where V is the set
of vertices (nodes) and E is the set edges. The vertex set
contains V nodes, i.e., |V| = V , and |.| shows the size of
the set. The computing capabilities of nodes are arbitrary
and heterogeneous. If node i is connected to node j through
a communication link and can transmit data, then link {i, j}
is in the edge set, i.e., {i, j} ∈ E . The set of the nodes that
node i is connected to and can transmit data is called the

neighbors of node i, and the neighbor set of node i is denoted
by Ni. We do not make any assumptions about the behavior
of the communication links; there can be an arbitrary, but
finite amount of delay over the links.

Data. We consider a setup where nodes have access to a
subset of data samples D. Each node v has a local dataset
Dv, where Dv = |Dv| is the size of the local dataset and
D =

∑V
v=1 Dv. The distribution of data across nodes is not

identical and independently distributed (non-iid).
Stochastic Optimization. Assume that the nodes in the

network jointly minimize a d-dimensional function f : Rd →
R. The goal of the nodes is to converge on a model x∗, which
minimizes the empirical loss over D samples, i.e., x∗ :=

argminx∈Rd

[
f(x) := 1

D

∑D
i=1 fi(x)

]
, where fi(x) : Rd →

R is the loss function of x associated with the data sample
i. The optimum solution is denoted by f∗. The loss function
on local dataset Dv at node v is fv(x) = 1

Dv

∑
i∈Dv

fi(x).
Notation. We provide our notation table in Appendix A.

B. Single-Stream DIGEST
1) Overview
Local Model Update. We assume that the time is slotted,
and at each slot/iteration, a local model is updated. However,
a calculation of a gradient may take more than one slot,
vary over time, or not fit into slot boundaries. Thus, at each
iteration t, any gradients which have been delayed up to
iteration t, and not used in previous local updates are used to
update the local model. We note that time slots across nodes
do not need to be synchronized in DIGEST as each node
can have its own iteration sequence and update local and
global models over its own sequence. The only assumption
we make is that the slot sizes are the same across nodes,
which can be decided a priori.

Let us consider that Lv
T = {lvt }0≤t<T is the set of the

delayed gradient calculations at node v, where lvt shows that
the local-SGD update of iteration t is delayed until iteration
lvt . For instance, lvt′ = t means that the local-SGD of iteration
t′ is lagged behind and performed in iteration t, t ≥ t′.
Then, we define uv

t = {t′ | lvt′ = t} to show all the updates
completed at iteration t in node v. If we consider that there
is no global update at node v, the local model is updated as
xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z), where ηz is the learning

rate, ivz is a sample uniformly chosen from Dv in iteration z,
and ∇fivz (x

v
z) is the gradient. However, there may be global

model updates at node v, i.e., node v could receive a global
model update from one of its neighbors at iteration t. Such
a global model reception should be reflected in local model
updates, which we discuss next.

Global Model Update and Exchange. Let x̃t be the
global model that is being transferred from one node to
another at time slot t. If node v receives the global model x̃t

from one of its neighbors, a global model update indicator
svt is set to svt = 1. Otherwise, i.e., when node v does not
receive the global model from its neighbors, we set svt = 0.
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If svt = 0, then node v updates its model locally according
to the update mechanism presented earlier in the “Local
Model Update” section. If svt = 1, i.e., when a global model
is received by node v from one of its neighbors, then the
global model should be incorporated in the calculations.
DIGEST sets the local model to the global model when there
is a global model update as follows.

xv
t =

{
xv
t−1 −

∑
z∈uv

t−1
ηz∇fivz (x

v
z) if svt = 0

x̃t if svt = 1
(1)

The global model is updated as

x̃t = x̃t−1 +
Dv

D

((
xv
t−1 −

∑
z∈uv

t−1

ηz∇fivz (x
v
z)
)
− xv

τv
t−1

)
,

(2)

where x̃t−1 is the global model received by node v at
slot t − 1. The global model, i.e., x̃t is updated by using
x̃t−1 as well as the local updates of node v. We use
τvt to denote the last time slot up to t, when node v’s
model was updated with the global model, i.e., τvt =
max{t′ | t′ ≤ t, svt′ = 1}. The equivalent of (2) is
x̃t = x0 −

∑V
v=1

∑τv
t −1

t′=0

∑
z∈uv

t′

Dv

D ηz∇fivz (x
v
z), where x0

is the initial model. As seen, the global model is updated
across all nodes by taking into account all delayed gradient
calculations. We use Dv

D ratio to give more weight to the
gradients with larger data sets. Now that we provided an
overview of DIGEST, we provide details on how DIGEST
algorithms operate next.

2) Algorithm Design
DIGEST is comprised of two algorithms; (i) local and global
model update at node v, and (ii) sending a global model from
a node to its neighbor.

Local and Global Model Update. The local and global
model update of DIGEST is presented in Alg. 1. Every node
v keeps its local model xv

t as well as xv
−1, which is a copy

of the local model in the latest global model update at node
v. x̃t is the global model. All of these models are initialized
with the same initial model x0. We note that only one of
the nodes, let us say node v0, has the global model x̃t at the
start of the algorithm.

We define visited as the set of nodes that are recently
visited for the global model updates. It is initialized as an
empty set at node v. We define a period of time, during
which all the nodes in V are visited at least once, as a
synchronization round. During a synchronization round, all
nodes update their local models with a global model as they
are visited at least once. More details regarding the visited
set will be provided as part of Alg. 2.

The node that node v receives the global model from is
defined by pre node, where its initial value is set to v as
there is no previous node at the start. The set of global model
update indicators, i.e., SvT = {svt }0<t≤T is initialized as an
empty set, where T is the number of slots that Alg. 1 runs.

Algorithm 1 Local and global model update of DIGEST at
node v ∈ V .

1: Initialization: xv
0 = x0, xv

−1 = x0, x̃0 = x0, visited =
{}, pre node = v, SvT = {0}0<t≤T , sv01 = 1, V0 = V .

2: for t in 0, ..., T − 1 do
3: Sample ivt uniformly from Dv.
4: Compute the gradient ∇fivt (x

v
t ).

5: xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z) ▷ Local model

update.
6: if Received new message from another node then
7: (x̃t, visited, pre node, 0)← message
8: svt+1 = 1
9: end if

10: if svt+1 = 1 then
11: x̃t+1 = x̃t +

Dv

D (xv
t+1 − xv

−1)
12: xv

t+1 = x̃t+1 ▷ Local model is updated using
global model.

13: xv
−1 = xv

t+1

14: if mod (t,H) = 0 or visited ̸= V then
15: Send message = (x̃t+1, visited,

pre node, 0) to a neighbor node via Alg. 2
16: else
17: svt+H−mod(t,H) = 1 ▷ Pause global model

update and exchange until mod (t,H) = 0 holds.
18: visited = {}
19: end if
20: end if
21: end for

Algorithm 2 Sending global model from node v ∈ V .

1: Input: message = (x̃t+1, visited, pre node,m)
2: if v /∈ visited then
3: visited = visited ∪ {v}
4: pvm = pre node
5: end if
6: C = {v′ ∈ Nv ∩ Vm | v′ /∈ visited}
7: if C ̸= ∅ then
8: Select v′ randomly from C.
9: Send message = (x̃t+1, visited, v,m) to node v′.

10: else
11: Send message = (x̃t+1, visited, v,m) to pvm.
12: end if

Assuming that v0 is the node where the global model update
starts, sv01 is set to 1, i.e., sv01 = 1.

At every iteration t, node v first gets one data sample from
the local dataset randomly (line 3), and computes a stochastic
local gradient (line 4) based on the selected data sample and
the current model at node v, i.e., xv

t . Then, node v uses all
the gradients whose computations are delayed until iteration
t, and that are not used in local model updates so far for the
local model update (line 5).
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If node v receives a “message” from one of its neighbors
at slot t, then it should update the global model. Each
message contains information on the global model x̃t, the
set of visited nodes, i.e., visited, the id of the node that sends
this message to node v, e.g., v′, and a parameter m, which
is always set to 0 in single-stream DIGEST, but may take
different values for multi-stream DIGEST. After the message
is extracted (line 7), the global model update indicator is set
to 1 (line 8), and the global model is updated (lines 11−13).
The global model is updated using the most recent local
model of node v (line 11). The local model is updated with
the global model (line 12). The current local model is stored
at node v and will be used in the next global update (line
13).

If the global model is updated at node v, i.e., if sv01 = 1,
then node v creates a message and sends it to one of
its neighbors if (i) visited ̸= V: when not all nodes
are visited in the current synchronization round; or (ii)
mod (t,H) = 0: this is an indicator of the start of a new
synchronization round, which happens periodically at every
H iterations. In other words, global model synchronization
continues until all nodes in V are visited. Then, global model
update is paused until a new synchronization round (satisfied
by line 17), which starts at every H iteration. We will
describe how H should be selected later in the paper as
part of our convergence analysis and evaluations. If one of
the conditions in line 14 is satisfied, then node v sends the
global model to one of its neighbors by calling Alg. 2.

Sending Global Model. Alg. 2 describes the logic of
DIGEST at node v for sending a global model to a neigh-
boring node. Alg. 2 implements a Depth-First Search (DFS)
to traverse all the nodes in the network in a synchronization
round. If v is not visited before in this synchronization round,
it is added to visited (line 3) and its parent node pvm is set
to pre node (line 4). The parent node is the node that node
v receives the global model from for the first time in this
synchronization round. C is a set of nodes that node v can
possibly transmit. It includes all of the neighboring nodes
which are not in the visited set. If C is not empty, one of
its elements v′ is chosen randomly (line 8), and a message
including the global model is transmitted to node v′ from
node v. If C is empty, i.e., all the neighbors of node v are
visited in the current synchronization round, the message is
sent to the parent of node v (pvm) (line 11). We note that if
all the nodes are visited in the network, Alg. 1 pauses global
model update (line 17), and Alg. 2 is not called. Note that
Alg. 2 and Alg. 1 operate simultaneously; one does not need
to stop and wait for the other as also illustrated in Fig. 1d.

C. Multi-Stream DIGEST
1) Tree Construction and Multiple Streams
Our goal in multi-stream DIGEST is to find a shortest-path
tree so that model updates can be distributed quickly. We
use a classical distance vector routing algorithm such as
Bellman-Ford to construct a shortest-path tree. Belmann-

Ford algorithm is optimal [45] in the sense that it results
a shortest path tree when a root node is fixed. Multi-stream
DIGEST finds the best tree among all shortest path trees
(constructed for each node using Bellman-Ford). The best
tree is the tree that has the smallest range (distance from
the root to the farthest leaf node). In particular, our first
step is to create a rooted tree from our undirected graph
G via Bellman-Ford, where each node v in graph G learns
its delay distance dGvu to node u in a decentralized manner
and via message passing. We define the radius of node v
as RG

v , which is the largest distance from node v; i.e.,
RG

v = maxu{dGvu}. The root of the network is the node
with the smallest RG

v , i.e., r = argminv{RG
v }, where r is

the root node. The shortest delay tree STr rooted with r is
constructed in a decentralized manner as each node keeps
dGvu information.

After the tree is constructed, multiple streams are created
to exchange the global model in the network. First, the root
node creates a number of streams which is equal to the
number of its children. Each of these streams has a range,
which starts from the root node and ends at a child node if
the child node itself has more than one child. In that case,
the child node behaves exactly as a root node and creates
multiple streams towards its children by following the same
rule that we just described for the root node. Eventually, there
will be M streams in the tree, and the set of the streams that
go through node v is Mv. The set of nodes that are in the
range of stream m is Vm. The set of the streams between
root r and node v is defined as P r

v .

2) Algorithm Design
Multi-stream DIGEST is summarized in Alg. 3. The follow-
ing are the main differences between Algs. 3 and 1.

There are multiple global models in different streams, i.e.,
x̃t[m] corresponds to the global model in stream m out of
M streams. There are |Mv| models stored in each node,
i.e., x̃−1[m] to represent the global model corresponding to
the last synchronization of stream m at node v. We define
visited[m], pre node[m], and svt [m] for each stream m.

Each node v has a queue to store all the messages that a
node receives from its neighbors. It is initialized as an empty
queue at the start. Whenever node v receives a message
from one of its neighbors, it is added to the queue. Each
node can receive up to |Mv| messages related to different
streams, so the size of the queue is |Mv|. In each message,
there is a stream index m (line 10).

Node v extracts all the messages in its queue (lines 9-12).
Then, it updates its global and local models as in Alg. 1 if
svt+1[m] = 1. The global model is updated using the most
recent local updates of node v and global updates of other
streams (line 15). The global model synchronization contin-
ues until all nodes in Vm are visited for stream m. Then,
global model update is paused until a new synchronization
round, which starts at every Hm iteration. The policy for
selecting Hm is explained in the next section.
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Algorithm 3 DIGEST on node v ∈ V with multiple streams.

1: Initialization: xv
0 = x0, xv

−1 = x0, queue = ().
2: for m in Mv do
3: x̃0[m] = x0, x̃−1[m] = x0, visited[m] = {},

pre node[m] = v, SvT [m] = {0}0<t≤T , svm1 [m] = 1.
4: end for
5: for t in 0, ..., T − 1 do
6: Sample ivt uniformly from Dv.
7: Start computing the gradient ∇fivt (x

v
t ).

8: xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z)

9: if queue ̸= () then
10: for any message in queue do
11: (x̃t[m], visited[m], pre node[m],m) ←

message
12: svt+1[m] = 1
13: Remove message from queue
14: end for
15: end if
16: for m in Mv do
17: if svt+1[m] = 1 then
18: x̃t+1[m] = x̃t[m]+Dv

D (xv
t+1−xv

−1)+(xv
−1−

x̃−1[m])
19: xv

t+1 = x̃t+1[m]
20: xv

−1 = xv
t+1 ▷ Last updated model at v

21: x̃−1[m] = x̃t+1[m] ▷ Last updated model at
node v corresponding to stream m

22: if mod (t,Hm) = 0 or visited[m] ̸= Vm
then

23: Send message = x̃t+1[m], visited[m],
pre node[m], r to a neighboring node by calling Alg.2.

24: else
25: svt+H−mod(t,Hm)[m] = 1
26: visited[m] = {}
27: end if
28: end if
29: end for
30: end for

IV. Convergence Analysis of DIGEST
We use the following assumptions for the convergence
analysis of single- and multi-stream DIGEST.
1) Smooth local loss. fv is continuously differentiable and

its gradient is L-Lipschitz for 1 ≤ v ≤ V , i.e., ∥∇fv(y)−
∇fv(x)∥ ≤ L∥y − x∥, ∀x,y ∈ Rd.

2) Bounded local variance. The variance of the stochastic
gradient is bounded for all nodes, i.e., 0 ≤ t < T , 1 ≤
v ≤ V , Eivt

∥∇fivt (x
v
t )−∇fv(xv

t )∥2 ≤ σ2.
3) Bounded diversity. The diversity of the local loss func-

tions and global loss function is bounded, i.e., 0 ≤ t < T ,
1 ≤ v ≤ V , ∥∇fv(xv

t )−∇f(xv
t )∥2 ≤ ζ2.

4) Bounded lag. We assume bounded lag, i.e., max{lvt −
t} ≤ E, 0 ≤ t < T, 1 ≤ v ≤ V .

5) Bounded synchronization interval. For single-stream
DIGEST, we assume that the interval between two sub-

sequent global model synchronizations is bounded, i.e.,
gap(SvT ) ≤ H , 1 ≤ v ≤ V , where gap(SvT ) shows the
maximum gap between two subsequent 1s in SvT . For
multi-stream DIGEST, we assume different bounds for
each stream, i.e., gap(SvT [m]) ≤ Hm for m ∈Mv.

6) Convexity. f is µ-(strongly) convex, i.e., ∀x,y ∈ Rd,
f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2 ∥y − x∥2.

Theorem IV.1. Let assumptions 1-5 hold, with a constant
and small enough learning rate η ≤ 1

30LA (potentially
depending on T ), the convergence rate of single- and multi-
stream DIGEST is as follows:

Non-convex: 1
T

∑T−1
t=0 E ∥∇f(x̂T )∥2 is

O

(
FLA

T
+ σ

√
ρLF

T
+ (

LF
√
σ2A+ ζ2A2

T
)

2
3

)
,

where x̂T =
∑V

v=1

∑T−1
t=0

Dv

D xv
t .

Convex: Under assumption 6 for µ ≥ 0, E f(x̂T )− f∗ is

O

(
RLA

T
+ σ

√
ρR

T
+ (

R
√

L(σ2A+ ζ2A2)

T
)

2
3

)
,

where x̂T =
∑V

v=1

∑T−1
t=0

Dv

D xv
t .

Strongly-convex: Under assumption 6 for µ > 0,
E f(x̂T )− f∗ is

Õ

(
RLA exp(

−µT
LA

) +
ρσ2

µT
+

L(σ2A+ ζ2A2)

µ2T 2

)
,

where x̂T = 1
DWT

∑V
v=1

∑T−1
t=0 Dvωtx

v
t , ωt = (1 −

aη)−(t+1), WT =
∑T−1

t=0 ωt.

Õ hides constants and poly-logarithmic factors, T repre-
sents the wall clock time, F := f(x0)−f∗, R := ∥x0−x∗∥2,
A := H ′ + E, and ρ :=

∑V
v=1(

Dv

D )2. The convergence
rate of single-stream DIGEST follows when H ′ = H , and
the convergence rate of multi-stream DIGEST is obtained by
putting H ′ = maxv

∑
m∈P r

v
Hm in A. □

Corollary IV.1.1. For strongly-convex case, in iid data
distribution over nodes, i.e., ζ = 0, the convergence rate to
the optimum value f∗ is Õ( ρ

T ) given that H ′ +E = Õ(ρT )

is satisfied, where ρ =
∑V

v=1(
Dv

D )2 is a data concentration
coefficient that can take values between 1

V ≤ ρ < 1. In non-
iid data distribution over nodes (ζ ̸= 0), linear speed up
O(

√
ρ
T ) is achieved when H ′ + E = Õ(

√
ρT ) holds. This

restriction in other scenarios is depicted in Table 1. □

TABLE 1: Constraints on H to get linear speed-up.

Converge rate
H′ + E

iid non-iid

Strongly convex Õ( ρ
T
) Õ(ρT ) Õ(ρ

1
2 T

1
2 )

Convex O(
√

ρ
T
) O(ρ

3
2 T

1
2 ) O(ρ

3
4 T

1
4 )

Non-convex O(
√

ρ
T
) O(ρ

3
2 T

1
2 ) O(ρ

3
4 T

1
4 )
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Theorem IV.1 and Corollary IV.1.1 show a nice trade-off
between convergence rate and communication overhead. It
determines how much communication is needed to achieve
a linear speed-up. Remark IV.1.1 also shows the impact of
non-iid data distribution, which requires smaller H ′, hence
more communications to converge and achieve linear speed-
up.

Corollary IV.1.2. Corollary IV.1.1 shows that the linear
speed up is achieved when T = Ω̃(H

′

ρ ) and T = Ω̃(H
′2

ρ )
for iid and non-iid data, respectively. When the network
is larger, single-stream DIGEST needs longer H ′ (which is
equal to H) to visit all the nodes, which requires larger T
(convergence time). But in multi-stream DIGEST, H ′ defined
as H ′ = maxv

∑
m∈P r

v
Hm could be as low as RG

r , which
is the radius of root node r (or maximum delay toward
any node from root node r). As RG

r does not necessarily
increase with the size of the network, multi-stream DIGEST
is plausible even for large networks.

Corollary IV.1.3. Let’s assume that the network can be
covered in H iteration using single/multi-stream approach.
DIGEST can efficiently perform synchronization while nodes
are doing local-SGD, i.e., network topology, spectral gap,
or the maximum and minimum degrees in the network
topology do not affect the convergence rate. This is one
advantage of using DIGEST in comparison to previous works
on asynchronous decentralized learning like [43] where

the convergence rate in non-convex setting is O

(
F√
HV T

+

√
H(σ2+Hζ2)√

V T
+ V dmaxL

2H3G2

dminλ2T

)
. Here, we observe that the

minimum degree (dmin), maximum degree (dmax), and spectral
gap (λ) of the network graph are part of the result, so affects
the convergence.

Sketch of Proof of Theorem IV.1. (The details of the
proof is provided in the Appendix B.) We define a virtual
sequence {x̄t}t≥0 as x̄t = x0−

∑V
v=1

∑t−1
z=0

Dv

D ηz∇fivz (x
v
z)

following a similar idea in [27]. Lemma IV.2, and IV.3
indicates how the convergence criteria are related to E ∥x̄t−
xv
t ∥2, the deviation between virtual and actual sequences and

we find an upper-bound for this term in Lemma IV.4.

Lemma IV.2. If assumptions 1-2, 6 for µ > 0 hold, and
ηt ≤ 1

4L , then E ∥x̄t+1 − x∗∥2 ≤ (1− µηt)E ∥x̄t − x∗∥2 +
η2t ρσ

2−ηt E(f(x̄t)−f(x∗))+2Lηt
∑V

v=1
Dv

D E ∥xv
t −x̄t∥2.

Lemma IV.3. If assumptions 1-2 hold, and ηt ≤ 1
4L ,

then E f(x̄t+1) ≤ E f(x̄t) +
η2
tLρσ2

2 − ηt

4 E ∥∇f(x̄t)∥2 +

L2ηt
∑V

v=1
Dv

D E ∥xv
t − x̄t∥2.

Lemma IV.4 (Bounding deviation). If assumptions 2-5
hold, ηt = η ≤ 1

30L(H′+E) , and ωt is (H ′ + E)-

slow increasing then
∑T−1

t=0 ωt

∑V
v=1

Dv

D E ∥x̄t − xv
t ∥2 ≤

1
8L2

∑T−1
t=0 ωt E ∥∇f(x̄t)∥2 + 90η2(H ′ +E)

(
ζ2(H ′ +E) +

σ2
)∑T−1

t=0 ωt, where in single-stream H ′ = H and in multi-
stream DIGEST H ′ = maxu

∑
m∈pv

u
Hm.

V. Evaluation of DIGEST
We evaluate DIGEST as compared to baselines; (i) Uniform
Random-Walk (URW) [24]: This is a random walk-based
learning algorithm described in Fig. 1c; (ii) Gradient track-
ing (GT) with local-SGD [46]: It is an algorithm that is
developed to overcome data heterogeneity across nodes in a
decentralized optimization problem; (iii) Async-Gossip [18]
with local-SGD; (iv) (ii) Sync-Gossip [18] with local-SGD.
Our codes are provided in [47].

We consider two network topologies; an Erdős–Rényi
graph of V = 10 and V = 100 nodes with 0.3 as the
probability of connectivity. Each neighboring pair’s com-
munication delay is assumed to conform to an exponential
distribution. The average delay is randomly chosen to span
from 0 to 50 times the duration of the specific model’s local
SGD computation.

We use two data distributions: (i) iid-balanced, and (ii)
non-iid-unbalanced. In iid-balanced case, data is shuffled and
equally divided and placed in nodes. Non-iid-unbalanced has
two features: (i) Non-iid, which is realized by sorting data
according to their labels and distributing them in the sorted
order. Thus, the data distributed over nodes will be non-iid;
(ii) Unbalanced, which means that each node may have a
different amount of data. We use geometric series to realize
unbalanced data across nodes. For example, if a node u has
Du = δ data, the next nodes get δρ, δρ2, etc. data, where
ρ is determined by taking into account the size of the total
dataset D.

A. Logistic Regression
We examine the convergence performance of logis-
tic regression, i.e., f(x) = 1

D

∑D
i=1 CrossEntropy(

softmax(xai), bi
)
+ λ

2 ∥x∥
2, where ai ∈ Rd, and bi are the

feature and label of the data sample i. The regularization
parameter is considered λ = 1

D . We run the optimization
using a tuned constant learning rate for each algorithm.
To grid-search the learning rate, we try the experiment by
multiplying and dividing the learning rate by powers of two.
This involves trying out both larger and smaller learning rates
until we find the best result. We use datasets w8a [32] and
MNIST [33]. The numerical experiments were run on Ubuntu
20.04 using 36 Intel Core i9-10980XE processors. For each
experiment, we repeat 50 times and present the error bars
associated with the randomness of the optimization. In every
figure, we include the average and standard deviation error
bar.

Figs. 4 and 5 show the convergence behavior of our
algorithms as well as the baselines for MNIST and w8a
datasets in 10-nodes and 100-nodes topologies. URW gener-
ally underperforms as compared to other methods due to its
approach of conducting only one local-SGD operation per
iteration on a single node. As a consequence, it does not
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FIGURE 4: Convergence results for MNIST dataset in terms of global loss over wall-clock time.
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FIGURE 5: Convergence results for w8a dataset in terms of global loss over wall-clock time.

have a linear speed-up with increasing number of nodes. In
certain situations involving non-iid data distribution, URW
may exhibit better performance than some other methods
as shown in Figs. 4b, 4c, 5c, 5c. This is because URW is
not affected by non-iidness as it uniformly incorporates data
from all nodes. DIGEST, Sync-Gossip, and Async-Gossip
have similar performance in iid data distribution in Figs.
4a, 5a. On the other hand, we observe that Gossip based
algorithms are suffering from slow convergence in non-iid
setting as shown in Figs. 4b, 4c, 5b, 5c. We also observe
that GT algorithms enhance the performance of gossip-
based algorithms by incorporating a mechanism to overcome
non-iidness. However, this algorithm demands twice the
communication overhead compared to sync-Gossip, result-
ing in more communication overhead, which can degrade
its convergence performance in terms of wall-clock time.
In comparison, DIGEST has better convergence behavior
thanks to its very design of spreading information uniformly
in the network to handle non-iidness. It is evident that when
the network is larger, one-stream DIGEST method is unable
to cover the entire network as quickly as required, highlight-
ing the need to utilize multi-stream DIGEST to overcome
this limitation. This observation is supported in Figs. 4c, 5c,
where all streams have the same Hm = H,m ∈M in multi-
stream DIGEST.

B. Deep Neural Network (DNN)
In this section, we use ResNet-20 [31] as the DNN model.
The dataset is CIFAR-10 [34]. We have set the batch size to
36 per node, and the learning rate is decayed by a constant
factor after completing 50% and 75% of the training time.
The initial value of the learning rate is separately tuned for
each algorithm. We have set the momentum value to 0.9
and the weight decay to 10−4. We observe that in the iid
setting (Fig. 6a), all algorithms except URW perform sim-
ilarly. However, in non-iid settings, where communication
and model distribution across the network become crucial,
DIGEST outperforms Gossip-based algorithms, Fig. 6b.

C. Speed-up
In this section, we evaluate the speed up performance of
our DIGEST algorithms as well as the baseline; centralized
parallel SGD. We consider the following cost function

f(x) =

{
(x− 1)2 x ≥ 1,
(x−1)2

2 x < 1.
(3)

to control the non-iidness and local variances. Note that we
need to increase the number of nodes to generate speed-up
curves, so we need to create a non-iid data distribution over
the nodes. Creating a uniform non-iid distribution using real
datasets when the number of nodes increases is very difficult.
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FIGURE 6: Convergence results for CIFAR-10 dataset in
terms of global loss over wall-clock time.

Thus, we use a pre-defined cost function in (3) to verify our
theoretical results following a similar approach in [48]. In
particular, we employ Local-SGD at node v with gradients
affected by a normal noise, i.e., ∇fivt (x

v
t ) = ∇f(xv

t ) + nv
t ,

where nv
t ∼ N (ζv, σ

2),
∑V

v=1 ζv = 0. To create the speed-
up curve, we divide the expected error of a single node SGD
by the expected error of each method at the last iteration T
for different number of nodes. As in linear speed-up, error
decreases linearly with the increasing number of workers,
so we expect to see a straight line on the graph. The speed-
up curve is illustrated in Fig. 7. The central parallel SGD
averages all nodes‘ updates at every H steps, and updates
the model in all nodes. It is worth noting that the central
parallel SGD with H = 1 is the best speed-up that can be
achieved in this scenario.

We set the learning rate to 0.001, and |ζv| = 5 for v ∈ V ,
σ = 5, and T = 104. Note that in iid setting with a less
restrictive constraint on H , larger H can still lead to linear
speed-up when compared to non-iid setting. Moreover, it is
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FIGURE 7: Speed-up curves for DIGEST.

seen that single stream DIGEST has linear speed-up to a
certain limit; however, as the number of nodes increases and
single-stream DIGEST cannot traverse the entire network
fast enough, linear speed-up is not maintained. On the
other hand, multi-stream DIGEST achieves linear speed up
and achieves a very close performance to the best possible
scenario, which is centralized parallel SGD with H = 1.

VI. Conclusion
We designed a fast and communication-efficient decentral-
ized learning mechanism; DIGEST by particularly focus-
ing on stochastic gradient descent (SGD). We designed
single- and multi-stream DIGEST to exploit the convergence
rate and communication overhead tradeoff. We analyzed
the convergence of single- and multi-stream DIGEST, and
proved that both algorithms approach to the optimal solution
asymptotically for both iid and non-iid data. The simulation
results confirm that the communication cost of DIGEST is
low as compared to the baselines, and its convergence rate
is better than or comparable to the baselines.
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convergence rates for convex distributed optimization in networks,”
Journal of Machine Learning Research, vol. 20, no. 159, pp. 1–31,
2019. [Online]. Available: http://jmlr.org/papers/v20/19-543.html

[42] L. Giaretta and S. Girdzijauskas, “Gossip learning: Off the
beaten path,” in 2019 IEEE International Conference on Big
Data (Big Data). Los Alamitos, CA, USA: IEEE Computer
Society, dec 2019, pp. 1117–1124. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216

VOLUME , 11

http://jmlr.org/papers/v22/20-147.html
https://doi.org/10.1137/130943170
https://doi.org/10.1137/130943170
https://proceedings.mlr.press/v119/koloskova20a.html
http://jmlr.org/papers/v20/19-543.html
https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216
https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216


:

[43] G. Nadiradze, A. Sabour, P. Davies, I. Markov, S. Li, and D. Alistarh,
“Decentralized sgd with asynchronous, local and quantized updates.”
arXiv: Learning, 2020.

[44] A. Spiridonoff, A. Olshevsky, and I. Paschalidis, “Communication-
efficient SGD: From local SGD to one-shot averaging,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., 2021. [Online]. Available:
https://openreview.net/forum?id=UpfqzQtZ58

[45] R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics, vol. 16, pp. 87–90, 1958. [Online]. Available:
https://api.semanticscholar.org/CorpusID:123639971

[46] Y. Liu, T. Lin, A. Koloskova, and S. U. Stich, “Decentralized gradient
tracking with local steps,” 2023.

[47] “Digest codes,” 2023, available at
https://www.dropbox.com/s/sowfdwfj0chs1z0/DIGEST-
codes.zip?dl=0 and
https://github.com/Anonymous404404/DigestCode.git.

[48] A. Spiridonoff, A. Olshevsky, and Y. Paschalidis, “Communication-
efficient sgd: From local sgd to one-shot averaging,” Advances in
Neural Information Processing Systems, vol. 34, pp. 24 313–24 326,
2021.

[49] S. U. Stich and S. P. Karimireddy, “The error-feedback framework:
Better rates for sgd with delayed gradients and compressed
communication,” 2019. [Online]. Available: https://arxiv.org/abs/1909.
05350

[50] S. U. Stich, “Unified optimal analysis of the (stochastic) gradient
method,” CoRR, vol. abs/1907.04232, 2019. [Online]. Available:
http://arxiv.org/abs/1907.04232

Peyman Gholami received his B.Sc. degree in
Electrical Engineering from Iran University of Sci-
ence and Technology (IUST) in 2018, and M.Sc.
degree in Communication Systems from Sharif
University of Technology (SUT) in 2021. Cur-
rently, he is a Ph.D student in the Department of
Electrical and Computer Engineering, University
of Illinois at Chicago, under supervision of Prof.
Hulya Seferoglu.

Hulya Seferoglu is an Associate Professor in the
Electrical and Computer Engineering Department
of University of Illinois at Chicago. Before join-
ing University of Illinois at Chicago, she was a
Postdoctoral Associate at Massachusetts Institute
of Technology. She received her Ph.D. degree in
Electrical and Computer Engineering from Univer-
sity of California, Irvine, M.S. degree in Electrical
Engineering and Computer Science from Sabanci
University, and B.S. degree in Electrical Engi-
neering from Istanbul University. She has served

as an associate editor for IEEE Transactions on Mobile Computing and
IEEE/ACM Transactions on Networking. She received the NSF CAREER
award in 2020.

12 VOLUME ,

https://openreview.net/forum?id=UpfqzQtZ58
https://api.semanticscholar.org/CorpusID:123639971
https://arxiv.org/abs/1909.05350
https://arxiv.org/abs/1909.05350
http://arxiv.org/abs/1907.04232


Appendix
A. Notation Table
G = (V, E) Graph representing the network
V Number of nodes
D The whole dataset in the network with size D
Dv Subset of D at node v with size Dv

fi(x) Loss function of model x associated with the data sample i
f(x) Global loss function of model x
fv(x) Local loss function of model x at node v
f∗ minx∈Rd f(x)
x∗ argminx∈Rd f(x)
x0 Initial model
T Total number of iterations
ηt Learning rate at iteration t
lvt Completion time of local-SGD update started at t in node v
Lv
T Set of {lvt }0≤t<T

xv
t Local model in node v at t

svt Binary variable that shows if node v receives the global model at t in single-stream DIGEST
SvT Set of {svt }0<t≤T

H Synchronization bound for single-stream DIGEST, i.e., gap(SvT ) ≤ H , 1 ≤ v ≤ V
svt [m] Binary variable that shows if node v receives the global model at t from stream m in

multi-stream DIGEST
SvT [m] {svt [m]}0<t≤T

Hm Synchronization bound of stream m in multi-stream DIGEST, i.e., gap(SvT [m]) ≤ Hm, m ∈Mv

visited Set of nodes that are visited for the global model update in the most recent synchronization
round for single-stream DIGEST

visited[m] Set of nodes that are visited for the semi-global model update in the most recent synchronization
round in stream m for multi-stream DIGEST

x̃t The global model received by node v at t in single-stream DIGEST
x̃t[m] The global model received by node v at t from stream m in multi-stream DIGEST
pre node The node that node v receives the global model from in single-stream DIGEST
pre node[m] The node that node v receives the semi-global model from in stream m for multi-stream DIGEST
pvm The node that node v receives the global model from for the first time in the current

synchronization round in stream m
dGuv The distance between u and v, the total delay of the links in the shortest path between u and v
RG

v The greatest distance from v, i.e., RG
v = maxv d

G
uv

r Root or the node with the minimum RG
v , i.e., r = argminv R

G
v

STr The shortest path tree rooted at r
P r
v Set of streams working over the path from v to r in STr

M Number of streams in multi-stream DIGEST
Mv The set of streams passing node v
Vm The set of nodes in domain of stream m
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B. Proof of Theorem IV.1
Motivated by [27], a virtual sequence {x̄t}t≥0 is defined as follows.

x̄t = x0 −
V∑

v=1

t−1∑
z=0

Dv

D
ηz∇fivz (x

v
z). (4)

We do not need to calculate this sequence in the algorithm explicitly and it is only used for the sake of the analysis. We
also define

gt =

V∑
v=1

Dv

D
∇fivt (x

v
t ), ḡt =

V∑
v=1

Dv

D
∇fv(xv

t ), (5)

where f(x), fv(x) are global loss function and local loss function in node v, respectively.
Let us introduce it = {i1t , ...iVt } to denote the data samples selected randomly during time slot t in all nodes. Then,

observe that ḡt = Eit gt. g∗
t is the real true direction to go in opposite of in each step. We have x̄t+1 = x̄t − ηtgt.

First, we illustrate how the virtual sequence, {x̄t}t≥0, approaches to the optimal in Lemma 1. Second, we depict in
Lemma 2 that there is a little deviation from the virtual sequence in the actual iterates, xv

t . Finally, the convergence rate
is proved.

Lemma A.1. If fivt (x) is L-smooth, fv(x) is µ-strongly convex, ηt ≤ 1
4L , and Eivt

∥∇fivt (x
v
t ) − ∇fv(xv

t )∥2 ≤ σ2 for
0 ≤ t ≤ T − 1, 1 ≤ v ≤ V then

E ∥x̄t+1 − x∗∥2 ≤ (1− µηt)E ∥x̄t − x∗∥2 + η2t ρσ
2 − ηt E(f(x̄t)− f(x∗)) + 2Lηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (6)

Proof:
We have

∥x̄t+1 − x∗∥2 = ∥x̄t − ηtgt − x∗∥2 = ∥x̄t − x∗ − ηtḡt + ηtḡt − ηtgt∥2 (7)

= ∥x̄t − x∗ − ηtḡt∥2 + η2t ∥ḡt − gt∥2 + 2ηt⟨x̄t − x∗ − ηtg
∗
t , ḡt − gt⟩ (8)

Then we apply expectation to get Ei0,...,it ∥x̄t+1 − x∗∥2. Based on the law of total expectation, for every two random
variables α, β and a function y, Eα y(α) = Eβ Eα[y(α)|β]. Considering α = i0, ..., it and β = i0, ..., it−1, we get that

Ei0,...,it⟨x̄t − x∗ − ηtḡt, ḡt − gt⟩ = Ei0,...,it−1 Ei0,...,it [⟨x̄t − x∗ − ηtḡt, ḡt − gt⟩|i0, ..., it−1] (9)
= Ei0,...,it−1⟨x̄t − x∗ − ηtḡt, ḡt − Eit gt⟩ (10)
= Ei0,...,it⟨x̄t − x∗ − ηtḡt, ḡt − Eit gt⟩ (11)
= Ei0,...,it⟨x̄t − x∗ − ηtḡt, ḡt − ḡt⟩ (12)
= 0 (13)

In (10), we used the fact that once we know i0, ..., it−1, the value of xv
t , 1 ≤ v ≤ V , and therefore x̄t and ḡt are not

random any more. From now on, we drop the subscript i0, ..., it for the ease of notation. Thus,

E ∥x̄t+1 − x∗∥2 ≤E ∥x̄t − x∗ − ηtḡt∥2 + η2t E ∥ḡt − gt∥2 (14)

We obtain

∥x̄t − x∗ − ηtḡt∥2 = ∥x̄t − x∗∥2 + η2t ∥ḡt∥2 − 2ηt⟨x̄t − x∗, ḡt⟩ (15)

= ∥x̄t − x∗∥2 + η2t ∥ḡt∥2 − 2ηt

V∑
v=1

Dv

D
⟨x̄t − xv

t + xv
t − x∗,∇fv(xv

t )⟩ (16)

= ∥x̄t − x∗∥2 + η2∥
V∑

v=1

Dv

D
∇fv(xv

t )∥2 − 2ηt

V∑
v=1

Dv

D
⟨xv

t − x∗,∇fv(xv
t )⟩ (17)

−2η
V∑

v=1

Dv

D
⟨x̄t − xv

t ,∇fv(xv
t )⟩
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We obtain

∥
V∑

v=1

Dv

D
∇fv(xv

t )∥2 = ∥
V∑

v=1

Dv

D
(∇fv(xv

t )−∇fv(x̄t) +∇fv(x̄t)−∇fv(x∗))∥2 (18)

≤ 2∥
V∑

v=1

Dv

D
(∇fv(xv

t )−∇fv(x̄t))∥2 + 2∥
V∑

v=1

Dv

D
(∇fv(x̄t)−∇fv(x∗))∥2 (19)

≤ 2∥
V∑

v=1

Dv

D
(∇fv(xv

t )−∇fv(x̄t))∥2 + 2∥∇f(x̄t)−∇f(x∗)∥2 (20)

≤ 2

V∑
v=1

Dv

D
∥(∇fv(xv

t )−∇fv(x̄t))∥2 + 2∥(∇f(x̄t)−∇f(x∗))∥2 (21)

≤ 2L2
V∑

v=1

Dv

D
∥xv

t − x̄t∥2 + 4L(f(x̄t)− f(x∗)) (22)

where (19) is based on the following inequality.

∥
n∑

i=1

ai∥2 ≤ n
n∑

i=1

∥ai∥2. (23)

In (20) we have used the fact that
∑V

v=1
Dv

D fv(x) = f(x). (21), and (22) are due to the convexity of ∥.∥2 and L-smoothness,
respectively. Note that by L-smoothness we have

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f∗). (24)

µ-strong convexity provides us with

−⟨xv
t − x∗,∇fv(xv

t )⟩ ≤ −(fv(xv
t )− fv(x∗))− µ

2
∥xv

t − x∗∥2. (25)

Using L-smoothness to bound the last term in (17), we have

−⟨x̄t − xv
t ,∇fv(xv

t )⟩ ≤ f(xv
t )− f(x̄t) +

L

2
∥xv

t − x̄t∥2 (26)

We obtain the following result by applying (22), (25), and (26) to (17):

∥x̄t − ηtg
∗
t − x∗∥2 ≤ ∥x̄t − x∗∥2 + 2L2η2t

V∑
v=1

Dv

D
∥xv

t − x̄t∥2 + 4Lη2t (f(x̄t)− f(x∗)) (27)

+2ηt

V∑
v=1

Dv

D

(
− (fv(xv

t )− fv(x∗))− µ

2
∥xv

t − x∗∥2 + f(xv
t )− f(x̄t) +

L

2
∥xv

t − x̄t∥2
)
.

This can be rewritten as

∥x̄t − ηtg
∗
t − x∗∥2 ≤ ∥x̄t − x∗∥2 + 2η(2Lηt − 1)(f(x̄t)− f(x∗)) + Lηt(1 + 2Lηt)

V∑
v=1

Dv

D
∥xv

t − x̄t∥2. (28)

−µη∥xv
t − x∗∥2

Using concavity of β∥xv
t − x∗∥2 for β ≤ 0, we get

−µ∥xv
t − x∗∥2 ≤ −µ∥x̄t − x∗∥2, (29)

so we get

∥x̄t − ηtg
∗
t − x∗∥2 ≤ (1− µηt)∥x̄t − x∗∥2 + 2η(2Lηt − 1)(f(x̄t)− f(x∗)) + Lηt(1 + 2Lηt)

V∑
v=1

Dv

D
∥xv

t − x̄t∥2. (30)

we have (2ηtL− 1) ≤ − 1
2 , (2ηtL+ 1) ≤ 2 as we assumed ηt ≤ 1

4L . So we obtain

∥x̄t − ηtg
∗
t − x∗∥2 ≤ (1− µηt)∥x̄t − x∗∥2 − η(f(x̄t)− f(x∗)) + 2Lηt

V∑
v=1

Dv

D
∥xv

t − x̄t∥2. (31)
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We have by definition that

E ∥gt − ḡt∥2 = E ∥
V∑

v=1

Dv

D
(∇fivt (x

v
t )−∇fv(xv

t ))∥2 (32)

=

V∑
v=1

(
Dv

D
)2 E ∥(∇fivt (x

v
t )−∇fv(xv

t )∥2 (33)

= σ2
V∑

v=1

(
Dv

D
)2 (34)

= ρσ2, (35)

where (33) is based on the fact that variance of the sum of independent random variables equals sum of their variances.
Taking expectation of (31) and applying it with (35) into (14) provides

E ∥x̄t+1 − x∗∥2 ≤ (1− µηt)E ∥x̄t − x∗∥2 + η2t ρσ
2 − ηt E(f(x̄t)− f(x∗)) + 2Lηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (36)

Lemma A.2. If fv(x) is L-smooth , ηt ≤ 1
4L , and Eivt

∥∇fivt (x
v
t )−∇fv(xv

t )∥2 ≤ σ2 for 0 ≤ t ≤ T − 1, 1 ≤ v ≤ V then

E f(x̄t+1) ≤ E f(x̄t) +
η2tLρσ

2

2
− ηt

4
E ∥∇f(x̄t)∥2 + L2ηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (37)

Proof:
Based on the defenition of x̄t and L-smoothness of fv(x) we have

f(x̄t+1) = f(x̄t − ηtgt) (38)

≤ f(x̄t) + ηt⟨∇f(x̄t),−gt⟩+
η2tL

2
∥gt∥2 (39)

Lets take Expectation of the second term on the right-hand side of (39)

ηt E⟨∇f(x̄t),−gt⟩ = ηt E⟨∇f(x̄t),∇f(x̄t)−∇f(x̄t)− ḡt⟩ (40)

= −ηt E ∥∇f(x̄t)∥2 + ηt E⟨∇f(x̄t),∇f(x̄t)− ḡt⟩ (41)

≤ −ηt E ∥∇f(x̄t)∥2 +
ηt
2
E ∥∇f(x̄t)∥2 +

ηt
2
E ∥∇f(x̄t)− ḡt∥2 (42)

≤ −ηt
2
E ∥∇f(x̄t)∥2 +

ηt
2
E ∥

V∑
v=1

Dv

D
(∇fv(x̄t)−∇fv(xv

t ))∥2 (43)

≤ −ηt
2
E ∥∇f(x̄t)∥2 +

ηt
2

V∑
v=1

Dv

D
E ∥∇fv(x̄t)−∇fv(xv

t )∥2 (44)

≤ −ηt
2
E ∥∇f(x̄t)∥2 +

ηtL
2

2

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2. (45)

(42) is based on the fact that for any λ > 0,

2⟨a, b⟩ ≤ λ∥a∥2 + 1

λ
∥b∥2. (46)

(44) is based on the convexity of ∥.∥2 and (45) is due to L-smoothness.
Lets take Expectation of the last term on the right-hand side of (39)

η2tL

2
E ∥gt∥2 ≤

η2tL

2
E ∥gt − ḡt∥2 +

η2tL

2
E ∥ḡt∥2 (47)

≤ η2tL

2
ρσ2 + η2tL

3
V∑

v=1

Dv

D
E ∥xv

t − x̄t∥2 + η2tLE ∥∇f(x̄t)∥2, (48)
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where (48) is based on (22),and (35). Putting everything together, we obtain

E f(x̄t+1) ≤ E f(x̄t) +
η2tLρσ

2

2
+ ηt(ηtL−

1

2
)E ∥∇f(x̄t)∥2 + L2ηt(ηtL+

1

2
)

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (49)

considering ηt ≤ 1
4L we obtain

E f(x̄t+1) ≤ E f(x̄t) +
η2tLρσ

2

2
− ηt

4
E ∥∇f(x̄t)∥2 + L2ηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (50)

Observe that Lemmas A.1, A.2 hold regardless of how to synchronize the nodes, i.e., hold for both single and multi-stream
DIGEST.

Before going to the next lemma, we define τ -slow sequences [49], {at}t≥0 of positive values is τ -slow decreasing for
parameter τ ≥ 1 if

at ≥ at+1, at ≤ at+1(1 +
1

2τ
), t ≥ 0. (51)

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.

Lemma A.3 (Bounding deviation). If max{lvt −t} ≤ E, Eivt
∥∇fivt (x

v
t )−∇fv(xv

t )∥2 ≤ σ2 ,∥∇fv(xv
t )−∇fv(xv

t )∥2 ≤ ζ2,
ηt = η ≤ 1

30L(H′+E) , and ωt is (H ′+E)-slow increasing for 0 ≤ t ≤ T −1, 1 ≤ v ≤ V , and for (i) single-stream DIGEST
gap(SvT ) ≤ H , 1 ≤ v ≤ V , (ii) multi-stream DIGEST, gap(SvT [m]) ≤ Hm for v that m ∈Mv,

T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 ≤
1

8L2

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 + 90η2(H ′ + E)
(
ζ2(H ′ + E) + σ2

) T−1∑
t=0

ωt. (52)

where in single-stream H ′ = H and in multi-stream DIGEST H ′ = maxu
∑

m∈pv
u
Hm.

Proof:
First we focus on the single stream case, τvt denotes the last time slot up to t, when node v’s model was updated with the
synchronization stream, i.e., τvt = max{t′ | t′ ≤ t, svt′ = 1}. Lets use (23) to decompose the the deviation term as depicted
in the following:

∥x̄t − xv
t ∥2 ≤ 2(∥xv

t − x̃τv
t
∥2 + ∥x̄t − x̃τv

t
∥2). (53)

For the first term we can obtain

E ∥xv
t − x̃τv

t
∥2 = E ∥xv

t − xv
τv
t
∥2 (54)

= E ∥
t−1∑

t′=τv
t

∑
z∈uv

t′

ηz∇fivz (x
v
z)∥2 (55)

= E ∥
∑

z∈∪t−1

t′=τv
t
uv
t′

ηz∇fivz (x
v
z)∥2. (56)

And we have

∇fivz (x
v
z) =

(
∇fivz (x

v
z)−∇fv(xv

z)
)
+∇fv(xv

z) (57)

=
(
∇fivz (x

v
z)−∇fv(xv

z)
)
+
(
∇fv(xv

z)−∇fv(x̄z)
)
+∇fv(x̄z) (58)

=
(
∇fivz (x

v
z)−∇fv(xv

z)
)
+

(
∇fv(xv

z)−∇fv(x̄z)
)
+

(
∇fv(x̄z)−∇f(x̄z)

)
+∇f(x̄z), (59)

so we can rewrite the right-hand side of (56) as

E ∥
∑
Uv

t

ηz∇fivz (x
v
z)∥2 = 4E

(
∥
∑
z∈Uv

t

ηz∇f(x̄z)∥2 + ∥
∑
z∈Uv

t

ηz
(
∇fv(xv

z)−∇fv(x̄z)
)
∥2 (60)

+∥
∑
z∈Uv

t

ηz
(
∇fv(x̄z)−∇f(x̄z)

)
∥2 + ∥

∑
z∈Uv

t

ηz
(
∇fivz (x

v
z)−∇fv(xv

z)
)
∥2
)
,
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where Uv
t = ∪t−1

t′=τv
t
uv
t′ . Now we sum over v, multiply by ωt, and sum over t and bound every term in (60) as follows.

Considering that we have |Uv
t | ≤ H + E we obtain

T−1∑
t=0

ωt

V∑
v=1

Dv

D
∥
∑
z∈Uv

t

ηz∇f(x̄z)∥2 ≤
T−1∑
t=0

ωt

V∑
v=1

Dv

D
|Uv

t |
∑
z∈Uv

t

∥ηz∇f(x̄z)∥2 (61)

≤ (H + E)

T−1∑
t=0

ωt

V∑
v=1

Dv

D

∑
z∈Uv

t

η2z∥∇f(x̄z)∥2 (62)

≤ 2(H + E)

V∑
v=1

Dv

D

T−1∑
t=0

∑
z∈Uv

t

ωzη
2
z∥∇f(x̄z)∥2 (63)

≤ 2(H + E)2
V∑

v=1

Dv

D

T−1∑
t=0

ωtη
2
t ∥∇f(x̄t)∥2 (64)

≤ 2(H + E)2
T−1∑
t=0

ωtη
2
t ∥∇f(x̄t)∥2, (65)

where (63) is due to the fact that ωt ≤ ωt−z(1 + 1
2(H+E) )

z ≤ ωt−z(1 + 1
2(H+E) )

H+E ≤ ωt−z exp (
1
2 ) ≤ 2ωt−z for

0 ≤ z ≤ H + E, i.e., ωt is (H + E)-slow increasing. The second term in the right-hand side of (60) is bounded as

T−1∑
t=0

ωt

V∑
v=1

Dv

D
∥
∑
z∈Uv

t

ηz
(
∇fv(xv

z)−∇fv(x̄z)
)
∥2 (66)

≤
T−1∑
t=0

ωt

V∑
v=1

Dv

D
|Uv

t |
∑
z∈Uv

t

∥ηz
(
∇fv(xv

z)−∇fv(x̄z)
)
∥2 (67)

≤ (H + E)

T−1∑
t=0

ωt

V∑
v=1

Dv

D

∑
z∈Uv

t

η2z∥
(
∇fv(xv

z)−∇fv(x̄z)
)
∥2 (68)

≤ 2(H + E)

V∑
v=1

Dv

D

T−1∑
t=0

∑
z∈Uv

t

ωzη
2
z∥
(
∇fv(xv

z)−∇fv(x̄z)
)
∥2 (69)

≤ 2(H + E)2
V∑

v=1

Dv

D

T−1∑
t=0

ωtη
2
t ∥
(
∇fv(xv

t )−∇fv(x̄t)
)
∥2 (70)

≤ 2(H + E)2L2
T−1∑
t=0

ωtη
2
t

V∑
v=1

Dv

D
∥x̄t − xv

t ∥2. (71)

For the third term in in the right-hand side of (60), we obtain

T−1∑
t=0

ωt

V∑
v=1

Dv

D
∥
∑
z∈Uv

t

ηz
(
∇fv(x̄z)−∇f(x̄z

)
∥2 (72)

≤
T−1∑
t=0

ωt

V∑
v=1

Dv

D
|Uv

t |
∑
z∈Uv

t

η2z∥
(
∇fv(x̄z)−∇f(x̄z)

)
∥2 (73)

≤ 2(H + E)

V∑
v=1

Dv

D

T−1∑
t=0

∑
z∈Uv

t

ωzη
2
zζ

2 (74)

≤ 2(H + E)2
V∑

v=1

Dv

D

T−1∑
t=0

ωtη
2
t ζ

2 (75)

≤ 2(H + E)2ζ2
T−1∑
t=0

ωtη
2
t . (76)
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Using the same approach for the last term, we can obtain
T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥

∑
z∈Uv

t

ηz
(
∇fv

ivz
(xv

z)−∇fv(xv
z)
)
∥2 ≤ 2(H + E)σ2

T−1∑
t=0

ωtη
2
t , (77)

where instead of (23) we have used the fact that for independent zero-mean random variables we get a tighter bound as
follows.

E ∥
n∑

i=1

ai∥2 ≤
n∑

i=1

E ∥ai∥2. (78)

Adding up the last four inequalities and apply them in (60) and finally in (56) we get
T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥xv

t − x̃τv
t
∥2 ≤ 8(H + E)2L2

T−1∑
t=0

ωtη
2
t

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 (79)

+8(H + E)2
T−1∑
t=0

ωtη
2
t E ∥∇f(x̄t)∥2 + 8(H + E)2ζ2

T−1∑
t=0

ωtη
2
t + 8(H + E)σ2

T−1∑
t=0

ωtη
2
t .

Now we try to bound the second term in (53).

∥x̄t − x̃τv
t
∥2 ≤ 2

(
∥x̄t − x̃t∥2 + ∥x̃t − x̃τv

t
∥2
)
, (80)

where we have

E ∥x̄t − x̃t∥2 = E ∥
V∑

v=1

t−1∑
t′=τv

t

∑
z∈uv

t′

Dv

D
ηz∇fivz (x

v
z)∥2 (81)

≤
V∑

v=1

Dv

D
E ∥

t−1∑
t′=τv

t

∑
z∈uv

t′

ηz∇fivz (x
v
z)∥2 (82)

=

V∑
v=1

Dv

D
E ∥

∑
Uv

t

ηz∇fivz (x
v
z)∥2, (83)

where (82) is due to the convexity of ∥∥2.
We can write

E ∥x̃t − x̃τv
t
∥2 = E ∥

∑
h∈Hv

t

τh
t −1∑

t′=τh
τv
t

∑
z∈uv

t′

Dh

D
ηz∇fihz (x

h
z )∥2 (84)

≤
∑
h∈Hv

t

Dh

D
E ∥

τh
t −1∑

t′=τh
τv
t

∑
z∈uv

t′

ηz∇fihz (x
h
z )∥2 (85)

≤
V∑

v=1

Dv

D
E ∥

τh
t −1∑

t′=τh
τv
t

∑
z∈uv

t′

ηz∇fihz (x
h
z )∥2 (86)

where Hv
t = {h | τvt ≤ τht ≤ t} is the set of nodes that are visited after node v in the current synchronization round.

(86,83) can be extended exactly as in (60) and according to (80) we will have
T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥x̄t − x̃τv

t
∥2 ≤ 4

(
8(H + E)2L2

T−1∑
t=0

ωtη
2
t

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 (87)

+8(H + E)2
T−1∑
t=0

ωtη
2
t E ∥∇f(x̄t)∥2 + 8(H + E)2ζ2

T−1∑
t=0

ωtη
2
t + 8(H + E)σ2

T−1∑
t=0

ωtη
2
t

)
.

Using (79), and (87) in (53) we obtain
T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 ≤ 10

(
8(H + E)2L2

T−1∑
t=0

ωtη
2
t

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 (88)

+8(H + E)2
T−1∑
t=0

ωtη
2
t E ∥∇f(x̄t)∥2 + 8(H + E)2ζ2

T−1∑
t=0

ωtη
2
t + 8(H + E)σ2

T−1∑
t=0

ωtη
2
t

)
.
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By rearranging (88) and assuming ηt = η, we get
T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 ≤
1

(1− 80η2(H + E)2L2)

(
80(H + E)2η2

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 (89)

+80η2(H + E)2ζ2
T−1∑
t=0

ωt + 80η2(H + E)σ2
T−1∑
t=0

ωt

)
.

Let η ≤ 1
30L(H+E) to get

T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2 ≤
1

8L2

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 + 90η2(H + E)
(
ζ2(H + E) + σ2

) T−1∑
t=0

ωt. (90)

This completes the proof for the single-stream DIGEST. A similar argument can be made for multi-stream DIGEST with
just one subtle change. Note that 2(H + E) indicates how long it takes for an SGD update performed in one node to be
available in all the other nodes. In multi-stream DIGEST, this is determined by the depth of the tree, i.e., the longest delay
path from the root node to its farthest leaf (in terms of the delay distance), which is expressed as 2(E+maxu

∑
m∈P r

u
Hm).

So replacing (H + E) with (E +maxu
∑

m∈P r
u
Hm) gives the result for multi-stream DIGEST.

Combining Lemma A.3 with Lemma A.1 for the convex case and Lemma A.2 for the non-convex case, we can obtain
a recursive description of suboptimality. We follow closely the technique described in [40] for estimating the convergence
rates.

Convex
Based on lemma A.1 we have

E ∥x̄t+1 − x∗∥2 ≤ (1− µηt)E ∥x̄t − x∗∥2 + η2t ρσ
2 − η E(f(x̄t)− f(x∗)) + 2Lηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (91)

By assuming ηt = η and multiplication of ωt

η in both sides and summing up we get

T−1∑
t=0

ωt

η
E ∥x̄t − x∗∥2 ≤

T−1∑
t=0

ωt(1− µη)

η
E ∥x̄t − x∗∥2 + ηρσ2

T−1∑
t=0

ωt −
T−1∑
t=0

ωt E(f(x̄t)− f(x∗))+ (92)

2L

T−1∑
t=0

ωt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2.

By replacing result of lemma A.3 we get
T−1∑
t=0

ωt

η
E ∥x̄t − x∗∥2 ≤

T−1∑
t=0

ωt(1− µη)

η
E ∥x̄t − x∗∥2 + ηρσ2

T−1∑
t=0

ωt −
T−1∑
t=0

ωt E(f(x̄t)− f(x∗))+ (93)

2L
( 1

8L2

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 + 90η2(H + E)
(
ζ2(H + E) + σ2

) T−1∑
t=0

ωt

)
.

By using (24), dividing both sides by WT =
∑T−1

t=0 ωt, and rearranging, we have

3

4WT

T−1∑
t=0

ωt E(f(x̄t)− f(x∗)) ≤ 1

WT η

T−1∑
t=0

(
ωt(1− µη)E ∥x̄t − x∗∥2 − ωt E ∥x̄t − x∗∥2

)
+ ηρσ2+ (94)

180Lη2(H + E)
(
ζ2(H + E) + σ2

)
.

Based on the convexity of f we have

3

4
(E f(x̂T )− f∗) ≤ 3

4WT

T−1∑
t=0

ωt(E f(x̄t)− f∗) (95)

≤ 3

4WT η

T−1∑
t=0

(
ωt(1− µη)E ∥x̄t − x∗∥2 − ωt E ∥x̄t − x∗∥2

)
+ ηρσ2+ (96)

180Lη2(H + E)
(
ζ2(H + E) + σ2

)
.

Now we state two lemmas that helps us bound the right-side of (96).
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Lemma A.4 (Similar to Lemma 15 in [40]). For every non-negative sequence {rt}t≥0 and any parameters d ≥ a ≥ 0, b ≥
0, c ≥ 0, T ≥ 0, there exist a constant η ≤ 1

d , such that for weights ωt = (1− aη)−(t+1) it holds

1

WT η

T−1∑
t=0

(
ωt(1− aη)rt − ωtrt+1

)
+ bη + cη2 ≤ Õ(r0d exp(

−aT
d

) +
b

aT
+

c

a2T 2
), (97)

where Õ hides polylogarithmic factors.

Proof:
Considering that ωt(1− aη) = ωt−1 we obtain a telescopic sum

1

WT η

T−1∑
t=0

(
ωt(1− aη)rt − ωtrt+1

)
+ bη + cη2 ≤ 1

WT η
(1− aη)ω0r0 + bη + cη2 (98)

≤ 1

WT η
r0 + bη + cη2 (99)

≤ r0
η

exp(−aηT ) + bη + cη2, (100)

where is (99) we used the fact that d ≥ a, hence 0 ≤ (1 − ad) ≤ (1 − aη) ≤ 1. (100) is based on WT ≥ ωT ≥
(1 − aη)−T ≥ exp(aηT ). It is now followed by a η-tuning, the same way as in [50], which shows we need to choose
η = min{ 1d ,

ln(max{2,a2r0T
2/b})

aT }.

Lemma A.5 (Similar to Lemma 16 in [40]). For every non-negative sequence {rt}t≥0 and any parameters d ≥ 0, b ≥
0, c ≥ 0, T ≥ 0, there exist a constant η ≤ 1

d , it holds

1

(T + 1)η

T−1∑
t=0

(
rt − rt+1

)
+ bη + cη2 ≤ 2

√
br0√

T + 1
+ 2(

r0
√
c

T + 1
)

2
3 +

dr0
T + 1

. (101)

Proof:
By canceling the same terms in the telescopic sum we get

1

(T + 1)η

T−1∑
t=0

(
rt − rt+1

)
+ bη + cη2 ≤ r0

(T + 1)η
+ bη + cη2. (102)

It is now followed by a η-tuning, the same way as in [40], which shows we need to choose η =

min{ 1d ,
√

r0
b(T+1) , (

r0
c(T+1) )

1
3 }.

(strongly convex case)
Combining (96) with µ > 0, and Lemma A.4 and considering that ηt = η ≤ 1

30L(H+E) , provides

E f(x̂T )− f∗ ≤ Õ

(
∥x0 − x∗∥2L(H + E) exp(

−µT
L(H + E)

) +
ρσ2

µT
+

L(H + E)(σ2 + ζ2(H + E))

µ2T 2

)
. (103)

(convex case)
Combining (96) with µ = 0, and Lemma A.5 and considering that ηt = η ≤ 1

30L(H+E) , provides

E f(x̂T )− f∗ ≤ O

(
∥x0 − x∗∥2L(H + E)

T
+

σ||x0 − x∗||√ρ
√
T

+ (
∥x0 − x∗∥2

√
L(H + E)(σ2 + ζ2(H + E))

T
)

2
3

)
.

(104)
Nonconvex
Based on lemma A.2 we have

E f(x̄t+1) ≤ E f(x̄t) +
η2tLρσ

2

2
− ηt

4
E ∥∇f(x̄t)∥2 + L2ηt

V∑
v=1

Dv

D
E ∥xv

t − x̄t∥2. (105)

By assuming ηt = η and multiplication of ωt

η in both sides and summing up we get
T−1∑
t=0

ωt

η
E f(x̄t+1) ≤

T−1∑
t=0

ωt

η
E f(x̄t) +

Lηρσ2

2

T−1∑
t=0

ωt −
1

4

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2+ (106)

L2
T−1∑
t=0

ωt∑V
v=1

Dv

D
E ∥xv

t − x̄t∥2.
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By replacing result of lemma A.2 we get
T−1∑
t=0

ωt

η
E f(x̄t+1) ≤

T−1∑
t=0

ωt

η
E f(x̄t) +

Lηρσ2

2

T−1∑
t=0

ωt −
1

4

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2+ (107)

L2
( 1

8L2

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 + 90η2(H + E)
(
ζ2(H + E) + σ2

) T−1∑
t=0

ωt

)
.

By dividing both sides by WT =
∑T−1

t=0 ωt, and rearranging, we have

1

8WT

T−1∑
t=0

ωt E ∥∇f(x̄t)∥2 ≤
1

WT η

T−1∑
t=0

(
ωt E f(x̄t)− ωt E f(x̄t+1)

)
+

Lηρσ2

2
+ (108)

90L2η2(H + E)
(
ζ2(H + E) + σ2

)
.

(non convex case)
Combining this inequality with Lemma A.5 and considering that ηt = η ≤ 1

30L(H+E) , provides

1

T

T−1∑
t=0

E ∥∇f(x̄t)∥2 ≤ O

(
(f(x0)− f∗)L(H + E)

T
+

σ
√

ρL(f(x0)− f∗)√
T

+ (
L(f(x0)− f∗)

√
(H + E)(σ2 + ζ2(H + E))

T
)

2
3

)
.

(109)

This completes the proof of Theorem IV.1.

Case Converge
rate

H ′ + E

iid non-iid
Strongly
convex

Õ( ρ
T ) Õ(ρT ) Õ(ρ

1
2T

1
2 )

Weak
convex

O(
√

ρ
T ) O(ρ

3
2T

1
2 ) O(ρ

3
4T

1
4 )

Non-
convex

O(
√

ρ
T ) O(ρ

3
2T

1
2 ) O(ρ

3
4T

1
4 )
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