GLOBAL REGULARITY OF SKEW MEAN CURVATURE FLOW FOR
SMALL DATA IN d >4 DIMENSIONS
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ABSTRACT. The skew mean curvature flow is an evolution equation for a d dimensional
manifold immersed into R%*2, and which moves along the binormal direction with a
speed proportional to its mean curvature.

In this article, we prove small data global regularity in low-regularity Sobolev spaces
for the skew mean curvature flow in dimensions d > 4. This extends the local well-

posedness result in [7].

1. INTRODUCTION

The skew mean curvature flow (SMCF) evolves a codimension 2 submanifold along
its binormal direction with a speed given by its mean curvature. Precisely speaking,
assume that Y is a d-dimensional oriented manifold and (M, gy4) is an (d+2)-dimensional
oriented Riemannian manifold, then SMCF is a family of time-dependent immersions
F:1x¥ — M satistying

{ OF = J(FYH(F),  (t,z)elxy,

1.1
F(0,2) = Fo(x), (L)

where, for each given ¢ € I, H(F') denotes the mean curvature vector of the submanifold
Y, = F(t,X). Here J(F'), which denotes the natural induced complex structure for the
normal bundle N, can be simply defined as rotating a vector in the normal space by 7

positively (notice that N3, is of rank 2). An alternative formulation of SMCF is
{ (OuF)" = J(F)H(F),

F(0,) = F. (12

Here, for an arbitrary vector Z € TM at F, Z+ denotes its orthogonal projection onto
N3Y;. Note that differs from by a time dependent diffeomorphism of ¥J;. Hence,
and are topologically equivalent, but has a larger gauge group consisting
of all space-time changes of coordinates.

For d = 1, the 1-dimensional SMCF in R? is the vortex filament equation ;v = dsvx 9%v
for v : (s,t) € R x R — v(s,t) € R3, where ¢t denotes time, s denotes the arc-length

parameter of the curve v(t, -), and x denotes the cross product in R3. The vortex filament
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equation describes the free motion of a vortex filament, see Da Rios [1], Hasimoto [5]. For
d > 2, the (SMCF) was deduced by both physicists and mathematicians. The physical
motivations are the localized induction approximation (LIA) of high dimensional Euler
equations and asymptotic dynamics of vortices in superconductivity and superfluidity, see
Lin [19], Jerrard [10], Shashikanth [27], Khesin [I6]. SMCF also appears in various math-
ematical problems, especially the Hamiltonian flow associated with Marsden-Weinstein
sympletic structure [23], nonlinear Grassmannian manifolds discussed by Haller-Vizman
[6], and the star mean curvature flow introduced by Terng [32]. Moreover, it is remarkable
that SMCF has a deep relationship with the Schrédinger map flow (e.g. [33]), in fact, [29]
proved that the Gauss map of a d-dimensional SMCF in R%*? satisfies a Schrodinger map
flow equation.

Let us briefly recall some earlier works on SMCF. The 1-d case is special, in that the
problem has a semilinear, rather than quasilinear structure, and is essentially equivalent
to the 1-d cubic NLS problem. For more details we refer the reader to the survey article
of Vega [28].

The early work of Gomez [3] proposed a way to write SMCF as a quasilinear Schrédinger
equation system by introducing a complex valued scalar mean curvature and choosing
some gauge for the normal boundle. The model was studied by Song-Sun [30], who
proved the local existence of SMCF for F : ¥ — R* with a compact oriented surface X.
This was generalized by Song [31] to F : ¢ — R4? with a compact oriented manifold
34 for all d > 2. Moreover, [31] proved the continuous dependence of solutions on initial
data in a geometric distance. However, as noted in [7], 31], has much less freedom
than . In fact, the formulation is invariant under time dependent coordinate
transformations of ¥;, while is only invariant under time independent coordinate
transformations. This additional gauge freedom included in ([1.2]) will help to compensate
the derivative loss in the local Cauchy theory.

The above issue was clarified in Huang-Tataru [7, 8], who proposed an alternative ap-
proach, namely to start with the formulation of SMCF in , and then to choose a
favourable space-time gauge (i.e. coordinates). In this gauge there is no more loss of
derivatives, and they were able to prove a full local well-posedness result in low regularity

Sobolev spaces for initial data which are small perturbations of flat metrics. Precisely,

the solutions obtained in [7, 8] are at regularity H®, with s > g, measured at the cur-
vature level; this is one derivative above scaling. The gauge formulation of the SMCF
flow in [7, [§] closely resembles a quasilinear Schrédinger equation, coupled with several
elliptic/parabolic equations. For the local well-posedness theory of general quasilinear
Schrodinger equations, see the pioneer works of Kenig-Ponce-Vega [I3HI5] for localized
initial data, as well as Marzuola-Metcalfe-Tataru [24, 24, 26] for data in translation in-

variant H® based spaces.
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The small data global regularity problem for SMCF in the formulation was con-
sidered in [2I] which proved that Euclidean planes are stable under SMCF for small
transversal perturbations in some W27 N H* space with some ¢ € (1,2) and integer
k > max(%T,d + 1). In the later work [22], the W% smallness and transversal as-
sumption of [21] were removed in d > 3, and it proved the global in time existence and

scattering of small data solutions, and the existence of wave operators.

1.1. The main result. Our objective in this paper is to establish the global in time
well-posedness and scattering for solutions to SMCF in the formulation for small
initial data.

Our main dynamic variable will be the complex mean curvature 1) for our system, which
is defined in the next section, see , and stands for the representation of the scalar
mean curvature relative to an orthonormal frame in N3 determined by our choice of
gauge. The similar representation of the full second fundamental form will be denoted by
A, which is defined in , and the two are related by ¢ = Tr \.

To measure the Sobolev regularity of ¢ for our global solutions we introduce the index
sq so that

d+1 1

> if d = 4;
Sqg >3, i ; Sq > 5 +2(d—1)7

if d > 5. (1.3)

To measure the (Strichartz) decay of the solutions in time we will use the exponent 7y
defined by

rq= %, for d > 4. (1.4)
Then we define the Strichartz norms S[0, 7] as
[©llstory := 19l 2mawray + 191 2o mwoa—2ray,  for d =4, (1.5)
and
‘WHS[O,T] = ’WHL?(O,T;WM—“d)a for d > 5. (1.6)

At this point, we content ourselves with a less precise formulation of the main result,
relative to the harmonic/Coulomb gauge which was introduced in [7] and is discussed in
Section [2}

Theorem 1.1 (Small data global regularity and scattering). Let sq and rq be as (1.3)),
(1.4) respectively for d > 4. Then there exists €g > 0 sufficiently small such that, for all

witial data Yo with metric and mean curvature satisfying

102(90 — 1)

the skew mean curvature flow (1.2) for maps from R? to the Euclidean space (R¥2, gga+2)
is globally well-posed in the harmonic/Coulomb gauge.

mea + |[Hol

H¥%d S €0,
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Moreover, in the harmonic/Coulomb gauge, the metric and complex mean curvature

satisfy the bounds

10:(g = La)ll g, grzarr + 19 lls@) + 9]l cymza S Neboll gza- (1.7)

In addition, there exists 1y € H%2 such that

lim |y — e ysaz = 0. (1.8)

t—

Remark 1.1.1. The gauge choice used for the above result is the harmonic/Coulomb
gauge, following [7]. Here harmonic refers to the choice of coordinates on X at fixed time,
and Coulomb applies to the choice of the orthonormal frame on N. In this gauge, the
surface ¥ is uniquely determined up to symmetries by the complex mean curvature v at
fixed time in an elliptic fashion. By contrast, in [§] the harmonic/Coulomb gauge is only

imposed at the initial time, while a heat gauge is used forward in time.

Remark 1.1.2. One may compare the Sobolev index s, in the theorem with the weaker
restriction s > d/2 in [7, §]. Here the choice of regularity s; is more restricted due to
the need to also control decay via global in time Strichartz norms. Precisely, our main
control norm for the energy estimates will essentially be [|A[[;2/0, see below. To
bound this by ||| r2wsa—2ra by elliptic estimates and Sobolev embeddings requires that
Sq > % + 2. This gives the sy threshold for d > 5.

In dimension d = 4 we face an additional obstruction arising in the study of the global
well-posedness for the linearized equation. For that we need Strichartz estimates in the

space LW, which in turn restricts the regularity to sy > 3.

Remark 1.1.3. Compared with the result in [22], the main difference is that we work
in lower regularity Sobolev spaces, which particularly also include the fractional Sobolev
spaces. Indeed, with the better formulation and new gauges, we get elliptic equa-
tions of metrics and obtain a Schrodinger type nonlinear equation of the defined scalar
mean curvature ¢. There are three key factors which help us to lower the regularity
assumption. First, the coefficients in the second derivative terms of 1) are two derivatives
better than 1. By contrast, the coefficients in second derivative terms in [22] are only one
derivative better. Secondly, in addition to endpoint Strichartz estimates, we also apply
inhomogeneous Strichartz estimates in order to estimate the nonlinear terms. Thirdly,
we use the energy estimates for linearized equation and the paradifferential expansion
of Sobolev norm in order to transfer energy bounds from integral to fractional Sobolev
spaces. The above new ideas play crucial role in our main result. However, there is still

a gap between sy ([1.3) in our theorem and the possible optimal regularity d/2 — 1.

The global regularity is closely related to the energy estimates and Strichartz estimates

for the complex mean curvature ¢ for our system. Following [7], in the harmonic/Coulomb
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gauge 1 solves a quasilinear Schrodinger equation —. We describe these esti-
mates next, beginning with the energy estimates.

A key point in the following proposition is that we should work with the “good” energy,
which is both coercive and propagates well along the flow. At integer Sobolev regularity
indices there is a canonical, geometric choice, given by the L? norm of covariant derivatives
of 1. The intrinsic Sobolev norms are denoted as H* with integer & € N, which are defined
in . The challenge is then to prove coercivity, which is no longer a covariant property

but depends instead on our gauge choice.

Proposition 1.2 (Energy estimates in H*). For each nonnegative integer k there exists
an energy functional E* = E*(¢)) defined on functions in H* which are also small in H*

for some s > d/2, which has the following two properties:

i) [Energy growth] If ¢ is a solution of the SMCF flow (2.27)) with constraints ([2.3),
ED). @D, B3, @10 and @21 then

d
—EN(¥) < Coll M7= M [fs- (1.9)

ii) [Coercivity:] In the harmonic/Coulomb gauge we have the equivalence relation:
E*) ~cy 10l = MG = A e (1.10)
where the constant Cy only depends on the H® norm of 1.
As a consequence of , by and Gronwall’s inequality we obtain
[ (t) |2 < Cledo ColIEeods |y 12, (1.11)
This justifies the need to control the norm ||A||f2z~ for our global solutions.

Remark 1.2.1. The energy estimate ({1.9) holds without any gauge assumptions, and was
proved first in [30, Lemma 4.9]. Here we use a different method to prove this estimate,
using only the Schrodinger equation for v and the associated constraints to gain the

estimates. The gauge choice is, however, essential for the coercivity part.

Remark 1.2.2. The energies are constructed in an explicit fashion only for integer k.
Nevertheless, as a consequence in our analysis in the last section of the paper, it follows
that bounds of the form hold also for all noninteger £ > 0. However, we do this
using a mechanism which is akin to a paradifferential expansion, without constructing an

explicit energy functional as provided by the above theorem in the integer case.

We now turn our attention to the Strichartz estimates for ). Since our problem is
quasilinear, here we a-priori assume that 1 remains small in H*¢, and we also lose some

derivatives.
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Proposition 1.3 (Strichartz estimates). Let sq be as (1.3) and 04 = sq4 — 2 for d > 4.
Assume that 1) is a solution of (2.27)-(2.28)) on some interval [0,T] for T > 1, which

satisfies the smallness condition

Y| oo s < Coeo,

Then 1 satisfies the Strichartz bound

()]s, < C2(||¢0||Had+ a2+ (Coeo)? v (1)l s0,m7)- (1.12)

2(d—1)

A starting point for this result is provided by the endpoint Strichartz estimates of Keel-
Tao [11]. However, in addition we also use the larger class of inhomogeneous Strichartz
estimates developed by [2], 17, [18,34]. The latter plays a key role in lowering the regularity

assumptions for the initial data in our theorem.

1.2. An outline of the proof. There are several key steps in the proof of our main

result:

1. The gauge choice. The formulation has a key additional gauge freedom com-
pared with the equation . Indeed, is invariant under any time dependent dif-
feomorphism in >;, while ([1.1]) is only invariant under time independent diffeomorphisms
in ;. This additional freedom enabled us to use the harmonic coordinate system in [7].
This is then combined with the the Coulomb gauge for the orthonormal frame on the
normal bundle. This reformulation of the equation is reviewed in Section , where
we rewrite it as a nonlinear Schrodinger equation for a single independent variable. This
independent variable, denoted by 1, represents the trace of the second fundamental form
on Y, in complex notation. In addition to the independent variables, we will use several

dependent variables, as follows:

e The Riemannian metric g on ;.

e The (complex) second fundamental form A for ¥;.

e The magnetic potential A, associated to the natural connection on the normal
bundle N3, and the corresponding temporal component B.

e The advection vector field V', associated to the time dependence of our choice of

coordinates.

These additional variables will be viewed as uniquely determined by our independent
variable 1), provided that a suitable gauge choice was made; in our case this gauge is the
combined harmonic/Coulomb gauge. Thus ([1.2)) reduces to

(a) A nonlinear Schrédinger equation for v, see ;
(b) An elliptic fixed time system for the dependent variables (g, \,V, A, B),
together with suitable compatibility conditions (constraints).
At the conclusion of Section [2| we provide a gauge version of our main result, see Theo-
rem [2.9]



SKEW MEAN CURVATURE FLOW 7

2. Elliptic estimates. In Section [ we then consider the space-time bounds for the
elliptic system and the associated linearized equations. Such bounds have already
been proved in [7] at the level of the H*® spaces. But here we also need similar bounds at
the level of the Strichartz norms, which capture the time decay of A and (¢ — I, V, A, B)
in terms of the corresponding decay bounds for v». Another novelty here is that we also
prove elliptic bounds for the linearized system with )y, in H~'; this is in contrast to [7],

where only nonnegative Sobolev norms were used.

3. Energy estimates. In Section we turn our attention to the energy estimates
in Proposition . Here we use the intrinsic Sobolev spaces H* to define the energy
functional, and give the related energy estimates. We also prove an energy estimate for
the linearized Schrodinger equation, which will be needed in particular to transfer energy

bounds from integer to fractional Sobolev spaces.

4. Strichartz estimates. The Strichartz estimates for ¢ are proved in Section [6] using
the Schrodinger system . Since this is a quasilinear problem, we cannot directly
work with the linear variable coefficient system. Instead, we prove Proposition [1.3| using
a bootstrap argument which is based on the Strichartz estimates for the flat Schrodinger
evolution, namely Keel-Tao’s endpoint Strichartz estimates and inhomogeneous Strichartz
estimates, see [2] [17, [1§].

5. The final bootstrap. In the last section of the paper, we gain the H® solutions as
a limit of solutions in higher order Sobolev spaces. Using the energy estimates in HY
for integer N and the energy estimates of linearized equation, we prove the improved
energy bounds for v in fractional Sobolev spaces. This in turn allows us to close the high
level bootstrap loop for both the energy estimates and the Strichartz estimates, as stated
in Proposition As a byproduct, we also obtain the scattering result Schrodinger

equation for 7 in the weaker Sobolev norms H% =2,

2. THE DIFFERENTIATED EQUATIONS AND THE GAUGE CHOICE

The goal of this section is to introduce the main independent variable ¢, which rep-
resents the trace of the second fundamental form in complex notation, as well as the
following auxiliary variables: the metric g, the second fundamental form A, the connec-
tion coefficients A, B for the normal bundle as well as the advection vector field V. For
1 we start with and derive a nonlinear Schodinger type system , with coeffi-
cients depending on (A, S) where § = (h,V, A, B) and h = g — I;. Under suitable gauge
conditions, the auxiliary variables (A, S) are shown to satisfy an elliptic system , as
well as a natural set of constraints. We conclude the section with a gauge formulation of

our main result, see Theorem 2.9 For the detailed derivation, we refer to section 2 in [7].
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2.1. The Riemannian metric g and the second fundamental form. Let (3¢, g) be
a d-dimensional oriented manifold and let (R%*2, gga+2) be (d + 2)-dimensional Euclidean
space. Let a, 3,7,--+ € {1,2,--+,d}. Considering the immersion F : ¥ — (R*2, gpat2),

we obtain the induced metric g in X,
Jap = a"vaF . axﬁF (21)

We denote the inverse of the matrix g5 by g%, i.e.

ap

9% = (gap) ™", Garng"? =85,

Let V be the canonical Levi-Civita connection in Y associated with the induced metric
g. A direct computation shows that on the Riemannian manifold (3, g) we have the
Christoffel symbols

1 . i
FZB = 597 (aé’gaa + aagﬁo - aagaﬁ) = gV aiﬁF . 80F-
Hence, the Laplace-Beltrami operator A, can be written in the form
Agf=TeV2f =g 0% f —Tls0,f),

for any twice differentiable function f : > — R. The curvature tensor R on the Riemann-

ian manifold (X, g) is given by
R"Wﬁ = 8041“737 - 8BFZW + F%Fgm — F;”WFgm, Ropgryo = gWR"ﬂW.
We will also use the Ricci curvature

Ricas = R7p05 = 77 Ryaop-

Next, we compute the second fundamental form. Let ¥V be the Levi-Civita connection
in (R%*2 gga+2) and let h be the second fundamental form for ¥ as an embedded manifold.

Then by the Gauss relation we have
hos =h(a,05) = V,08F — F.(Vo,05) = 025 F — T 40, F.
This gives the mean curvature H at F(z),
H=Tr,h=AF
Hence, the F-equation in (|1.2)) is rewritten as
(O F)*" = J(F)AGF = J(F)g* (025 F — T7 30, F).

This equation is still independent of the choice of coordinates in X
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2.2. The complex structure equations. This part is inspired by Gomez [3]. We in-
troduce a complex structure on the normal bundle N3;. This is achieved by choosing

{11,112} to be an orthonormal basis of N¥; such that
Jl/l = o, JVQZ—Vl.

Note that such a choice is not unique.

The vectors {Fy, - - -, Fy, v1, 15} form a basis at each point on the manifold (3, g), where
F,, = 0, F for o € {1, -+ ,d} might not be orthonormal. We define the tensors rag, Tag,
the connection coefficients A, and the temporal component B of the connection in the

normal bundle by
Kap = 0aFp - 11, Tap:=0aFp 12, Ay=041 12, B=0w - s

We then define the complex vector field m and the complex second fundamental form

tensor A, to be
m =11+ iy, Aag = Kap + iTas, (2.2)
and define the complex scalar mean curvature 1 to be the trace of A,
Y =TrA=g"\p. (2.3)
If we differentiate the basis, then we obtain a set of structure equations of the following
type

uFy = T F, + Re(Aagin),
{ 5 =100, 8 24)

ddm = —\1F,.
Here 00‘} = 0, + iA,, and similarly we will denote Vﬁ =V, +iA,.
We then use the structure equations to derive a set of constraints for A and
A, and hence to obtain their elliptic equations. Precisely, by and the relations

0,0 F = 030, F, we obtain the Riemannian curvature and Ricci curvature
Royap = Re(Agydas — AayAso),  Ricys = Re(Aygth — MaA3), (2.5)
as well as the Codazzi relations
Vol =ViAL = VA, (2.6)
where the second fundamental form A should also satisfy the constraint
Ao = Aga- (2.7)

The structure equations (2.4) combined with the relations 0,0sm = 030d,m imply the

compatibility condition for connection coefficients A
VQAB - V@Aa = Im(Az}‘ﬁ’Y)' (28)

We state an elliptic system for the second fundamental form A in terms of ¢, using the
Codazzi relations (2.6) and ¢ = Tr .
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Lemma 2.1 (Div-curl system for A\, Lemma 2.2 [7]). The second fundamental form A

satisfies
Viadsy = Viday =0, VN5 = V5. (2.9)

In order to both fix the gauge and obtain an elliptic system for A, we impose the

Coulomb gauge condition
VA, = 0. (2.10)
We state the elliptic A-equations from the Ricci equations (2.8)).

Lemma 2.2 (Div-curl form for A). Under the Coulomb gauge condition (2.10), the con-

nection A solves
VoAs = VA, =Im(\)g,), V*A,=0. (2.11)

As a corollary, we can derive a second order elliptic equation for A.

Corollary 2.3. Under the Coulomb gauge condition (2.10) and harmonic coordinates
(2.15)), the connection A solves

VIV, Aq = Re(AJt) — ALA]) Ap + V7 Im (A oo ). (2.12)
Let 9% = g*P9g, the connection A also solves
0,0"Ay = (87g756a — (%g”ﬁav)Ag — 0, ITm( Ay A77). (2.13)

Proof. The first equation (2.12)) has been derived in [7]. For the second equation (2.13)),
by harmonic coordinates (2.15)), the div-curl system ([2.11]) for A can be rewritten as

gP0,A5 —0°A, =Im(\7N)), 0%A, = 0.
Then the equation ([2.13)) is obtained by applying 0 to the above first formula. O

2.3. The elliptic equation for the metric g in harmonic coordinates. Here we take
the next step towards fixing the gauge, by choosing to work in harmonic coordinates. Pre-
cisely, we will require the coordinate functions {x® «a = 1,--- ,d} to be globally Lipschitz

solutions of the elliptic equations
Agz® = 0. (2.14)

This determines the coordinates uniquely modulo time dependent affine transformations.
This remaining ambiguity will be removed later on by imposing suitable boundary con-
ditions at infinity.

Here, we will interpret the above harmonic coordinate condition at fixed time as an
elliptic equation for the metric g. The equations can be expressed in terms of the
Christoffel symbols I', which must satisfy the condition

g*Tls =0, fory=1,--- d. (2.15)
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In fact, we can obtain global harmonic coordinate by the smallness of 0,h in H® as

follows. Here for a change of coordinate y = x + ¢(x), we denote

and denote its metric and Christoffel symbols as § and T, respectively.

Lemma 2.4 (Existence of global harmonic coordinates, Proposition 8.1 [7]). Let d > 3,
s> %, and F : (R, g) — (R¥2 grat2) be an immersion with induced metric g = Iy + h.

Assume that 0.h(x) is small in H*(dz), i.e. ||0.h|
change of coordinates y = x + ¢(x) with lim,_,o ¢(x) = 0 and V¢ uniformly small, such

s < €9. Then there exists a unique

that the new coordinates {yi,--- ,ya} are global harmonic coordinates, namely,

fyaﬁ(y)f‘lﬁ(y) =0, foranyye R
Moreover,
105¢())|

and, in the new coordinates {y1,--- ,ya},

mede) S 10:0(2) || 5 dn),

Hayﬁ“Hs(dy) 5 ||8xh|

Hs(dz)-

Under the harmonic coordinates, the Ricci curvature formula (2.5)) leads to an equation

for the metric g:

Lemma 2.5 (Elliptic equations of g, Lemma 2.4 [7]). In harmonic coordinates, the metric
g satisfies
gaﬁaiﬁg'ya = [_a'ygaﬁaﬁgao - Ugaﬂaﬁga'y + a’ygaﬁaagaﬁ]

_ _ (2.16)
+29*T 0T, — 2Re(Math — Aay AL).

2.4. The motion of the basis {F}, -, F;,m} under (SMCF). Here we derive the
equations of motion for the basis, assuming that the immersion F' satisfies . Then
we state the Schrodinger equation for mean curvature ¢ and the elliptic equations for
advection fields V' and temporal connection coefficient B.

We begin by rewriting the SMCF equations in the form
OF = J(F)H(F)+ VF,,

where V7 is a vector field on the manifold >, whose components in general depend on the

choice of coordinates. By the definition of m and \,z, we get
O F = —Im(¢ym) + VVE,. (2.17)
Applying 9, to (2.17), by the structure equations (2.4) and m_LF, = 0 we obtain the

equations of motion for the basis
{@Fa = —Im(02m — Moy V) + [Im(YA]) + V V| E,,

2.18
Ofm = —i(0Mp — iIXTV)Fy, (2.18)
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where 07 = 0, + iB.

From this we obtain the evolution equation for the metric g. Precisely, we denote
Gap = Im(PAas) + %(Vavg + V5Va).
By the definition of the induced metric g and we have
O9ap = 2Gap, (2.19)

and the evolutions of ¢*? and y/det g are given by

D,g®P = —2G7, Oiv/det g = Vo,V /det g.

These yield the evolution equations for Christoffel symbols
ol = VQGg + VGl —V7G,p. (2.20)

Moreover, by (2.19)) and (2.20) we have
Oi(g*'T75) = —2G*T) 5 + 2V Im(PA®7) + AgV7 + Re(AWJ) — Ao A*)V7. (2.21)

So far, the choice of V' has been unspecified; it depends on the choice of coordinates
on our manifold as the time varies. However, once the latter is fixed via the harmonic
coordinate condition ([2.15)), we can also derive an elliptic equation for the advection field
V.

Lemma 2.6 (Elliptic equation for the vector field V', Lemma 2.5 [7]). Under the harmonic
coordinate condition ([2.19)), the advection field V' solves

AVT = =2V, Im(pA*") — Re(AJ9) — Mg A7)V

+2(Im (A7) + VOV, (2.22)

Remark 2.6.1. We should emphasize that is not a covariant equation but an
equation for the components of V', which depend on the choices of coordinates. In view
of the relation , a different choice of coordinates would yield a different type of
equation of V. For example, a parabolic equation for V' was obtained in [§], where the

heat gauge was chosen.

Next, from the equations ([2.18]) of motion for the basis we derive the main Schréodinger
equation and the second compatibility condition. The starting point is the commutation

relation

(08, 0m = i(0,Aq — 0uB)m,
which can be expanded via equating the coefficients of the tangent vectors and of the
normal vector m, see [7]. Using the expressions (2.4)), (2.18) for the derivatives of the

basis, the above formula yields the evolution equation for A

OP A + AL(Im(AT) + V V) =iV (0470 —iAJV), (2.23)
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as well as the compatibility condition (curvature relation)

0 A — 00 B = Re(ALVAY) — Im(ALA,,)V°. (2.24)

«

This in turn allows us to use the Coulomb gauge condition (2.10)) in order to obtain an

elliptic equation for B:
Lemma 2.7 (Elliptic equation for B). The temporal connection coefficient B solves

_ 1 _
V'V,B = V'V, Re(AJY) + 5Ag|¢|2 + V7 [Im(AJA5) V7]
+ 2Im(YN) + VPV + VIV 5 A,

(2.25)

Proof. The equation (2.25)) is obtained by Lemma 2.6 in [7] and the following relation
- — — — 1
Re(AJV) = V, Re(AJ9) — Re(V59) = V, Re(A) — §V7|¢|2‘
0

Finally, we use ([2.23)) to derive the main equation, i.e. the Schrédinger equation for .

By (2.6, contracting ([2.23]) yields
i(0F — VIV + VAV = —iAT Im(1pX7). (2.26)

2.5. The main result for modified Schrodinger system from SMCF. To conclude,

under the Coulomb gauge condition V*A, = 0 and the harmonic coordinate condition
gaﬁf‘gﬁ =0, by (2.26), (2.9), (2.16]), (2.22), (2.11)) and ([2.25]), we obtain the Schréodinger

equation for the complex mean curvature 1

{z’(@f — VIV + VIVA) = —iX] Tm (A7), o)

2/1(0) = o,

where the metric g, curvature tensor A, the advection field V', connection coefficients A

and B are determined at fixed time in an elliptic fashion via the following equations

(Vidsy — Viday =0, VN5 = Vi,

9" 0aphe = [0:9°"0ag0s — 029°" O gar + 0590509’
+ 29" Toaul, — 2Re(Ayoth — Aoy AL),

VoV V7 = 2V, Im(A“")) — Re(A1) — Moo A*7)V7
+2(Im(YA*7) + VOV,

Vods — VA, =Im(AlNg,), V%4, =0,

(2.28)

— 1 <
VIV B = = VIV, Re(T9) + 5 Agl0 4+ V7 [Im(A A0g)V']

+ (2Im(p A7) + VAV + VIV 95 A,

\



14 J. HUANG, Z. LI, AND D. TATARU

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of the coor-
dinates as well as the time dependence of the SU(1) connection) we can assume that the

following conditions hold at infinity:
A(o0) =0, g(o0) =14, V(o) =0, A(0) =0, B(oo)=0

These are needed to insure the unique solvability of the above elliptic equations in a

suitable class of functions. For the metric g it will be useful to use the representation
g=1Is+h

so that A vanishes at infinity.
We note that the above elliptic system (2.27)) is accompanied by a large family of

compatibility conditions as follows: (2.5, (2.7)), (2.8), (2.10), (2.15)), (2.19) (2.23) and
(2.24)). These conditions can all be shown to be satisfied for small solutions to the nonlinear

system (2.27)-(2.28).

Now we recall the small data local well-posedness result for the (SMCF) system in [7,

Theorem 2.7] in terms of the above system:

Theorem 2.8 (Small data local well-posedness in the good gauge). Let s > g, d > 4.
Then there exists €9 > 0 sufficiently small such that, for all initial data Vg satisfying

4ol

the modified Schriodinger system (2.27), with (A, h,V, A, B) determined via the elliptic
system (2.28)), is locally well-posed in H® on the time interval I = [0,1]. Moreover, the

mean curvature satisfies the bounds

(¥, A, 0.V, 0uA) || o115 + |0xh | co,15541) + 102 Bll oo, 13517 S ol

s < €o,

Hs-

In addition, the mean curvature v and the auziliary functions (X, h,V, A, B) satisfy the

constraints @3), @3, €7, @), @I0) and @I for any fised time t € (0,1, and
the evolutions (2.19)), (2.23]) and (2.24)).

Actually, in [7] the system — was solved in a smaller function space, which
includes both Sobolev regularity and local energy bounds. In the above theorem, by
well-posedness we mean a full Hadamard-type well-posedness, see [9].

The main result of this paper is to extend the above local solution for small data to
global for the (SMCF) system in Theorem in terms of the above system. The next

theorem represents the harmonic/Coulomb gauge form of our main result in Theorem u

Theorem 2.9 (Small data global regularity in the good gauge). Let sq, 14 be as (1.3
and (L.4) respectively for d > 4. Then there exists €y > 0 sufficiently small such that, for
all initial data g satisfying

4]

e < €o, (2.29)
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the modified Schriodinger system (2.27), with (A, h,V, A, B) determined via the elliptic
system ([2.28]), is globally well-posed in H*i. Moreover, the mean curvature satisfies the

bound (1.7) and the scattering (|1.8]).

This result is achieved by the following bootstrap proposition and continuity method.

Proposition 2.10 (Bootstrap proposition). Let sq, rq4 be as and respectively
for d > 4. Assume that (¢, \,S) is a solution to (2.27) and (2.28) on some time interval
0,7, T > 1, with initial data satisfying the smallness assumption . Assume also
that the solution satisfies the bootstrap hypothesis

[ lls0,21 + 1901l poe 0,720y < Colltolrea- (2.30)
Then the following improved bound holds:
Co
[P llsto.21 + 191l oo 0,720y < 57 %0l a4, (2.31)

where Cy > 1 is a large universal constant.

In the remaining sections, we will focus on the proof of this proposition, which splits in

a modular fashion into an energy component and a Strichartz component, as in Proposi-

tions [I.2] in the introduction.

3. FUNCTION SPACES AND NOTATIONS

We define the function spaces for the study of global solutions to the system ([2.27)-
(2.28). First we introduce the usual Sobolev spaces W*P? H?® and the intrinsic Sobolev
spaces H* for tensors on (RY, g). The gauge independent intrinsic norms H* are used in
the energy estimates. Then we state a equivalence relation between the H* and H* norms
under some assumptions on metric and magnetic potential.

For a function u(t, x) or u(x), let w = Fu denote the Fourier transform in the spatial
variable z. Fix a smooth radial function ¢ : RY — [0, 1] supported in {x € R?: |z| < 2}
and equal to 1 in {x € R?: |z| < 1}, and for any i € Z, let

pi(z) = p(2/2') — p(a/27).

We then have the spatial Littlewood-Paley decomposition,

[e.e]

S RO -1 YSm) -1,

1=—00

where we use the differential operator D := ﬁax, P; localizes to frequency 2¢ for i € Z,
i.e,

F(Piu) = pi(§)a(8),
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and
- ZPi(D)» S;(D) = Py(D), for i > 0.

i<0

For simplicity of notation, we set

J 00
U; = Sju, U<y = E Siu, U>; = E SZU
i=0 i=j

We denote W*® for 1 < p < oo as the usual Sobolev spaces, and denote H® := W2,

For simplicity of notation, on some time interval [0, 7], we define
ullpwer = lullLrorwer), 1 <7 <00

For the solution ¢ of Schrodinger equation in ([2.27)) and the related second fundamental
form A, we will be working primarily in L H* N S[0,T] for s4 > % + 2. Here S[0,T] are
the Strichartz spaces defined by (1.5) and ([1.6)). For convenience, corresponding to the

L? component of the Strichartz norms, we also define the Sobolev norm at fixed time as

[Pllstr = llwras + [[@llwsa2ra,  for d =4,

and

[¥]lstr == [[¥|lwsa-2ra; for d > 5.
For the elliptic system (2.28)), at a fixed time we define the H® norm as

H(h? % A’ B)HHS = H&xh\

oot |02V [ + [|All o2 + 110, B]

Hs—1.

Next, we define the intrinsic Sobolev spaces H* for integer k € Z. Since the Schrodinger
equation ([2.27)) is a quasilinear equations with variable coefficients g, we will use the space

H* to derive its energy estimates later. Let g be a Riemannian metric on RY, and A, be a

magnetic potential. For any complex tensor T = Tgfjjl’_ﬁird:vﬂl ® ...dzP ® awaal ® .0 83%,

the covariant derivative is defined by
VAT =V, T +iA,T,
where
Vo TR = 0T + Z Do TgL oo = Z LS TS oty (B1)
We have

Then the intrinsic Sobolev norm H* for nonnegative integer k& € N is defined by

k 1/2
_ Al|2
Tl = (3 [ 190471 ) 52
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where volume form is dy = /det gdr and V4! is the [-th order covariant derivative. By

duality, we can also define the negative intrinsic Sobolev spaces as

|7l = sup (T,0) .

Ul <1

Under a suitable smallness assumption on the metric h and the magnetic field A we

have the following equivalence relation between H* and H* for a range of integers k.

Lemma 3.1. Let d > 3 and s > . Assume that ||0,h|

integer 0 < k < s we have the equivalent relation

ms-1+ || 4]

us—1 < €. Then for any

[T e~ (T[] e (3.3)
Proof. By covariant derivative (3.1]), schematically we write VA*T as

VAT =fT+ Y > I +iA) I +iA) 0T (3.4)

1<n<k It tnp1=k—n
Then by the smallness of 0,h we have
IV 2y S MV T gl 22
NPT+ > ST R iA)- O+ id) O T (3D

1<n<k lLi+-+lpt1=k—n

In order to bound the second term above, it suffices to bound I'"T in H*~". For this we

claim that
ITT|| =1 SN Ouhllgs—2 | T || g, for any 1 < k' < k. (3.6)
Then by induction we have

T Tl e S NOshllpzs=2 [T T || ppi-nin < 1|0:1|

e[| T|| e
This combined with (3.5)) and the smallness of 9,4 and A in H*~! implies
1T S N1z A+ el Tl e S T e

We now return to prove the claim (3.6]). Using a Littlewood-Paley decomposition and

Bernstein’s inequality we have

IS5 oa S D 25N 229 2 Tl + Y 2972 Dg 12| T 2

0<j1<i s
+ > 20O, o | T
J1>j

=1; + Iy; + Is;.
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For the first term we have

Ly Sleqpp(k') D 2027 140| T | 2 2@/2- K4 Gi=i)gh'ds | 7 || o
0<j1<j

+ Lsap(k) Y 2| D | 2 2d/2 K 0 gk

0<51<y

STl = [T e

For the second term we have

Ly <> 20702 200 1Dy 27| Ty e S I o || T e

0<51<y

The last term I3; is bounded by

Ly < 3 2@ DG | aga [T -
Jj1>7

Hence, these give

IPT (| S IS5(CT)0-1) Y S T

320

aot [Tl S 1|02

ot [T e

Then the claim (|3.6)) is obtained.
Conversely, by (3.4)) we also have

10" T || 2 SIVA*T g2 + Y > oM +iA) 0 4 iA) - 0T g

1<n<k b+t 1=k—n
SIVART gl 2y + €l T | v-
This implies

1Tl w S N llwe 4 el Tl e S AT (s

which completes the proof of the lemma. O

4. ELLIPTIC ESTIMATES

In this section, we consider the elliptic system (2.28)). Its solvability was already con-
sidered in [7] under the assumption that 1 is small in H*. Here we prove some additional
space-time bounds for (A, S) with S = (h,V, A, B), which are adapted to the Strichartz
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norm we will use later on. We begin with the linearization of the solution map
4
V:j/\lin,ﬁ"y - V?/\lin,av - _(Vf)lin)\[)’“/ + (vg)lin/\om/;

VA#X)\HTL,Q@ — _(VA7(¥>Z’L'71 )\(1[3 + (véw)lim

POz 5 Giinne = —GinOngdve + ((=0,9° 05900 — 059" Vgar + 09050,9"")

+ 29T o0l — 2Re(Mat) — AayAL)) 5,

—(VOV )iV + (2V4 Im(A) — Re(AJ) — Ay XYV (41)
yabs ay/B8

+ 2(Im(pA*) + VOV )Flﬁ)hn

aaAlm,ﬂ - aﬂAlin,a - Im(AZS\ﬁ"/)lina g ﬂaaAlm,ﬂ - _glo;gaaAﬂ

VOV VL =

lin

1
V'V, Biin = =(V'V, )i B + (= V'V, Re(A]Y) + 5Agw;\2

+ V' Im(A)A05) VO] + 2Im (A7) + VOV + VIV 95A, ),

\

where (Vyin, Aiin, Siin) 18 the linearization of the solution map (¢, \,S) in ([2.27)-(2.28).
Then we recall the solvability result in [7]:

Theorem 4.1 ([7], Theorem 4.1). Assume that ¢ is small in H® for s > d/2 and d > 4.
Then the elliptic system (2.28)) admits a unique small solution (A, S) in H® x H?, with

[Allzs + (1Sl S (4.2)
Moreover, for the linearization of the solution map above we also have the bound:
d
[ Niinll e + [|Stinll#e S Nunllae, o € (5 —3,s]. (4.3)

2

Here we will supplement the above result with an an additional set of estimates:
Lemma 4.2. Let

d d(d —2)
L <oy —2 <sgr2- D072
TPy

Let 1) be defined in the interval [0,T] and satisfy the hypothesis of Proposition . Then
we have

[Allso.r) + (2l Lz wer 2 + [[(0, VLA, B)l[ 1200 S [[¥0 510,175 (4.4)
and
10V | Lywera + 102V 1 pe S 190155027 (4.5)

In addition, in dimension d = 4 we have
12/l zwra S 1l zwralll gem (4.6)

We remark that in essence this is a fixed time result, where the evolution equation for
1 is never used. What we prove in effect is the corresponding bound at fixed time where

all the L2 norms are dropped.
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Proof. Step 1: The estimate for X in (4.4]). Here we use the div-curl system (12.9), which

we write schematically in the form

Oatas = Ogth + Ath + hOu\ + Oph,
Oasgy — OpAary = AN + O,hA.

By the relation
AE) = €172 (X - )€+ [e] 2T — eXT) - ¢,
we have

[Alwere STR(R - Mllwara + [R(RaAsy = RpAay)lwera
S W lweora + [1DI7H(AY + AN+ hOpA + 0uh) wera,

where R = %‘l is the Riesz transform. By Sobolev embeddings and (4.2]) we can estimate

IIDI7 (h0sA + OhM)llwera S IR (W) lwera + [[[ DI (05hA) [[wera
S Allweral[Allzoe + [[h]] oo | Allwora
+I[DI7 Po(0:hN) | + (|07 A lye-1.ra
S 020l ms I lwera + 10:hA| 2

S col| Allwera
Similarly, since ¢» = Tr A we can bound the other terms by

DI (AN lwera S IAX| L2 + [ AN o104
S 10w All s [[Mlwera + [|Allwo-rra | Al oo
S 1624

ae |\ [

S €oll Allwera
Hence, from these estimates we obtain

IMzzwera S 101z wera- (4.7)

Similarly, in dimensions 4 we also have

||)‘||L2TW1*4 S ||1/1||L2TWL4- (4-8)

Step 2: The estimate for the metric g in (4.4) and (4.6). It suffices to consider the
following schematic form of the equations (2.16|):

Ah = hO?h + 0,hO,h + hd,hO,h + N°.
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For the first three terms, we use Sobolev embeddings and Holder’s inequality to estimate
|AT (RO2h + 0,hOph + hO,hOLh) ||yyer 2a-1)
< ||hO2h + O,hO h 4 hO,hO,h)| 201 + |hO2h + 0,hOph + hO,hD h|| e —2.2a-1)
L 5d=

S (141192

ms+1)||0zh|

o |Pllyor 21 S €ol |l yror 2@
For the last term, by Sobolev embeddings we have
1A Ol 0o S IV sy + 12 hyor-2za

S M zar2 M2t + [[Allwer—220-n [|All oo

S A

ms |[Mwera S €l Allwera.

Hence, by the above estimates and (4.7 we obtain
HhHL?FW"Iv%d*l) S GOH)‘HLQTW‘”“d N GOHwHL%W”’*d-
In the same way, from (4.8)) we also obtain the bound (4.6]) in dimension d = 4.

Step 3: The estimate for the advection field V' and the connection coefficients A in
(4.4). Again it suffices to consider the following schematic form of the equations ([2.22]),
(2.13))

AV = hO2V + 0,h0,V + 0,h0,hV + N (A +V + 9,h) + 0,(\?), (4.9)
AA = 0,(N) + 0,(hd, A).

The estimates for V' and A are similar, so we only prove the bound for V.
As in the proof of (4.2)), we bound the first three terms on the right by

~

S €2V

11D~ (hO?V 4 0,h0,V + 0,hO, V)| rsa < (14 ||0,h]

wea+1)[| 0z

wea+1 ||02V || mrea

Héd-
For the forth term in (4.9)), by Sobolev embeddings we have

D[N (A+V + 0,h)))

mea SN AV + b a0 + [N (A+V + 0:h)|
SN aa (824, 05V, 82 1) || 2

< @l Mlwera.

H?d

For the last term in (4.9), we also have
IR 50 S M zzsa [ M|z S €ol| Mlwera
Hence, we obtain

10:V]

a5 €ol|A[wera.
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Step 4: The estimate for B in (4.4). Again it suffices to consider the schematic form
of the equation ([2.25)):

AB = h?B + 0, (A0 A) + A2(0, A + 0,V + 0, h(V + A)) + AN AV + A+ 9,h)
+ 0.V, A+ 0,hVO,A.
By Sobolev embeddings and , we obtain
10:Bll 21 S ol Allparsass + 10V i2me) + eolMlzzwea S olléllzwera
The proof of this bound is similar to the above steps, and we omit the detail.
Step 5: The estimates for V in . It suffices to consider the form
AV = hO2V + 0,h0,V + 0,h0,hV + N (A +V + ,h) + 0,(\?). (4.10)
First, we prove that
10V | Ly weara S M 302y + €0ll02V || L woara-

This implies the bound (4.5)) for the term [|0, V|| 1 woara-
By V-equation and Sobolev embeddings we have

10V | Lwwso—2ra S NDITH ROV + 8,08,V + 9phdehV ] || a2
+ DTN (A +V + 0uh) [y wro-2ra + 1RO Lt wro-2ra
— T+ 11+ ITI,
where R is Risez transform. For the first term on the right hand side of (4.10)), we easily

have
I S ||P<o(hOZV + 8,00,V + 0phdhV) ||y 12
(|2 + 0,0,V + Db hV ||y o 5
S (L + 1020 e rrra) (0uhll oo real |02V || Ly wrka—2ira + [|Onh]| Lovyra—20ra

axVHL?Tde)
S €|Vl s wra—zra + 1M [S0.07-
For the second term in , by Sobolev embeddings we have
11 < ||[P<o| DI N (A4 V + 0,h)] || + | Poo[N(A+ V + 0,h)] || prypea—1ma
S M zzrral M p2poe | A+ V + Ophl| pa + (|2 2oe [V (A + V4 0oh) || e rea—s
+ M zzweara||Al 2o | A+ V + Ophl| oo poe
S M 2wearall(0eA; 02V, Oph)|| oo rea
N 50’|)‘H%2Wf’dvrd-
For the last term in (4.10f), we also have

I S Mz Mz wro-2ra S A2 yro—2ra S €5
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Hence, we give the bound for 0, V.
Next, we prove that
102V lIz1za S €llOV Il za + M 507y (4.11)
From the general form , we use , for 9,V to bound the first three terms
in
|hO2V + 0,hOV + 0phO,hV || 11 pa
S NP poe rea 107V || 1 + 1027 o £al| 02V | aweara + 1| 0uTel| 22 oo |05V || oo roa—

S ell02V e + GOH)‘H?S‘[O,T]'

We bound the last two terms in by
IN*(A+V + 0uh) 1 pa + 1105 (A%) |2 o
S AL 1102 A, 2V, 0uh) || oo prsa=t + M IS10.m)
S M 50,27 (1 + €o)-
Then the desired bound follows, and we obtain the bound for 92V O

Finally, we turn our attention to the linearization of the elliptic system ([2.28)). This
has already been studied in [7] in nonnegative Sobolev spaces. However, for our global
estimates here we need instead to work with the linearized equation in H~!. For this case,

the elliptic estimates are as follows:

Proposition 4.3. With the notation and hypothesis in Proposition[2.10, for the linearized
equations of (2.28) we have

[ Nin [ oo =1 S N Wtinl | oo 11, (4.12)
[0zhuin |22 + [[Avinllr2r2 + Vil 2202 + | Biinllr2a-1 S [Wuinll ree 1[4l s0,7y- - (4-13)
Proof. Step 1: Prove the hy;, bound
[0zhuinlr2r2 S [ Atinllpoo -1 [ Al 2woara- (4.14)
For the h-equations in , we consider the general form
Ah = hO*h + 0,hd h + hO hd,h + 2.
For the term \;, A, by Sobolev embeddings we have
DI~ (i)l 2
S DI im0 M 122 + 1D (Niin 00|22
< N in,<ollz2 M e + (D7 (D7 N, 50| DIA) + [ D7 N, 50| 2 (4.15)
S N Awin,<oll 2 1A o + [11D1 Nin>oll 2 ([ DI za + 1A z<)

S in [ =1 [ Ml]ste-
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For the term hy;,0%h, we also have
DI (hiin®®R) |22 < [ uin®h] 2 + ([ D7 (OhuinOh) | 12

S Mhainll 24, [|0h]] e + [ Dl in| 22| 0R| o

N ||ahlin||L2||ahHLd~
The other terms are controlled at the same way. Hence, by we obtain

[0Minl| 2 S €ol|OPuinl| L2 + (| Avin| =1 Allstr-
This implies the bound .
Step 2: Prove the bound
[Avinllz222 + Vil 222 S [[Avinllpoo -1 [|Al] s70,77- (4.16)

The estimates of Vj;, and Ay, are similar, so we only prove the first one. For the

V-equation, we consider the form
AV = hO2V + 0,h0,V + 0,h0,hV + N*(A+V + 0,h) + 0, (\?). (4.17)
For 9(\?), we have the bound (4.15). For the term A?(A + V + d,h), we have
IAT W Vi) 22 S 1A Vil e, S IMZall Vil 22,
and
AT N AV) |2
SIATHUD) " Nind DYAV + (D) Nin MDYV) + ATHD) (D) " Niin AV || 2
S D) Nin(D)AV + <D>_1/\lz‘n/\<D>V||Lf—f4 + D) Ninl 2 M| parzoe [V ]| e
S M in Lz [[AMl|see [ V[| 22
For the term h0?V, we have
AT (hin0®V) || 2 = |A™H(0h1ndV) + | D7 TV ) | 2
S [|0huin]| r2[|OV]

He»
and
IA™ (hO*Visn) |2 = [|ATH(0*hViin) + | D7 (0AViin) + hViin | 22
S 0B 5+ 1|0Viin]| 2

s
The second and third term in are bounded similarly. Hence, we obtain
Wiinllz2 S e1(IVinll 2 + [[Avinllz2) 4 [ Xin || =1 [[ Al st
In the same way, we also have
[Asinllz2 S [ Xinl[ =1 1A lster-

These two estimates imply the desired bound (4.16]).
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Step 3: Prove the Ay, bound (4.12)).
As before, it suffices to consider the simplified form of the div-curl system for A\, namely

OaAap = 00 + AY + hO A + O,h A,
OaAgy — OgAay = AN+ O hA.
For the term A\ we have
DI (AinM -1 S 1 Avinl |2 M o
and
DI (ANn) -1 S Al el Miim,<oll 22 + [I1DI ™ (IDIAIDI™ Niin,>0) + AIDI™ Nin 0]l 2
S NOAl e[| Min -1
The other terms are controlled by
[l -1 + 1|0 huin || 2 | A
Then these estimates combined with and yield

s || Minl -1
[ Atinl[rr=1 S [t [l =1 4 €0l Avin | -1
This implies the bound .
Step 4: Prove the bound
[Buinll 21 S | Mvinl| oo -1 | Al sp0,71- (4.18)
For the B-equation we consider the general form
AB = hd2B + 02(N?) + 0.(A\*)(0zh + V) + N*(02h + 0,h0.h + 0, A + 0,V + 9,hV)
+ 0,VO,A+ 0,hV O, A.
For the second term 9%(\?) we have
[AsinAll=1 S M Xin |- [ Al ste-
For the third term, we have

IA™H(0s Nin V) -1 S N Nvin a2+ [ Mlste |0V

Hs .
and

A8 (A2)Visn) L1 S I e Vin 2.

str

We control the other terms at the same way, then by (4.14]), (4.16]) and (2.30) we obtain

| Biinllz-1 S €oll Biinllz-1 + | Minll -1 [ Al st

This gives the bound (4.18)).
In conclusion, from (4.14)), (4.16)), (4.18) and (4.12)) we obtain the second bound (4.13)).

O
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5. ENERGY ESTIMATES

Here we consider the Schrodinger equation , and prove the energy estimates in
Proposition as well as an energy estimate of linearized Schrodinger equation. These
will be needed in order to prove energy bounds in fractional Sobolev spaces. For
two tensors T and T we denote T * T any tensor product of two tensors when we do not
need the precise expression.

To start with, we define the energy functional as follows. Let the metric g and con-
nection A be (part of) the solutions to the elliptic equations . For any nonnegative
integer k € N, we define E*(1)) as

k
/
B = Wl = (3 [ (940l 65.1)
=0

We will show that this energy functional satisfies the bounds in Proposition [1.2]

a) Proof of the energy estimates (|1.9)).
Step 1: Prove that the time derivative of E* has the form

d k o A,
B () = > ReHv N\ dp (5.2)
> laj|<2k j=1

with coefficients depending on the metric g so that each of the terms in the above integrand

1s covariant.

We recall the Schrodinger equation ([2.27)) first
i(0F = VI + Al = —id) Im(¥A7). (5.3)

On one hand, the energy (|5.1)) is defined by intrinsic Sobolev norm, which does not depend

on the choice of gauge. On the other hand, the equation ([1.2)) is equivalent to ([L.1}) up

to diffeomorphisms tangent to ¥;. Indeed, let ' : [0,T] x R? — R92 be a family of

embeddings satisfying the equation ([1.2)), and let z(¢,y) be a family of diffeomorphisms
of R? satisfying

ox oF T

D F(w(t,y),t) (5, () = —( ty) b))

(et (55 (1)) = = (5 Gelt.). )

Then F(t,y) = F(x(t,y),t) is a solution of (I.1)) with the advection field

V(t, )0 F = (0,F)" = 0.

Hence, inspired by the above two properties, we can derive the energy estimates from
(5.3) with the advection field V' = 0. Then the volume form du = +/det g is preserved

along time t.
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Applying £ to [[|[VA*,(t L2 (duy DY (219 (2-19) we obtain

d Ak
d
dt/'v Yl2dp

- / 2 Re g(VEVA*, VAR du + (Vig)(VA*p, VARG du
Rd

= / 2Re g(VEVAHR, VAkY) 4 2G(VARN, VARY) dp. (5.4)
Rd

By the equalities (2.20) and (2.24)) with V' = 0, we have
0F VA = Y VAN VA« ARy,
li+la+ls=k

Moreover, note that by Gauss equation, the curvature tensor R on Y can be expressed as

R = X x )\, so the following commutator equality holds
(VA A = Y VA« VA« VA, (5.5)
i+j+m=k

So by (5.3)), the first term in the right-hand side of (5.4)) reduces to

[ 2Req(vEVAH, TG) d

Rd
= / 2Re g(VA*0 ), VAR) + 3~ Reg(VAIXx VAR« VALY, VARY) d
Rd

li+lo+iz=k

— / 9 Reg(VA’kiAAw, vA,k¢) + Z Reg(vA’ll)\ * VA’lQ)\ * VA7I3¢, VA’ki/J) d
R4

li+la+i3=k

‘/Rd—2R<H'IVA”““Q/J|§+ D Reg(VMAx VAN VALY, VARY) d

li+la+i3=k

= / Z Re g(VAN N 5 VAL s VALY VAkY) d
R

d
li+la+l3=k

Hence, we obtain the energy relation ([5.2)).

Step 2: Prove the energy bound (|1.9).
Let us first recall the following interpolation inequality proved by Hamilton [4, Section
12).

Lemma 5.1. If T is any tensor and if 1 < i <1 — 1, then with a constant C = C(d,I)

depending only on dimensions d and l, which is independent of the metric g and the

1)/ VT dp.
R4

connection I', we have the estimate

L
Rd
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Then by the interpolation inequality, (5.2)), (4.3) and (5.6)), for each integer k we have

d :
SEW) SIS IV s

m<k i+j+l<m
Sz A

VAN s [V A 2 | 7470 2

Thus we obtain the energy estimates ([1.9)). O

b) Proof of the energy equivalence relation .

The relation for £ < s with some s > g is already a consequence of . We
should be more accurate here, we get a better range from .

It remains to to prove for k£ > s. Our starting point is the higher regularity
bounds for the elliptic system (2.28), which were proved in |7, Section 7.6], as follows:

AR Vi A, B)lwosons S 19llme, 0 28 (5.6)

This implies in particular that the Christoffel symbol I' and connection coefficients A,

satisfy
1T, ADllgoer S W, o> s (5.7)
By the expression (3.4), Sobolev embeddings and ([5.7])) we have

[l S Nllas + ) Y T +id) O (D +iA) - 9

1<n<k Li+-+Hpr1<k—n

Sl + D T + Al g0+ AN 0l + Y T+ iAl e ] e
1<n<k 1<n<k
Sl + > Il el
1<n<k
S 10l g
Conversely, by (3.4) we also have
[l e Slllie + > > 0T +iA) O 40 A) - O

1<n<k li+-+Hpt1<k—n

SIllus + ol -

Thus we obtain the equivalence relation [[t||yr & ||¢|| g+
In the same way as the above, we also have the equivalence ||A||yr =~ ||A||z+. By (5.6)),
(4.3) and the bound

1l = llg*" Aasllae < IMae + €oll MLz < AL,

we also have the equivalence ||1|gx =~ [|A||gx. Hence, the desired equivalence relations

(1.10)) are obtained. O
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Finally, we prove an energy estimate in negative Sobolev spaces H~! for the linearized
equation of ([2.27):

_ 5.8
= (V'V) im0 — (At + Bty — AL IM(YA)iin 1= Flin. 58

Proposition 5.2. Let d > 4. Under the assumptions (2.29)) and (2.30)), for the linearized
equation of (2.27)) we have the bound

leinHL%’H—l S Olmelzna])”H—l + ClanwHé[O,T]leanL%"H—l (59>

For clarity, here we note that the linearized equation depends on our gauge choices. The

above proposition and its proof below assume we are in the harmonic/Coulomb gauge.

Proof. Here we will treat the source term Fy;, in (5.8) perturbatively. This allows us to
split the proof of (5.9) into two parts. Precisely, it suffices to prove the linear bound

[unllzsem— < N1in(0)|| -1 + | Ftinl| 1 g1 (5.10)
respectively the source term estimate
[ Finll a -t S buinll e -2 19 0,1 (5.11)

Together, these two bounds imply the conclusion of the proposition. It remains to prove

B10) and G10).
We first consider the bound ({5.10]), which we prove using duality. For this we need the

associated adjoint equation, which has the form
i(0F = VIV v+ Afv =iV, Vv =N, (5.12)

The adjoint evolution is considered in the same time interval [0, 7], but as a backward
Cauchy problem with the initial data at time 7. Then we claim that this evolution is
(backward) well-posed in H!, and satisfies the the bound

[0l Ly S Nlo(D)lle + 1NV |z o3y (5.13)
Assuming this holds, then from the duality relation
<¢l7jn7 U) |§ = <_2N7 Ezn)

we have the bound

[{(in(T), Prin), (0(T), =N DI S (i () -1 + [ Fbin | con-1) ([0 (D) I + [NV [ 21wr)

which in turn implies that

[unllzgon-1 S [[901n (0) [ + ([ Fiinll L1
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Since the metric ¢ — I; and connection A are small in harmonic/Coulomb gauge, by

equivalence (3.3)) and duality we have

i = sup ()i S sup () = s
vl <1 [lv]l g1 <1

Then the desired bound ({5.10) follows.
Now we prove the bound (5.11)) for the nonlinear terms Fj;,. This is a consequence of
the fixed time bound

[ Fuinller-1 S i | =1 140113 (5.14)

which we now prove by successively considering all the terms in Fj;,.
Using Sobolev embeddings and (4.13) we bound the worst term (A,)u,t by

1(Ag)unt -1 = (|70l
S ([l 2, + 10ePuin | 22) [0l wrr.e
S Minllr=2 [1 1S
S Wvinll -1 192
For the term Ajf;, 0,1, by we have
1AG Oatll -1 S [ Aunll 22 102l o S Ntbvinll = 191 Gex- (5.15)
Similarly, by we also have

1(VaA)intll -1 + 1A% Al rr-1 + | (Al 111
S (lAunllzz + (A0 Al ) 19 lsee + [l -2 MG (5.16)

S N vinl =1 11|
and
I Biin®ll -1 S 1 Binll -1 (190l + 1llwra) S Ndunll -1 [190] 2

For the term (VYV)yn1, by the same argument as (5.15)) and (5.16) and the estimate
(4.13) we bound it by
VIV Dt a1 S Vinetoll-1 4+ 1V Aiint || -2
< Wil 00 s+ 1 Ayl o

S il =2 1915

This concludes the proof of (5.14)) and thus of ([5.11]).

Finally, we turn to the proof of the claim ([5.13]). Since this proof is more complicated
than that of Proposition [I.2] we provide the full details. By (5.12)) and integration by
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parts, we have the basic energy estimate

d
Lol = /2Re(8fv,v> + PV du

= /ZRe((V'VV,?U +iAM + V, V0 —iN),0) + [PV V dp

= /ZV,YV7|U|2 — 2Re(iN,v) du
S IE VIVl + [N Iz [[o]]e
S ollEa I lweara + [Nz v]lce.

We then derive an energy estimate for VAv in L2. By (5.12)) and integration by parts

we have
d
E/|VAU|2 dp = /2Re([8tB,V§]v + VA0Pv, vA)
+ Re(Viv, —2G*’V5v) 4+ |VWPV V7 du

— / 2Re([0], V2]v, V) + Re(Viv, —2G*PViv) + V40PV, V7 du
+ / 2Re(VL(VIVIv + iAo + V., Vv —iN), VA) dp

- / 2Re([0F — iAA, VA, VAeu)
+ Re(Viv, —2G*"Viv) + 2|V4[*V, V7 du
+ / 2Re(VI[VL, Vv + Vo VIV 4+ VoV, V0 — iVIN), VA) dp.
This implies
d .
7 / (VA2 du SI[0F —iAy, Vvl [ VAl + [V [VE, Vil VA e
+ ol (A + 19V ) + VeV galloll paran oll - 517)
+ N L [[o]mr
We use (2.24)) and (5.5)) to bound the first term on the right hand side of (5.17)) by
1107 — a7, Valollz[VAv]le S 1T+ VA + X2V )oll o] e
+ VAN £ X %04+ X% Xk V|| g2 ||v]| g
S (I VAN pa + [NV ) 0]l p2ascaa 0] o
+ Ao 017

S M Ee (1 + VY]

str

=)o)l m
For the second term in ([5.17) we have
IVIIVa, Vol [ VAVl = [V Im(Aa M) o)l 2 o]l S A [VV

str

ms—2||v]| g



32 J. HUANG, Z. LI, AND D. TATARU
For the third and forth terms in (5.17)), by Sobolev embeddings and (4.5 we have
o[l (A Ze + [V V| zoe) + [[Va Vo VL zalloll o [0l S ol M 56
Hence, we conclude that

vllzeent < [lvollue + H)\H%%strHv”L%oHl + [N i
S Nvollwe + (M. 10l zserr + [N pae

By the assumption (2.30)) and Hélder’s inequality, this yields the claim (5.13]). This
completes the proof of the proposition. O

6. STRICHARTZ ESTIMATES

Here we consider the Schrodinger equation , and prove the Strichartz bounds in
Proposition . First, we introduce the endpoint Strichartz estimates of Keel-Tao [11]
and the inhomogeneous Strichartz estimates developed by [2, [17, [I8], 34]. Then we use
these to bound the linear and nonlinear part, respectively.

We begin with the homogeneous Strichartz estimates obtained by Keel-Tao [11]:

€2 fllzoze S IIFIlze, (6.1)

where (g, ) is Schrédinger-admissible pair, that is, % + % = g, 2<yq, r<oo, (qrd) #
(2,00,2). Here we will use the endpoint pair (¢,7) = (2, 2%).

Next, we state the inhomogenous Strichartz estimates, which summarize several known
results, see [2, [17, (18], 34].

Definition 6.1. We say that the pair (¢, r) is Schrédinger-acceptable if

1 d 2
1<g<o00,2<r<oo, —<§(1——), or (q,r) = (00,2).
q r

Theorem 6.2 (Inhomogeneous Strichartz estimates). Let d > 3 and p" be the duality of p
with % + 5 = 1. Assume that the pairs (q,r) and (¢,7) are Schriodinger-acceptable pairs,

and satisfy the condition

1 1 d 1 1
)

qg q 2 r o7

In addition, assume one of the following:

i) non-sharp case:

1 1 d—21 1 d 1 1 1 1
_+7«<1a _STS ™ _7T§_;
q q d r—7r - d-2r ror T 2
ii) sharp case:
1 1 d—21 1 d 1 1 1 1 1
“4-=1, S l<i<o—— -, <o, o<
q ¢ d r 7 d—2r r T q T q
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iii) endpoint cases when d > 3:

1 1 1 d 1 d—2 1 11 1 1
-+=-=1, —=—_—" = or — -, -<-, —-<-=.
q q r d—27T d r r—q T q
Then the following estimate holds
t .
H/ ¢ IRF(s)ds || parr S N F | o - (6.2)
0

We now aim to prove the space-time bound S[0, 7] for ¢ in Proposition [L.3|by combining

the above Strichartz estimates with the elliptic estimates in section [4

Proof of Proposition[I.5 By Duhamel’s principle, the solution % of (2.27) can be ex-
pressed by

t
0lt) = g+ [ CIAN(s)ds,
0
where
N = hd*)p + (V + A0 + (B + A + VA 4+ N

Using Sobolev embeddings, the bound (6.1)) with (¢,r) = (2, d%) and the estimates (6.2))

with pairs (¢,7) = (2,74), (¢,7) = (2, %), we have

”W‘L%FW%M 5 HwOHHGdJr d—2  + HNHLZTW%F’-

3(d—1)

It remains to successively estimate the terms in N. For the first term hd%y, by 7% =

% + ﬁ and Littelwood-Paley decomposition, we have

o 1/2
1BO2] 2 gy S 1S 227 | P sh P02 2) 2 3o
k

o 1/2
1T 2275 P P02 ) 2 1
k

HY 27k Y PihPy31130;0 | 12,17

k I>k—-3
< 1Al o0 14 e oo + 192l e o190 2 g

+ H Z Z 2ad(kfl)2crdl+2l”Plhl|L2 HP[Z—3,Z+3]1/}”L2(d*1>
k 1>k-3

where the last term (/6.3]) can be bounded by

" 5 H Z Z 20d(k_l)20dl+2l||})lh||L%
k I>k-3

S ||a:%h||L%°H%z+6 Q/JHL%L?(d*l)

with € > 0 small. Hence, the above calculations combined with (4.4)) and (4.2)) yield

L (63

T

. 191l 22,2001

|‘ha§¢HL2TWW’ S ”h”LQTLQ(d*UHwHLg?H"d“ + “%M’L;&OH%“ @DHLZTL%H)

S 60||1/’||L2TW"dvrat-
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For the second term (V + A)d,v, by (4.4) and (4.2]) we have
IV + 0,80 oar S 10Vl ea + 10:Allig e s S eollllgaweara.
Finally, for the other terms in N, by (4.7) we also have
(B+A* +VA+ /\2)¢||L2TWW,
S 9Bl 2 mrear + 02 Al 2 o0 + 102V | 22,50 ) (1 4 S| goresa) 190 gp proa

+ H)\|’L2TW%M|\>\|’L§9H84

V| Lge prea
S eoll¥llzzweara-
This concludes the proof of the bound for ¢ € L2WaTd,
In order to obtain the bound for ¢ € L2W4, by and we have
1ollzwra S ol + NI, s
Using , , and we bound the nonlinear terms by
Nz S 1Bl 2wl g ms
+ (192 Bllpz.r2 + 10:All 2.2 + 102V | 1z.22) (4 + IS gera) |9 ]| L5 2
+ Ml zzwrall Ml zg roa |9l g
< (Cllvollms)? ¢l awra-
These imply the bound for p € L2W* in dimensions d = 4. 0O

7. ROUGH SOLUTIONS AND SCATTERING

In this section, we use elliptic estimates in section , energy estimates , and
Strichartz estimates in Proposition to prove the improved energy bounds for ¢
in fractional Sobolev spaces. This closes the proof of Proposition 2.10] As a byproduct,
we also obtain the scattering property .

Here we start with an equivalent definition of H*. Since in the Hilbertian case all
interpolation methods yield the same result, for the H® norm we will use a characterization
which is akin to a Littlewood-Paley decomposition, or to a discretization of the J method

of interpolation. Precisely, we have

Lemma 7.1. Let 0 < s < N. Then H® can be defined as the space of distributions u

which admit a representation
u = Z Uj
j=0
with the property that the following norm is finite:

lCup)lz =D 256D gl 31+ 2267y |
=0
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and with equivalent norm defined as

#s = nf [ (uy)[1, (7.1)

where the infimum is taken with respect to all representations as above.

[l

7.1. Regularized data. Consider an initial data ¢y € H®@ small, and let {c;}r>0 be a

sharp frequency envelope for vy in H*?. In fact, the ¢; can be defined as
cr = 27"l rra + max 27018 54bo | rea,

where constant ¢ only depends on s and the dimension d. For ¢y we consider a family of

regularizations at frequencies < 2%, i.e.
& ,
U = Sy € H® = N2 HY,

where k is a dyadic frequency parameter. This parameter can be taken either discrete
or continuous, depending on whether we have access to difference bounds or only to the
linearized equation. Suppose we work with differences. Then the family w(()k) can be taken

to have similar properties to Littlewood-Paley truncations:

i) Uniform bounds:

||Sj¢(()k)| Hoa S G
ii) High frequency bounds: for o > §,
6 w0t < 27cs. (7.2)
iii) Difference bounds:
g = g S 27t Dk (7.3)

iv) Limit as k — oc:
o = lim ¢ in H%.

k—o00

Correspondingly, we obtain a family of smooth solutions ¥*).

7.2. Uniform bounds. Corresponding to the above family of regularized data, we obtain
a family of smooth solutions 1*) on [0,T,] for T, > 1 by Theorem For this we can
use the energy estimates to propagate Sobolev regularity for solutions as well as
difference bounds as in Proposition [5.2] Using induction we will prove that the solutions
»*) are global as follows:

(i) We prove that the solution ¥(?) is global. By local well-posedness in Theorem ,
let Ty be

)

Ty = sup {1+ [0 lsory + 19l eea < Callti]
Then on the interval [0, Ty, by Proposition we have

1@ 501y < 2Cs [

s2a < 2C5]|]

H?d -
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Using (5.9) and (|1.11)) we have

||¢(0)||L§'%Hsd < ||1/1(0)||L§’%H’1 + ||1/1(0)||L5’%HN

< (1 — CiinC2e2) ™ Crinl[tbo || 111 + CreC=C0G |3y

H?d

Co
< —
< ol

H?d -

Here we set

Co > 4CT + 4C5 4+ 4Cy,, (74)

and choose ¢y to be sufficiently small such that

(CE + Clm)Cgﬁg < 1

7 (7.5)

This implies that the solution can be extended, and thus the lifespan is Ty = oc.
(ii) We prove that the the solutions %) for any k are global. By local well-posedness
in Theorem let T}, be

Ty, = sgp {T : ’W(k)HS[O,T] + |W(k)HL;°HSd < Co’WoHHsfz}.

Then on the interval [0, T;], by Proposition we have the improved Strichartz estimates
in S[0,T]. We then prove the improved energy estimates for ().
By (i) we assume that YW for | < k — 1 are global. Then we have two properties as

follow:

a) High frequency bounds:
[Vl o vy < Cre@rC2M=sale, 0 <<k, sq < Ny €N. (7.6)
b) Difference bounds:
[0 — D) o1y < 2,27 e, 0< 1<k — 1. (7.7)

The first bound is obtained from ([1.11]) and (7.2]). The second bound ([7.7)) is obtained by
Proposition , Proposition and ([7.3). Indeed,

[ — O oo 1m-1)

1+1 [
< G0 = P =1 + Clan| (D, D) 20 1D = 9O oo -1
< Cin2” e + 20, (Coeo )| — 0Dl oo mam—1y-

Interpolating the two estimates ([7.6) and (7.7]), we obtain

[ — 1/1(l)||C[O,Tk;HN] < max{2Cy;,, C1eCF0}2~(a=Mley - 0 < N < Ny, (7.8)
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We use these bounds to establish uniform frequency envelope bounds for ¢*),

k—1
1O o mmoa) < NN mr + Y 22D — O 1oy
=1

k-1

FI et + 22V = 0O 10
=1

E

—
E
—

<Y (2Cuna)’ + > (max{2Cy,, C1e?rDo})% e

l
2
)’
l

Co \2 Co
= < (24
( 2 Cl) = < 3 1%l

Here Cyy and €, are chose as (7.4), (7.5]) respectively. This implies that the solutions ¢*)
are also global.

T
- O
I
=)

Ea

IN

Il
=)

Now consider the convergence of solutions 1*) in C(R; H%) as k — co. From the
difference bounds (7.7) we obtain convergence in H~* to a limit ¢ € C[0, c0; H ], with

||1/) . Qﬁ(k)“C(R;H*l) < Z ||¢(l+1) . w(l)“C(R;Hfl) < Z 2—(5d+1)lcl 5 2—(s+1)k'
1=k 1=k

On the other hand, expanding the difference as a telescopic sum, where, in view of the
above bounds (7.6) and (7.7)), each summand is essentially concentrated at frequency 2/,

with H*%¢ size ¢; and exponentially decreasing tails. By the equivalent norm ((7.1)), (7.7)
and ((7.8) we have

1 = PN @imreay < D 22C D — 012 g 1
=k

+ ) 2%t — D)2 iy
1=k

S

2
q

WE

= C>k,
l

Il
>

so we also have convergence in C'(R, H%).

Hence, we obtain the solution ¢ as the limit of solutions ¥*), and have the bound

. C
lllosasa) < Jim 169 e < Il

H?d -

This gives the improved energy bound in Proposition [2.10} The first improved bound in

(2.31)) for ¢ € S[0,T7] is obtained by Proposition [1.3} (7.4) and (7.5)). Hence, we complete
the proof of Proposition [2.10

Finally, we prove that scattering holds.
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Proposition 7.2 (Scattering). Let sq be as in (1.3)). There exist . € H~2 such that

. _itA
dim [ — "

HSd—2 — O (79)
Proof. 1t is standard to deduce (7.9)) from
(Ve = QAa)va@Z)”LfWSd*“d + ||N||L§W5d*2vrd <1

which has been proved in Proposition [I.3] So our lemma follows. O
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