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Abstract: The human placenta is a multifunctional, disc-shaped temporary fetal organ that develops in the 

uterus during pregnancy, connecting the mother and the fetus. The availability of large-scale datasets on the 

gene expression of placental cell types and scholarly articles documenting adverse pregnancy outcomes from 

maternal infection warrants the use of computational resources to aid in knowledge generation from 

disparate data sources. Using maternal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 

infection as a case study in microbial infection, we constructed integrated datasets and implemented visual 

analytics resources to facilitate robust investigations of placental gene expression data in the dimensions of 

flow, curation, and analytics. The visual analytics resources and associated datasets can support a greater 

understanding of SARS-CoV-2induced changes to the human placental expression levels of 18,882 protein-

coding genes and at least 1233 human gene groups/families. We focus this report on the human aquaporin 

gene family that encodes small integral membrane proteins initially studied for their roles in water transport 

across cell membranes. Aquaporin-9 (AQP9) was the only aquaporin downregulated in term placental villi 

from SARS-CoV-2-positive mothers. Previous studies have found that (1) oxygen signaling modulates 

placental development; (2) oxygen tension could modulate AQP9 expression in the human placenta; and (3) 

SARS-CoV-2 can disrupt the formation of oxygen-carrying red blood cells in the placenta. Thus, future 

research could be performed on microbial infection-induced changes to (1) the placental hematopoietic 

stem and progenitor cells; and (2) placental expression of human aquaporin genes, especially AQP9. 

Keywords: aquaporin; biological networks; drug targets; gene expression; gene families; hematopoietic 

stem and progenitor cells; microbial infections; oxygen; placenta; SARS-CoV-2 infection; visual analytics 
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fetal complications, and long-term health issues [4,5]. Placental gene expression profiling 

(placental transcriptomics) studies have revealed evidence of differential expression at different 

stages of a placenta’s development, physiology, and pathology [6–10]. Typically, genes are 

categorized into gene families or gene groups based on a variety of characteristics, including 

shared protein sequences and function [11]. Changes to the gene expression levels of several gene 

family members could alter the molecular and cellular mechanisms during placental development, 

leading to impaired placental functions and developmental stages [8,12]. The goal of the research 

                                                                 

1 . Introduction 

The human placenta is an indispensable, multifunctional, disc-shaped temporary fetal organ that develops in the uterus 

during pregnancy, connecting the mother and the fetus [1–3]. The functions of the placenta include embryonic development, fetal 

development, fetal protection, gas exchange, hormone secretion, metabolic transfer, and waste elimination [1,3]. Maternal viral 

infection, such as infection of the enveloped ribonucleic acid (RNA) single-stranded Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2), during pregnancy is a risk factor for pregnancy complications, neonatal and 
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reported here is to understand the potential changes in placental gene expression patterns of 

members of gene families in response to a maternal SARS-CoV-2 infection. 

There are rapidly growing multifaceted data resources available to help us understand the 

Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2. These COVID-19 research resources 

include genome-wide transcriptomic data from bulk and single-cell RNA sequencing (RNA-Seq) of 

human cell types, including placental cell types [13]. The opportunity or problem statement for 

this exploratory research is that the availability of large-scale datasets on the gene expression of 

placental cell types and scholarly articles documenting adverse pregnancy outcomes from 

maternal infection warrants computational resources to aid in knowledge generation from 

disparate data sources. An example of these computational resources for knowledge generation 

and dissemination is visual analytics software [14]. In RNA-Seq data analysis, interactivity and 

linking of visualizations allows the users of the visualizations to focus on gene sets of interest 

[15,16]. We conducted a literature search for gene expression datasets from human placentas 

studied in the context of COVID-19 and identified a study with datasets on RNA-Seq differential 

gene expression and gene expression counts from term placenta villi [17]. The study by Lu-Culligan 

et al. [17] contains heterogeneous datasets on (1) clinical and biological characteristics of placenta 

samples for gene expression investigation; (2) placental differential gene expression; (3) placental 

gene expression counts; and (4) human gene nomenclature attributes. The RNA-Seq series of 

datasets generated by Lu-Culligan and colleagues are shared in the National Center for 

Biotechnology Information’s Gene Expression Omnibus (GEO) with the identifier GSE171995. 

Furthermore, Zhao et al. [18] conducted an RNA-Seq data analysis of a GSE171995 dataset with a 

focus on genes encoding galectins and pregnancy-specific glycoproteins (PSGs). These prior studies 

on maternal SARS-CoV-2 infection-induced changes to placental gene expression and the 

opportunity for visual analytics-facilitated knowledge generation led to a working hypothesis for 

our exploratory research [19]. Our working hypothesis, or statement of expectation, was that 

visual analytics-facilitated robust data investigations of human placental gene expression data 

would reveal altered biological processes in human gene groups relevant to pregnancy 

complications. 

In this study, a robust data investigation involves the possibility of performing tasks along the 

dimensions of data challenges: data flow (i.e., collection, storage, access, and movement); data 

analytics (i.e., modeling and simulation, statistical analysis, and visual analytics); and data curation 

(i.e., preservation, publication, security, description, and cleaning) [20,21]. In our experience [22–

25], visual analytics tools support the performance of complex cognitive activities, including 

understanding and knowledge generation [26]. Thus, our first research objective was to develop 

and implement visual analytics resources able to integrate clinical and biological features as well 

as datasets on placental gene expression and gene nomenclature associated with maternal SARS-

CoV-2 infection during pregnancy. 

We focused our data investigation on the aquaporin (AQP) gene family that encodes small 

integral membrane proteins (24 to 30 kilodaltons) originally studied for their roles in water 

transport across cell membranes [27]. Aquaporins are widely distributed in the mammalian body 

system, including the female reproductive system during pregnancy [28–30]. Some aquaporins 

function in the development of mammalian placentas [31–34], including the natural apoptosis of 

trophoblast cells [35]. Aquaporins also function in cellular processes, such as cell proliferation and 

migration, beyond cellular transmembrane transport of water or some small solutes [36]. The 13 

mammalian aquaporins (Aquaporin-0 to Aquaporin-12) can be classified by the amino acid 

sequence motif in their molecular structure and their functional characteristics, such as 

permeability [28,37]. Aquaporin-0 (AQP0) (also known as major intrinsic protein (MIP), Aquaporin-

1 (AQP1), Aquaporin-2 

(AQP2), Aquaporin-4 (AQP4), Aquaporin-5 (AQP5), Aquaporin-6 (AQP6), and Aquaporin8 (AQP8) 

are referred to as orthodox aquaporins, or water channels, as they have waterspecific 

permeability. Aquaporin-3 (AQP3), Aquaporin-7 (AQP7), Aquaporin-9 (AQP9) and Aquaporin-10 

(AQP10) are aquaglyceroporins typically permeable to small uncharged solutes such as lactate, 

glycerol, and urea [38]. Aquaporin-11 (AQP11) and Aquaporin-12 (AQP12), called super-

aquaporins, have low sequence homology compared to the other mammalian aquaporins and are 

expressed inside the cell with functions including the transportation of water, glycerol, and 
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hydrogen peroxide [37]. New knowledge about signaling pathways that control aquaporin 

activation, gating, and trafficking are needed to develop AQP-targeted therapies as well as 

research and diagnostic tools [39]. In this study, the human placenta villi samples obtained from 

mothers with SARS-CoV-2 infection and matched healthy controls [17] are the biological samples 

that are the source of RNA for the RNA-Seq sequencing of human genes, including aquaporins. 

Thus, our second research objective was to determine the patterns of placental gene expression 

in human aquaporin genes between control and maternal COVID-19 groups. The findings could be 

of great value for the identification and validation of therapeutic targets for the development of 

potent immunotherapeutic agents. The different types of gene expression patterns may include 

differential, outlier, and coordinated expression. 

The primary data source for this data investigation is the RNA-Seq dataset labelled as 

GSE171995 in the National Center for Biotechnology Information’s (NCBI) Gene Expression 

Omnibus (GEO) [17]. We present the uniquely integrated datasets and the designs of the 

interactive visualizations for the data investigations that we implemented using visual analytics 

software. The implemented interactive visualizations for gene expression analysis are: (1) volcano 

plot of differential expression; (2) data table of gene names with gene expression patterns defined 

by binary numbers; (3) data table of placenta samples according to sex of infant, SARS-CoV-2 

infection status and severity; (4) box plot of gene expression counts; and (5) heatmap of Z-score 

normalization for each gene. 

The visual analytics resources implemented can support interactive data investigations on 

SARS-CoV-2-induced changes to the placental expression levels of 18,882 protein-coding human 

genes and at least 1233 human gene groups/families. Among the 13 human aquaporins, 

Aquaporin-9 (AQP9) was the only aquaporin downregulated in term placental villi from SARS-CoV-

2 positive mothers. Previous studies have found that (1) oxygen modulates placental development 

and AQP9 expression in the placenta [40,41]; and (2) SARS-CoV-2 can disrupt the formation of the 

oxygen-carrying red blood cells in the placenta [42]. Thus, the need for further research on the 

changes in the expression of AQP9 in placental cell types in response to SARS-CoV-2 and other 

microbial infections is critical for the protection of the fetus during pregnancy. The website link to 

the datasets and visual analytics resources is available in the Supplementary Materials section of 

this report. 

2. Methods 

2.1. Data Sources and Overview of Robust Data Investigations of Placental Gene Expression 
Patterns in Response to Maternal SARS-CoV-2 Infection 

The principal data sources of the datasets used to construct value-added datasets and to 

design interactive visualizations were (1) the scholarly article (PubMed Center: PMC8084634) by 

Lu-Culligan et al. [17] and (2) the associated processed RNA-Seq datasets available in the National 

Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) Series GSE171995 

[43]. The RNA-seq platform is Illumina HiSeq 2500 

(Homo sapiens) (NCBI GEO GPL16791). The bulk RNA sequencing was performed on samples of 

term placental villi from “pregnant women with COVID-19 (n = 5) and uninfected control 

individuals matched for maternal age, gestational age, maternal comorbidities, and mode of 

delivery (n = 3)” [17]. An additional data source, the Human Gene Names database [44], provided 

the dataset on gene name attributes, including gene groups/families and the unique Ensembl 

Gene ID from the Ensembl bioinformatics project [45]. We constructed value-added datasets by 

using visual analytics software to add calculated fields to the datasets obtained from the data 

sources. Using the visual analytics software and the Ensembl Gene ID as a linking unique identifier, 

we constructed an integrated dataset by selecting relevant data fields in the value-added datasets. 

In Figure 1, we present an overview of robust investigations (along the dimensions of data flow, 

data curation, and data analytics [20]) of placental gene expression patterns in response to 

maternal SARS-CoV-2 infection. 
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Figure 1. An overview of robust data investigations of placental gene expression patterns in response to 

maternal SARS-CoV-2 infection. The dimensions of data challenges were obtained from Ahalt et al. [20]. 

2.2. Construction of Value-Added Datasets 

In the following paragraphs, we provide details of the methods used to collect/assemble 

datasets, including the addition of calculated fields that add value to the initial datasets. 

Gene Expression Levels. The NCBI GEO Series GSE171995 contained processed files of mRNA 

profiles of placental villous tissue at term delivery from control and SARS-CoV-2-positive mothers 

[17]. We downloaded the comma separated value (csv) files with RNA sequencing (RNA-Seq) 

variables for differential expression (e.g., Log2FoldChange and p-value) and abundance (kallisto 

counts) of mRNA transcripts. Each dataset included data columns for Ensembl Gene Identifier and 

Gene Symbol. The “differential expression” dataset consisted of 33,576 data rows (genes) and 8 

data columns (for example, Ensembl Gene Identifier, Log2FoldChange, p-value and adjusted p-

value). The mRNA transcript abundance (“gene expression counts”) dataset consists of 33,576 data 

rows (genes) and 

10 data columns (Ensembl Identifier, Gene Symbol, five placenta samples from SARSCoV-2 

infection positive mothers, and three placenta samples from SARS-CoV-2 infection negative 

mothers). 

Patterns of Gene Expression Levels. RNA-Seq enables measurement of gene expression by 

digital transcript counting and is thus amenable to the encoding of gene expression counts as 

binary digits of 0 and 1, depending on the criterion [46,47]. We uploaded the datasets into Tableau 

Desktop Professional (Tableau) [48] and added new data columns (calculated fields feature in 

Tableau) to construct binary number patterns (also referred to here as binary patterns) for the 

data on gene expression levels. These patterns are able to support data investigations by grouping 

genes according to representations of gene expression levels. The two new data columns were 15-

digit and 3-digit binary (presence (1) or absence (0)) patterns. For the 15-digit binary number 

patterns, in the “gene expression count” dataset, each digit of the 15-digit binary pattern 

corresponds to the presence (1) or absence (0) of a COVID sample mRNA abundance value that is 

greater than a control placenta sample. Since there are five placenta samples for SARS-CoV-2 

infection and three controls, we constructed a 15-digit binary pattern for each gene. For example, 

“111111111111” means that all of the five placenta samples associated with maternal SARSCoV-2 

infection (COVID2, COVID3, COVID4, COVID5, and COVID6) have counts greater than the control 

samples (ctrl1, ctrl2, and ctrl3). In RNA-Seq gene expression data, zero counts can be due to 
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sampling, biological, and technical reasons [49]. To represent zero counts in the control samples 

of the GSE171995 gene expression count dataset, each digit in the 3-digit binary pattern 

corresponds to the presence (1) or absence (0) of an mRNA abundance value of zero from a 

control placenta sample. For example, a gene assigned to “111” indicates that all three control 

samples have an mRNA abundance value of zero. Using the calculated field feature in Tableau, 

we combined the 3-digit and 15-digit binary patterns for each gene to form an 18-digit binary 

pattern data column. It is a possibility that genes that have an identical 18-digit pattern could 

share biological processes. The visual analytics design that incorporates data filters of the 3-digit 

and 15-digit binary numbers can support the identification of the set of genes. We constructed 

another dataset from a “gene expression counts” dataset by reshaping the wide-format to long-

format [50]. The long-formatted “gene expression counts” dataset allowed us to construct box 

plot visuals of the distributions of gene expression counts for the eight placenta samples. 

Clinical and Biological Features. Using a spreadsheet software (Microsoft Excel 2016) [51], we 

constructed a dataset comprising the SARS-CoV-2 infection status (placenta and mother), sex of 

infant, and severity of SARS-CoV-2 infection (mother) [17]. There are examples of gene family 

members that have increased expression levels in severe COVID-19 cases, including genes involved 

in placental development [52]. The presence of placenta sample identifiers (COVID2 to COVID6) in 

the clinical and biological features dataset allowed us to combine the dataset on clinical features 

with the dataset on gene expression counts. 

Human Gene Names and Symbols. The datasets of genes from the NCBI GEO Series 

GSE171995 include data fields for Ensembl Gene Identifier and the Human Gene Symbol. We 

connected the datasets from GSE171995 to additional data fields in the Human Genome 

Nomenclature Committee’s (HGNC) “Complete HGNC-approved dataset” file with 54 data columns 

(nomenclature attributes) and 43,177 data rows (human genes including protein-coding genes) 

[44]. The presence of Ensembl Gene identifiers (prefixed with ENSG) in the HGNC-approved 

dataset allowed us to (1) combine the dataset on human gene nomenclature with the dataset on 

differential gene expression; and (2) include the nomenclature attributes of gene families or gene 

groups. 

2.3. Design and Implementation of Visual Analytics Resources 

The design and implementation of visual analytics resources were performed in Tableau 

Desktop Professional and disseminated on the internet using Tableau Public [48]. In this report, 

four visualizations (heatmap, volcano plot, box plot, and data tables), which are relevant to gene 

expression data investigation, were designed in the visual analytics software. Following the use of 

a heatmap visual for scaled RNA-Seq expression data by 

Zhao et al. [18], we designed an interactive heatmap view to visualize the Z-scores of expression 

levels for each gene in the GSE171995 dataset. The seven placenta samples compared for each 

gene were COVID3, COVID4, COVID5, COVID6, Ctrl1, Ctrl2, and Ctrl3. The design of the heatmap 

view contained a filter for Gene Symbols. When compared to the mean, the Z-scores can be 

positive (higher than mean), negative (lower than mean), and zero (same as mean) [53]. 

The volcano plot, a type of scatter plot, displays the effect size estimate [Log2(Fold Change)] 

on the x-axis and statistical significance [−Log10(p-value)] on the y-axis for genes from a gene 

expression profiling [54]. The volcano plot of differential gene expression values divides the gene 

collection according to statistical significance and direction of the changes in expression levels 

(increased/up or decreased/down). The box plot is a one-dimensional visual that displays the 

distribution of values and provides five statistical values: maximum, minimum, median, first 

quartile, and third quartile [55–57]. Comparing the shape and statistical values of box plot values 

supports informal inferential visuoanalytical reasoning [56]. Similar to the published methods 

[58,59], we used the outlier values detection feature of the box plot to conduct a “sample-centric” 

data investigation of placental gene expression values associated with members of gene families. 

The data tables, an example of an enclosure diagram, display values in a matrix of rows and 

columns, allowing for grouping values and looking up values [60]. In the visual analytics software, 

we also facilitated robust data investigations by combining interactive visualizations as (1) 

dashboards (e.g., box plot and heatmap) and (2) blended views (e.g., binary numbers data table 

and heatmap). 
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2.4. Verification of Accuracy of Visual Analytics Resources Content and Gene Family Expression 
Use Cases 

We used the heatmap visual for galectins (LGALS) and pregnancy-specific glycoproteins (PSG) 

to verify the accuracy of the design of the interactive heatmap. We expected that the magnitude 

of color scaling from our design would be consistent with the heatmap LGALS and PSG gene groups 

in Zhao et al. [18]. The shape and position of genes in the interactive volcano plot were compared 

with the static volcano plot in the publication by Lu-Culligan et al. [17], in which HSPA1A (heat 

shock protein family A (Hsp70) member 1A) is one of the four differentially expressed genes with 

significant adjusted p-values. Thus, a verification of the accuracy of the interactive visualizations is 

the finding of the 

HSPA1A gene expression level and a statistical significance consistent with the source publication 

[17]. In addition, the color intensity of rectangles (tiles) in the heat map of gene expression levels 

for the selected 70 top significant genes [17] allowed us to determine the accuracy of the box plot 

representation. Based on the heat map, we expected that the expression level of HLA-DMB (major 

histocompatibility complex, class II, DM beta) in the box plot of data for placenta sample COVID2 

would be higher than the expression level of HLA-C (major histocompatibility complex, class I, C). 

In addition, we expected that, in the box plot of data for placenta COVID6 sample, the HLA-C would 

be higher than the expression of HLA-DMB. 

In this study, we investigated the 14 human aquaporin gene family members: MIP, 

AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, AQP8, AQP9, AQP10, AQP11, AQP12A, and 

AQP12B. We used the 14 gene symbols of aquaporin genes to display the aquaporinspecific (1) list 

of gene names with gene expression patterns defined by binary numbers, (2) volcano plot of 

differential expression, (3) box plot of gene expression counts, and (4) heatmap of Z-score 

normalization for each gene. We selected the aquaporin gene family as a use case because of our 

prior research on aquaporins [24,28,61–63] and the role of aquaporins in placental health and 

disease [31,34,64,65]. The visual analytics resources allow the selection of gene groups beyond 

the focus of this report. 

2.5. Searches for Biological Networks and Pathways associated with Gene Sets 

Visuals of biological networks and pathways are resources for understanding the cellular 

and molecular mechanisms of genes [66]. Thus, we used the Network Data Exchange Integrated 

Query (NDEx IQuery) [67] to search for biological networks and pathways associated with a gene 

set. A gene symbol or multiple gene symbols served as search text for an integrated query of 

biological network/pathway resources. We conducted searches with (1) the 14 gene symbols for 

the aquaporin gene family; (2) each aquaporin symbol and gene symbols that share the 18-digit 

binary pattern with an aquaporin; and (3) upregulated and downregulated genes in term placenta 

samples from maternal SARS-CoV-2 infection [17]. To enable the NDex IQuery for search gene, 

we included a web link (uniform research location) action to the visual analytics view of the 

integrated dataset. We evaluated the results of the NDex networks/pathways search for 

relevance to infection, pathogen, and placenta. 

3. Results 

We describe below the designs produced, accuracy of the content, and the findings using 

example genes and gene groups. The details for access to the constructed datasets and interactive 

visualizations are available in the Supplementary Materials section of this report. Though the 

aquaporin gene family is the gene group of interest, researchers can use the datasets and 

interactive visualizations to investigate other gene groups. The stages of the robust data 

investigations consist of the following: (1) assemble relevant data sources; (3) construct datasets 

and design interactive visualizations; and (3) perform data investigations. The constructed 

datasets included calculated data fields to add value to the datasets. Additionally, some of the 

produced interactive visualizations included web link actions and objects (such as web page and 

image) to facilitate robust data investigations. 

3.1. Constructed Datasets 

We have constructed datasets to understand the potential changes in the placental gene 

expression patterns of members of gene groups in response to maternal SARS-CoV-2 infection. 
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The datasets were on RNA-Seq differential gene expression and RNA gene transcript counts, as 

well as biological and clinical features of the placenta samples. A summary of the constructed 

datasets associated with the visual analytics are available in Supplementary Table S1. The five 

major gene expression datasets constructed are available in Tables S2–S6. The availability of the 

human gene nomenclature dataset [68] enabled us to integrate gene groups and locus group (e.g., 

protein-coding, non-coding, and pseudogene) annotations to the shared gene expression datasets. 

Furthermore, using the gene expression counts (kallisto counts) from GSE171995, we constructed 

calculated data fields for seven Z-scores in order to compare the expression levels of a gene across 

four COVID placenta samples (COVID3, COVID4, COVID5, and COVID6) and three control placenta 

samples 

(Ctrl1, Ctrl2, and Ctrl3). 

An integrated dataset on placenta gene expression in response to maternal SARSCoV-2 

infection (Table S7) combines data fields from the constructed datasets and the datasets on HGNC 

gene names. The data fields in the integrated dataset include gene identifiers, differential 

expression, binary pattern, gene group nomenclature, and the Zscores for 35,084 genes, including 

18,882 protein-coding genes, 8898 pseudogenes, and 80 non-coding RNA genes (Table S7). We 

have designed and implemented the following interactive visualizations: (1) heatmap of Z-score 

normalization for each gene; (2) volcano plot of differential expression; (3) data table of gene 

names with gene expression patterns defined by binary numbers; (4) data table of placenta 

samples according to sex of infant, SARS-CoV-2 infection status, and severity; and (5) box plot of 

gene expression counts. 

3.2. Volcano Plot of Differential Gene Expression 

We have designed the volcano plot with data filters to support decision-making regarding the 

selection of differentially expressed genes (Figure A1). We represented genes in the volcano plot 

as square (statistically significant) or circle (statistically insignificant). The shape of the volcano plot 

was consistent with the source publication (PubMed Central 

Identifier: PMC8084634) [17]. The differential gene expression patterns for the 14 aquaporin 

genes and genes for HLA-C (increased expression) and TGM3 (decreased expression) are shown in 

Figure 2 Aquaporin-3 (AQP3) and Aquaporin-1 (AQP1) are the only aquaporins with a positive fold 

change differential expression. The Aquaporin-9 gene is the only aquaporin with statistically 

significant (p < 0.05) decreased expression (negative fold change) in the placenta villi samples from 

SARS-CoV-2 positive mothers. 



Analytics 2024, 3 123 

  
Figure 2. Differential gene expression pattern of aquaporins, HLA-C (major histocompatibility complex, class 

I, C), and TGM3 (transglutaminase 3). The decreased expression of Aquaporin-9 (AQP9) is statistically 

significant (p < 0.05). MIP is the official symbol for Aquaporin-0. 

3.3. Combination of Gene Expression Box Plots and Data Table of Placenta Samples according to 
Sex of Infant, SARS-CoV-2 Infection Status, and Severity of SARS-CoV-2 Infection 

We obtained the annotations of clinical and biological aspects of placenta samples from the 

NCBI GEO GSE171995 gene expression series and the PubMed Central PMC8084634 scholarly 

article. The five placenta samples from mothers with SARS-CoV-2 infection were from two female 

infants (COVID3 and COVID5) and three male infants (COVID2, COVID4, and COVID6). COVID3 is 

the only placenta sample with detection of SARS-CoV-2, while COVID6 is the only placenta sample 

without symptomatic COVID-19. COVID2 and COVID6 are placenta samples from male infants 

whose mothers had severe COVID-19 based on admission to hospital Intensive Care Unit (ICU) or 

need for supplemental oxygen. The box plots for the eight placenta samples revealed the 

distribution patterns of gene expression counts for the 14 aquaporin genes (MIP or AQP0 to 

AQP12B) (Figure 3). AQP1, AQP3, AQP7, and AQP9 had outlier counts in at least one of the eight 

placenta samples. AQP7 had outlier counts for Ctrl1, Ctrl3, COVID4, and COVID5 placenta samples. 

AQP9 had outlier counts for Ctrl2 and COVID3 placenta samples. AQP1 had outlier counts for 

COVID3, COVID5, and COVID6 placenta samples. AQP3 had outlier counts for COVID5 and COVID6 

placenta samples. 



Analytics 2024, 3 124 

 
  

Figure 3. Patterns of distributions of gene expression values for the aquaporin gene family in eight placental 

villous samples from mothers with and without SARS-CoV-2 infections. The visual integrates designs of 

enclosure data table showing clinical features of the placental villous sample and box plots of gene expression 

counts for 14 human aquaporin genes. The dashboard design supports sample-centric analysis, including 

identifying outlier values and differences in distribution patterns. 

Since Lu Calligan et al. [17] detected SARS-CoV-2 by quantitative reverse PCR (qRTPCR) in only 

COVID3, we compared the gene expression counts for the two placental samples (COVID3 and 

COVID5) from female infants (Figures 3 and 4). The gene expression counts for AQP1 and AQP9 in 

SARS-CoV-2-positive COVID3 were at least two-fold larger than SARS-CoV-2-negative COVID5. The 

fold values were 2.6 for AQP1 and 9.5 for AQP9. AQP1 had outlier values for COVID3 and COVID5 

(Figure 3). 

3.4. Data Table of Genes with Gene Expression Values Grouped by Binary Number Patterns 

The 15-digit and 3-digit binary number patterns grouped the 35,376 genes in the “gene 

expression count” dataset to 1470 groups and 8 groups, respectively. The combination of the 15-

digit and 3-digit binary number patterns (18-digit binary number patterns) resulted in a dataset of 

35,084 genes with gene expression counts for the placenta samples. The 18-digit pattern also 

grouped the dataset into 2253 groups. A subset of the binary number patterns and associated 

mRNA abundance values for the aquaporin gene family and other human gene family members 

revealed that aquaporin genes were grouped according to two types of binary patterns (Figure 4 

and Table S8). The aquaporin genes labeled as 000, which had control sample values greater than 

zero, are AQP1, AQP3, AQP4, AQP5, AQP6, AQP7, AQP9, and AQP11. Additionally, the aquaporin 

genes labeled as 010, which had the value of control placenta sample Ctrl2 as zero, are MIP, AQP2, 

AQP8, AQP10, AQP12A, and AQP12B. The gene expression value of AQP9 for the Ctrl2 control 

sample is 260, which is an outlier value compared to the other aquaporins with values of 0 (MIP, 

AQP2, AQP8, AQP10, AQP12A, and AQP12B); 1 (AQP4 and AQP5); 3 (AQP6); 6 (AQP1); 10 (AQP7 

and AQP11); and 21 (AQP3). 
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Figure 4. An image of the enclosure table constructed in visual analytics software for aquaporin genes and 

other selected human gene family members grouped by binary number patterns that represent comparison 

of gene expression counts between placenta samples from maternal SARS-CoV-2 infection and control 

samples. The 3-digit binary number patterns indicate presence (1) or absence (0) of mRNA abundance values 

of zero for each of the three control samples. The 15-digit binary numbers encode patterns for comparing 

the transcript counts between the five COVID samples and the control samples. Each COVID sample pattern 

encodes three binary digits where “1” is for presence and “0” is for absence of mRNA abundance value in the 

COVID sample that is greater than the three placenta samples from mothers without SARS-CoV-2 infection. 

The combination of the three-digit binary numbers for the five COVID samples resulted in the 15-digit binary 

number pattern. The website links to obtain interactive versions of the visuals are available in the 

Supplementary Materials section of this report. 

Since placental mRNA expression of two members of the antiviral interferon-induced 

transmembrane gene family (IFITM) were upregulated in severe COVID-19 disease [52], we 

included the gene expression patterns and values for comparison to the aquaporin gene family. 

Inteferon-induced transmembrane protein 1 (IFITM1), IFITM2, and IFITM3 had significantly higher 

values in placenta villi from severe COVID-19 (13,815 for COVID4) compared to placenta from 

asymptomatic COVID-19 (1762 for COVID6). We constructed an 18-digit binary number label for 

each gene by combining the 3-digit and 15-digit. The 14 aquaporin gene transcripts are grouped 

by 13 binary numbers with AQP6 and AQP7 sharing the same binary pattern (Table 1). In the 

dataset, AQP9 shares the 18-digit binary number of “000000101000000000” with three genes. The 

two genes with the HGNC’s official symbol are “peptidase inhibitor 3” (PI3) and “triggering 

receptor expressed on myeloid cells 1” (TREM1). Our literature search for co-occurrence of AQP9, 

PI3, and TREM1 retrieved a study where AQP9, PI3, and TREM1 were among the top 10 genes with 

the greatest significant expression changes in bone marrow hematopoietic stem and progenitor 

cells (HSPCs) in older adult trauma patients (relative to/vs. age-matched controls) [69]. 
Table 1. Constructed binary number patterns for gene expression counts of NCBI GEO GSE171995. 

Aquaporin 

Binary Number 
Pattern of Gene 

Expression 

Genes with Binary 

Number Pattern 

Example Genes with 
Binary Number 

Pattern * 

AQP0 (MIP) 010010000010000000 656 ESX1 TLX1 

AQP1 000011111011111011 45 BRCA1 CD9 
AQP2 010011010010000010 95 TSLP VIP 
AQP3 000011011010011111 17 HOXD8 TPRV2 
AQP4 000010010010000000 54 CD1C NOX1 
AQP5 000010010000010000 15 HEPHL1 KLF4 

AQP6, AQP7 000011010010010000 588 CFTR HNF4A 
AQP8 010011010010000000 352 CALHM1 FGF21 
AQP9 000000101000000000 4 PI3 TREM1 

AQP10 010011000010010000 212 OR4C16 TLR9 
AQP11 000011011011000000 25 IL4I1 SLC6A4 



Analytics 2024, 3 126 

AQP12A 010010000000000010 36 MDFIC2 PRL 
AQP12B 010011010010010010 473 CETP CACNA1I 

* Genes have evidence in Google Scholar for research in the context of mammalian placenta or pregnancy. The full names 

of the gene symbols are available at the HUGO Gene Nomenclature Committee (HGNC) website. 

3.5. Combination of Heatmap and Box Plot of Gene Expression Levels 

The heatmap represents normalized values of the gene expression counts as Z-scores. The 

heatmap of gene groups, galectin (LGALS) and pregnancy-specific glycoprotein (PSG), constructed 

in this study was similar to the heatmap available in the publication by Zhao et al. [18]. The box 

plot shows the distribution of the gene expression counts for the placenta samples. The box plot 

for gene groups constructed in our study can be a representation that is complementary to the 

heatmap (Figure 5). This finding supports the accuracy of the box plot and heatmap visuals for the 

placental expression of the aquaporin genes (Figure 6). A finding from both visuals for the 

aquaporins is that a placenta sample from a healthy control (Ctrl1) has outlier expression levels 

for AQP2, AQP6, AQP10, AQP12A, and AQP12B. The integration of the box plot and heatmap 

patterns provides multiple perspectives to help us understand the expression patterns of the 

members of gene groups/families. 

3.6. Biological Networks and Pathways associated with Gene Sets 

We compiled the web links of results of biological network and pathway NDex IQqeury 

searches for gene groups (Tables S9 and S10). The searches were with (1) the 14 gene symbols for 

the aquaporin gene family; (2) each aquaporin symbol and gene symbols that share the 18-digit 

binary pattern with an aquaporin; and (3) 301 upregulated and 189 downregulated genes in term 

placenta samples with maternal SARS-CoV-2 infection. From the searches, we selected 19 for 

further investigation because of relevance to SARS-CoV-2 infection or placenta (Table S8). Among 

the results for the 14 gene symbols, AQP7, an aquaglycerporin, was annotated with the placenta-

relevant peroxisome proliferator-activated receptors (PPARs) signaling (nuclear hormone 

receptors that are activated by fatty acids and their derivatives) [70]. Two pathways retrieved 

involving SARS-CoV-2 for differentially expressed genes are MAPK signaling for upregulated genes 

(ATF2, BCK2, and IFITM3) and autophagy (ATG16L2). Among genes that share the 18-digit binary 

pattern for gene expression counts with aquaporins, the following selected retrieved networks or 

pathways are relevant to SARS-CoV-2 infection or placenta biology. 

• Inflammatory response to SARS-CoV-2 (IFNA8, IFNA13, IFNW1, NOX1, and TLR9) 

• Immune response to SARS-CoV-2 (CSF2, IFNA13, and REN) 

• Linoleic acid metabolism affected by coronavirus infection (ACOT2) 

• Pathogenesis of SARS-CoV-2 mediated by nsp9-nsp10 complex (IGLL1) 

• SARS-CoV-2 host-pathogen interaction (NUP210) 

• Iron metabolism in placenta (HEPHL1) 

• SARS-CoV-2 signaling pathway (HP, ITIH4, and SERPINA10) 

• Microglia pathogen phagocytosis (TREM1) 

• Hematopoietic stem cell differentiation (CSF2) 

• Pregnane X receptor pathway (GSTA2) 

• Prolactin signaling pathway 

• Glycolysis and gluconeogenesis (PGK2) 
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(a) Box Plot  

  
(b) Heatmap  

Figure 5. Placental expression patterns of genes encoding galectins (LSGALS) and pregnancyspecific 

glycoproteins (PSG) in placenta samples of mothers with (COVID series) and without (Ctrl series) SARS-CoV-2 

infection. (a) Box plot patterns and (b) heatmap patterns. Source of data is the GSE171995 sample series 

available at the NCBI Gene Expression Omnibus. The gene expression pattern represented by the interactive 

heatmap constructed in this study is similar to the heatmap available in the publication by Zhao et al. [18]. 

The website links to obtain interactive versions of the visuals are available in the Supplementary Materials 

section of this report. 
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(a) Box Plot  

  
(b) Heatmap  

Figure 6. Placental expression patterns of genes encoding aquaporins in placenta samples of mothers with 

(COVID series) and without (Ctrl series) SARS-CoV-2 infection. (a) Box plot patterns and 
(b) heatmap patterns. Source of data is the GSE171995 sample series available at the NCBI Gene Expression 

Omnibus. The website links to obtain interactive versions of the visuals are available in the Supplementary 

Materials section of this report. 

Since the TREM1 and AQP9 shared the same 18-digit gene expression count pattern (Table 

1), we were interested in the differential expression of the 40 human genes involved in the 

microglia phagocytosis pathway (WikiPathways: WP3937) [71]. Among the 40 human genes in the 

microglia phagocytosis pathway, 19 were downregulated and 21 upregulated in placenta samples 

from maternal SARS-CoV-2 infection with five genes (C1QA, C1QB, C1QC, CYBB, and FCER1G), 

having statistical significance at the 0.05 level (Figure 7). This integration of pathway and 
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differential expression visuals is another resource to aid in the robust investigation of placental 

gene expression in response to maternal SARS-CoV-2 infection. 

  

Figure 7. A visual of microglia phagocytosis pathway from WikiPathways (WP3937) and visual representation 

of differential gene expression of 40 genes in the microglia phagocytosis pathway in response to maternal 

SARS-CoV-2 infection. The HGNC Nomenclature website provides additional information on the gene 

symbols. Trem3 is a mouse gene. The website links to obtain interactive versions of the visuals are available 

in the Supplementary Materials section of this report. 

3.7. Visual Analytics Resources for Robust Investigations of Placental Gene Expression Data in 

Response to Maternal SARS-CoV-2 Infection 

The integrated dataset (Table S7, Figure A2) combines data fields from the constructed 

datasets and the dataset on HGNC gene names described in Section 3.1. The Ensembl Gene ID and 

Gene Symbol are data fields in all the datasets. The datasets and other data fields in the integrated 

dataset are (1) gene expression counts (Binary Pattern, Placenta Sample ID, and Z-Score); (2) 

differential gene expression (p value < 0.05 and COVID vs. Control, and Placenta Sample ID); and 

(3) HGNC gene names (Gene Group, Group ID, and Locus Group). To enable robust data 

investigations of the dataset, we designed an interactive dashboard that supports the display of 

gene sets according to data filters with the differential expression as the highest level of grouping 

(Figure A3). The dashboard supports searches for additional information on scholarly publications 

and network/pathways associated with the gene of interest. The filters applied in Figure A3 display 

gene groups for aquaporins and galectins. Another dashboard has the binary pattern for placental 

gene expression counts as the highest level of grouping (Figure A4). This design allowed us to 

display the data fields for aquaporin genes, PI3 and TREM1. An 18-digit binary pattern of 

“000000101000000000” grouped AQP9, PI3, and TREM1 together with AQP9 having a statistically 

significant downregulation in term placenta villi of maternal SARS-CoV-2 infection. The hyperlinks 

to scholarly publications and the network/pathway searches are included to facilitate personalized 

learning of placental biological networks and pathways in health and disease. 

4. Discussion 

Gene expression profiling studies on placenta cell types are generating new knowledge on 

cellular and molecular pathways that influence the function, structure, and development of the 

human placenta in health and disease [2,72,73]. Progress in technologies for profiling genome-

wide placental gene expression suitable for knowledge generation from evidence through 

comparing attributes in datasets from healthy and disease states [74,75]. The visual analytics 
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resources in this report facilitated investigations of datasets on clinical, biological, placental gene 

expression, and gene nomenclature associated with a study on maternal SARS-CoV-2 infection 

during pregnancy [17]. Thus, we have designed and implemented visual analytics resources 

(Figures 2–7) comprising visualizations of quantitative data (volcano plot, box plot, heatmap, and 

data tables) that are relevant to the investigations of gene expression datasets [76]. Similar to 

previous studies [21–24], we have applied general-purpose business intelligence/visual analytics 

software to design and implement interactive visualizations of professionally collected datasets. 

The integrated dataset with a Z-score for each gene per sample (Table S7 and Figure A2) and select 

data fields from other constructed datasets is a resource for research on SARS-CoV-2-induced 

changes to placental gene expression. 

In the context of the influence of maternal SARS-CoV-2 infection on placental gene 

expression (NCBI GEO GSE171995), the visual analytics resources can support the data 

investigations of 35,084 human genes including 18,882 protein-coding genes and at least 3337 

human gene groups. The gene groups were obtained from the HUGO Gene Nomenclature 

Committee (HGNC) database [68]. The changes in the expression levels of members of human 

gene families could infer altered signaling pathways relevant to impaired functioning of the human 

placenta as a direct result of SARS-CoV-2 infection. A secondary data analysis using Z-score 

normalization and a heatmap visual of GSE171995 gene expression counts identified changes in 

gene groups of galectins (LGALS), pregnancy-specific glycoproteins (PSGs), and glycosylation 

pathways during maternal SARS-CoV-2 infection [18]. We used the visuals generated in these two 

analyses of GSE171995 [17,18] to guide the design of our visualizations and verify the accuracy. 

The similarity of the volcano plot (Figure A2) and heatmap (Figure 5b) to the visuals produced by 

Lu-Culligan et al. [17] and Zhao et. al. [18], respectively, provided a basis for robust data 

investigations of aquaporin genes and other gene groups. The hyperlinks, in the interactive 

visualizations, to searches for genes in scholarly and network/pathway resources enables access 

to the latest knowledge regarding the gene(s) of interest. 

We have used binary numbers to generate patterns for (1) presence or absence of zero 

(0) value in the three control samples; and (2) the identification of expression levels of COVID-19 

placenta samples that are greater than the control placenta sample (Figure 4). The novel 3-digt 

and 15-digit binary patterns constructed in this study facilitated the classification of the 35,357 

genes in the GSE171995 dataset. The integration of the binary patterns and the gene expression 

values present an approach to compare values that can prompt gene group-specific analysis 

(Figure 4). To verify the accuracy and potential biological relevance of the data integration in Figure 

4, we included the interferon-induced transmembrane protein (IFITM) gene family, in which some 

gene members (IFITM1, IFITM2 and IFITM3) [52] encode interferon responsive proteins that inhibit 

fusion of enveloped viruses with human cell membranes and could also inhibit, with trophoblast, 

fusion stages in placental development [77]. The 15-digit binary pattern of “000111111111111” 

was the same for IFITM1, IFITM2, and IFITM3, while IFITM5 and IFITM10 had unique patterns of 

“011000011000000” and “011010010010010”, respectively. A placenta sample, COVID4, from a 

mother with severe SARS-CoV-2 infection (Figure 4), had a significantly higher value of 13,815 for 

IFITM3 compared to 3195 for IFITM2 and 2203 for IFITM1 (Figure 5). Across all the COVID placenta 

samples, IFITM3 had highest value compared to IFITM1 and IFITM2. This higher gene expression 

level could be consistent with findings that the IFITM3 protein has the greatest effect on reducing 

trophoblast fusion [52,78,79]. 

New knowledge on signaling pathways that control aquaporin activation, gating, and 

trafficking are needed for developing AQP-targeted therapies as well as research and diagnostic 

tools [39]. The Aquaporin-9 (AQP9) gene transcript is the only aquaporin gene transcript that was 

significantly downregulated (p < 0.05) in SARS-CoV-2-infected placenta samples (Figure 2). In the 

three control samples, AQP9 had gene expression counts above the zero level and labeled with 

the 3-digit pattern of “000” (Figure 4). Additionally, the 15-digit binary pattern for AQP9 was 

“000101000000000”, which represents the fact that the COVID3 placenta sample had higher gene 

expression counts than the Ctrl1 and Ctr3 placenta samples. The 3-digit and 15-digit binary number 

patterns of AQP9 were shared with two genes: “peptidase inhibitor 3” (PI3) and “triggering 

receptor expressed on myeloid cells 1” (TREM1). Furthermore, the heatmap visual revealed 

generally similar patterns 
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with expression in the Ctrl2 placenta sample for the three genes (Figure A4). Coincidentally, AQP9, 

PI3, and TREM1 are among the top 10 genes with the greatest significant expression changes in 

bone marrow hematopoietic stem and progenitor cells (HSPCs) in older adult trauma patients 

(relative to/vs. age-matched controls) [69]. The human placenta is a potent niche for the formation 

of blood cells and contains HSPCs throughout development [80]. The adult-type definitive 

erythroid cell (EryD) expresses AQP9 [81]. The PI3 gene is expressed in the human placenta [82] 

and encodes trappin2/elafin, a key component of the innate immune system, which functions in 

antimicrobial and anti-inflammatory pathways [83,84]. 

In a gene expression study of individuals with acute respiratory distress syndrome 

(ARDS), the PI3 gene was downregulated in the blood of patients with an acute stage of ARDS [83]. 

Hypoxia or low oxygen availability in cells is a severe, life-threatening manifestation of ARDS 

caused by severe acute respiratory syndrome coronaviruses [85]. SARS-CoV-2 virus, the causative 

agent for Coronavirus Disease 2019 (COVID-19), can infect erythroid precursors and progenitors 

with the consequence of hypoxia to cells and tissues [42]. Hypoxia induced by SARS-CoV-2 may 

cause the placental pathology of maternal vascular malperfusion (MVM) [86]. Among the term 

placenta samples from SARS-CoV-2 infected mothers, only COVID4 had MVM with an additional 

description of intervillous thrombi [17]. In normal pregnancy, at approximately 20 weeks, 

hemotrophic nutrition is the mode of fetal nutrition, as the source of energy, and is characterized 

by oxidative phosphorylation [74] and a three-fold increase in intraplacental oxygen tension [87]. 

Considering that oxygen modulates placenta development [40] and oxygen tension could 

modulate AQP9 expression in the human placenta [41], there is need for further research on SARS-

CoV-2 and other microbial infection-induced changes to the expression of AQP9 in placenta cell 

types. Additional reasons for further research on AQP9 in placenta structure, function, and 

development include the role of AQP9 in (1) preterm premature rupture of membrane (PPROM) 

[88], (2) early-onset pre-eclampsia [89], and (3) recurrent spontaneous abortion [65]. 

We used NDEx Integrated Query [67] to retrieved biological networks and pathways for genes 

of interest. Based on a shared binary pattern of gene expression counts for AQP9 and TREM1, we 

selected the microglia phagocytosis pathway for further investigation by retrieving the differential 

gene expression data for 40 genes in the pathway (Figure 7). Prins et al. [90] described microglia 

as the missing link in maternal immune activation and fetal neurodevelopment and speculated 

that “microglia as possible link in preeclampsia and disturbed neurodevelopment”. We combined 

the WikiPathways (WP3937) visual and the visual representation of placental differential 

expression for the 40 genes (Figure 7). The genes for complement proteins (C1QA, C1QB, and 

C1QC), cytochrome b-245 beta chain (CYBB), and Fc epsilon receptor Ig (FCER1G) were 

upregulated with statistical significance in the placenta samples of mothers with SARS-CoV-2 

infection. TREM1 is an immune receptor on the microglia and a potent amplifier of inflammation 

[91]. The prolactin signaling pathway (WikiPathways: WP2037) and mammary gland development 

pathway—pregnancy and lactation (Stage 3 of 4) (WikiPathways WP2817)—were retrieved based 

on a shared binary pattern of gene expression counts for prolactin (PRL) and aquaporin-12A 

(AQP12A) (Table 1). The placenta can be seen as a “pharmacological organ” [92] that secretes the 

prolactin (PRL) growth hormone (GH) family of proteins to support adaptations to maternal 

physiological processes during pregnancy and lactation [92,93]. The post-natal influences on 

maternal and child health of the placental hormone warrant visual analytics projects to construct 

visual representations of differential placental gene expression and integrate them with 

network/pathway visuals, such as WikiPathways [71]. These integrated visualizations can support 

hypothesis generation and pharmacological research on hormones unique to pregnancy and 

lactation. Thus, the placental differential gene expression visual presents a value-added feature to 

the network/pathway connection visuals retrieved by NDex IQuery. 

We have conducted robust data investigations using the published datasets available from 

scholarly data repositories. Thus, the findings could have limitations associated with the datasets. 

For example, the gene expression of a placenta sample may be atypical for the category as seen in 

the COVID2 sample of the GSE171995 dataset [17]. A recent analysis of GSE171995 did not include 

the COVID2 sample [18]. Thus, to enhance the usefulness of the visual analytics resources 

presented, we verified the computational patterns with independently published experimental 

results on placental expression of gene families in response to SARS-CoV-2 infection [18,77]. The 
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overall approach (Figure 1) and the designs of worksheets and dashboards could be useful for 

similar studies. The constructed datasets, available as comma separated values and spreadsheet 

files, as well as the visual analytics resources used in this study, are available online (details in 

Supplementary Materials section). Researchers can use the computational resources to facilitate 

collaborative and personalized data investigations and learning of human placental gene 

expression patterns in response to SARS-CoV-2 infection. 

The working hypothesis to guide this exploratory study was that visual analyticsfacilitated 

robust data investigations of human placental gene expression data would reveal altered biological 

processes of human gene groups relevant to pregnancy complications. The visual analytics 

approach helped connect placental gene expression to placental biological processes involving 

aquaporins and other gene groups. Future studies with the datasets could consider hypothesis-

driven analysis of the datasets and grammar-based approaches to a hypothesis-driven theory of 

visual analytics [94,95]. We generated volcano plots, box plots, enclosure data tables, and 

heatmaps to visualize the RNA-Seq gene expression data. Future studies could design other 

interactive visuals, such as a multidimensional scaling (MDS) plot [15], principal component 

analysis (PCA) plot [96], and scatter plot [76]), to support further understanding of SARS-CoV-2-

induced changes to placenta function, structure, and development. 

5. Conclusions 

The human placenta is a multiscale complex versatile organ of pregnancy described as a fetal 

life-support system [97,98]. The computational products reported here are interactive visual 

analytics resources, which can support interactive robust data investigations of the gene 

expression patterns of 35,084 human genes, including 18,882 protein coding genes in five placenta 

samples from mothers with SARS-CoV-2 infection and three placenta samples from mothers 

without SARS-CoV-2 infection. A focused data investigation of the 13 members of the human 

aquaporin gene family revealed noteworthy findings on Aquaporin-9, whose placental expression 

could be modulated by oxygen tension. Thus, future research could consider studies on microbial 

infection-induced changes to the placental hematopoietic stem and progenitor cells, as well as 

placental expression of human aquaporin genes, especially AQP9. 

Supplementary Materials: The following supporting information can be downloaded at: https: 

//www.mdpi.com/article/10.3390/analytics3010007/s1. The interactive versions of the figures, worksheets, 

and dashboards are available at https://public.tableau.com/app/profile/qeubic/viz/gse1 

71995_analytics/abstract (accessed on 8 November 2023). The visual analytics file can also be downloaded 

and used as offline software using the free Tableau Reader: https://www.tableau. 

com/products/reader/download (accessed on 8 November 2023). Table S1: Description of datasets; Table S2: 

Differential gene expression dataset; Table S3: Gene Expression counts (wide format) dataset; Table S4: Gene 

expression counts (long format); Table S5: Gene expression scores dataset (wide format); Table S6: Gene 

expression scores (long format); Table S7: Integrated dataset of placental gene expression in response to 

maternal SARS-CoV-2 infection; Table S8: Gene expression counts and binary patterns for aquaporin and 

selected genes; Table S9: NDex IQuery network search; Table S10: Website Links to selected pathway 

diagrams. 

Author Contributions: Conceptualization, R.D.I., A.O.A., M.O.J., A.U.M., S.R.-B. and A.G.H.II; methodology, 

R.D.I., A.O.A., R.S.H., J.C.F., A.L.H., A.M.D., K.B.E., T.L.T., S.F.B., M.O.J., O.S., S.R.-B., A.U.M. and A.G.H.II; data 

curation, R.D.I., A.O.A., R.S.H., J.C.F., A.L.H., A.M.D. and K.B.E.; writing— original draft preparation, R.D.I., 

A.O.A., R.S.H., J.C.F. and K.B.E.; writing—review and editing, R.D.I., A.O.A., R.S.H., J.C.F., A.L.H., A.M.D., K.B.E., 

T.L.T., S.F.B., M.O.J., O.S., S.R.-B., A.U.M. and A.G.H.II; visualization, R.D.I., A.L.H. and K.B.E.; supervision, 

R.D.I., M.O.J., S.R.-B. and A.G.H.II; project administration, R.D.I., S.F.B., O.S., A.U.M., S.R.-B. and A.G.H.II; 

funding acquisition, R.D.I., M.O.J., S.F.B., A.U.M., S.R.-B. and A.G.H.II. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by (1) United States Department of Education, grant award 

P031B170091; (1) National Institutes of Health, grant award U41HG006941; (2) National Science Foundation, 

grant awards EHR-1435186, EHR-1623371, EHR-1626602, EHR-2029363, CSE-1829717, DUE-2142465, and 

EES-2241376. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://www.mdpi.com/article/10.3390/analytics3010007/s1
https://public.tableau.com/app/profile/qeubic/viz/gse171995_analytics/abstract
https://public.tableau.com/app/profile/qeubic/viz/gse171995_analytics/abstract
https://public.tableau.com/app/profile/qeubic/viz/gse171995_analytics/abstract
https://www.tableau.com/products/reader/download
https://www.tableau.com/products/reader/download
https://www.tableau.com/products/reader/download


Analytics 2024, 3 133 

Data Availability Statement: The data availability for data sources and constructed datasets are itemized 

below. Last date of access was 28 October 2023. Integrated datasets and visual analytics files: 

https://github.com/qeubic/gse171995_analytics. The gene expression data sources for differential gene 

expression and gene expression counts: https://www.ncbi.nlm.nih.gov/geo/ query/acc.cgi?acc=GSE171995. 

Data source for clinical features of placenta samples: https:// 

www.ncbi.nlm.nih.gov/pmc/articles/PMC8084634/. Data source of human gene nomenclature: 

https://www.genenames.org/download/statistics-and-files/. 

Acknowledgments: Transdisciplinary Data Scholars Development Program at Bethune-Cookman University 

and the Train-the-Trainer Project of the H3Africa Bioinformatics Network. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of 

the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the 

decision to publish the results. 

Appendix A 

This appendix section provides three additional screenshots of visual analytics 

(Figures A1, A3 and A4) and spreadsheet (Figure A2) resources for robust investigation of the gene 

expression patterns of members of gene families (Figures A1–A4). These computational resources 

can support the performance of tasks along the dimensions of data challenges: data flow (i.e., 

collection, storage, access, and movement); data analytics (i.e., modeling and simulation, 

statistical analysis, and visual analytics); and data curation (i.e., preservation, publication, security, 

description, and cleaning) [20,21]. 

  

Figure A1. A design of an interactive volcano plot of differential gene expression by RNA-Sequencing 

between placenta villous samples from SARS-CoV-2 positive and SARS-CoV-2 negative mothers. This 

worksheet view can be a component of an interactive dashboard. The genes represented with squares have 

significant differential expression at p < 0.05. The labels are examples of genes with increased and decreased 

expression levels in SARS-CoV2 placenta tissue. Gene symbol and names are as follows. AQP9: aquaporin-9; 

HLA-C: major histocompatibility complex, class I, C; HSPA1A: heat shock protein family A (Hsp70) member 

1A; PPP1R11: protein phosphatase 1 regulatory inhibitor subunit 11; TGM3: transglutaminase 3. The accuracy 

of the volcano plot was determined by comparison with the static volcano plot in the publication with 

PubMed Central Identifier of PMC8084634 [17]. The differential expression of HSPA1A position is similar to 

the plot in Lu Calligan and co-authors [17]. In this figure, we provide two additional examples of genes with 

significant increased expression levels (HLA-C and PPP1R11) and two genes with significant decreased 

expression levels (AQP9 and TGM3). The dataset for the volcano plot is available at 

https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE171995 (accessed on 28 October 2023). 

https://github.com/qeubic/gse171995_analytics
https://github.com/qeubic/gse171995_analytics
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084634/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084634/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084634/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084634/
https://www.genenames.org/download/statistics-and-files/
https://www.genenames.org/download/statistics-and-files/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
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Figure A2. A screenshot of a spreadsheet section of the integrated dataset of placenta gene expression in 

response to maternal SARS-CoV-2 infection. The integrated dataset was constructed from data fields in 

datasets on differential gene expression, gene expression counts, and human gene nomenclature [17,68]. 

The Ensembl Gene ID and Gene Symbol are data fields in all the datasets. The datasets and other data fields 

in the integrated dataset are (1) gene expression counts (Binary 
Pattern, Placenta Sample ID, and Z-Score); (2) differential gene expression (p value < 0.05 and COVID vs. 

Control, and Placenta Sample ID); and (3) HGNC gene names (Gene Group, Group ID, and Locus Group). The 

dataset is available as a spreadsheet file (Table S7). The spreadsheet worksheet has data filters for each 

column to allow for interaction. 

  

Figure A3. A screenshot of the interactive dashboard for interacting with the integrated dataset of 

differential expression, gene expression counts, and human gene nomenclature for response to maternal 

SARS-CoV-2 infection. The display is for gene groups of aquaporins, aquaporins|blood group antigens, 

galectins, and receptor ligand|galectins. The insert image is for website links to scholarly publications 

relevant to placenta and network/pathways for a gene (LGALS9 in this example). The dataset for the 

heatmap: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE171995 (accessed on 28 October 

2023). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171995
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Figure A4. A screenshot of the interactive dashboard that groups genes by binary patterns of RNASeq gene 

expression counts from placenta samples from mothers with and without SARS-CoV-2 infection. The design 

allows for website link actions to display additional knowledge on a selected gene. The selected gene in this 

case is AQP9, which shares the 18-digit binary pattern with PI3 and TREM1. 
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