
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 1

A Maintenance-Aware Approach for Sustainable
Autonomous Mobile Robot Fleet Management

Syeda Tanjila Atik, Akshar Shravan Chavan, Daniel Grosu, Senior Member, IEEE and Marco
Brocanelli, Member, IEEE

Abstract—Autonomous mobile robots (AMRs) are capable of
carrying out operations continuously for 24/7, which enables
them to optimize tasks, increase throughput, and meet demanding
operational requirements. To ensure seamless and uninterrupted
operations, an effective coordination of task allocation and
charging schedules is crucial while considering the preservation
of battery sustainability. Moreover, regular preventive main-
tenance plays an important role in enhancing the robustness
of AMRs against hardware failures and abnormalities during
task execution. However, existing works do not consider the
influence of properly scheduling AMR maintenance on both task
downtime and battery lifespan. In this paper, we propose MTC,
a maintenance-aware task and charging scheduler designed for
fleets of AMR operating continuously in highly automated envi-
ronments. MTC leverages Linear Programming (LP) to first help
decide the best time to schedule maintenance for a given set of
AMRs. Subsequently, the Kuhn-Munkres algorithm, a variant of
the Hungarian algorithm, is used to finalize task assignments and
carry out the charge scheduling to minimize the combined cost
of task downtime and battery degradation. Experimental results
demonstrate the effectiveness of MTC, reducing the combined
total cost up to 3.45 times and providing up to 68% improvement
in battery capacity degradation compared to the baselines.

Index Terms—preventive maintenance, autonomous mobile
robots, battery degradation, task and charge scheduling

I. INTRODUCTION

Autonomous Mobile Robots (AMRs) can concurrently exe-
cute a large variety of objective tasks (e.g., intrusion detection,
indoor/outdoor delivery) while navigating on the ground of a
working environment according to a certain navigation task.
Given their versatility and ability to operate 24/7, fleets of
AMRs are at the core of the Industry 4.0 revolution with
an expected market growth from $2B in 2022 to $9B in
2032 [1]. To ensure an environmentally-sustainable adoption
at scale, always-operating AMR fleets need help to coordinate
task allocation, access to charging stations, and scheduling of
preventive maintenance periods.

In our previous work, we have demonstrated how to coordi-
nate task and charge scheduling for minimized task downtime

Syeda Tanjila Atik, Akshar Shravan Chavan, and Daniel Grosu are with
the Computer Science Department at Wayne State University, Detroit, MI
48202. Marco Brocanelli is with the Electrical and Computer Engineering
Department at The Ohio State University, Columbus, OH 43210. Emails:
{hf1987,aksharchavan,dgrosu}@wayne.edu, brocanelli.1@osu.edu.

Corresponding author: Marco Brocanelli.
This research was supported by the US National Science Foundation under

Grant CNS-1948365.
Manuscript received XX XXXXX XXXX; revised XX XXXXXX XX;

accepted XX XXXXXX XXXX. Date of publication XX XXXXXX XXXX;
date of current version XX XXXX XXXX.

Digital Object Identifier no. XXXXXXXXXXXXXXXXXXXX

and improved battery quality of life, i.e., longer lifespan and
most of energy used for useful task execution [2]. However,
this solution does not account for the frequent preventive
maintenance requirements of AMRs, which requires a sub-
stantially different approach due to the high complexity of
the problem. Traditional computing systems (e.g., data center
servers) and fixed-position industrial robots generally have
infrequent maintenance requirements (e.g., once a month).
However, the mobility feature of AMRs makes them more
vulnerable to failure. In fact, previous research has found that
AMRs can experience failure every 6 to 20 hours due to
various environmental conditions [3], which can be alleviated
through daily preventive maintenance, as advised by some real
AMR manufacturers [4]. However, as we show in this paper,
a sub-optimal choice of maintenance scheduling for AMRs
operating 24/7 can highly impact the fleet ability to carry out
tasks and their battery degradation.

In this paper, we present MTC, a Maintenance-aware Task
and Charge scheduling algorithm that autonomously coordi-
nates the maintenance periods, task allocation, and charging
times of always-operating AMR fleets for minimized task
downtime and battery degradation. We formulate the MTC
problem as a Mixed-Integer Non-Linear Program (MINLP).
Given its high complexity, we then break down the MTC prob-
lem into two sub-problems. First, we transform the MINLP
into a Linear Program (LP) relaxation to help decide the
best time to schedule maintenance for a given set of AMRs.
Because the obtained LP solution is infeasible in terms of task
and charge scheduling, we then leverage the Kuhn-Munkres
algorithm [5], a variant of the Hungarian algorithm, to finalize
the task assignment and carry out the charge scheduling that
minimizes the combined cost of task downtime and battery
degradation.

Specifically, this paper makes the following contributions:
• We formulate the MTC problem as an MINLP to deter-

mine the best scheduling of maintenance periods, task
allocation, and charge scheduling for minimized task
downtime and battery degradation.

• The defined MINLP is infeasible to solve in polynomial
time. To find a solution within polynomial time, we
design the MTC algorithm, which leverages LP relaxation
and the Kuhn-Munkres algorithm to find a near-optimal
solution at a fraction of the execution time required to
solve the MINLP.

• Experimental results demonstrate the effectiveness our
MTC algorithm, reducing the combined total cost up to
3.45 times and providing up to 68% improvement in

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 2

battery capacity degradation compared to baselines that
randomly decide maintenance periods.

The rest of the paper is organized as follows. Section II
describes the related work, Section III presents the MTC
problem formulation, Section IV explains the polynomial-time
MTC algorithm, Section V shows the experimental results,
Section VI discusses the limitations of the proposed approach
and future work, and Section VII concludes the paper.

II. RELATED WORK

Many studies on AMRs focus on navigation and path
planning strategies [6]–[14]. However, in our paper, we focus
on how to leverage high-level task allocation to improve
battery lifespan and schedule preventative maintenance. In this
section, we describe the most-related state-of-the-art on how
to improve battery lifespan, schedule preventive maintenance,
and determine task and charging schedule policies for battery-
operated mobile devices.
Battery Lifespan. Recognizing the significance of environ-
mental sustainability in the realm of battery-dependent mobile
computing, several studies have offered diverse approaches
to maximize the battery lifespan. These studies rely on in-
depth analysis of battery behaviour to formulate solutions
using analytical techniques. Some solutions implement low-
level task scheduling strategies designed to achieve a low
average discharge current profile for the battery. Luo and
Jha [15] propose two battery-aware static scheduling schemes,
one optimizing discharge power profiles to maximize battery
capacity utilization, and another for voltage-scalable process-
ing elements, reducing average discharge power consumption
and flattening power profiles through efficient slack time
re-allocation. Chakrabarti and Chowdhury [16] propose task
scheduling with voltage scaling in battery-powered systems
to maximize battery performance by introducing an efficient
heuristic algorithm based on a charge-derived cost function for
task sequencing and slack allocation. Nodoushan et al. [17]
propose a battery-aware speed scheduling policy for real-time
tasks in a Dynamic Voltage Scaling system, employing Cal-
culus of Variations to analytically establish the upper limit for
maximum charge attainable through Dynamic Voltage Scaling.
Kwak et al. [18] provide a task scheduling strategy to reduce
the battery degradation rate by controlling the battery operat-
ing temperature. He et al. [19] provide a custom relaxation-
aware charging solution that determines the charging rate of
mobile devices based on user’s available time. Different from
our work, the above solutions focus on improving battery
lifespan through either low-level task scheduling (i.e., after
assignment) or controlling charging rates, without considering
the problem of how to coordinate AMRs in terms of task allo-
cation, charging, and maintenance scheduling for maximized
task performance and battery lifespan. These solutions are thus
orthogonal and complementary to our work.
Preventive Maintenance. Maintenance is essential for AMRs
to ensure higher performance, lower downtime, and reduced
repair costs. Early work on preventive maintenance does not
focus on AMRs. For example, Schouten and Vanneste [20]
provide a preventive maintenance policy for a deteriorating

installation with a buffer, aiming to minimize interruptions
in a production system considering both installation age
and buffer content. They characterize the form of optimal
policy determined through a semi-Markov decision process
and solved it using a policy-iteration technique. Meller and
Kim [21] provide a solution considering a system with two
production operations connected by a buffer, aiming to identify
the optimal buffer inventory level for triggering preventive
maintenance on the first operation. It utilizes a cost model
that encompasses preventive maintenance, unscheduled re-
pairs, and inventory management. More recent studies focus
on maintenance for robot arms rather than AMRs and do
not cover the joint problem of task and charge scheduling.
For example, Chen et al. [22] explore knowledge-driven
techniques for smart equipment management in Mixed Model
Assembly (MMA). They propose a knowledge sharing-enabled
multi-robot collaboration strategy for preventive maintenance,
featuring ontology-based modeling, task-specific actions, and
knowledge exchange. Their objective is to reduce unexpected
downtime, achieve robot workload equilibrium, and avert
equipment degradation within the MMA context.
Task and Charging Schedule. Several related studies propose
coordinated policies for maximizing the performance of AMR
fleets with limited resources by focusing either on task allo-
cation [23]–[26] or charging schedule [27]–[29]. For example,
Lee et al. [23] propose a resource-oriented, decentralized
auction algorithm for multirobot task allocation considering
the limited robot communication range. Sempé et al. [29]
focus instead on the design of a group of self-sufficient mobile
robots so that they can remain in operation and efficiently
share a charging station. Considering the joint problem, Chen
and Xie [30] propose a joint task allocation, routing, and
charging problem to simultaneously minimize the total energy
consumption, total energy charged, and total service time.
However, they overlook the potential downtime caused by
maintenance activities and do not consider the effect on the
battery lifespan. In our previous study [2], we focus on joint
task allocation and charging schedule for AMRs to achieve
high-quality battery life and low task downtime. We have
formulated the problem as an MINLP problem and proposed
a polynomial-time multi-period greedy algorithm. However,
including maintenance scheduling makes the problem too
complex and requires a substantially different approach.

To the best of our knowledge, this is the first paper that
proposes an approach to jointly schedule maintenance peri-
ods, allocate task, and schedule charging for multiple AMRs
with the objective of minimizing task downtime and battery
degradation.

III. MTC PROBLEM FORMULATION

In this paper, we focus on a simplified scenario involving
a fleet of identical AMRs operating 24/7 in the working
environment. We assume the fleet manager specifies a set of
tasks to be carried out by the AMR fleet, during a specified
long working period (e.g., 24 hours). The fleet manager
can also select which AMRs in the fleet need preventive
maintenance during the working period. Daily maintenance

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 3

for AMRs involve a standard set of operations, such as
hardware inspection, checking for leakage, cleaning chips and
sensors, and testing batteries [31], [32] to be carried out by
specialized maintenance personnel. Thus, we consider that
the average time necessary to carry out such operations is
similar across AMRs. However, our framework can be easily
adapted to support heterogeneous maintenance durations (see
Section III-C).

The task set is made up of objective tasks and navigation
tasks. Each navigation task allows an AMR to travel a path in
the environment while also carrying out a number of associated
objective tasks, such as the detection of dangerous situations
and safety violations. The navigation tasks can either generate
or be given waypoints to reach a certain location. Between
waypoints, the task usually periodically generates and updates
a local path to follow the waypoints. The navigation can be
based on camera frames and/or Lidar data analysis through
standard techniques or appropriate machine learning models.
Each objective task has three characteristics: a specific level
of priority, a given quantity of computing demand, as well
as access to a particular number of sensors. Additionally, the
AMRs have the ability to recharge at any of the available
charging stations.

The working period is split up into multiple decision periods
(e.g., ten minutes each) to coordinate AMRs and handle
runtime variations. As our paper targets to provide a long-
term plan to coordinate the scheduling of maintenance, task
execution, and charging of multiple AMRs, we assume that
the task load and environment is generally static. However,
our approach can also be easily adapted to react to unexpected
variations on energy usage, AMR failure, addition of AMRs,
or new tasks to execute, by collecting at every decision period
status information from the AMRs, which can be used to
update the subsequent schedule according to the algorithm
described in Section IV. We remind to Section VI for an in-
depth discussion on how to address various low-level dynamic
factors, including energy variations and communication de-
lays.

In summary, the MTC problem aims at jointly finding
the best time to schedule AMR maintenance, determining
task allocation to AMRs, and scheduling charging times for
minimized task downtime and battery life quality degradation.
In this section, we describe the cost function and the necessary
constraints to formulate the MTC problem. Note that part of
the cost function and constraints are similar to our previous
paper [2]. We focus on the new constraints related to schedul-
ing maintenance of the AMRs in Section III-C.

A. Cost Function of the MTC Problem

We have formulated our cost function based on the two
desired objectives. The first objective is to minimize the task
downtime and the other one is to minimize the degradation
of battery quality of life [2], i.e., desired lifespan and most
of the energy spent for execution of useful objective tasks
rather than wasted in frequently driving the AMR to charging
stations. Thus, the total cost function is defined as follows:

min
X,Z,U

Downtime(X) + q ·Bat Degradation(X,Z) (1)

Here, X and Z are the four dimensional and three dimen-
sional arrays used to store the decisions for task assignment
and charge scheduling respectively. xk,i,h,j is a binary element
of X , which is equal to 1 if in period k AMR i is assigned
to navigation task h and associated objective task j, and, 0
otherwise. zk,i,c is a binary element of array Z, which is
equal to 1 if in decision period k the AMR i is scheduled
for recharge at the charging station c, and, 0 otherwise. U is
a 2D matrix that specifies the start of the maintenance of a
particular AMR. uk,i is a binary element of U , which is 1 if
AMR i is scheduled to start maintenance at time period k, and
0 otherwise. Note that the maintenance variables uk,i affect the
cost function through a set of constraints (see Section III-B).
q is considered as a weight factor that enables the end user
to give more importance to battery quality of life over task
downtime.

Cost of Downtime. We define the downtime cost as follows:

Downtime(X) =
∑
k∈T

∑
h∈H

∑
j∈J

γhj −
∑
i∈R

xk,i,h,j

 pj

(2)
where R, T , H, and J are the set of AMRs, decision periods,
navigation, and objective tasks, respectively. γh,j is a binary
element of the matrix Γ, which can be adjusted according
to configuration. Its value is set to 1 if the objective task j
needs to be performed during the navigation task h, and 0
otherwise. Additionally, the fractional weight denoted as pj ,
ranging from 0.1 to 1, represents the priority assigned to the
objective task j.

Battery Quality of Life Degradation Cost. Depending on
the specific type of battery, the overall lifespan of batteries
is significantly influenced by two key factors: the depth of
discharge (DoD) and the maximum energy stored within the
battery at any given moment [26]. Therefore, it is assumed
that users can utilize existing tools designed for assessing
battery lifespan (such as [33]) to establish maximum and
minimum thresholds of energy that align with their desired
battery lifespan, such as 8 years. However, while the lifespan
of certain batteries remains unaffected by frequent charging, a
substantial amount of energy can be wasted by the AMR when
it frequently navigates to charging stations. Consequently,
achieving both the desired lifespan and minimal energy waste
(referred to as high-quality battery life [2]) can be accom-
plished by scheduling charging cycles to commence when the
AMR’s energy level is near the minimum threshold (eDoD)
and cease when it approaches the selected maximum threshold
(emax). The battery degradation cost is thus defined as:

Bat Degradation(X,Z) =
∑
k∈T

∑
i∈R

∑
c∈C

Dstart
k,i,c +Dstop

k,i,c (3)
Dstart

k,i,c =
(
1− zk−1,i,c

)
zk,i,c

|ek−1,i−eDoD|
ebat

Dstop
k,i,c = zk−1,i,c

(
1− zk,i,c

) |emax−ek−1,i|
ebat

(4)

where ek−1,i denotes the energy level of AMR i at the end of
the previous decision period (k − 1), ebat is the maximum
energy level that can be stored in the AMR batteries and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 4

C is the set of charging stations. The decision to start or
stop charging is determined by Equation (4), which triggers
when the decision variable z for an AMR goes from 0 to 1
(indicating the start of charging) or from 1 to 0 (indicating the
stop of charging) over two consecutive decision periods (k−1
to k).

B. General Constraints of the MTC Problem

Limited resource capacity. The total amount of instructions
to carry out the designated navigation and objective tasks
during each decision period must not exceed the computational
capacity of each AMR, similar to our earlier work [34]:

∑
h∈H

nk,i,h · rh +
∑
j∈J

xk,i,h,j · rj

 ≤Mmaxt ∀ k, i (5)

where nk,i,h = max
[
xk,i,h,1 . . . xk,i,h,|J |

]
indicates which

navigation task is allocated to AMR i in period k. It is
equal to 1 only if at least one of the objective tasks j of
navigation task h is assigned to AMR i, i.e., allocating a
navigation task without any objective task would not make
sense. rh and rj are the total number of instructions executed
for navigation task h and objective task j during each decision
period, respectively. Mmax is the maximum Instructions Per
Second (IPS) for the computing resource of each AMR at
highest clock frequency and t is the duration of each decision
period. As also demonstrated by previous studies [35]–[39],
the average number of instructions of the tasks as well as
the AMR’s maximum IPS can be easily profiled in most
computing systems using performance event counters.
Energy Availability. The energy remaining in each AMR’s
battery at the end of each decision period, denoted by ek,i in
Equation (4), must be estimated by a mathematical model in
order to plan the task assignment and charging schedule over
several decision periods. Naturally, the available energy must
be in between 0 and the maximum capacity of the battery ebat:

0 ≤ ek,i ≤ ebat (6)

The power consumption of AMRs is mostly caused by
computation, sensors, and locomotion procedures, as we have
shown in our prior work [40]. Therefore, we can estimate the
energy level of AMR i in period k as:

ek,i = ek−1,i + echargedk,i − ecompt
k,i − esensork,i − elocomk,i − echangek,i

(7)

where echargedk,i denotes how much energy is recharged in
AMR i if it is set to recharge during period k, ek−1,i denotes
the level of energy of AMR i at the end of the previous
decision period, ecompt

k,i denotes the energy consumption due
to computation, esensork,i denotes the energy consumption due
to acquisition of sensor data, elocomk,i denotes the energy con-
sumption due to locomotion, and echangek,i denotes the amount
of energy that is required for the AMRs when changing the
navigation task, going to the charging station for recharge,
or going back to execute tasks after recharging between
consecutive decision periods. Specifically:

• The amount of energy that is charged in AMR i in
period k at any of the charging stations c is simply calcu-
lated as follows when the AMR’s recharge is scheduled
by setting zk,i,c = 1:

echargedk,i =
∑
c∈C

zk,i,c · ν · t (8)

Here, t is the length of the decision period and ν is the
rate of charging.

• The estimation of computational energy consumption can
be done utilizing well known models [34], [41] based on
the time for executing task and the third power of clock
frequency, i.e., αcomp · Exec time · f3, where f is the
clock frequency and αcomp is an estimated parameter.
Similar to [34], the execution time of a set of tasks,
can be estimated easily based on the ratio of the total
number of instructions required to execute for each task
that is allocated and the maximum CPU’s instructions per
second Mmax. Thus:

ecomp
k,i = αcomp

∑
h∈H

[
nk,i,h · rh +

∑
j∈J

xk,i,h,j · rj

]
Mmax

f3

(9)
We conservatively assume that in order to achieve the
maximum task performance, AMRs always run at the
highest clock frequency.

• Each AMR has a set of sensors S (e.g., cameras and
lidar). In our earlier research [40], we have found that
collecting sensor data requires an amount of energy that
is non-negligible. Hence, given an average access rate
of each navigation and objective tasks to each sensor, the
total sensing energy consumption is estimated as follows:

esensk,i =
∑
l∈S

αsens
l

∑
h∈H

nk,i,h · Sh,l +
∑
j∈J

Sj,l · xk,i,h,j


(10)

where αsens
l is an estimated parameter that measures the

average energy consumption per data acquisition from
sensor l ∈ S . Sh,l and Sj,l are the average number of
sensor data acquired by each navigation and objective
task during the decision period, respectively. Thus, αsens

l

is multiplied by the total sensor data accessed by the
allocated tasks during each decision period.

• The locomotion energy elock,i is dependent on the naviga-
tion path that is assigned. Given that each path is different
in terms of slopes, curves, and obstacles each navigation
task h is characterized by a measurable average locomo-
tion energy consumption αloc

h per period:

elock,i =
∑
h∈H

αloc
h · nk,i,h (11)

• In an ideal scenario, we would take into consideration
the precise AMR energy consumption due to variations
in navigation task and journey to/from each particular
charging station over time, which is wasted as no useful
objective task is being carried out. However, this would
significantly increase the complexity of the problem.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 5

Hence, we use a simplified model that takes into account
the average distances between navigation paths and charg-
ing stations as follows:

echangek,i = αchange
[
dcharge · f(zk,i,c) + dn2n · f(nk,i,c)

]
(12)

where αchange represents the average energy per meter
thar is required to navigate the AMR during changes
in charge and navigational assignment. We assume each
AMR uses a default navigation system and for such cases
that can be profiled offline. dcharge and dn2n are the
average distance of the navigation paths’s centroids to all
charging stations and the average distance across the cen-
troids of different navigation paths, respectively. f(zk,i,c)
and f(nk,i,c) are two indicator functions designed to be
equal to 1 when there is a change in charging status and
navigation allocation, respectively, and, 0 otherwise.

Availability of Charging Stations. The charging AMRs
cannot exceed the number of charging stations |C|:∑

i∈R

∑
c∈C

zk,i,c ≤ |C| ∀k (13)

Objective Task Allocation. The fleet manager decides the ob-
jective tasks that should be executed on top of each navigation
task through the elements γh,j of Γ. In addition, each objective
task associated with a specific navigation task h ∈ H should
be allocated to only one AMR:∑

i∈R
xk,i,h,j ≤ γhj ∀ k, h, j (14)

C. Constraints Related to Maintenance Scheduling

To simplify the formulation of the constraints related to
scheduling the AMR maintenance, we define two input param-
eters. The first one is RM , a binary array that informs whether
each AMR has to be selected and complete the maintenance
during the next working period, i.e., rMi equal to 1 to schedule
maintenance, and 0 otherwise. The second one is P , a matrix
of potential solutions for scheduling the maintenance. The
size of P is |(T − m) + 1| × |T |, where T is the total
number of working periods and m is the average maintenance
duration given as input by the fleet manager. Specifically, each
row of P denotes a potential set of m consecutive decision
periods where maintenance would be performed. Thus, only m
consecutive elements pt,k (t ∈

[
1, (T −m) + 1

]
) of each row

have value 1 (i.e., maintenance). As discussed in the beginning
of Section III, we consider similar maintenance duration for
all AMRs. If heterogeneous duration are necessary, each AMR
can define its matrix P independently. For example, if the total
number of decision periods is 5 and the maintenance duration
is 3 periods long, the matrix P is equal to:1 1 1 0 0

0 1 1 1 0
0 0 1 1 1


Thus, if MTC decides that AMR i has to start its maintenance
in period k = 2, then the maintenance vector variable u·,i
of AMR i would be equal to

[
0 1 0

]
and the result of the

product u·,iP can be used to define the periods when the AMR
is in maintenance and cannot recharge or execute tasks (i.e.,[
0 1 1 1 0

]
in this example).

Enabling Maintenance. All AMRs i with rMi = 1 will go to
maintenance only once during the whole working period:

T−m∑
k=1

uk,i = rMi ∀ i (15)

State Consistency. The four possible states for each AMR in
the fleet are recharging, executing, waiting, and maintenance.
The AMR cannot perform any tasks while it is recharging at
one of the charging stations. One of the navigation tasks and
at least one of the objective tasks are being carried out by
the AMR when it is in the executing state. The AMR can not
execute tasks or charge while being in maintenance. Finally,
an AMR is in the waiting state while it is neither charging,
executing tasks, or in maintenance. We can define these rules
as follows:∑

c∈C
zk,i,c +

∑
h∈H

nk,i,h ≤ 1− uk,i · pt,k ∀ k, i, t (16)

where nk,i,h is equal to 1 when at least one objective task of
navigation task h is assigned to AMR i in period k. Note that
the matrix P indicating the potential solutions for scheduling
the maintenance, may exhibit a high degree of sparsity in
some cases. However, this sparsity is not going to increase
the time for the LP solver to find a solution. This is because
each entry equal to 0 in the matrix P would lead to the exact
same constraint in Equation (16), which can help the LP solver
reduce the search space.
Binary Decision Variables. The decision variables can only
have binary values:

xk,i,h,j = {0, 1} ∀k, i, h, j
zk,i,c = {0, 1} ∀k, i, c
uk,i = {0, 1} ∀k, i

(17)

D. MINLP Implementation of MTC problem
Due to the integer restriction imposed by Equation (17) and

the non-linearities found in Equation (4), the MTC problem
defined in Section III is a Mixed Integer Nonlinear Program
(MINLP). For these kind of problems, determining the best
solution typically exhibit exponential time complexity [42].
To determine a near-optimal solution we use the Gurobi
solver [43] to implement the MTC problem as a centralized
algorithm running either in the cloud or a nearby edge
server. However, even this solver can take long time to find
a solution to MINLP problems. In our previous work [2]
we have designed a polynomial time algorithm based on a
greedy approach to coordinate task and charge scheduling for
minimized task downtime and improved battery quality of life.
However, that algorithm plans the task and charging schedule
for several successive periods, which makes it complicated to
be modified to include maintenance scheduling. To solve the
MTC problem, we thus employ more advanced methods based
on Linear Program (LP) relaxation and the Kuhn-Munkres
algorithm to find a solution to the MTC problem in polynomial
time.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 6

Algorithm 1 MTC
Input: set of AMRs R, number of decision periods T , set

of navigation tasks H, set of charging stations C, set
of objective tasks J , matrix of navigation to objective
task assignment Γ, set of AMRs needing maintenanceM,
duration of the maintenance m, lowest energy of an AMR
el, maximum energy capacity of an AMR ebat.

1: T ← {1, 2, ..., T} ▷ Set of decision periods
2: X ←0 ▷ Allocation decision (element xk,i,h,j)
3: Z ←0 ▷ Charging decision (element zk,i,c)
4: E ← 0 ▷ Energy level (element ek,i, column ek)
5: AR ← R ▷ Set of available AMRs
6: AC ← C ▷ Set of available charging stations
7: CR ← ∅ ▷ Set of charging AMRs
8: WR ← ∅ ▷ Set of AMRs waiting to recharge
9: TM ← Maintenance LP(R, T,H,J ,Γ,M,m, el, ebat)

10: for k ∈ T do
11: for i ∈ R do
12: ek−1,i ← Get current energy level from AMR i
13: if i ∈ AR and ek−1,i ≤ el then
14: AR ← AR \ {i}
15: WR ←WR ∪ {i}
16: if i ∈M and k ∈ TM

i then
17: AR ← AR \ {i}
18: WR ←WR \ {i}
19: CR ← CR \ {i}
20: WR, CR,AR,AC , Z ←

Charge(k,WR,AC , Z,H,J , E, ebat, CR,AR,Γ, 0)
21: X,AR,WR ← Task Alloc(k,AR,WR,H,J , E,Γ)
22: WR, CR,AR,AC , Z ←

Charge(k,WR,AC , Z,H,J , E, ebat, CR,AR,Γ, 1)
23: Transmit decision to AMRs and wait for next period

IV. POLYNOMIAL-TIME MTC ALGORITHM

In this section, we describe the MTC algorithm, which
provides a joint task allocation, charging, and maintenance
schedule solution to the MTC problem.

Algorithm 1 shows the pseudo-code of the MTC algorithm.
It takes the set of AMRsR, the set of objective tasks J , the set
of navigation tasks H, total number of decision periods T , the
matrix Γ with elements γh,j denoting which objective tasks j
will be executed during each navigation task h, set of AMRs
requiring maintenance M, the minimum energy required by
any AMRs to go back to any charging station el, and the
maximum energy capacity of each AMR battery ebat.
Initialization (Lines 1-8). The algorithm starts by initializing
the variables in Lines 1-8. These include the set of decision
periods T , the task assignment array X with variables xk,i,h,j ,
the array of charge scheduling Z with variables zk,i,c as
elements, and the matrix E of AMR’s energy level having
elements ek,i are initialized to 0. We assume that at the
beginning of the working period all the robots are available for
task allocation (Line 5), and all charging stations are available
to charge robots (Line 6). In addition, we assume no robot is
charging (Line 7) or waiting to recharge (Line 8).

Maintenance Schedule (Line 9). The first decision made
by MTC is when to schedule maintenance for each AMR in
the input set M. Given the complexity of the MTC problem
described in Section III, it would be difficult to find a good
heuristic. Thus, MTC in Line 9 calls the function Mainte-
nance LP, which is a linearized and relaxed version of the
MTC problem that reads the current energy level of each AMR
to obtain an infeasible but informative solution in polynomial
time. In particular, we linearize the cost function in Equa-
tion (1) by adding auxiliary constraints and relax the integrality
constraint in Equation (17) to transform the integer decision
variables into non-integer variables with values between 0
and 1. The solution found by the relaxed LP includes fractional
values for the decision variables. To obtain a feasible solution,
for each AMR i ∈ M the Maintenance LP function finds
the highest uk,i fractional value across all time periods k ∈ T
from the LP solution, rounds it to 1 (i.e., start period of
maintenance for AMR i), and the rest to 0. This choice is based
on the intuition that higher fractional values are generally
correlated to a lower cost value.

Finally, the function creates a set of sets TM to be returned
to the MTC algorithm, where TM

i is the set of time peri-
ods k ∈ T when AMR i is scheduled for maintenance (empty
set if i /∈ M). Note that, different from the task allocation
and charge scheduling decision (see below), the choice of the
maintenance schedule is done only once at the beginning of the
working period, which makes it easy for workers to determine
the pick-up time for each selected AMR.
Task and Charge Scheduling (Lines 10-23). The algorithm
then activates at the beginning of every decision period to de-
termine the task and charge scheduling for the current period k.
First, in Lines 11-19 it determines which AMRs are available
for task allocation or need charging decision. Specifically, it
reads the current energy level from each AMR (Line 12). If the
energy level of any AMR in the set of available AMRs AR is
less than the minimum energy necessary to go back to any
charging station el, the algorithm makes it unavailable for
further task allocation and adds it to the set of AMRs waiting
for recharge WR (Lines 13-15). The algorithm also removes
any AMR i scheduled for maintenance in the current period k
from the set of AMRs available for task allocation, waiting
for recharge, or charging (Lines 16-19).

Finally, MTC determines whether each AMR charging in
the previous period k−1 should continue charging in the cur-
rent period or stop charging to be available for task allocation
(Line 20, Charge() function with last parameter 0). Then, it
allocates the available tasks to the available AMRs (Line 21,
Task Alloc() function), and determines which AMR can start
charging in the current period (Line 22, Charge() function
with last parameter 1). The algorithm then transmits the allo-
cation and charge scheduling decisions to the AMRs and waits
for the beginning of the next decision period (Line 23). The
details of the task allocation and charge scheduling functions
in Lines 20-22 are given in the next sections.

A. Task Allocation
The pseudo-code of the Task Alloc() function is provided

in Algorithm 2. It first initializes the set N of navigation

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 7

Algorithm 2 Task Alloc
Input: Current working period k, set of available AMRs AR,

set of AMRs waiting to recharge WR, set of navigation
tasks H, set of objective tasks J , AMR energy array E,
navigation to objective task assignment Γ

1: N ← H ▷ Set of available navigation tasks
2: while AR ̸= ∅ and N ̸= ∅ do
3: W ← 0 ▷ Weight matrix of size (|N | × |AR|)
4: for h ∈ N do
5: for i ∈ AR do
6: wh,i ← Evaluate Cost(k, i, h,N ,J , E,Γ)
7: if

∑
l∈N

∑
j∈J xk−1,i,l,j ̸= 0 then

8: wh,i ← wh,i · ((100− ek,i)/
∑|AR|

i=1 ek,i)

9: X,AR,N ,WR ← Munkres(W,AR,WR,N ,Γ)
Output: X,AR,WR

tasks available for allocation in Line 1. Then, in Lines 2-9
it assigns tasks to AMRs based on the Munkres algorithm [5],
[44]. Specifically, the function creates a bipartite graph with
nodes representing the AMRs available for allocation and
the navigation tasks with at least one objective task left
unallocated. Each AMR node is connected to a navigation
node through a weighted edge. The Munkres algorithm finds
the best allocation of AMRs to navigation tasks that minimizes
the sum of the edge weights.

To do so, the Task Alloc() function first initializes to zero a
matrix of edge weights W of dimension |N |× |AR| (Line 3).
Then, for each navigation task in N and every AMR in AR,
it calculates the weight of each edge of the bipartite graph
(Lines 5-8). Each weight is calculated based on a cost function
evaluation (i.e., Evaluate Cost() in Line 6), which calculates
the total cost of allocating the navigation task h to AMR i
according to the Equation (1). It tries to first allocate all
the objective tasks j that are associated with that particular
navigation task h to the AMR i. Then, it calculates the total
cost as the combined cost of what would be the task downtime
and what would be the battery degradation cost if the AMR
would recharge in the next period. The function then removes
one objective task at a time and compares the current total
cost with the previous total cost. If the current total cost is
lower, the function keeps removing objective tasks one at a
time until the current total cost can no longer be reduced. If
no objective tasks of that navigation task h can be allocated
to AMR i the function marks this edge as ”DISALLOWED”.
Otherwise, it returns the least total cost it finds.

With this weight calculation, there is a possibility for fre-
quent navigation task switching across AMRs over consecutive
decision periods, which would cause an unnecessary waste of
energy. To limit such occurrence, if the selected AMR i was
previously allocated the selected navigation task h (Line 7), the
Task Alloc() function updates the weight wh,i by multiplying
it by the relative difference of the energy level of AMR i with
respect to the total energy level of all the AMRs in the set of
available AMRs AR (Line 8). After calculating all the edge
weights of W , the Munkres() function is called to find the
best task to AMR allocation (Line 9).

Algorithm 3 Charge
Input: current working period k, set of AMRs waiting to

rechargeWR, set of available charging stationsAC , charg-
ing array Z, set of navigation tasks H, set of objective
tasks J , AMR energy array E, max energy level ebat, set
of charging AMRs CR, set of available AMRs AR matrix
of navigation to objective task assignment Γ, start/stop
charge d

1: if d = 0 then ▷ Stop Charge Decision
2: Sort charging AMRs in non-increasing order energy.

Let Vσ(1), Vσ(2), ..., Vσ(|CR|) be the order.
3: for i = 1 . . . |CR| do
4: s← argmaxc∈C{zk−1,σ(i),c}
5: if ek−1,σ(i) = ebat then
6: CR ← CR \ {σ(i)} ▷ Stop Charging
7: AR ← AR ∪ {σ(i)}
8: AC ← AC ∪ {s}
9: else

10: if Compare Cost(k, σ(i),H,J , E,Γ) then
11: CR ← CR \ {σ(i)} ▷ Stop Charging
12: AR ← AR ∪ {σ(i)}
13: AC ← AC ∪ {s}
14: else
15: zk,σ(i),s ← 1 ▷ Continue Charging

16: else ▷ Start Charge Decision
17: while WR ̸= ∅ and AC ̸= ∅ do
18: for i ∈ WR do
19: for c ∈ AC do
20: zk,i,c ← 1 ▷ Start Charging
21: CR ← CR ∪ {i}
22: WR ←WR \ {i}
23: AC ← AC \ {c}
24: break
Output: WR, CR,AR,AC , Z

After the first round of assignment is done, the function
updates the task assignment array X , the set of AMRs avail-
able for task allocation AR (by removing the AMRs that were
allocated a task in this round), the set of navigation tasks with
at least one objective task left to allocate N , and the set of
AMRs waiting for recharge WR. In particular, the function
adds AMRs to the set WR if all the edges to that AMR
are ”DISALLOWED”, i.e., it cannot execute any task and
needs recharge. In addition, for instances with more AMRs
than navigation tasks it may be possible that, according to
the energy levels and the cost evaluation in Line 6, some
navigation tasks have some objective tasks left unallocated.
Thus, the function loops over Lines 2-9 until either there are no
more AMRs or tasks allocatable. The final allocation decision,
updated set of available AMRs, and updated set of AMRs
waiting for recharge are returned to the MTC algorithm.

B. Charge Scheduling

The pseudo-code of the Charge() function is given in
Algorithm 3. It executes to either stop or start charging AMRs.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 8

Stop Charge (Lines 1-15). To determine which AMRs charg-
ing in the previous period should stop charging and become
available for task allocation, or continue charging in the current
period, the function first sorts the AMRs in the set CR in
non-increasing order of energy (Line 2). Then, it determines
which charging station was used by the highest-priority AMR
in the previous period (Line 4). If the AMR has reached
the maximum energy level, the function removes it from
the charging AMRs, makes it available for task allocation,
and makes the charging station available for another AMR
(Lines 5-8). Otherwise, it uses the cost function Equation (1)
to compare, using the Compare Cost() function, the partial
cost of leaving this AMR charging for another period (and
cause eventual downtime) against making it available for task
allocation (and possibly cause degradation). The function re-
turns true for the latter case, i.e., interrupting the charge for this
AMR is convenient in terms of total cost (Lines 10-13), and
returns false for the former case, i.e, it is more convenient to
continue charging despite some potential downtime (Line 15).
Start Charge (Lines 16-24). The task allocation algorithm
described in Section IV-A may discover some AMRs in
need of recharging starting the current period. Thus, the
Charge() function is called again to allocated AMRs waiting
for recharge to any of the available charging stations. Since
all AMRs waiting for recharge are at a similar energy level,
the function simply allocates each AMR in WR in one of the
available charging stations in AC until either there are no more
AMRs waiting or no more charging stations available.

C. Complexity Analysis of MTC

The MTC Algorithm 1 iterates through every decision
period and the total number of decision periods is |T |.
The function Maintenance LP() in Line 9 solves an LP
problem, which takes polynomial time. In every decision
period, the functions Charge() with parameter 0 and 1 and
Task Alloc() are executed. The Charge() function with pa-
rameter 0 in Line 20 takes O(|C|(|C| + |H||J |)) to exe-
cute. The Task Alloc() function in Line 21 takes O(|R|4 +
|H|2|R|2|J |+|H||R|3). The Charge() function with parame-
ter 1 in Line 22 takes O(max(|R|, |C|)|R||C|). Thus, the MTC
algorithm finds a solution in polynomial time.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We used HydraOne, our AMR prototype [45], to train the
model parameters described in Section III using regression
analysis and ensure realistic results. The prototype is equipped
with an NVIDIA Jetson AGX, 156Wh Li-ion battery, Dual
250W motors, a Slamtec RPLidar S1 lidar, 2 Intel RealSense
cameras, and an Arduino Mega 2560. We conducted an
instruction count analysis of a representative navigation task
based on HydraNet1 and a representative object detection task
based on MobileNet-SSD [40]. To address the variance in
instruction counts across different tasks, we then generated
problem instances using two uniform distributions. These

1A Convolutional Neural Network (CNN) that takes a camera frame as
input and outputs the next linear and angular speed of the AMR.

Fig. 1. Comparison of the total cost of the baselines normalized to MTC for
small, medium, and large problem instances.

distributions were centered around the mean instruction counts
observed for HydraNet in navigation tasks and for MobileNet-
SSD in objective tasks.

In our experiments, we have used the Gurobi solver to find
the solution of the MINLP baseline and the LP of our MTC
algorithm. We have chosen Gurobi because it has a free license
for academic researchers [46]. Thus any researchers can use
it to freely reproduce our results and build research on top of
our code [47]. However, the problem can be easily rewritten
for any other open source solvers like MIPCL [48], SCIP [49],
GLPK [50], COIN-OR [51] and LP Solve [52].
To run our experiments, we have generated several different
problem instances categorizing them into small, medium and
large instances. For small instances, we have considered 3-
5 AMRs, 1-5 charging stations, 3-5 navigation tasks, 4-6
objective tasks, and working period of 3-8 hrs dividing it
into decision periods of 10 mins. For medium instances we
have considered 5-10 AMRs, 3-10 charging stations, 5-10
navigation tasks each having 4-6 objective tasks, and working
period of 4-14 hrs. For large instances we have considered
up to 15 AMRs and varied the number of other elements
accordingly along with working period of 8-24 hrs. For each
type of problem instance, we have considered 40%, 60% and
80% of the AMRs going to the maintenance and selected the
maintenance duration of any AMR to be 1 hr.
Baselines. Given that there are no previous works solving
the MTC problem and that our previous task and charge
scheduling algorithm is too complex to be modified to host
maintenance scheduling [2], we have designed three represen-
tative baselines to compare with our proposed MTC algorithm.
The first one is RMA, which selects both the maintenance
period and the task allocation randomly but uses the same
charging policy. The second one is RM, which randomly se-
lects the maintenance period but uses the same task allocation
and charging policy of our MTC algorithm. The third one is
MINLP, which is the MTC problem defined in Section III
implemented in the Gurobi solver. Given that the solver can
take long time to find a solution, we force it to provide the
best solution found within a decision period.

B. Performance Metrics

In our previous work [2] we used, among other metrics,
the energy-usage effectiveness (EEF) to measure the energy
waste. However, in this paper we do not use this metric since
the baselines use the same start-of-charge policy and achieve

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 9

Fig. 2. Normalized total cost variation of RM for an increased duration of
working periods for small, medium, and large problem instances.

similar EEF, which allows us to focus on the efficiency of
the LP relaxation for maintenance decision and the Munkres
algorithm for task allocation. Thus, the performance metrics
used in our evaluation are the percentage of allocated tasks
(TA) and the state of charge violation (SOCV) for battery
degradation. TA is the total percentage of objective tasks
allocated to AMRs. SOCV is defined as the total number of
times an AMR violated the battery SOC thresholds throughout
the battery charging cycle. The battery longevity is reduced by
exceeding these thresholds:

SOCV =
100

ebat

∑
k∈T

∑
i∈R

[
max((ek,i − emax), 0)

+max((eDoD − ek,i), 0)
] (18)

where ebat is the maximum energy capacity of the AMR
battery, ek,i denotes the energy level of AMR i in period k,
emax and eDoD are the thresholds of maximum and minimum
energy given as input by the user. It is important to mention
that MTC would accommodate any input threshold defined by
the users. In accordance with previous research on Lithium-ion
batteries [53], the lifespan of these batteries deteriorates when
the energy level surpasses specific thresholds, falling short of
the user’s intended duration. Consequently, the SOCV only
rises when the energy level falls below the eDoD or surpasses
the emax. The closer the SOCV approaches zero, the more
closely aligned the battery’s lifespan becomes with the desired
duration. More details on how to choose the energy thresholds
can be found in Section VI.

C. Total Cost Comparison

Here we evaluate the performance of our proposed MTC
algorithm using the small, medium, and large problem in-
stances compared to the baselines RM and RMA. Due to
its long running times, we do not include MINLP here but
we will compare with it in Section V-E. We run each set
of problem instance 50 times by varying the AMRs initial
energy levels, randomizing the objective task priority to be
selected from the range 0.1 to 1, and randomizing the number
of instruction used for the navigation and objective tasks.
Figure 1 shows the total cost given by the baselines normalized
to the total cost of our MTC algorithm for small, medium,
and large problem instances considering 40%, 60% and 80%
of AMRs needing maintenance. Among the two baselines,

RMA performs the worst with the highest total cost across
all the cases. For example, considering the highest percentage
of AMRs needing maintenance (e.g. 80%), the solution found
by RMA shows 1.62, 2.47 and 3.45 times increased total
cost compared to MTC for small, medium, and large problem
instance, respectively.

RM, which performs the task allocation using the same
approach as MTC but randomly selects maintenance periods
for the AMRs, improves compared to RMA thanks to the
allocation strategy described in Section IV-A. MTC further
improves the solution of RM thanks to the LP relaxation
strategy described in Section IV. Considering 80% of the
AMRs needing maintenance, the solution found by RM leads
to 1.18, 1.46 and 1.21 times increased total cost compared
to MTC for small, medium, and large problem instance,
respectively. Thus, MTC reduces the total cost by up to 147%
and 46% compared to RMA and RM, respectively.

D. Working Period Effect on Total Cost
The total cost improvement achieved by MTC compared to

the baselines also depends on the difference between the length
of the working period and that of the maintenance period.
In fact, if the maintenance period is very short the benefit
of the relaxed LP can only minimally impact the total cost.
On the other end, if the maintenance period is comparable
to the working period the difference in choice between the
LP relaxation and the random one would not be sufficient
to cause much cost variation. Thus, it is expected that the
ratio of total cost between the random baselines and MTC has
the highest values somewhere in the middle. In addition, the
bigger the problem instance is, the longer the duration of the
working period should be for MTC to provide a solution with
substantially reduced total cost.

Figure 2 shows how increasing the duration of total working
period affects the solution found by RM compared to MTC
using the same maintenance duration of previous section
(six periods) for small, medium and large instances. We can
see that for medium problem instances, if we consider the
duration of working period to be 36 decision periods, the
solution provided by RM increases the total cost by 1.46
times compared to MTC. Afterwards, the total cost decreases
with the increase of the working period. This behavior also
depends on how many AMRs are scheduled for maintenance.
This is why for larger problem instances where the number
of AMRs needing maintenance is higher, we need a larger
working period to observe a larger improvement in the total
cost provided by MTC compared to RM. As seen from the
figure, when the working period duration is 24, the solution
found by RM shows a larger increase in the total cost by
1.27 times for small problem instance. A similar increase can
be seen for the larger problem instance considering a longer
working period length of 96 periods. As expected, for all cases
the solution found by RM becomes closer in cost to that of
MTC when the length of the working period further increases.

E. Example Case Study
In this section, we describe in detail the operation of the

baselines, RMA, RM, MINLP and our proposed MTC with

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 10

(a) (b) (c) (d)
Fig. 3. Comparison of the battery State-of-charge (SOC) among the baselines (a) RMA, (b) RM, (c) MINLP, and (d) proposed MTC algorithm considering
a single case with SOC threshold of 30% and 80% of battery capacity.

an example scenario. The values of the performance metrics
obtained from the four approaches is given in Table I. Figure 3
shows the SOC profiles of 3 AMRs in the case of baselines
and MTC. Here, we have considered a single case study
that consists of 24 decision periods of 10 minutes each,
three AMRs, AMR 2 selected for maintenance, three charging
stations, two navigation tasks with five objective tasks each.

Figure 3a shows the SOC profile of AMRs with the task,
charging, and maintenance schedules found by RMA. Because
the task allocation is done randomly, we can observe that the
AMRs perform tasks for fewer periods compared to other
approaches. For instance, AMR 1 could perform tasks only
for 8 periods with RMA, whereas with RM AMR 1 performs
tasks for 16 periods because with random task allocation,
the AMR switches more frequently between the navigation
tasks. Consequently, frequent transiting of AMRs between the
navigation tasks causes additional energy consumption that is
not utilized towards objective tasks. Furthermore, we notice
that AMR 2 is selected to start its maintenance randomly in
period 7, leaving only AMR 1 available to perform tasks as
AMR 0 is charging in that period. This maintenance sched-
ule resulted in insufficient availability of AMRs to perform
navigation tasks and thus increased task downtime. For these
reasons RMA shows a higher SOC violation of 18.59%, the
lowest task allocation percentage at 91%, and the highest total
cost compared to other baselines and MTC.

Figure 3b shows the SOC profile of AMRs with RM in
which the task allocation schedule is performed similar to
MTC using Kuhn-Munkres algorithm, but the maintenance
schedule is selected randomly. Compared to task allocation
schedule of RMA, we observe that with RM the AMRs remain
on one particular navigation task until they start recharging
leading to a lower task downtime. However, due to random
maintenance schedule, AMR 2 is selected for maintenance
in period 9 when it is at a lower SOC. As a result, when
the AMR 2 is available to perform tasks after completing the
maintenance, the task allocation schedule performs allocation
even while violating the SOC threshold. Doing so RM obtains
a similar task allocation percentage of 98% to MTC but has
36.45% higher total cost due to a higher battery degradation.

Figure 3c shows the SOC profile of AMRs with MINLP
in which the maintenance and task allocation schedule is
obtained through our formulation implemented in Gurobi.
MINLP performs maintenance, task allocation, and charging
schedule while considering the objective in Equation (1) to
provide near optimal solution. It obtains the highest task
allocation percentage of 100% and lowest SOCV of 2.03%.

Therefore, the total cost is lowest among all baselines and
MINLP. However, due to its high time complexity, we had to
put a time limit of 10 minutes to get the solution, which is
a 20,000 times longer execution time than that of MTC. For
larger problem instances, the solver is unable to find a better
solution within that time limit.

Figure 3d shows the SOC profile of AMRs with our
proposed polynomial-time MTC algorithm. MTC performs
maintenance using the LP relaxation as well as task allocation
using the Munkers algorithm and charging schedule consider-
ing the total cost in Equation (1). Thus, it is able to obtain
a task allocation percentage of 98%, which is similar to that
of RM, 7.69% higher compared to RMA, and 2% lower than
MINLP. Thanks to the LP relaxation, the maintenance period
is set to start in period 20, where the remaining two AMRs
are able to execute the rest of the tasks without violating SOC
thresholds. Thus, MINLP and MTC perform a balanced trade-
off between TA and SOCV to provide a joint maintenance,
task allocation, and charging schedule that ensures minimized
task allocation and battery degradation. However, MTC is able
to find a reasonable solution within a fraction of time.

TABLE I
PERFORMANCE COMPARISON OF MTC WITH BASELINES

Approach Total Cost Task Allocation SOCV Exec. Time (sec)

RMA 116.93 91% 18.59% 0.001
RM 59.32 98% 6.06% 0.002

MINLP 24.62 100% 2.03% 600.03
MTC 41.87 98% 3.69% 0.03

F. Performance Metrics Comparison

In Figure 4, we show the performance comparison of MTC
with the other two baselines, RMA and RM, considering all
the problem instances. Figure 4a shows the percentage of task
allocation provided by the three approaches. We can see that
RMA has the lowest percentage of task allocation with an
average of 83%. This is because RMA chooses randomly
to allocate the tasks to the AMRs without considering the
total cost, which includes also how much downtime would be
caused because of the allocation of tasks. RM shows a better
performance than RMA in allocating 88% to 95% of the tasks.
This is because RM uses the same approach as MTC for task
assignment to the AMRs. On the other hand, MTC performs
the best among two of them by being able to allocate 90% to
96% of the tasks. The result shows the advantage of using the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 11

(a) (b) (c)

Fig. 4. Comparison of (a) task allocation, (b) per-run SoC threshold violation, and (c) remaining battery life span for RMA, RM and MTC.

Linear Programming approach on deciding the maintenance
schedule rather than selecting randomly.

Figure 4b shows the comparison of violation of SoC thresh-
old per run (as shown in Eq. 18) for the three approaches.
We can see RMA shows the worst SOCV . On average, RMA
results in violating the SoC thresholds more than 55% of the
times resulting in a higher cost of battery life span degradation.
In the case of RM, the SoC thresholds are violated on average
30% of the time, which is less than RMA because of the joint
consideration of task allocation and battery degradation in the
Munkres algorithm. However, in the case of RM, the main-
tenance periods are selected randomly for the AMRs without
considering the effect of it on the total cost. As a result, the
available AMRs have to keep executing tasks and violate the
SOC thresholds more often. Compared to RMA and RM, MTC
performs much better and violates the SOC thresholds less
than 15% of the times on average. As MTC uses the linear
programming approach to select the maintenance schedule, it
gives a much better solution compared to RM, which leads
to a lower battery lifespan degradation even though, at times,
some AMRs may still need to violate the SOC thresholds to
keep executing tasks when AMRs go to maintenance.

Figure 4c shows how the battery life span would be affected
by the baselines and MTC in the long run. We have used the
state of charge trace of AMR 1 from the scenario considered
in Figure 3 and used the rainflow counting algorithm [54] to
estimate the remaining battery life span of the AMR battery
over the years. Because using all the AMRs’ SOC traces in the
rainfall algorithm is extremely time consuming, we only used
one of the AMR’s SoC traces to show an example results. We
find that, in case of RMA, the SOC thresholds are violated
more often, which results in the AMR battery capacity to
degrade much faster than RM and MTC. We can see that the
battery life span degradation reaches 20% in approximately
1400 days (3.8 years) when using RMA while in case of RM,
it is approximately 2000 days (5.4 years). Compared to the
baselines, MTC reduces the battery life span degradation and
takes approximately more than 2400 days (6.6 years) for the
battery capacity to degrade to 20%. Thus, MTC improves the
battery capacity degradation by approximately 25% and 68%
compared with the baselines RM and RMA, respectively.

VI. LIMITATIONS AND FUTURE WORK

We have assessed the performance of the MTC algo-
rithm by conducting simulations. However, the simulations
are performed using well-established locomotion and energy
models, whose parameters are trained based on data obtained

from our real AMR prototype [45]. Therefore, we can assert
that the results obtained from these simulations are reliable.
Furthermore, running real-life experiments to directly observe
the variations in battery lifespan is an intricate and time-
consuming endeavor. As a result, we have utilized the rainflow
counting algorithm [54] as it is a robust and user-friendly
model for estimating battery lifespan, particularly in large-
scale AMR setups. On the other hand, the proposed MTC may
be improved in terms of scalability and handling variability of
environmental conditions, but could also be used for choosing
the best battery energy thresholds.

Scalability. Currently, the proposed MTC algorithm adheres
to a centralized paradigm. Consequently, as the number of
AMRs increases, it becomes imperative to address the issue
of scalability. In our experimental evaluation, we rigorously
assessed the algorithm’s performance with fleet sizes of up to
15 AMRs where the algorithm exhibited an execution time
of approximately 30 seconds, which is only 5% of the gen-
erally larger decision period (10 minutes in our experiments).
Normally a fleet of AMRs operates in a limited area (e.g., a
factory), which naturally limits the fleet size. Thus, the MTC
algorithm would perform well in such scenarios. However, for
very large fleets, for example having 100-1000 AMRs, we
acknowledge that the algorithm may have scalability issues
because the LP portion may take longer to provide a solution.
A very large AMR fleet would normally serve an operational
area that is also considerably large. In such a scenario, a
possible solution is to divide the large area into smaller cells
where each cell has its own set of AMRs to execute tasks and
can be managed by the proposed MTC control algorithm. On
the other hand, if the large area cannot be divided into smaller
cells, a future direction is to develop a distributed version of
the MTC algorithm that executes directly on each AMR.

Several studies proposed solutions on distributed task al-
location in multi-robot systems operating in dynamic en-
vironment [55]–[58]. Similar to those works, a distributed
framework can be employed for maintenance, task, and charge
scheduling where each AMR can be allowed to autonomously
execute various sub-steps of the Kuhn–Munkres algorithm
based on its own state information and the information re-
ceived from the other AMRs in the fleet. The communication
among the AMRs can be helpful in achieving the allocation
decision without a central manager. Also, a game theoretical
approach [59]–[64] can be considered, where each AMR can
be treated as a player in a strategic game. In this approach,
AMRs make decisions based on their utility functions, which
quantify the benefit or cost of performing specific tasks. Within

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 12

this structure, a distributed algorithm could be developed
to find equilibrium solutions such as Nash or Bayes-Nash
equilibrium ensuring an optimized and balanced task distri-
bution among the AMRs. Another effective strategy based on
mechanism design (often referred to as reverse game theory)
can be considered, which crafts a distributed allocation system
tailored specifically for resolving task allocation issues in
a dynamic environment [65]. These decentralized decision-
making paradigms are well-suited for situations where cen-
tralized control is unfeasible or undesirable because it not
only improves system efficiency but also adjusts to dynamic
surroundings.

Dynamic Environmental Conditions. The proposed MTC
algorithm operates with a coarse time grain to coordinate
AMR operations as an offline approach, i.e., it assumes prior
knowledge of task characteristics, which is common in several
scenarios where AMRs have to execute a predetermined set
of tasks (e.g., factories). However, it is in our future work
designing an online version of the TMC algorithm for online
task scenarios, e.g., robot delivery. In addition, due to the
following reasons, it could be improved in terms of (1) fault
tolerance, and (2) consideration of fine time grain dynamic
variables (e.g., energy variations, non-linear battery discharge
profiles, communication delays, or sensor inaccuracies). First,
while considering preventive maintenance scheduling severely
reduces the chance of various failures, the MTC algorithm
could handle sudden AMR failures either by simply re-
executing when failure is detected, or by accounting for some
degree of redundancy for risky (e.g., older) AMRs. Second, it
is challenging to include fine grain energy consumption, non-
linear discharge, and communication delays at coarse-grain
task/charge/maintenance decision time, because it requires
considering with a much finer time granularity each AMR’s
current location, network status, and detailed terrain conditions
over a much longer period. Including such fine grain charac-
teristics into coarse-grain decisions may be impractical. Even
considering fine-grain dynamics into the coarse-grain fleet
coordination may still be affected by such estimation errors.
If there is a consistent and significant variation in the energy
consumed by an AMR for a specific task, the energy model
parameters can be updated at runtime according to the readings
from the AMR sensors. In addition, a potential solution might
be allowing the AMRs to autonomously adjust their energy
consumption (e.g., varying CPU frequency, velocity) to match
the energy budgeted by the MTC algorithm, which would
improve coordination effectiveness. This will be addressed in
our future work.

We also believe that relatively short (e.g., tens of seconds)
communication delays would not impact too much the perfor-
mance of the proposed MTC algorithm, since communication
is relatively infrequent for decision update (e.g., ten minutes
in our experiments). However, such delays might be critical
in the distributed version discussed above. We will study the
potential effects of communication delays on the distributed
algorithm performance to make it more robust to environmen-
tal dynamics. Finally, sensor inaccuracies would affect more
the local operations of each AMR, which should be handled
locally at a fine grain control (as discussed above) rather than

through coarse grained allocation decisions.
Deciding Battery Energy Thresholds. In this paper, the

MTC algorithm decides high-level task allocation, charge,
and maintenance scheduling for the AMR fleets based on
user-defined battery energy thresholds. However, it might be
challenging for the users to choose such thresholds ahead of
time. To alleviate this challenge, the fleet manager can leverage
the proposed MTC algorithm to run simulations with various
threshold values and observe their consequences in terms of
battery degradation and task downtime. In addition, the user
can also choose different values for the weight q (used in
Equation (1)) to give more or less importance to the battery
degradation over task downtime for each threshold combina-
tion. The simulations with the MTC algorithm can thus serve
as an aid to find a good set of input parameters before the
actual deployment. Note that the battery lifespan model we
employed [54] takes into account the operating temperature.
Assuming that AMRs operate in a similar environment having
similar temperatures, our framework can be used to accurately
estimate the obtained lifespan. On the other hand, in our future
work we will consider ways to modify the framework in
cases where each AMR may experience extremely different
temperatures during operations.

VII. CONCLUSION

The uninterrupted operation of AMRs allows for task
optimization, increased throughput, and meeting demanding
operational requirements. In this paper, we explored the sig-
nificance of effective coordination between task allocation,
charging schedules, and maintenance for autonomous mobile
robots (AMRs) operating 24/7 in highly automated environ-
ments. Existing works have overlooked the importance of
appropriately scheduling maintenance for AMRs, considering
both task downtime and battery lifespan. To address this gap,
we proposed MTC, a maintenance-aware task and charging
scheduler for fleets of AMRs based on Linear Programming
(LP) to help decide the best time to schedule maintenance for
a given set of AMRs and Kuhn-Munkres algorithm to finalize
the task assignment and carry out the charge scheduling that
minimizes the combined cost of task downtime and battery
degradation. The experimental results showed that the solution
found by MTC, reduces the combined total cost by up to
3.45 times and provides up to 68% improvement in battery
capacity degradation compared to the baselines. These findings
highlight the potential benefits of our proposed approach in
optimizing the operation of AMRs in real-world scenarios,
contributing to the advancement of autonomous mobile robots
and sustainable battery utilization.

REFERENCES

[1] Global Market Insights, “Autonomous mobile robot market -
type, by end-use & forecast, 2023-2032,” https://one.nhtsa.gov/nhtsa/
Safety1nNum3ers/august2015/S1N Aug15 Speeding 1.html, 2023.

[2] A. S. Chavan and M. Brocanelli, “Towards high-quality battery life for
autonomous mobile robot fleets,” in 2022 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), 2022,
pp. 61–70.

[3] J. Carlson and R. Murphy, “How ugvs physically fail in the field,” IEEE
Transactions on Robotics, vol. 21, no. 3, pp. 423–437, 2005.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

https://one.nhtsa.gov/nhtsa/Safety1nNum3ers/august2015/S1N_Aug15_Speeding_1.html
https://one.nhtsa.gov/nhtsa/Safety1nNum3ers/august2015/S1N_Aug15_Speeding_1.html

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 13

[4] SMP Robotics, “Mobile robot technical maintenance service,” https://
smprobotics.com/security robot/services/, 2023.

[5] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[6] S. Park and S. Hashimoto, “Autonomous mobile robot navigation using
passive rfid in indoor environment,” IEEE Transactions on Industrial
Electronics, vol. 56, no. 7, pp. 2366–2373, 2009.

[7] J. Janet, R. Luo, and M. Kay, “Autonomous mobile robot global motion
planning and geometric beacon collection using traversability vectors,”
IEEE Transactions on Robotics and Automation, vol. 13, no. 1, pp. 132–
140, 1997.

[8] I. Shnaps and E. Rimon, “Online coverage by a tethered autonomous
mobile robot in planar unknown environments,” IEEE Transactions on
Robotics, vol. 30, no. 4, pp. 966–974, 2014.

[9] T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig, “Coopera-
tive probabilistic state estimation for vision-based autonomous mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5,
pp. 670–684, 2002.

[10] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human
aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874–883, 2007.

[11] I. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation by a mobile
robot with obstacle avoidance using single-camera vision and ultrasonic
sensing,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6,
pp. 969–978, 1998.

[12] N. Tsourveloudis, K. Valavanis, and T. Hebert, “Autonomous vehicle
navigation utilizing electrostatic potential fields and fuzzy logic,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 4, pp. 490–497,
2001.

[13] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm based ap-
proach for autonomous mobile robot path planning,” Procedia Computer
Science, vol. 127, pp. 180–189, 2018.

[14] J. C. Mohanta, D. R. Parhi, and S. K. Patel, “Path planning strategy
for autonomous mobile robot navigation using petri-ga optimisation,”
Computers & Electrical Engineering, vol. 37, no. 6, pp. 1058–1070,
2011.

[15] J. Luo and N. Jha, “Battery-aware static scheduling for distributed
real-time embedded systems,” in Proc. of the 38th Design Automation
Conference, 2001, pp. 444–449.

[16] P. Chowdhury and C. Chakrabarti, “Static task-scheduling algorithms for
battery-powered dvs systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 2, pp. 226–237, 2005.

[17] M. Jafari-Nodoushan, B. Safaei, A. Ejlali, and J.-J. Chen, “Leakage-
aware battery lifetime analysis using the calculus of variations,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12,
pp. 4829–4841, 2020.

[18] J. Kwak, K. Lee, T. Kim, J. Lee, and I. Shin, “Battery aging deceleration
for power-consuming real-time systems,” in 2019 IEEE Real-Time
Systems Symposium (RTSS), 2019, pp. 353–365.

[19] L. He, Y.-C. Tung, and K. G. Shin, “Icharge: User-interactive charging
of mobile devices,” in Proc. 15th Annual Int. Conf. on Mobile Systems,
Applications, and Services, ser. MobiSys ’17. New York, NY, USA:
ACM, 2017, p. 413–426.

[20] F. Van der Duyn Schouten and S. Vanneste, “Maintenance optimization
of a production system with buffer capacity,” European journal of
operational research, vol. 82, no. 2, pp. 323–338, 1995.

[21] R. D. Meller and D. S. Kim, “The impact of preventive maintenance on
system cost and buffer size,” European Journal of Operational Research,
vol. 95, no. 3, pp. 577–591, 1996.

[22] B. Chen, Y. Zhang, X. Xia, M. Martinez-Garcia, and G. Jombo,
“Knowledge sharing enabled multirobot collaboration for preventive
maintenance in mixed model assembly,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 11, pp. 8098–8107, 2022.

[23] D.-H. Lee, S. A. Zaheer, and J.-H. Kim, “A resource-oriented, de-
centralized auction algorithm for multirobot task allocation,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 4,
pp. 1469–1481, 2014.

[24] D.-H. Lee, “Resource-based task allocation for multi-robot systems,”
Robotics and Autonomous Systems, vol. 103, pp. 151–161, 2018.

[25] K. J. O’Hara, R. Nathuji, H. Raj, K. Schwan, and T. Balch, “Autopower:
Toward energy-aware software systems for distributed mobile robots,”
in Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE, 2006, pp. 2757–2762.

[26] T. F. Roos and M. R. Emami, “A framework for autonomous heteroge-
neous robot teams,” in 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 2018, pp. 868–874.

[27] F. Michaud and E. Robichaud, “Sharing charging stations for long-term
activity of autonomous robots,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3. IEEE, 2002, pp. 2746–2751.

[28] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile
robots during exploration,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 6809–6816.

[29] F. Sempé, A. Munoz, and A. Drogoul, “Autonomous robots sharing a
charging station with no communication: a case study,” in Distributed
Autonomous Robotic Systems 5. Springer, 2002, pp. 91–100.

[30] J. Chen and J. Xie, “Joint task scheduling, routing, and charging
for multi-uav based mobile edge computing,” in ICC 2022 - IEEE
International Conference on Communications, 2022, pp. 1–6.

[31] Steven Douglas Corp., “Preventative maintenance for industrial robots,”
https://sdcautomation.com/preventative-maintenance-for-industrial-
robots,, 2023.

[32] B2E Automation, “Industrial robot maintenance - the complete
checklist,” https://www.b2eautomation.com/insights/industrial-robot-
maintenance-the-complete-checklist,, 2022.

[33] Argonne National Laboratory, “Battery Life Estimator,” https://www.
anl.gov/partnerships/battery-life-estimator, 2021.

[34] T. Bahreini, M. Brocanelli, and D. Grosu, “VECMAN: a framework
for energy-aware resource management in vehicular edge computing
systems,” IEEE Transactions on Mobile Computing, vol. 22, no. 2, pp.
1231–1245, 2023.

[35] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Performance analysis
using the mips r10000 performance counters,” in Proc. of the 1996
ACM/IEEE Conference on Supercomputing, 1996, pp. 16–16.

[36] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 3, pp. 940–954, 2022.

[37] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and S. Gob-
riel, “Energy-efficient thread assignment optimization for heterogeneous
multicore systems,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 14, no. 1, pp. 1–26, 2015.

[38] A. P. Kuruvila, X. Meng, S. Kundu, G. Pandey, and K. Basu, “Explain-
able machine learning for intrusion detection via hardware performance
counters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 11, pp. 4952–4964, 2022.

[39] M. Brocanelli and X. Wang, “Hang Doctor: Runtime detection and
diagnosis of soft hangs for smartphone apps,” in Proc. of the 13th
EuroSys Conference, ser. EuroSys ’18. New York, NY, USA: ACM,
2018, pp. 6:1–6:15.

[40] L. Liu, J. Chen, M. Brocanelli, and W. Shi, “E2M: An energy-efficient
middleware for computer vision applications on autonomous mobile
robots,” in The 4th ACM/IEEE Symposium on Edge Computing (SEC
2019), 2019.

[41] S. Wang, Z. Qian, J. Yuan, and I. You, “A dvfs based energy-efficient
tasks scheduling in a data center,” IEEE Access, vol. 5, pp. 13 090–
13 102, 2017.

[42] Y. Pochet and L. A. Wolsey, Production planning by mixed integer
programming. Springer Science & Business Media, 2006.

[43] GUROBI OPTIMIZATION, LLC, “Gurobi optimizer,”
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=
193283256&adgroupid=138872523520&creative=596136082932&
keyword=gurobi%20solver&matchtype=e& bn=g&gclid=
Cj0KCQjwhfipBhCqARIsAH9msbkX kY3H3xXXbvxfLdngFzmrp1F
f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw wcB,, 2023.

[44] F. Bourgeois and J.-C. Lassalle, “An extension of the munkres algorithm
for the assignment problem to rectangular matrices,” Communications
of the ACM, vol. 14, no. 12, pp. 802–804, 1971.

[45] Y. Wang, L. Liu, X. Zhang, and W. Shi, “Hydraone: An indoor
experimental research and education platform for cavs,” in 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[46] Gurobi, “Free licenses for academics & recent graduates,” https://www.
gurobi.com/academia/academic-program-and-licenses/, 2023.

[47] S. T. Atik, A. S. Chavan, D. Grosu, and M. Brocanelli, “Mtc repository
- available after publication,” 2023.

[48] NAGADOMI, “Mipcl solver,” https://www.kaggle.com/code/nagadomi/
mipcl-example-only-preference,, 2019.

[49] SCIP Optimization Suit, “Scip,” https://www.scipopt.org/,, 2023.
[50] GNU, “Glpk (gnu linear programming kit),” https://www.gnu.org/

software/glpk/,, 2012.
[51] COIN-OR Foundation, “Coin-or optimization suite binaries,” https:

//www.coin-or.org/downloading/,, 2016.
[52] keikland, peno64, “lpsolve,” https://sourceforge.net/projects/lpsolve/,,

2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

https://smprobotics.com/security_robot/services/
https://smprobotics.com/security_robot/services/
https://sdcautomation.com/preventative-maintenance-for-industrial-robots
https://sdcautomation.com/preventative-maintenance-for-industrial-robots
https://www.b2eautomation.com/insights/industrial-robot-maintenance-the-complete-checklist
https://www.b2eautomation.com/insights/industrial-robot-maintenance-the-complete-checklist
https://www.anl.gov/partnerships/battery-life-estimator
https://www.anl.gov/partnerships/battery-life-estimator
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=193283256&adgroupid=138872523520&creative=596136082932&keyword=gurobi%20solver&matchtype=e&_bn=g&gclid=Cj0KCQjwhfipBhCqARIsAH9msbkX_kY3H3xXXbvxfLdngFzmrp1F_f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw_wcB
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=193283256&adgroupid=138872523520&creative=596136082932&keyword=gurobi%20solver&matchtype=e&_bn=g&gclid=Cj0KCQjwhfipBhCqARIsAH9msbkX_kY3H3xXXbvxfLdngFzmrp1F_f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw_wcB
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=193283256&adgroupid=138872523520&creative=596136082932&keyword=gurobi%20solver&matchtype=e&_bn=g&gclid=Cj0KCQjwhfipBhCqARIsAH9msbkX_kY3H3xXXbvxfLdngFzmrp1F_f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw_wcB
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=193283256&adgroupid=138872523520&creative=596136082932&keyword=gurobi%20solver&matchtype=e&_bn=g&gclid=Cj0KCQjwhfipBhCqARIsAH9msbkX_kY3H3xXXbvxfLdngFzmrp1F_f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw_wcB
https://www.gurobi.com/solutions/gurobi-optimizer/?campaignid=193283256&adgroupid=138872523520&creative=596136082932&keyword=gurobi%20solver&matchtype=e&_bn=g&gclid=Cj0KCQjwhfipBhCqARIsAH9msbkX_kY3H3xXXbvxfLdngFzmrp1F_f5mTARVRpUg99yc1TmJOe3-ywkaAs5lEALw_wcB
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.kaggle.com/code/nagadomi/mipcl-example-only-preference
https://www.kaggle.com/code/nagadomi/mipcl-example-only-preference
https://www.scipopt.org/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.coin-or.org/downloading/
https://www.coin-or.org/downloading/
https://sourceforge.net/projects/lpsolve/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXXXX XXXXX 14

[53] Battery University, “How to prolong lithium-based batteries,”
https://batteryuniversity.com/learn/article/how to prolong lithium
based batteries, 2019.

[54] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen,
“Modeling of lithium-ion battery degradation for cell life assessment,”
IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131–1140, 2018.

[55] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A dis-
tributed task allocation algorithm for a multi-robot system in healthcare
facilities,” Journal of Intelligent & Robotic Systems, vol. 80, pp. 33–58,
2015.

[56] J. Blankenburg, S. B. Banisetty, S. P. H. Alinodehi, L. Fraser, D. Feil-
Seifer, M. Nicolescu, and M. Nicolescu, “A distributed control architec-
ture for collaborative multi-robot task allocation,” in 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids),
2017, pp. 585–592.

[57] S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for
the multi-robot task allocation problem,” in Trends in Applied Intelligent
Systems: 23rd International Conference on Industrial Engineering and
Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Cor-
doba, Spain, June 1-4, 2010, Proceedings, Part I 23. Springer, 2010,
pp. 721–730.

[58] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans-
actions on Automation Science and Engineering, vol. 12, no. 3, pp.
876–888, 2015.

[59] K. Lu, G. Li, and L. Wang, “Online distributed algorithms for seeking
generalized nash equilibria in dynamic environments,” IEEE Transac-
tions on Automatic Control, vol. 66, no. 5, pp. 2289–2296, 2021.

[60] G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, “Price and risk aware-
ness for data offloading decision-making in edge computing systems,”
IEEE Systems Journal, vol. 16, no. 4, pp. 6546–6557, 2022.

[61] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans-
actions on Automation Science and Engineering, vol. 12, no. 3, pp.
876–888, 2015.

[62] Z. Sun, G. Sun, Y. Liu, J. Wang, and D. Cao, “Bargain-match: A
game theoretical approach for resource allocation and task offloading
in vehicular edge computing networks,” IEEE Transactions on Mobile
Computing, pp. 1–18, 2023.

[63] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 3, pp. 515–529, 2020.

[64] I. Jang, H.-S. Shin, and A. Tsourdos, “Anonymous hedonic game for task
allocation in a large-scale multiple agent system,” IEEE Transactions on
Robotics, vol. 34, no. 6, pp. 1534–1548, 2018.

[65] T. E. Carroll and D. Grosu, “Distributed algorithmic mechanism design
for scheduling on unrelated machines,” Journal of Parallel and Dis-
tributed Computing, vol. 71, no. 3, pp. 397–406, 2011.

BIOGRAPHIES

Syeda Tanjila Atik is a Ph.D. candidate in the De-
partment of Computer Science at Wayne State Uni-
versity and a student member of the Energy-aware
Autonomous Systems Lab (EAS-Lab). She earned
her B.Sc. and M.Sc. degrees in Information Technol-
ogy from Jahangirnagar University, Bangladesh in
2015 and 2017. Her research interests are in the area
of edge computing, Internet of Things, autonomous
mobile robots, and machine learning.

Akshar Chavan is currently a Ph.D. candidate in
the Computer Science Department at Wayne State
University. He earned his Bachelor of Engineering
degree in Mechanical Engineering from the Mumbai
University, India, in 2014 and Masters of Science
degree in Industrial Engineering from Wayne State
University, USA in 2020. His research interest areas
are in the area of Energy Aware Computing Systems,
Autonomous Mobile Robots, Mobile Computing,
and Cloud Computing, parallel and distributed com-
puting.

Daniel Grosu (Senior Member, IEEE) received the
Diploma in engineering (automatic control and in-
dustrial informatics) from the Technical University
of Iaşi, Romania, in 1994 and the MSc and PhD
degrees in computer science from the University
of Texas at San Antonio in 2002 and 2003, re-
spectively. Currently, he is an associate professor in
the Department of Computer Science, Wayne State
University, Detroit. His research interests include
parallel and distributed computing, approximation
algorithms, and topics at the border of computer

science, game theory and economics. He has published more than one hundred
peer-reviewed papers in the above areas and is an IEEE Computer Society
Distinguished Contributor. He serves as associate editor and member of the
editorial boards of ACM Computing Surveys, IEEE Transactions on Parallel
and Distributed Systems, and IEEE Transactions on Cloud Computing. He is
a senior member of the ACM, the IEEE, and the IEEE Computer Society.

Marco Brocanelli (Member, IEEE) is an Assis-
tant Professor in the Department of Electrical and
Computer Engineering at The Ohio State University
and the director of the Energy-aware Autonomous
Systems Lab (EAS-Lab). He received the B.E. and
M.E. degrees in Control Systems from the University
of Rome Tor Vergata (Italy). In August 2018, he
received the Ph.D. degree in the Electrical and
Computer Engineering program of The Ohio State
University. His research interests are in the area
of cyber-physical systems, energy-aware systems,

Internet of Things (IoT), edge computing, embedded and real-time systems.
In 2022 he received the CAREER award from NSF.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3334589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on April 25,2024 at 22:54:39 UTC from IEEE Xplore. Restrictions apply.

https://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
https://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries

	Introduction
	Related work
	MTC Problem Formulation
	Cost Function of the MTC Problem
	General Constraints of the MTC Problem
	Constraints Related to Maintenance Scheduling
	MINLP Implementation of MTC problem

	Polynomial-Time MTC Algorithm
	Task Allocation
	Charge Scheduling
	Complexity Analysis of MTC

	Experimental Results
	Experimental Setup
	Performance Metrics
	Total Cost Comparison
	Working Period Effect on Total Cost
	Example Case Study
	Performance Metrics Comparison

	Limitations and Future Work
	Conclusion
	References
	Biographies
	Syeda Tanjila Atik
	Akshar Chavan
	Daniel Grosu
	Marco Brocanelli

