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ABSTRACT

Distributed inference techniques can be broadly classified
into data-distributed and model-distributed schemes. In data-
distributed inference (DDI), each worker carries the entire
deep neural network (DNN) model, but processes only a sub-
set of the data. However, feeding the data to workers results in
high communication costs especially when the data is large.
An emerging paradigm is model-distributed inference (MDI),
where each worker carries only a subset of DNN layers. In
MDI, a source device that has data processes a few layers of
DNN and sends the output to a neighboring device. This pro-
cess ends when all layers are processed in a distributed man-
ner. In this paper, we investigate MDI with multiple sources,
i.e., when more than one device has data. We design a multi-
source MDI (MS-MDI), which optimizes task scheduling
decisions across multiple source devices and workers. Exper-
imental results on a real-life testbed of NVIDIA Jetson TX?2
edge devices show that MS-MDI improves the inference time
significantly as compared to baselines.

Index Terms— Model distribution, model distributed in-
ference, deep neural network (DNN), distributed DNN.

1. INTRODUCTION

The traditional approach to perform deep neural network
(DNN) inference in a distributed fashion is data-distributed
inference (DDI). A typical DDI scenario is when an end user
or edge server, i.e., a source device, would like to classify its
available data. Workers may correspond to other end users,
edge servers, or remote cloud. The source device itself could
function as one of the workers by processing some of its own
data. The source partitions and transmits the available data
to the multiple workers, all of which carry the same DNN
model. The workers then perform inference on their received
data via the available DNN. The outputs are finally sent back
to the source. This strikingly simple approach, although very
effective in certain cases, incurs very high communication
costs especially when the input data size is large.

An alternative to DDI is model-distributed inference
(MDI), which is often referred to as model parallelism. In this
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Fig. 1. Model-distributed inference with multiple sources.
Workers 17 and n3 are source workers, while 7o and 74 are
just workers. PM is an abbreviation for “partial model”.

scenario, the DNN model itself is partitioned to blocks of lay-
ers and then distributed across multiple workers. Unlike DDI,
the data is not distributed and resides at the source. Instead,
given an input to the DNN, the source may process the input
through the first few layers of the DNN. The resulting feature
vectors (intermediate outputs of the DNN after the first few
layers) are then passed to the next worker that is responsible
for the next few subsequent layers. Inference is completed
sequentially in the same manner by passing feature vectors to
the workers responsible for processing them. After the output
of the DNN is finally computed, it is transmitted back to the
source. Note that the processing at the workers is done in
parallel to take advantage of pipelining [1].

The performance of MDI with heterogeneous resources is
investigated [1] and an adaptive layer allocation mechanism
across workers is designed. It is shown that MDI significantly
reduces the inference time as compared to data distributed in-
ference when the size of data is large [1]. Despite its potential,
the performance of model distributed inference (MDI) with
more than one source device is an unexplored area. In this
paper, we investigate MDI with multiple sources, i.e., when
more than one device has data. The next example illustrates
the problem of multi-source MDI.

Example 1 Let us consider a scenario in Fig. 1, where four
workers are connected to each other in a circular topology.
Workers 11 and n3 are source devices, i.e., they have data to
process. The other devices, i.e., ny and 14 help n1 and ns to



process their data. The source devices 11 and n3 may prefer to
process their data locally, so they keep the whole pre-trained
DNN model. All workers have partial models (PM) for all
sources, i.e., n1 and ns. These partial models are used for
MDIL. In particular, at time slot t, source device n; may prefer
to process (i) the whole model locally for its own data, (ii) a
couple of layers of DNN for its own data, or (iii) a few layers
of DNN for n3’s data. These tasks should be scheduled in 11
as well as in other workers in parallel.

In this paper, we design a multi-source MDI (MS-MDI),
which optimizes task scheduling decisions across multiple
workers. Our approach builds on Network Utility Maxi-
mization (NUM) [2], where each task is associated with a
queue, and task scheduling decisions are made based on
queue sizes. We implement MS-MDI in a real testbed con-
sisting of NVIDIA Jetson TX2s. The experimental results
show that MS-MDI improves the inference time significantly
as compared to baselines for the MobileNetV2 [3] model and
the ImageNet [4] dataset.

The rest of the paper is organized as follows. In Section 2,
we present the related work. We introduce our system model
and provide background in Section 3. Section 4 presents our
MS-MDI design. In Section 5, we provide experimental re-
sults. We draw our main conclusions in Section 6.

2. RELATED WORK

A defining characteristic of edge computing networks is
the severe limitations of the constituent nodes in terms of
their communication bandwidth, battery/power limitations,
computing/transmission power, etc. Such limitations make
centralized approaches to learning or inference infeasible.
Hence, developing novel distributed learning and inference
methods is crucial, especially at the edge.

An earlier work on distributed inference is a two-part
DNN partition [5]. Specifically, a DNN is split into two parts,
where the first few layers are placed at the end user, while
the remaining layers are located at the cloud. The processing
in the end user and cloud could be iterative or parallel. In
iterative processing, an end user processes a few layers, and
if it is confident with the output, it terminates the processing.
Otherwise, feature vectors are sent to the cloud for further
processing at subsequent DNN layers. In parallel process-
ing, layers are partitioned and assigned to end user and edge
server (or cloud), which operate in parallel [6] and [7].

One limitation of the aforementioned line of work on dis-
tributed inference is that they are limited to two parallel pro-
cessing devices. As a result, these works may not take full
advantage of edge computing systems, where there can be
possibly several end users and edge servers. In fact, a gen-
eral MDI system can consists of more than two workers. A
model partitioning problem for MDI is formulated in [8] us-
ing dynamic programming. An adaptive and resilient layer
allocation mechanism is designed in [1] to deal with the het-

erogeneous and time-varying nature of resources. As com-
pared to this work, we consider multiple sources, and design
a task scheduling mechanism MS-MDI.

It should be mentioned that various other methods to
reduce the memory, communication, and computation foot-
prints of DNNs have been proposed, including conditional
architectures [9, 10], pruning [11, 12], quantization [13, 14],
and gradient sparsification [15, 16]. Our work is comple-
mentary to these alternate techniques in the sense that the
performance of MS-MDI can be further improved by incor-
porating one or more of these methods.

3. SYSTEM MODEL AND BACKGROUND

Setup. We consider a multi-source edge network with end
users and edge servers. We name these devices as workers.
The set of workers is N' = {no,...,nn_1}, Where 7, is the
nth worker. We name a subset of workers as a source set,
i.e., S C N, where the sources in the source set collect data
(images) in real time from the environment. The source de-
vices would like to classify their data as soon as possible by
exploiting their own and other workers’ computing power.

Workers form a circular overlay topology [17], which nat-
urally arises in MDI [1]. We note that topology construction,
model allocation, and task scheduling decisions can be jointly
optimized, but it introduces higher communication and com-
putation cost. Therefore, we assume that overlay topology is
determined using existing mechanisms [18, 19].

We consider a dynamic edge computing setup where
workers join and adjourn the system anytime, i.e., workers
can leave the system before finishing their assigned tasks.
Also, computing and communication delay of workers could
be potentially heterogeneous and vary over time.

DataSet and DNN Model. Suppose that worker 7; is a
source. It collects data from the environment according to a
Poisson distribution with rate «;, and A?C is the kth data that
worker n; collects.

We assume that the same pre-trained DNN model con-
sisting of L layers is used by all sources. The set of lay-
ers is determined by £ = {l1,...,l.}, where [; is the ith
layer. The weights of the pre-trained DNN model are w =
{w;}L |, where w; is the vector of weights corresponding
to layer /;. The number of parameters (weights) at layer @
is Wi, i.e., |w;| = W,;. The total number of parameters is
W ="F . W, where |w| = W.

Model-Distributed Inference. Suppose that the source
node 7; wishes to process its kth data, i.e., A%. Let A? (k) =
LK), A E e with ALi(k) € £ denote the
set of layers that worker 7),, computes for processing data
Ai. The last layer of A% (k) is represented by I’ (k) =

AL (1), We consider that A% (k)N A? (k) = 0, Vn # m
as workers should process independent set of layers.

The source node 7; processes all the layers in A% (k) for
data A and determines the corresponding activation vectors.




The activation vector of the first layer i.e., ai (k) is calculated
as a} (k) = wiA%. The activation vectors of the next lay-
ers are calculated as a}(k) = wial | (k), VI € Ai(k) and
I # 1. The activation vector of the the last layer i.e., a, *) (k)
is transmitted by the source node 7; to its next hop 1neigh—
bor in the circular topology, which is 7(;41)%~, Where % is a
modulo symbol.

Worker 7, (n # i) calculates a}(k) = wiai_,(k), VIl €
A (k) and sends the output of the last layer, i.e., afi( g () to
the next worker. If afib *) (k) is the output of the last layer, it
is transmitted to the source node 7);.

The MDI process can be pipe-lined so that n; can start
processing k + 1th data immediately after calculating a’, (k).
Thus, workers are kept busy in a setup with homogeneous
resources, and layers are processed in parallel. We use adap-
tive and resilient model distributed inference (AR-MDI) [1]
in heterogeneous setups by particularly focusing on multiple
sources. Next, we will briefly explain AR-MDI.

Adaptive and Resilient Model Distributed Inference
(AR-MDI) [1]. AR-MDI is a layer allocation mechanism
that determines the layers A (k) that should be activated at
worker 7, for processing data A} of source 7;. AR-MDI al-
locates |p?, (k)| layers to worker 7, for data A% originated
from source 7;, where |.| ¢ rounds p, (k) to a closest integer
that is a feasible layer allocation according to DNN layer set
L. AR-MDI determines p¢, (k) as

1/ (k)
S Ly (k)

where W is the total number of parameters in the DNN
model, 7 (k) is the per parameter computing delay. AR-
MDI performs layer allocation in a decentralized way as each
worker can determine their share of layers by calculating
|pi,(k)|z. The per parameter computing delay +/, (k) can be
measured by each worker and shared with other workers.

p(k) =W (1)

4. MULTI-SOURCE MDI (MS-MDI)

In this section, we present our Multi-Source Model Dis-
tributed Inference (MS-MDI) design. Our approach builds
on Network Utility Maximization (NUM) [2] and its solu-
tion, where each task is associated with a queue, and task
scheduling decisions are made based on queue sizes. Next,
we discuss the construction of queues.

Queue Construction. Each source worker 7; constructs a
queue g}, which stores data that are supposed to be processed
locally at worker 7;. In other words, the data in ¢} is not pro-
cessed in a distributed manner, but locally at ;. Each worker
(either a source or not) 7,,, n € N constructs |S| queues ¢/,
for each source node i € S. The queue ¢, stores data or acti-
vation vectors that node 7,, is supposed to process for source
node 7; in a distributed manner. Let us consider the exam-
ple topology in Fig. 1 again in Fig. 2 and focus on 7;. The
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Fig. 2. Queue constructions and task scheduling decisions in
an example topology of Fig. 1. We focus on the operations of
worker 1, i.e., 11, in this figure.

source device 7; constructs three queues; (i) g; for process-
ing its own data locally, (ii) ¢1 for processing its own data via
MDI, and (iii) ¢} for processing 73’s data via MDI.

Data arrival in sources. In source worker 7;, if data is
collected or arrives according to Poisson distribution, such
data is inserted in a reservoir queue p;. Then, at time slot
t, fixed amount of data is taken from p;, and inserted in a
queue that satisfies min{q; (¢), ¢(¢)}. We note that ¢} (¢) rep-
resents local processing (inference) queue at time ¢, while
qi(t) corresponds to the distributed processing queue. Our
design of MS-MDI selects the smallest queue among g} (t)
and ¢:(t) for inserting new data arrivals, because the small-
est queue likely corresponds to the policy, i.e., either local or
MDI, that processes data faster. For example, 77; in Fig. 2
checks min{g;, ¢ } and inserts the new arrivals to the small-
est queue.

Selection of queues for inference. At slot ¢, each node
1. decides which data should be processed according to

max{q)"(t) max{a (1) = ¢l ygn (O @)

where ¢/ (t) = —M if n ¢ S and M is a large positive con-
stant. If ¢j*(¢) is the maximum term in (2), data from ¢} (¢)
is taken and processed locally at node n. Otherwise, i.e.,
if maxy;es{¢.(t) — qgnﬂ)%N(t)} is the maximum term,

z = argmaxv,es{q,(t) — q{n+1)%N(t)} is determined.
Then, data from ¢Z(t) is processed at worker 7,, according
to MDI. The output of the process, i.e., the activation vector
of the last layer afi(kz) is sent to the next node 7,1 1)%n-
Let us consider 7; in Fig. 2 again. If the maximum term of
max{q}, max;e1 3{q; — ¢4}} is ¢/, m’s data is processed
locally at 7;. If the maximum term is ¢} — ¢b, i € {1,3}
then n;’s data is processed partially, and the activation vector
of the last layer is transmitted to 75. We note that activation
vectors coming from 7, are an input to ¢i. The rationale
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Fig. 3. Inference/processing time versus the number of images in a (a) two worker setup, and (b) three worker setup. (c)
Inference/processing time versus the number of workers. Two out of all workers are source workers in all experiments.

behind selecting the largest queue is to ramp up the speed of
data processing for large queues.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our algo-
rithm MS-MDI in a real life testbed consisting of NVIDIA
Jetson TX2 devices. First, we describe the testbed architec-
ture, DNN models, and the datasets. We then provide the
corresponding experimental results.

Datasets, DNN Models and Testbed Description. We
utilize the ImageNet [4] dataset with 1, 000 classes for image
classification. The dataset contains more than 1 million train-
ing, 50, 000 validation, and 100, 000 test images. We down-
sample the dataset images to a fixed size of 256 x 256 as the
input sizes are larger and have variable variable dimensions.
We use the MobileNetV?2 [3] as the inference model.

Our testbed consists of NVIDIA Jetson TX2 computing
cards that contain GPUs. Wi-Fi link provides the connections
between the Jetsons. An access point in the link layer pro-
vides a connected topology. We implement this topology as a
proof-of-concept: MS-MDI operates over a circular topology
in the overlay and works with any lower-layer topology.

We compare our algorithm MS-MDI with baselines: (i)
AR-MDI [1], where adaptive and resilient layer allocation is
suggested against heterogeneous and time-varying resources;
and (ii) Local, where the source node has the complete DNN
model and prefers to process all the data by itself.

Results. We first consider a setup with two workers 7,
and 72. Each worker is a source worker, i.e., they have their
own data to process. The first and second workers receive
data with rates vy = 5 images/sec and ao = 10 images/sec,
respectively. The workers 7; and 7, receive 10K and 30K
data in total. Fig. 3(a) shows the inference time (which is
referred as processing time) versus the number of images. As
seen, MS-MDI improves over both Local and AR-MDI by
11% and 16%, respectively. Local performs better than AR-
MDI as both workers have their own data to process, so Local
processes data more efficiently while AR-MDI wastes time
for communication. MS-MDI performs the best thanks to
switching between Local and AR-MDI depending on queue

occupancy.

Next, we consider a setup with three workers. 7; and
1o are the source workers with the same data arrival rates
as in Fig. 3(a). The third worker 3 is not a source, i.e.,
just a worker. Fig. 3(b) shows that AR-MDI performs better
than Local as AR-MDI can exploit the computing resources
in 13, while ns stays idle in Local. MS-MDI improves over
AR-MDI and Local by 20% and %32, which is significant.
We see that the improvement of MS-MDI is more in three
worker setup as compared to the two worker thanks to adap-
tive switching between Local and AR-MDI when needed, i.e.,
depending on queue sizes.

We also consider a setup of increasing number of work-
ers. Two sources out of all the workers are selected as source
workers, and the arrival rates are the same as in Fig. 3(a)
setup. Fig. 3(c) presents the processing time per image, which
is averaged over 40 K images versus the number of workers.
As seen, the improvement of MS-MDI over both AR-MDI
and Local increases with the increasing number of workers.
The improvements of MS-MDI as compared to AR-MDI and
Local for five-worker setup are 29% and 74%, respectively,
while the improvements are 16% and 11% for the two-worker
setup. MS-MDI takes the advantage of increasing number of
workers, so its improvement as compared to Local increases
significantly. MS-MDI also improves as compared to AR-
MDI as it switches to Local when there is any communication
or computation bottleneck in the system.

6. CONCLUSION

In this paper, we investigated MDI with multiple sources, i.e.,
when more than one device has data. We designed a multi-
source MDI (MS-MDI), which optimizes task scheduling de-
cisions across multiple source devices and workers. Our ap-
proach builds on NUM formulation and its solution, where
each task is associated with a queue, and task scheduling
decisions are made based on queue sizes. We implemented
MS-MDI in a real testbed consisting of NVIDIA Jetson TX2s
and showed that MS-MDI improves the inference time signif-

icantly as compared to baselines. m,
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