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The investigation of the electronic properties of semiconductors from transport measurements (i.e.,
resistivity, Hall, and Seebeck coefficient measurements) is challenging due to the averaging of charge-
carrier dynamics inherent in such measurements. Here, we investigate the incorporation of a fourth
measurement of electronic transport, the Nernst coefficient, into the analysis, termed the method of four
coefficients. This approach yields the Fermi level, effective mass, scattering exponent, and relaxation time
prefactor. We begin with a review of the underlying mathematics and investigate the mapping between
the four-dimensional material property and transport coefficient spaces. We then investigate how the tra-
ditional single-parabolic band method yields a single, potentially incorrect point on the solution subspace.
This uncertainty can be resolved through Nernst coefficient measurements and we map the span of the
ensuing subspace. We conclude with an investigation of how sensitive the analysis of transport coefficients

is to experimental error for different sample types.
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I. INTRODUCTION

Holistic design strategies for novel semiconductors
require an understanding on how charge-carrier scatter-
ing is driven by chemical composition and microstructure
[1,2]. The challenge to date is the difficulty in resolving
scattering sources and strengths as a function of charge-
carrier energy. Historically, most analyses prescribe a
value to the energy dependence of scattering and simply
incorporate scattering into a mobility value [3,4]. Gal-
vanothermomagnetic measurements, such as Nernst, can
shed light on scattering if combined with other thermo-
electric characterization techniques [5,6]. However, this
approach is nontrivial and few groups have a history of
such multiparameter analysis [7—11]. In this work, we pro-
vide a comprehensive study of this transformation between
experimental measurables and underlying material prop-
erties. We focus on case examples from thermoelectric
materials, but the results are generalizable to other classes
of semiconductors.

Majority charge-carrier transport is often character-
ized via three effects: electrical conductivity, Hall effect,
and the Seebeck effect. Together these three coefficients
are frequently used in conjunction to make inferences
about the underlying transport phenomena [12]. In the
field of thermoelectrics, it is common practice to assume
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an electronic band structure (e.g., parabolic) and scatter-
ing type to approximate an effective mass (m*), reduced
Fermi level (n = Er/kgT, where Er is the Fermi level),
and Hall mobility (uy) for a system. The combination
of the three transport coefficients is colloquially known
as the single-parabolic band (SPB) model; see Fig. 1
[13—15]. This three-coefficient approach is favored for
its simplicity and accessibility through common ther-
moelectric measurement techniques. This approach is
often appropriate when a dominant scattering mecha-
nism can be inferred from temperature-dependent mea-
surements. Furthermore, the common use of this analysis
technique has facilitated comparisons between research
groups [2].

Despite these attractive features, the SPB model has
significant pitfalls when analyzing chemical trends. Specif-
ically, changes in carrier transport are often attributed to
changes in effective mass or mobility. However, a change
in the dominate scattering mechanism of the system could
result in similar alterations in materials properties [16].
This is particularly pernicious in chemical systems con-
taining aliovalent alloys and deleterious dopants. As such,
an approach to investigate the dominate scattering mecha-
nism is needed.

In order to eliminate the assumption of a particu-
lar dominate scattering mechanism, a fourth measur-
able must be introduced to solve for our four unknown
material parameters: reduced Fermi level, scattering
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FIG. 1. The SPB model begins by assuming a scattering
exponent (») that correlates to a dominate scattering mecha-
nism. Sequential analysis of transport coefficients (blue) then
yields the fundamental material parameters (pink) of interest. In
order to eliminate this scattering assumption and thus determine
more accurate underlying material properties, a fourth coefficient
(Nernst, N) can be included. As such, the method of four coef-
ficients can be used to accurately probe scattering sources in
semiconductors.

time prefactor, effective mass, and scattering exponent
(n, o, m*, r, respectively). The method of four coeffi-
cients introduces a fourth transport coefficient to elimi-
nate the assumption of scattering exponent. This approach
manipulates the Seebeck effect, electrical conductivity, the
Hall effect, and the transverse Nernst effect as seen in
Fig. 1 [17]. An uncommon thermoelectric measurement,
the Nernst effect produces a measurable transverse voltage
when a longitudinal temperature gradient and out-of-plane
magnetic field are applied [18,19]. The sign of the Nernst
coefficient depends on the scattering parameter of the sys-
tem and the band structure [20]. By adding this fourth
coefficient to the analysis, the assumption of scattering
type can be eliminated and therefore investigated. As such,
the method of four coefficients allows us to resolve the
reduced Fermi level (1), density of states effective mass
(m*), constant relaxation time (1), and scattering exponent
(r) from four experimentally measured values.

In 1966, Zhitinskaya et al. [17] introduced the concept
of the method of four coefficients to investigate the scatter-
ing effects on the nonparabolicity of the band structure in
PbTe. However, this approach has been historically under-
utilized. Before 2000, most research was focused on the
measurement techniques and the theory behind the method
[11,21-27]. Starting in the 2000s, several research groups
began utilizing the method of four coefficients to perform
analysis on experimental data [28,29].

For example, in 2008, Jovovic et al. [30] used the
method of four coefficients to investigate Fermi level pin-
ning at low temperature in indium doped Pb-Sn-Te alloys.
Ultimately, it was concluded that changes in transport
were not linked to indium doping as evidenced by the
lack of deviation expected in effective mass, which was

analyzed via the method of four coefficients. Similar strate-
gies to understand trends in chemical modification via this
method have been used to investigate the presence of res-
onant energy states as evidenced by abnormal changes in
effective mass [10,16,31].

Outside of thermoelectric materials, the method of
four coefficients has been applied to thin-film transparent
conducting oxide materials for photovoltaic applications.
These works focused on determining which underlying
material parameter limits majority carrier mobility, one
of the key material parameters in transparent conductors
[7,29,32,33].

The efforts discussed above connect the measured scat-
tering exponent, 7, to specific scattering mechanisms (e.g.,
acoustic phonons, ionized defects). In reverse, experimen-
tal estimations of r are increasingly vital for assessing
the accuracy of first-principles scattering calculations. The
last decade has seen significant advances in estimating
electron-phonon scattering rates from first-principle calcu-
lations [34-39]. While these calculations help understand
the core electronic transport of a material, they lack exper-
imental validation. For systems with multiple scattering
sources, Matthiessen’s rule leads to predictions of the over-
all scattering exponent that is often quite different than the
classic analytic expressions. Consequently, the method of
four coefficients could be used to help aid in the verifica-
tion of these calculations due to its ability to determine a
real-valued scattering exponent near the Fermi level.

In this paper we focus on the method of four coef-
ficients and its effects on thermoelectric measurements.
Using a SPB assumption, we perform analysis on the
four-dimensional space and determine regions of poten-
tially large Nernst effect signal. We consider how the SPB
method, with three coefficients, could lead to erroneous
conclusions concerning the underlying material parame-
ters. In addition, we address how uncertainty in experimen-
tal measurements will affect the results of this approach.

II. TRADITIONAL SINGLE-PARABOLIC BAND
ANALYSIS

The thermoelectrics community has historically focused
on a three-coefficient isotropic single-parabolic band anal-
ysis, commonly referred to as the SPB model. Here experi-
mental measurements of the Seebeck effect, the Hall effect,
and conductivity are used to determine Fermi level (Er),
density of states effective mass (m*), and Hall mobility
(g) [12]. In order to decouple these material parameters
from the measured coefficients, it is common to make var-
ious assumptions to simplify the analytics. It is assumed
that power-law scattering is applicable and takes the form

T =1, (1)

where 7y is the relaxation time prefactor and 7 is the
energy-dependant exponent that is often correlated to a
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dominate scattering mechanism of the system [3]. Here
x 1s the reduced energy, x = E/kgT, where kg is Boltz-
mann’s constant and 7T is the temperature. The scattering
exponent (or parameter) 7, as it is commonly called, has
been calculated via Fermi’s golden rule for common scat-
tering types. Here » = 0 for acoustic-phonon scattering,
r = 2 for ionized impurity scattering, and » = 1 for polar
optical phonons at high temperatures [40].

A. Governing equations

We can construct equations for the three coefficients
(Hall, conductivity, and Seebeck) in terms of the mate-
rial parameters of interest (1, m*, 1y, and r) assuming an
infinitely large band gap, parabolic band edge, and one
carrier type [40]. The investigation of multiple samples
at different carrier concentrations and temperatures is one
strategy to ensure that these approximations hold. Gaus-
sian units are used in this section and conversion factors
to more traditional units can be found in Table 4 within
the Supplemental Material [41]. With the approximation
of an isotropic band, the electrical conductivity (o) can be
expressed in terms of an energy-dependent integral

0 = ney = ne ,
m(E)
1 [/ @
where  (d) = - /0 (- 8—£)k3(E)A(E)dE

with dfy/0FE the derivative of the Fermi-Dirac distribution
with respect to energy and & the electron wavevector. The
sign of the electric charge (e) is dictated by the carrier type
(e = —e for electrons and e = +e for holes). Also, 4 is a
place-holder variable representing a general function and
the () brackets are a short hand for the integral above. By
substitution of the power-law scattering equation [Eq. (1)],
7o is pulled out of the integral and we are left with the
energy-dependent term. Likewise, if we assume a single-
parabolic band [k(E) = 2m*E/h?)'/?], the effective mass
is not dependent on energy, thereby allowing us to pull
(1/m*) out front. Together, this gives us the equation

o =ne2&(x"*l/2)
m*
e’ To o° 8f0 _
=—— —— )X dy. ()
3n? m* Jy ax

The integral of the energy-dependent terms can be rewrit-
ten as a one-parameter Fermi integral, ., of the form

(v,
Fy) = /O (—a)xdx, 4

where y is the reduced energy: x = E/kgT. Inserting k(E)
and simplifying the integral, the conductivity equation in

Eq. (3) can be rewritten as

62(2k T)S/Z .
= T%m 1/2T0Fr+1(77), Q)

where o depends on all four material parameters
(n,r,m*, 1p). Similar expressions can be obtained for the
Seebeck coefficient (o) and Hall coefficient (Ry) using
their energy-dependent forms [see Egs. (1)+7) within the
Supplemental Material [41]]. In the case of «, the magni-
tude depends strictly on 1 and  while being independent

of 1y and m*:
kg (F,
az__B<L(n)_n>_ (©6)
e Fr+1 (77)

Similarly, Ry is independent of ty:

1 (Fap12(n) 3n?h?
Ry =—— > = | )
ec \ [Fr+1(n)] m*kpT)3/
To fit the convention of literature, the more intuitive unit
of carrier concentration is used instead of the Hall coef-
ficient. To convert between the two for the SPB model
approach, the Hall equation is solved for in terms of car-
rier concentration while assuming the Hall factor is unity
(a, = 1):

a, _ F3 (M F412(n)
: [Fri1(m]?

"= Ryec’ ®)
For acoustic-phonon scattering, a, = 1.18, and for neutral
impurity scattering, a, = 1.00. A more extensive list of
Hall factors may be found in Table 6 within the Supple-
mental Material [41]. SPB analysis often assigns a Hall
factor of unity even though this three-coefficient method
often uses acoustic-phonon scattering (» = 0) as the dom-
inate scattering mechanism [42]. The standard order of
operations for the SPB model can be seen in Fig. 1. This
analysis begins by assuming that the dominate scatter-
ing mechanism is acoustic-phonon scattering and, as such,
r = 0 remains fixed throughout this approach. The first
step begins by solving for 1 from the Seebeck coefficient
via Eq. (6). Once 7 is determined, the effective mass can
be solved for by using 7 and the carrier concentration.
By combining Egs. (7) and (8), an explicit form of carrier
concentration can be derived:

Q2m*kgT)*?
n=———

A2 F3p(m) — m*

32\
) &)

n
B (F3/2(77) (2kpT)3/

Finally, the mobility w, or, more often the Hall mobility
i, can be extracted from these measurements. The Hall
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mobility differs from w by the Hall factor a,: uy = a,u,
where a, can be found in Eq. (8) [42]. The Hall factor
within the SPB model is often assumed to be unity. When
this approximation is made, the Hall mobility is simply
calculated via the simple form of conductivity as seen
in Eq. (2): uy = o/ne [43]. The reason we often focus
on Hall mobility (uy) instead of the true mobility (u) is
that determining a, requires knowledge of n and r [see
Eq. (8)], which requires an additional transport measure-
ment. Though not often reported, one could discern 7y via

the mobility, u = (t(E)/m™*), as
m* F
T = M_L(") (10)
e Fr+1(77)

We emphasize that this equation is for y and not w .

As seen by Egs. (5)«7), these three transport mea-
surements are linked to three underlying material prop-
erties (n, m*, and 1) (when assuming a scattering expo-
nent). As such, one could determine expected values
of transport coefficients for a wide range of material
parameters. In Fig. 2(a), we construct a three-dimensional
domain based on realistic ranges for such parameters: 1 x
107" s<t<1x107"s; 0.1m, < m* < 3.5m,; =5 <
n(Er/kgT) < 10. This domain space spans a wide region
of semiconductors as evidenced by the large range of
Fermi level positions well below and well above the band
edge (n = 0). As areminder, we have assumed an infinitely
large band gap and one carrier type; as a result, no bipolar
conduction occurs.

In addition to the Fermi level range, high performing
thermoelectric materials have been known to have high
mobility values and thus large 7y and small m* values. By
including low values of 7y and high values of m*, we can
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also discern expected transport coefficients when mobil-
ity is limited. Again, » = 0 is assumed here for the SPB
model approach. Using the ranges determined in Fig. 2(a),
we solve for the three electronic transport coefficients as
seen in Fig. 2(b). Here, the more widely reported mobility
value is heat mapped to the volume.

Using the domain ranges as described in Fig. 2(a),
the calculated coefficients take on realistic ranges. The
carrier concentration spans across roughly 6 orders of
magnitude where higher values of carrier concentration
display higher values in conductivity and lower values in
the Seebeck coefficient, which is to be expected [orange
point in Fig. 2(b)]. How the material parameters mani-
fest themselves in the trend of these coefficients can be
demonstrated by the mobility heat map on the coefficient
volume. The high mobility region exists at the blue point
in Fig. 2(b). This corresponds to the same blue point
in Fig. 2(a) that has the expected high 7y and low m*
needed for high mobility. If we were to move across the
domain space edge from the blue point to the green point
in Fig. 2(a), we would be keeping our Fermi level and
scattering time fixed but increasing the effective mass.
How the coefficients trend from this vector can be seen in
Fig. 2(b) by moving across the same direction (blue point
— green point). Unsurprisingly, the mobility decreases
due to an increase in the effective mass. Other trends from
the material parameters to the transport coefficient can be
investigated through this lens.

As evident by the lack of deformation to this volume,
this transformation has unique solutions. As such, the
combination of three material parameters [blue point in
Fig. 2(a)] correlates to one point in the coefficient space
and vice versa [blue point in Fig. 2(b)]. Figures 2(a)
and 2(b) are visual, mathematically accurate, representa-
tions of the SPB model using Fermi-Dirac statistics.
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(a) By defining a R; domain of material properties we transform this space using the single-parabolic band model (b) to the

analogous Rj space of transport coefficients assuming acoustic-phonon scattering with » = 0. The traditionally used Hall mobility has
been calculated and heat mapped to this volume for clarity. (c) With the same assumption of » = 0, one can likewise use the method
of four coefficients to transform these material properties to R4. Because of the difficulty of plotting a four-dimensional space, the
volume for the method of four coefficients has been represented here in three dimensions with a fourth-dimension heat mapped to its
transformation. For both volumes, the colored points serve as guides to the eye for orienting how the vectors in the domain transform

through each analysis.
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While the SPB model is a simple analysis approach to
tackle thermoelectric transport, it does have its pitfalls.
Imagine a case where the Fermi level and effective mass
in the system are fixed but 7y and the scattering exponent
could change. By changing r, you could detect increases in
the Seebeck coefficient and conductivity. Without knowl-
edge of scattering, this effect is often linked to changes in
the effective mass [44,45] when it could be a scattering
effect change. In doing so, the SPB model has the potential
to pigeon-hole analyses based off its assumptions of fixed
scattering mechanisms. We revisit such case examples in
the following sections.

I1II. THE METHOD OF FOUR COEFFICIENTS

The SPB model measures three coefficients to solve
for three unknown material parameters. In order to elimi-
nate the assumption of scattering source, a fourth transport
coefficient needs to be introduced to solve a system of
equations with four unknowns. This process, known col-
loquially as the method of four coefficients [28], utilizes a
different galvanothermomagentic measurement: the Nernst
coefficient (V). This effect, a thermal analogue to the Hall
effect, generates a transverse voltage (y direction) when an
orthogonal temperature gradient (x direction) and magnetic
field (z direction) are applied (|N| = E,/B.Ty) [18,46].
Though often attributed with needing high mobility for a
large Nernst signal, the magnitude of the Nernst coefficient
depends on all four materials parameters (n, m*, 7y, and r):

N— kg 10 Fro1(DF2r43/2(0) — Farg12()Frin(n)
¢ m* [Fr1(m]? .

(11)

We see that the Nernst effect scales directly with mobil-
ity prefactors (i o to/m*), but is also a function of both
the reduced Fermi level () and scattering exponent ()
[40]. As such, the introduction of the Nernst effect allows
us to eliminate the assumption of the scattering exponent
by combining the Nernst coefficient with the other three
transport coefficients, as seen in Fig. 1(b).

This method yields a continuous range of scattering
exponent values. As noted above, rational number scat-
tering exponents emerge from various scattering types
(i.e., acoustic-phonon scattering: » = 0) [40]. As a result,
an irrational exponent suggests the presence of scattering
from multiple effects. Since the method of four coefficients
does not fix the scattering to a particular mechanism, it
gives us the ability to solve for this value.

While the SPB three-coefficient approach had a clear
order of operations to solve for the material parameters,
the method of four coefficients does not. The luxury of
sequential processing is lost in the method of four coeffi-
cients and all material parameters (1, m*, 7y, and r) must be
solved for simultaneously [Fig. 1(b)]. Similar to the SPB

model, the method of four coefficients assumes a single-
parabolic band and, as such, this assumption should be
tested via multiple samples at various carrier concentra-
tions to ensure the application of these equations. Here we
provide a road map to the intricacies of the method of four
coefficients and how each transport coefficient is affected
by the four underlying material parameters of interest.

A. Functional dependencies in the method of four
coefficients

The thermoelectrics community has built an intuition
for how the traditional thermoelectric effects change when
we alter the Fermi level, but lacks intuition on how they
change when scattering mechanisms change. We begin by
walking through familiar trends in the Seebeck coefficient
and carrier concentration to orient the reader.

In Fig. 3(a) we plot both the Seebeck coefficient and
carrier concentration from Eqgs. (6) and (8), respectively.
We see that, as the Fermi level rises from the band gap to
deep into the band, the magnitude of the carrier concen-
tration increases and the Seebeck coefficient decreases as
expected. The solid curve is generated assuming a fixed
relaxation time, acoustic-phonon scattering (» = 0), an
effective mass, and an infinitely large band gap. The abso-
lute value of the Seebeck coefficient is used to describe
transport via electrons for clarity. Since we are no longer
limited by restrictions of fixed scattering exponents, we
can probe how these effects will change as a function of
scattering.

The dashed curve in Fig. 3(a) highlights how impact-
ful different scattering effects are on the Seebeck coeffi-
cient. If we have a material system that has a Fermi level
right at the band edge (n = 0) as is typical for optimized
thermoelectric materials, the difference in the Seebeck
coefficient between ionized impurity (» = 2) and acoustic-
phonon scattering ( = 0) differs by almost a factor of 2.
Unsurprisingly, the carrier concentration is unaffected by
the influence of scattering, as one would expect, given
Eq. (8) does not depend on r. In the same vein, one could
expect differences to emerge for both the Hall coefficient
[Eq. (7)] and conductivity [Eq. (5)] when the scattering
exponent changes [see Figs. 4(d) and 4(b), respectively, of
the Supplemental Material [41] ].

In Fig. 3(b), the mobility is plotted as a function of var-
ious scattering exponents from Eq. (10). Again, we keep
the same 7y and m* fixed from before. Though we have
fixed our mobility prefactors (7o and m*), it can be seen that
changing the scattering exponent alone can alter mobility
significantly. Here we see the highest values of mobility
for ionized impurity scattering and the lowest for acoustic-
phonon scattering. As the Fermi level goes further into
the band, thus increasing the carrier concentration, ion-
ized impurity scattering increases while mobility for » = 0
begins to decline.
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FIG. 3. Trends in measurable transport coefficients are calcu-
lated as a function of the reduced Fermi level (1) and various
scattering exponents (r) (a)«(c). All graphs assume a single-
parabolic band with transport occurring at a temperature of 300
K and assume a scattering time (rp = 1 x 107! s) and an effec-
tive mass (m* = 1m,). As the dominate scattering mechanism
changes in the system, thus changing the value of the scatter-
ing exponent, we observe expected changes in the Seebeck effect
and conductivity (a) and mobility (b). Here we see that the Nernst
coefficient (c) does not heavily depend on Fermi level position
but rather what scattering mechanism is dominate. Other mate-
rial property trends and their effects on the Nernst coefficient can
be seen in Figs. 1(c)—6(c) of the Supplemental Material [41].

For the Nernst coefficient, a consideration of Eq. (11)
readily reveals the importance of large 7o and small m*
for a large signal. However, the impacts of 1 and r within
the Fermi integrals are difficult to deduce by inspection. In
Fig. 3(c), we calculate how the Nernst coefficient changes
as a function of the Fermi level and various scattering
mechanisms. Again, we keep 79 and m* fixed to the same
values. As one can see, for a single-parabolic band, the sign
of the Nernst coefficient depends only on the scattering
exponent, r. For » < 0.5, the Nernst coefficient is nega-
tive while all values greater than 0.5 yield a positive Nernst
coefficient. A material system with higher values of », such
as is the case for ionized impurity scattering or polar opti-
cal phonon scattering, should yield the largest signals and
thus make measurement viable. See Figs. 4(c)—6(c) of the
Supplemental Material [41] for how the Nernst coefficient
changes as a function of the effective mass and scattering
time.

Since we assumed a scattering time and effective mass
in Fig. 3, these are slices within the four-dimensional Ry
range of the method of four coefficients. We progressively
expand this subspace to consider the interdependence of
the transport coefficients to scattering parameter. First we
consider the R3 (three-dimensional) space of the method
of four coefficients for an assumed 7; see Fig. 2(c).

Similar to the approach taken with the SPB model in the
section above, we can utilize the four equations of the elec-
tronic transport coefficients and map out the expected Rj
space for realistic material parameters. We keep the same
material parameters outlined in Fig. 2(a). For now, we hold
r constant at » = 0 for easier comparison between the two
models. All the colored points in Fig. 2 serve as guides to
the eye for the transformation process of each vector and,
as a result, their subsequent dependencies on the transport
coefficients can be examined.

Imagine a system that exists on the blue point in
Fig. 2(a). The blue point has a high 7j, low m*, and a Fermi
level in the band gap. We saw from Eq. (11) that the Nernst
coefficient scales with mobility (since mobility is propor-
tional to 79/m™*). Indeed, we see that this high mobility
point in blue has a large Nernst coefficient in Fig. 2(c).
Now if we were to push the reduced Fermi level into the
band but keep 7y and m* fixed, we would be walking along
the blue-to-purple point vector in Fig. 2(a). We can see
how this vector is transformed by the method of four coef-
ficients in Fig. 2(c). As we transverse the blue-to-purple
vector in Fig. 2(c), we see a decrease in the magnitude of
the Nernst coefficient (for » = 0). This is self-consistent
with the trends observed in Fig. 3(c) for acoustic-phonon
scattering.

In Fig. 2 we held the scattering parameter constant for
acoustic-phonon scattering at » = 0. In reality, the method
of four coefficients curses us with an unknown scattering
mechanism. In practice, » can be swept between 0 < r < 2
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FIG. 4. The four-dimensional space of the method of four coefficients has been plotted in various R; sections using Fig. 2(a) as the
input domain and Egs. (5)—(11). For scattering exponents less than 0.5, the Nernst coefficient will be negative for a single-parabolic
band (a). All values greater than 0.5 yield a positive Nernst coefficient (b). For energy-independent scattering (» = 0.5), the Nernst
coefficient goes to zero. To highlight the difference in magnitude between ionized impurity scattering (» = 2) and acoustic-phonon
scattering (» = 0), the absolute value of the Nernst coefficient has been plotted in (c) for comparison. The two differ by roughly 2
orders of magnitude. The fourth dimension, the carrier concentration calculated from the Hall coefficient and the correct Hall factor,

has been heat mapped for clarity.

to see how this space evolves as a function of the scatter-
ing parameter. As a result, this space is most accurately
represented by a four-dimensional hypercube, a tesseract.
Because of the challenges of plotting in a four-dimensional
space, instead we investigate projections in R3;. We can
plot these transformation volumes for various values of 7,
as seen in Fig. 4. In Fig. 3(c), the sign of the Nernst coeffi-
cient switches upon crossing » = 0.5; Fig. 4(a) presents the
case for r < 0.5 while Fig. 4(b) shows the regime where
r > 0.5. To consider the difference in magnitude between
these scenarios, the two datasets are overlaid in Fig. 4(c)
with the fourth dimension (carrier concentration) plotted
instead. Two separate plots are shown for the Nernst coef-
ficient so that logarithmic axes can be used for both the
negative and positive results. These two scattering mech-
anisms are highlighted as they are often the focus of bulk
thermoelectrics materials near room temperature.

Unfortunately, the magnitude of the Nernst coefficient
will yield small measurement signals for all scattering
cases, as seen in Fig. 4. It is particularly noxious for the
case of acoustic-phonon scattering since the signal is so
close to zero. As such, highly accurate measurements will
be needed to discern such a low Nernst coefficient. How-
ever, the differences in the sign of the Nernst coefficient
between acoustic-phonon and ionized impurity scattering
is a quick way to determine which mechanism is prominent
in a system.

By adjusting the scattering parameter, we probe portions
of this four-dimensional space. As can be seen in Fig. 4,
there exists no torsion or twists to these volumes, lead-
ing us to infer that this is a unique transformation. Indeed,
upon inspection, no two calculated points are the same.
Every point across the material property domain space we
highlighted has a unique solution of transport coefficients.
As such, we infer by inspection that the method of four

coefficients is a bijective transformation and a mathemati-
cally viable technique for determining underlying transport
phenomena.

Having established the method of four-coefficient anal-
ysis and the associated Ry — R, transformation, we
briefly investigate the uncertainty that remains in the three-
coefficient SPB analysis approach. As a first case example,
we consider our prior SPB analysis of Yb;4Mng gAly,Sby;
from Ref. [47]. This sample exhibited the following prop-
erties: a Seebeck coefficient of 55 ' V/K; a carrier concen-
tration of 1.2 x 10?! cm™3; and a resistivity of 2 mQ cm.
By applying the SPB model to this point, these trans-
port coefficients yield the material parameters given by
the red circle labeled Yb4MnggAlyg,Sby; in Fig. 5. How-
ever, since no information about the Nernst coefficient is
reported, we can hypothesize that this sample could dis-
play any reasonable Nernst values (—0.005 uV/KT < N <
0.0075 wV/KT), moving the experimental data from a
point in R3 to a line in Ry.

We can then transform this R4 line using Eqgs. (5)«(11)
to determine how this space would be analyzed under the
method of four coefficients (Fig. 5, Yb;4sMnggAly,Sby;).
Without information about the Nernst coefficient, this R3
subspace could span from the red circle all the way to the
end of the line (yellow). The three traditional transport
coefficients could then yield the following ranges: 5.1 <
n(Er/kgT) < 15.0;1.02 < m*(m,) < 3.01;2.7 x 1077 <
70(s) < 1.1 x 107", Here, the bold values correspond to
r = 0 and the nonbold values correspond to » = 2.

We see that the same pattern holds for other material sys-
tems analyzed under the single-parabolic band approach
such as EuZn2Sb2, Tlo_oszo_ggTe, and BagG315.75Ge30.25
[14,16,48]. In all these cases, the assumption that » = 0
results in a solution on the extreme of the possible range of
material parameters. Despite these concerns about the use
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FIG. 5. Here we take four material systems from the literature

[14,16,47,48] that have applied the SPB model and calculate the
method of four coefficients for all values of the Nernst coeffi-
cient. This allows us to solve the range of material parameters
that would be correct solutions for the SPB approach. Typically,
the SPB approach assigns » = 0 for acoustic-phonon scattering,
but for these curves, it spans from » = 0 to 2. The red points cor-
respond to the properties as per calculated by the SPB model.
The slight offset from the calculated data can be attributed to not
using the scattering-exponent-dependent Hall factor (since SPB
assumes that a, = 1).

of the SPB model and the associated assumption of scatter-
ing, there is a practical utility to calculating an “effective”
effective mass as Nernst measurements could ultimately be
challenging to obtain for compounds with low mobility.
However, this exercise shows that the scattering exponent
used in the analysis could lead to a variation in the effec-
tive mass by half an order of magnitude, a variation in the
reduced Fermi level by about 10 (e.g., 260 meV at room
temperature), and a scattering prefactor varying by 3 orders
of magnitude.

IV. ERROR PROPAGATION OF THE
FOUR-COEFFICIENT ANALYSIS

Though solving for a range of transport coefficients is
insightful to observe trends, an experimentalist is often
faced with the problem in reverse. Sadly, the transfor-
mations from R, of the transport coefficients to R4 of
the material parameters is much more difficult. Instead of
having the luxury of piping variables through an analytic
solution, one must deconvolute the Fermi integrals and
untangle the material parameters from the integrands. To
do so, numerical integration and a backsolving search pro-
cess must be performed on the set of equations (8)—11)
simultaneously. In this section we determine the mate-
rial properties by their transport coefficient using the full

Fermi-Dirac statistics. This will allow us to prescribe
experimental error to the transport coefficients and probe
how the error propagates through this analysis technique.

A. Methods of numerical integration

It is common to use Fermi integral look-up tables to
determine the value of the Fermi integrals; however, this
assumes one scattering exponent. Since we are searching
a continuous range of », we calculate the Fermi integrals
using the n-point Gauss-Laguerre quadrature method. This
technique allows us to numerically integrate our transport
equations: Egs. (5)(11). This process evaluates an integral
by calculating the sum of the product of the weights (w;)
multiplied by the integrand’s f* (x) at a specific node (x;):

/O f@e ™ dx =" wif (). (12)
i=1

The nodes x; are the roots of the nth-order Laguerre
polynomial and the weights are computed by solving the
following for each integer k from O ton — 1:

/ xke ™ dx = Zw,-f(xi).
0 i=1

(13)

To compute the Fermi Integrals, we used the following
f(x) to cancel out the e™* term built into the quadrature
definition:

-n

e k
JiGe,m) = mx e.

(14)
The Gauss-Laguerre quadrature computed integral of
[—dfo(x,n = 0)/0x] with n = 100 matched the computed
value of the built-in integrate command in MATLAB® to
machine precision. As such, weights and nodes are cal-
culated to n = 100 for all calculations in this paper. We
adapted open-source Gauss-Laguerre quadrature code to fit
the analysis [49].

To begin the backsolving process, we define a range of
guesses for each of the material parameters: » € [0,2], n €
[—5,10], m* € [0.1,5] (m.), o € [10714,1071°] (s). These
values are determined by forward-solving Egs. (5)+11)
for various transport coefficients to ensure that our start-
ing ranges encompass our resulting domain. Each range is
then divided into equally spaced points with a grid spacing
of thirty. Combinations of this grid are then used to calcu-
late a range of transport coefficients. A cost function [Eq.
(8) within the Supplemental Material [41] ] is then applied
to each of the calculated values. This function compares
the true transport coefficient values to each of the combi-
nations calculated from our starting ranges. The point with
minimum cost is then specified.
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To ensure that we are not constraining our system to
the initial starting ranges of the material parameters, if the
point with minimum cost is on the edge of the starting
hypercube, we shift our ranges with the point of mini-
mum cost at the center of the ranges. Then the grid is
recalculated as before. This process is performed until the
point of minimum cost is no longer on an edge case of the
hypercube.

Once this is verified, the search window is centered
around the point with minimum cost and we reduce the
range sizes by 1/5 to calculate a finer grid search. This finer
mesh goes through the same process as before, stepping
down continuously until the material parameter ranges
({Ar, An, Am* /m,, Aty x 105 s71}) can be determined
within a tolerance of 0.001. The system then outputs a
coordinate in R4 of material parameters (r, n, m*, y) for
the provided transport coefficients (o, o, Ry, N). All cal-
culations are executed in MATLAB in Gaussian units and
converted to SI units post integration.

Sequential integration of Egs. (5)<11) is implemented
as all transport equations are needed in determining con-
vergence to a unique point in the material parameter space.
To verify our results and ensure that we are not in any local
minima, we compare all numerically integrated points to
the analytic forward-solving approach (as used in the sec-
tions above). Indeed, all numerically integrated points are
within machine precision to their analytic counterparts.
Therefore, all sets of transport coefficients can be used
to solve for their unique material parameters (within our
set of assumptions) through their full Fermi-Dirac equa-
tions by the method of four coefficients. This gives us
the flexibility to forward or backward solve this set of
equations.

B. Error in transport measurements

Assessing the error when transforming from material
parameters to transport coefficients can be addressed ana-
Iytically. Practically, however, the backsolving process of
transforming experimental transport coefficients to mate-
rial parameters precludes a simple error analysis. In the

J

following we intentionally perturb the experimental trans-
port coefficients with combinations of small errors. This
effort relies on the unique transformation between these
two spaces.

As a case study, we prescribe the following error bars
to each of the transport coefficients: +2% conductivity,
+5% Seebeck, +5% Hall, £10% Nernst plus an additional
40.05 wV/KT. A small error has been prescribed to con-
ductivity, but depending on which geometry is used during
measurement (van der Pauw or Hall bar set up) the error
may be larger. As a result, an analysis with £10% con-
ductivity error may be found in the Supplemental Material
[41]. Likewise, the addition of spot-welded thermocouples

can decrease the error in Seebeck measurements leading
to errors as low as one percent. In this case, we focus

on a larger Seebeck error likely associated with pressure-
based contacts; however, the supplemental error analysis in
the Supplemental Material [41] uses 3% for the Seebeck
coefficient.

A large Nernst error has been applied since Nernst mea-
surements are not commonly utilized, and the expected
coefficient would yield low signals, as evident by Fig. 4.
While Nernst measurements can be more accurate, proper
instrumentation design is needed to achieve this goal. In
this case study, this large error should serve as a caution-
ary tale when designing Nernst apparatuses. For example,
proper thermal gradient assessment and thermal contact
resistances are critical to the success of this measurement.
Failure to properly account for off-set contacts can lead to
the breakdown of the isothermal approximation along the
y axis and extraneous transport (such as magneto-Seebeck)
can be measured instead. Since there are several research
groups that perform Nernst measurements regularly, the
supplemental error analysis case study (see the Supple-
mental Material [41]) includes analysis with decreased
Nernst error.

For the large prescribed Nernst error, both a relative
and static error is added. In the simplest form, the error
propagation in the Nernst measurement scales as

o2 )

where [, and /, are lengths, B. is the magnetic field in the
z direction, AV is the voltage, AT is the temperature, and
N is the Nernst coefficient. We highlight the N outside of
the square root; the error will scale with the magnitude of
the component errors and the overall signal. In brief, the
primary conclusions of this section of the article are not

(15)

OB ? OAV 2 OAT 2
Bz) *(A—V) *(E)’

(

significantly altered by reducing the error of the Nernst
measurement (see the Supplemental Material [41]).

The results of this case study of error assessment
are shown in Fig. 6. To begin, we choose a point in
our domain as a starting seed value ({r=1,79 =5 x
1071 (s), m* = lm,,n = 1}). This point is then used
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FIG. 6. To investigate how experimental error propagates
through the method of four coefficients, we begin with a
starting seed value of material parameters (black dashed line)
and analytically solve for the transport coefficients: {o =
—283 (uV/K), 0 =0.04 (mQecm)~', N =0.06 (WV/KT), n =
1.9 x 10" (1/cm?)}. A systematic error is then prescribed to
each of the transport coefficients and the 16 combinations of error
are plotted here. This allows us to bound the region of error by the
purple shaded overlay. Regions of high Nernst and low Nernst
errors have been separated (blue and purple, respectively) and it
is clear that this causes a larger range in error as these two regions
are distinct.

to calculate the expected experimental transport coeffi-
cients via the analytic Egs. (5)«11). In the case exam-
ple considered here, this yields {&@ = —283 (uV/K),
0 =004 MQem)~!, N=0.06 (uV/KT), n=19 x
10" (e~ /cm?)}. The prescribed errors are then assigned
to the calculated coefficients. Since there are four transport
coefficients, each with their own minimum and maximum
errors, we calculate each combination of error leading
to a set of sixteen points (2%) in this four-dimensional
space. These sixteen points coarsely describe the region
of potential error surrounding a set of experimental coeffi-
cients. All sixteen points and the starting coefficient value
are then piped through the numerical integration process
to calculate the expected value of the material proper-
ties. This can be seen by the purple shaded region in
Fig. 6. The individual combinations have been separated
by high and low Nernst errors using blue and purple
lines, respectively. For this case example, the assigned
error in coefficients yield the following ranges in mate-
rial properties: 0.51 <r < 1.67,0.17 < n < 2.19,0.72 <
m* <2.19,1.03 x 10715 < 75 < 1.33 x 10714,

The R, tesseract of material properties is found to
have widely varying error propagation when applying the
method of four coefficients. To explore this range, Fig. 7

traverses this tesseract using the same notation as found
in Fig. 6 [these same results are replicated in Figs. 7(a)
and 7(b) as a legend]. Note that the axes have been
expanded in Fig. 7(b) and the figure has been simplified to
show only the “true” value and the range of error, denoted
by the purple shaded region. The Nernst axis is on a cube
root as it spans both positive and negative values. The solid
purple lines of Figs. 7(a) and 7(b) are the direct transform
of the other.

Figures 7(c)-7(f) show a selection of points across the
tesseract to see trends in the error. Here we have cho-
sen seed values near all the extrema of R; in Figure 2(a)
and » = 0,2. The two rows describe the transport coeffi-
cients and material parameters, respectively, while the two
columns involve systems with low and high 7y. Within
each panel, the cube is decorated with eight diamonds, the
legends for which are shown in panels (a) and (b). The
coordinate system within each cube is shown by the axes
in the center. In the following we use a simple indexing
[shown explicitly in Fig. 7(c)] where the origin is (0, 0, 0)
and corresponds to low effective mass, small 7, and a low
reduced Fermi level.

Figure 7 reveals that regions of largest error are asso-
ciated with low 7y and large m* [e.g., corner (0, 1,1) of
panel (d)]. Conversely, the error decreases for large 7, and
low m* [e.g., corner (0,0,1) of panel (f)]. This trend is
primarily due to the dependence of the Nernst coefficient
magnitude on these two parameters [Eq. (11)]. Similar
trends can be seen for the (0, 1,0) panel (c) and (0,0, 0)
panel (f) pair and related pairings.

The reduced Fermi level and scattering exponent also
play significant roles in determining the error in the method
of four coefficients. As seen in Fig. 3(c), for » < 1, the
magnitude of the Nernst coefficient is quite small. The
impact of such a weak Nernst signal can be generally seen
by direct comparison of the left and right sets of points,
i.e., (h,k,0) versus (A, k,1). In all cases, the increase in
r reduces the error. This issue is further compounded at
high n for samples with small r. Figure 3(c) highlights
that these compounds exhibit exceptionally weak Nernst
signals, leading to significant error in data analysis. For
example, point (0,0, 1) in panel (d) has significant uncer-
tainty due to the small value of N at large n for » = 0.
Transitioning to » = 2 eliminates this null value for N
and dramatically decreases the error. For comparison, the
change in 7 created by transitioning from panel (d) (0, 0, 0)
to (1,0, 0) shows minimal error in both samples due to the
strong N signal for r = 2.

V. CONCLUSIONS

Understanding charge-carrier dynamics in semiconduc-
tors is inherently difficult due to the ensemble averag-
ing in common measurements. Further compounding the
problem is that semiconductors possess a rich array of
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FIG. 7.

Experimental error is assigned to transport coefficients to observe how the method of four coefficients propagates error.

Without error in the measurables [(a)—dark purple solid line], the method of four coefficients can solve for a unique solution for
the set of scattering exponent, scattering time, effective mass, and reduced Fermi level. Once the experimental error is assigned to
the transport coefficients [(a)—purple shaded region], the error in the material parameters can be numerically assessed [(b)—purple
shaded region]. The purple radar plots serve as the axis legends for all the radar plots in the subsequent panels. We calculate a set
of experimental data points near all the extrema in Fig. 2(a) and for 0 < » < 2. A standard experimental error is then applied to
all coefficients and the error in material parameters is calculated. The radar plots are overlaid onto their initial seed values with the
coordinate system labeled. Seed values with low and high 7, have been plotted separated for clarity.

scattering sources (various defects, spectrum of phonons,
etc.) that contribute to charge-carrier scattering. As such,
there is a persistent need to more accurately model the
energy dependence of charge-carrier scattering if we are to
understand the connection between chemical structure and
transport physics. Nernst coefficient measurements have
sporadically been conducted over the last century and a
half and have occasionally been incorporated into a mul-
ticomponent analytic approach known as the method of
four coefficients. In this work, we explore the interdepen-
dencies between the four material parameters and their
four associated transport coefficients. Within the parabolic
band assumption, the R4 to R4 transformation is found to
be mathematically unique. Our exploration of the trans-
formation space provides guidance to experimentalists on
the expected magnitudes of the pertinent transport coeffi-
cients as a function of material properties. Case examples
of materials previously analyzed by the single-parabolic
band model are reanalyzed to determine the possible solu-
tion space that could have been obtained with Nernst
measurements. We find that the assumption of scattering

coefficient traps analysis to a small subset of the potentially
correct solution space. Having shown the potential for
the method of four coefficients to successfully distinguish
between changes in m*, n, 7y, and r, we consider the impact
of experimental error on such an analysis. The error prop-
agation revealed that areas with low mobility yield large
error due to the low value of N and that high » and small
r can be challenging as well. While the method of four
coefficients does not overcome the challenge of ensem-
ble averaging of charge-carrier dynamics, we ultimately
conclude that the inclusion of Nernst measurements and
the associated method of four coefficients provide critical
insight into charge-carrier scattering.
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