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Abstract. The skew mean curvature flow is an evolution equation for a d dimensional

manifold immersed into Rd+2, and which moves along the binormal direction with a

speed proportional to its mean curvature.

In this article, we prove small data global regularity in low-regularity Sobolev spaces

for the skew mean curvature flow in dimensions d ≥ 4. This extends the local well-

posedness result in [7].

1. Introduction

The skew mean curvature flow (SMCF) evolves a codimension 2 submanifold along

its binormal direction with a speed given by its mean curvature. Precisely speaking,

assume that Σ is a d-dimensional oriented manifold and (M, gM) is an (d+2)-dimensional

oriented Riemannian manifold, then SMCF is a family of time-dependent immersions

F : I× Σ → M satisfying{︄
∂tF = J(F )H(F ), (t, x) ∈ I× Σ,

F (0, x) = F0(x),
(1.1)

where, for each given t ∈ I, H(F ) denotes the mean curvature vector of the submanifold

Σt := F (t,Σ). Here J(F ), which denotes the natural induced complex structure for the

normal bundle NΣt, can be simply defined as rotating a vector in the normal space by π
2

positively (notice that NΣt is of rank 2). An alternative formulation of SMCF is{︄
(∂tF )

⊥ = J(F )H(F ),

F (0, ·) = F0.
(1.2)

Here, for an arbitrary vector Z ∈ TM at F , Z⊥ denotes its orthogonal projection onto

NΣt. Note that (1.1) differs from (1.2) by a time dependent diffeomorphism of Σt. Hence,

(1.1) and (1.2) are topologically equivalent, but (1.2) has a larger gauge group consisting

of all space-time changes of coordinates.

For d = 1, the 1-dimensional SMCF in R3 is the vortex filament equation ∂tv = ∂sv×∂2sv
for v : (s, t) ∈ R × R ↦−→ v(s, t) ∈ R3, where t denotes time, s denotes the arc-length

parameter of the curve v(t, ·), and × denotes the cross product in R3. The vortex filament
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equation describes the free motion of a vortex filament, see Da Rios [1], Hasimoto [5]. For

d ≥ 2, the (SMCF) was deduced by both physicists and mathematicians. The physical

motivations are the localized induction approximation (LIA) of high dimensional Euler

equations and asymptotic dynamics of vortices in superconductivity and superfluidity, see

Lin [19], Jerrard [10], Shashikanth [27], Khesin [16]. SMCF also appears in various math-

ematical problems, especially the Hamiltonian flow associated with Marsden-Weinstein

sympletic structure [23], nonlinear Grassmannian manifolds discussed by Haller-Vizman

[6], and the star mean curvature flow introduced by Terng [32]. Moreover, it is remarkable

that SMCF has a deep relationship with the Schrödinger map flow (e.g. [33]), in fact, [29]

proved that the Gauss map of a d-dimensional SMCF in Rd+2 satisfies a Schrödinger map

flow equation.

Let us briefly recall some earlier works on SMCF. The 1-d case is special, in that the

problem has a semilinear, rather than quasilinear structure, and is essentially equivalent

to the 1-d cubic NLS problem. For more details we refer the reader to the survey article

of Vega [28].

The early work of Gomez [3] proposed a way to write SMCF as a quasilinear Schrödinger

equation system by introducing a complex valued scalar mean curvature and choosing

some gauge for the normal boundle. The model (1.1) was studied by Song-Sun [30], who

proved the local existence of SMCF for F : Σ → R4 with a compact oriented surface Σ.

This was generalized by Song [31] to F : Σd → Rd+2 with a compact oriented manifold

Σd for all d ≥ 2. Moreover, [31] proved the continuous dependence of solutions on initial

data in a geometric distance. However, as noted in [7, 31], (1.1) has much less freedom

than (1.2). In fact, the formulation (1.2) is invariant under time dependent coordinate

transformations of Σt, while (1.1) is only invariant under time independent coordinate

transformations. This additional gauge freedom included in (1.2) will help to compensate

the derivative loss in the local Cauchy theory.

The above issue was clarified in Huang-Tataru [7, 8], who proposed an alternative ap-

proach, namely to start with the formulation of SMCF in (1.2), and then to choose a

favourable space-time gauge (i.e. coordinates). In this gauge there is no more loss of

derivatives, and they were able to prove a full local well-posedness result in low regularity

Sobolev spaces for initial data which are small perturbations of flat metrics. Precisely,

the solutions obtained in [7, 8] are at regularity Hs, with s >
d

2
, measured at the cur-

vature level; this is one derivative above scaling. The gauge formulation of the SMCF

flow in [7, 8] closely resembles a quasilinear Schrödinger equation, coupled with several

elliptic/parabolic equations. For the local well-posedness theory of general quasilinear

Schrödinger equations, see the pioneer works of Kenig-Ponce-Vega [13–15] for localized

initial data, as well as Marzuola-Metcalfe-Tataru [24, 24, 26] for data in translation in-

variant Hs based spaces.
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The small data global regularity problem for SMCF in the formulation (1.1) was con-

sidered in [21] which proved that Euclidean planes are stable under SMCF for small

transversal perturbations in some W 2,q ∩ Hk space with some q ∈ (1, 2) and integer

k > max(d+7
2
, d + 1). In the later work [22], the W 2,q smallness and transversal as-

sumption of [21] were removed in d ≥ 3, and it proved the global in time existence and

scattering of small data solutions, and the existence of wave operators.

1.1. The main result. Our objective in this paper is to establish the global in time

well-posedness and scattering for solutions to SMCF in the formulation (1.2) for small

initial data.

Our main dynamic variable will be the complex mean curvature ψ for our system, which

is defined in the next section, see (2.3), and stands for the representation of the scalar

mean curvature relative to an orthonormal frame in NΣ determined by our choice of

gauge. The similar representation of the full second fundamental form will be denoted by

λ, which is defined in (2.2), and the two are related by ψ = Trλ.

To measure the Sobolev regularity of ψ for our global solutions we introduce the index

sd so that

sd ≥ 3, if d = 4; sd >
d+ 1

2
+

1

2(d− 1)
, if d ≥ 5. (1.3)

To measure the (Strichartz) decay of the solutions in time we will use the exponent rd

defined by

rd =
2d(d− 1)

(d− 2)2
, for d ≥ 4. (1.4)

Then we define the Strichartz norms S[0, T ] as

∥ψ∥S[0,T ] := ∥ψ∥L2(0,T ;W 1,4) + ∥ψ∥L2(0,T ;W sd−2,rd ), for d = 4, (1.5)

and

∥ψ∥S[0,T ] := ∥ψ∥L2(0,T ;W sd−2,rd ), for d ≥ 5. (1.6)

At this point, we content ourselves with a less precise formulation of the main result,

relative to the harmonic/Coulomb gauge which was introduced in [7] and is discussed in

Section 2:

Theorem 1.1 (Small data global regularity and scattering). Let sd and rd be as (1.3),

(1.4) respectively for d ≥ 4. Then there exists ϵ0 > 0 sufficiently small such that, for all

initial data Σ0 with metric and mean curvature satisfying

∥∂x(g0 − I)∥Hsd + ∥H0∥Hsd ≤ ϵ0,

the skew mean curvature flow (1.2) for maps from Rd to the Euclidean space (Rd+2, gRd+2)

is globally well-posed in the harmonic/Coulomb gauge.
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Moreover, in the harmonic/Coulomb gauge, the metric and complex mean curvature

satisfy the bounds

∥∂x(g − Id)∥CtH
sd+1
x

+ ∥ψ∥S(R) + ∥ψ∥CtH
sd
x

≲ ∥ψ0∥Hsd
x
. (1.7)

In addition, there exists ψ± ∈ Hsd−2 such that

lim
t→±∞

∥ψ − eit∆ψ±∥Hsd−2
x

= 0. (1.8)

Remark 1.1.1. The gauge choice used for the above result is the harmonic/Coulomb

gauge, following [7]. Here harmonic refers to the choice of coordinates on Σ at fixed time,

and Coulomb applies to the choice of the orthonormal frame on NΣ. In this gauge, the

surface Σ is uniquely determined up to symmetries by the complex mean curvature ψ at

fixed time in an elliptic fashion. By contrast, in [8] the harmonic/Coulomb gauge is only

imposed at the initial time, while a heat gauge is used forward in time.

Remark 1.1.2. One may compare the Sobolev index sd in the theorem with the weaker

restriction s > d/2 in [7, 8]. Here the choice of regularity sd is more restricted due to

the need to also control decay via global in time Strichartz norms. Precisely, our main

control norm for the energy estimates will essentially be ∥λ∥L2
tL

∞
x
, see (1.11) below. To

bound this by ∥ψ∥L2
TW sd−2,rd by elliptic estimates and Sobolev embeddings requires that

sd >
d
rd

+ 2. This gives the sd threshold (1.3) for d ≥ 5.

In dimension d = 4 we face an additional obstruction arising in the study of the global

well-posedness for the linearized equation. For that we need Strichartz estimates in the

space L2W 1,4, which in turn restricts the regularity to sd ≥ 3.

Remark 1.1.3. Compared with the result in [22], the main difference is that we work

in lower regularity Sobolev spaces, which particularly also include the fractional Sobolev

spaces. Indeed, with the better formulation (1.2) and new gauges, we get elliptic equa-

tions of metrics and obtain a Schrödinger type nonlinear equation of the defined scalar

mean curvature ψ. There are three key factors which help us to lower the regularity

assumption. First, the coefficients in the second derivative terms of ψ are two derivatives

better than ψ. By contrast, the coefficients in second derivative terms in [22] are only one

derivative better. Secondly, in addition to endpoint Strichartz estimates, we also apply

inhomogeneous Strichartz estimates in order to estimate the nonlinear terms. Thirdly,

we use the energy estimates for linearized equation and the paradifferential expansion

of Sobolev norm in order to transfer energy bounds from integral to fractional Sobolev

spaces. The above new ideas play crucial role in our main result. However, there is still

a gap between sd (1.3) in our theorem and the possible optimal regularity d/2− 1.

The global regularity is closely related to the energy estimates and Strichartz estimates

for the complex mean curvature ψ for our system. Following [7], in the harmonic/Coulomb
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gauge ψ solves a quasilinear Schrödinger equation (2.27)-(2.28). We describe these esti-

mates next, beginning with the energy estimates.

A key point in the following proposition is that we should work with the “good” energy,

which is both coercive and propagates well along the flow. At integer Sobolev regularity

indices there is a canonical, geometric choice, given by the L2 norm of covariant derivatives

of ψ. The intrinsic Sobolev norms are denoted as Hk with integer k ∈ N, which are defined

in (3.2). The challenge is then to prove coercivity, which is no longer a covariant property

but depends instead on our gauge choice.

Proposition 1.2 (Energy estimates in Hk). For each nonnegative integer k there exists

an energy functional Ek = Ek(ψ) defined on functions in Hk which are also small in Hs

for some s > d/2, which has the following two properties:

i) [Energy growth] If ψ is a solution of the SMCF flow (2.27) with constraints (2.3),

(2.5), (2.7), (2.8), (2.19) and (2.24) then

d

dt
Ek(ψ) ≤ CE∥λ∥2L∞∥λ∥2Hk . (1.9)

ii) [Coercivity:] In the harmonic/Coulomb gauge we have the equivalence relation:

Ek(ψ) ≈C1 ∥ψ∥2Hk ≈ ∥λ∥2Hk ≈ ∥λ∥2Hk , (1.10)

where the constant C1 only depends on the Hs norm of ψ.

As a consequence of (1.9), by (1.10) and Gronwall’s inequality we obtain

∥ψ(t)∥2Hk ≤ C2
1e

∫︁ T
0 CE∥λ∥2L∞ds∥ψ0∥2Hk . (1.11)

This justifies the need to control the norm ∥λ∥L2L∞ for our global solutions.

Remark 1.2.1. The energy estimate (1.9) holds without any gauge assumptions, and was

proved first in [30, Lemma 4.9]. Here we use a different method to prove this estimate,

using only the Schrödinger equation for ψ and the associated constraints to gain the

estimates. The gauge choice is, however, essential for the coercivity part.

Remark 1.2.2. The energies are constructed in an explicit fashion only for integer k.

Nevertheless, as a consequence in our analysis in the last section of the paper, it follows

that bounds of the form (1.11) hold also for all noninteger k > 0. However, we do this

using a mechanism which is akin to a paradifferential expansion, without constructing an

explicit energy functional as provided by the above theorem in the integer case.

We now turn our attention to the Strichartz estimates for ψ. Since our problem is

quasilinear, here we a-priori assume that ψ remains small in Hsd , and we also lose some

derivatives.
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Proposition 1.3 (Strichartz estimates). Let sd be as (1.3) and σd = sd − 2 for d ≥ 4.

Assume that ψ is a solution of (2.27)-(2.28) on some interval [0, T ] for T > 1, which

satisfies the smallness condition

∥ψ∥L∞Hsd ≤ C0ϵ0,

Then ψ satisfies the Strichartz bound

∥ψ(t)∥S[0,T ] ≤ C2(∥ψ0∥
H

σd+
d−2

2(d−1)
+ (C0ϵ0)

2∥ψ(t)∥S[0,T ]). (1.12)

A starting point for this result is provided by the endpoint Strichartz estimates of Keel-

Tao [11]. However, in addition we also use the larger class of inhomogeneous Strichartz

estimates developed by [2, 17, 18, 34]. The latter plays a key role in lowering the regularity

assumptions for the initial data in our theorem.

1.2. An outline of the proof. There are several key steps in the proof of our main

result:

1. The gauge choice. The formulation (1.2) has a key additional gauge freedom com-

pared with the equation (1.1). Indeed, (1.2) is invariant under any time dependent dif-

feomorphism in Σt, while (1.1) is only invariant under time independent diffeomorphisms

in Σt. This additional freedom enabled us to use the harmonic coordinate system in [7].

This is then combined with the the Coulomb gauge for the orthonormal frame on the

normal bundle. This reformulation of the equation (1.2) is reviewed in Section 2, where

we rewrite it as a nonlinear Schrödinger equation for a single independent variable. This

independent variable, denoted by ψ, represents the trace of the second fundamental form

on Σt, in complex notation. In addition to the independent variables, we will use several

dependent variables, as follows:

• The Riemannian metric g on Σt.

• The (complex) second fundamental form λ for Σt.

• The magnetic potential A, associated to the natural connection on the normal

bundle NΣt, and the corresponding temporal component B.

• The advection vector field V , associated to the time dependence of our choice of

coordinates.

These additional variables will be viewed as uniquely determined by our independent

variable ψ, provided that a suitable gauge choice was made; in our case this gauge is the

combined harmonic/Coulomb gauge. Thus (1.2) reduces to

(a) A nonlinear Schrödinger equation for ψ, see (2.27);

(b) An elliptic fixed time system (2.28) for the dependent variables (g, λ, V, A,B),

together with suitable compatibility conditions (constraints).

At the conclusion of Section 2 we provide a gauge version of our main result, see Theo-

rem 2.9.
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2. Elliptic estimates. In Section 4, we then consider the space-time bounds for the

elliptic system (2.28) and the associated linearized equations. Such bounds have already

been proved in [7] at the level of the Hs spaces. But here we also need similar bounds at

the level of the Strichartz norms, which capture the time decay of λ and (g − I, V, A,B)

in terms of the corresponding decay bounds for ψ. Another novelty here is that we also

prove elliptic bounds for the linearized system with ψlin in H−1; this is in contrast to [7],

where only nonnegative Sobolev norms were used.

3. Energy estimates. In Section 5, we turn our attention to the energy estimates

in Proposition 1.2. Here we use the intrinsic Sobolev spaces Hk to define the energy

functional, and give the related energy estimates. We also prove an energy estimate for

the linearized Schrödinger equation, which will be needed in particular to transfer energy

bounds from integer to fractional Sobolev spaces.

4. Strichartz estimates. The Strichartz estimates for ψ are proved in Section 6 using

the Schrödinger system (2.27). Since this is a quasilinear problem, we cannot directly

work with the linear variable coefficient system. Instead, we prove Proposition 1.3 using

a bootstrap argument which is based on the Strichartz estimates for the flat Schrödinger

evolution, namely Keel-Tao’s endpoint Strichartz estimates and inhomogeneous Strichartz

estimates, see [2, 17, 18].

5. The final bootstrap. In the last section of the paper, we gain the Hs solutions as

a limit of solutions in higher order Sobolev spaces. Using the energy estimates in HN

for integer N and the energy estimates of linearized equation, we prove the improved

energy bounds for ψ in fractional Sobolev spaces. This in turn allows us to close the high

level bootstrap loop for both the energy estimates and the Strichartz estimates, as stated

in Proposition 2.10. As a byproduct, we also obtain the scattering result Schrödinger

equation for ψ in the weaker Sobolev norms Hsd−2.

2. The differentiated equations and the gauge choice

The goal of this section is to introduce the main independent variable ψ, which rep-

resents the trace of the second fundamental form in complex notation, as well as the

following auxiliary variables: the metric g, the second fundamental form λ, the connec-

tion coefficients A,B for the normal bundle as well as the advection vector field V . For

ψ we start with (1.2) and derive a nonlinear Schödinger type system (2.27), with coeffi-

cients depending on (λ,S) where S = (h, V,A,B) and h = g − Id. Under suitable gauge

conditions, the auxiliary variables (λ,S) are shown to satisfy an elliptic system (2.28), as

well as a natural set of constraints. We conclude the section with a gauge formulation of

our main result, see Theorem 2.9. For the detailed derivation, we refer to section 2 in [7].
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2.1. The Riemannian metric g and the second fundamental form. Let (Σd, g) be

a d-dimensional oriented manifold and let (Rd+2, gRd+2) be (d+ 2)-dimensional Euclidean

space. Let α, β, γ, · · · ∈ {1, 2, · · · , d}. Considering the immersion F : Σ → (Rd+2, gRd+2),

we obtain the induced metric g in Σ,

gαβ = ∂xαF · ∂xβ
F. (2.1)

We denote the inverse of the matrix gαβ by gαβ, i.e.

gαβ := (gαβ)
−1, gαγg

γβ = δβα.

Let ∇ be the canonical Levi-Civita connection in Σ associated with the induced metric

g. A direct computation shows that on the Riemannian manifold (Σ, g) we have the

Christoffel symbols

Γγ
αβ =

1

2
gγσ(∂βgασ + ∂αgβσ − ∂σgαβ) = gγσ∂2αβF · ∂σF.

Hence, the Laplace-Beltrami operator ∆g can be written in the form

∆gf = Tr∇2f = gαβ(∂2αβf − Γγ
αβ∂γf),

for any twice differentiable function f : Σ → R. The curvature tensor R on the Riemann-

ian manifold (Σ, g) is given by

Rσ
γαβ = ∂αΓ

σ
βγ − ∂βΓ

σ
αγ + Γm

βγΓ
σ
αm − Γm

αγΓ
σ
βm, Rαβγσ = gµαR

µ
βγσ.

We will also use the Ricci curvature

Ricαβ = Rσ
ασβ = gσγRγασβ.

Next, we compute the second fundamental form. Let ∇̄ be the Levi-Civita connection

in (Rd+2, gRd+2) and let h be the second fundamental form for Σ as an embedded manifold.

Then by the Gauss relation we have

hαβ =h(∂α, ∂β) = ∇̄∂α∂βF − F∗(∇∂α∂β) = ∂2αβF − Γγ
αβ∂γF.

This gives the mean curvature H at F (x),

H = Trg h = ∆gF.

Hence, the F -equation in (1.2) is rewritten as

(∂tF )
⊥ = J(F )∆gF = J(F )gαβ(∂2αβF − Γγ

αβ∂γF ).

This equation is still independent of the choice of coordinates in Σd.
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2.2. The complex structure equations. This part is inspired by Gomez [3]. We in-

troduce a complex structure on the normal bundle NΣt. This is achieved by choosing

{ν1, ν2} to be an orthonormal basis of NΣt such that

Jν1 = ν2, Jν2 = −ν1.

Note that such a choice is not unique.

The vectors {F1, · · · , Fd, ν1, ν2} form a basis at each point on the manifold (Σ, g), where

Fα = ∂αF for α ∈ {1, · · · , d} might not be orthonormal. We define the tensors καβ, ταβ,

the connection coefficients Aα and the temporal component B of the connection in the

normal bundle by

καβ := ∂αFβ · ν1, ταβ := ∂αFβ · ν2, Aα = ∂αν1 · ν2, B = ∂tν1 · ν2.

We then define the complex vector field m and the complex second fundamental form

tensor λαβ to be

m = ν1 + iν2, λαβ = καβ + iταβ, (2.2)

and define the complex scalar mean curvature ψ to be the trace of λ,

ψ = Trλ = gαβλαβ. (2.3)

If we differentiate the basis, then we obtain a set of structure equations of the following

type {︄
∂αFβ = Γγ

αβFγ +Re(λαβm̄),

∂Aαm = −λγαFγ.
(2.4)

Here ∂Aα = ∂α + iAα, and similarly we will denote ∇A
α = ∇α + iAα.

We then use the structure equations (2.4) to derive a set of constraints for λ and

A, and hence to obtain their elliptic equations. Precisely, by (2.4) and the relations

∂α∂βF = ∂β∂αF , we obtain the Riemannian curvature and Ricci curvature

Rσγαβ = Re(λβγλ̄ασ − λαγλ̄βσ), Ricγβ = Re(λγβψ̄ − λγαλ̄
α
β), (2.5)

as well as the Codazzi relations

∇A
αλ

γ
β = ∇A

β λ
γ
α = ∇A,γλαβ, (2.6)

where the second fundamental form λ should also satisfy the constraint

λαβ = λβα. (2.7)

The structure equations (2.4) combined with the relations ∂α∂βm = ∂β∂αm imply the

compatibility condition for connection coefficients A

∇αAβ −∇βAα = Im(λγαλ̄βγ). (2.8)

We state an elliptic system for the second fundamental form λ in terms of ψ, using the

Codazzi relations (2.6) and ψ = Trλ.
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Lemma 2.1 (Div-curl system for λ, Lemma 2.2 [7]). The second fundamental form λ

satisfies

∇A
αλβγ −∇A

β λαγ = 0, ∇A,αλαβ = ∇A
βψ. (2.9)

In order to both fix the gauge and obtain an elliptic system for A, we impose the

Coulomb gauge condition

∇αAα = 0. (2.10)

We state the elliptic A-equations from the Ricci equations (2.8).

Lemma 2.2 (Div-curl form for A). Under the Coulomb gauge condition (2.10), the con-

nection A solves

∇αAβ −∇βAα = Im(λγαλ̄βγ), ∇αAα = 0. (2.11)

As a corollary, we can derive a second order elliptic equation for A.

Corollary 2.3. Under the Coulomb gauge condition (2.10) and harmonic coordinates

(2.15), the connection A solves

∇γ∇γAα = Re(λσαψ̄ − λγαλ̄
σ
γ)Aσ +∇γ Im(λσγ λ̄ασ). (2.12)

Let ∂α = gαβ∂β, the connection A also solves

∂γ∂
γAα = (∂γg

γβ∂α − ∂αg
γβ∂γ)Aβ − ∂γ Im(λασλ̄

γσ). (2.13)

Proof. The first equation (2.12) has been derived in [7]. For the second equation (2.13),

by harmonic coordinates (2.15), the div-curl system (2.11) for A can be rewritten as

gγβ∂αAβ − ∂βAα = Im(λσαλ̄
γ
σ), ∂αAα = 0.

Then the equation (2.13) is obtained by applying ∂β to the above first formula. □

2.3. The elliptic equation for the metric g in harmonic coordinates. Here we take

the next step towards fixing the gauge, by choosing to work in harmonic coordinates. Pre-

cisely, we will require the coordinate functions {xα, α = 1, · · · , d} to be globally Lipschitz

solutions of the elliptic equations

∆gx
α = 0. (2.14)

This determines the coordinates uniquely modulo time dependent affine transformations.

This remaining ambiguity will be removed later on by imposing suitable boundary con-

ditions at infinity.

Here, we will interpret the above harmonic coordinate condition at fixed time as an

elliptic equation for the metric g. The equations (2.14) can be expressed in terms of the

Christoffel symbols Γ, which must satisfy the condition

gαβΓγ
αβ = 0, for γ = 1, · · · , d. (2.15)
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In fact, we can obtain global harmonic coordinate by the smallness of ∂xh in Hs as

follows. Here for a change of coordinate y = x+ ϕ(x), we denote

F̃ (y) = F (x(y)),

and denote its metric and Christoffel symbols as g̃ and Γ̃, respectively.

Lemma 2.4 (Existence of global harmonic coordinates, Proposition 8.1 [7]). Let d ≥ 3,

s > d
2
, and F : (Rd

x, g) → (Rd+2, gRd+2) be an immersion with induced metric g = Id + h.

Assume that ∂xh(x) is small in Hs(dx), i.e. ∥∂xh∥Hs ≤ ϵ0. Then there exists a unique

change of coordinates y = x+ ϕ(x) with limx→∞ ϕ(x) = 0 and ∇ϕ uniformly small, such

that the new coordinates {y1, · · · , yd} are global harmonic coordinates, namely,

g̃αβ(y)Γ̃γ
αβ(y) = 0, for any y ∈ Rd.

Moreover,

∥∂2xϕ(x)∥Hs(dx) ≲ ∥∂xh(x)∥Hs(dx),

and, in the new coordinates {y1, · · · , yd},

∥∂yh̃∥Hs(dy) ≲ ∥∂xh∥Hs(dx).

Under the harmonic coordinates, the Ricci curvature formula (2.5) leads to an equation

for the metric g:

Lemma 2.5 (Elliptic equations of g, Lemma 2.4 [7]). In harmonic coordinates, the metric

g satisfies
gαβ∂2αβgγσ = [−∂γgαβ∂βgασ − ∂σg

αβ∂βgαγ + ∂γgαβ∂σg
αβ]

+ 2gαβΓσα,νΓ
ν
βγ − 2Re(λγσψ̄ − λαγλ̄

α
σ).

(2.16)

2.4. The motion of the basis {F1, · · · , Fd,m} under (SMCF). Here we derive the

equations of motion for the basis, assuming that the immersion F satisfies (1.2). Then

we state the Schrödinger equation for mean curvature ψ and the elliptic equations for

advection fields V and temporal connection coefficient B.

We begin by rewriting the SMCF equations in the form

∂tF = J(F )H(F ) + V γFγ,

where V γ is a vector field on the manifold Σ, whose components in general depend on the

choice of coordinates. By the definition of m and λαβ, we get

∂tF = − Im(ψm̄) + V γFγ. (2.17)

Applying ∂α to (2.17), by the structure equations (2.4) and m⊥Fα = 0 we obtain the

equations of motion for the basis{︄
∂tFα = − Im(∂Aαψm̄− iλαγV

γm̄) + [Im(ψλ̄γα) +∇αV
γ]Fγ,

∂Bt m = −i(∂A,αψ − iλαγV
γ)Fα,

(2.18)
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where ∂Bt = ∂t + iB.

From this we obtain the evolution equation for the metric g. Precisely, we denote

Gαβ = Im(ψλ̄αβ) +
1

2
(∇αVβ +∇βVα).

By the definition of the induced metric g (2.1) and (2.18) we have

∂tgαβ = 2Gαβ, (2.19)

and the evolutions of gαβ and
√
det g are given by

∂tg
αβ = −2Gαβ, ∂t

√︁
det g = ∇αV

α
√︁
det g.

These yield the evolution equations for Christoffel symbols

∂tΓ
γ
αβ = ∇αG

γ
β +∇βG

γ
α −∇γGαβ. (2.20)

Moreover, by (2.19) and (2.20) we have

∂t(g
αβΓγ

αβ) = −2GαβΓγ
αβ + 2∇α Im(ψλ̄αγ) + ∆gV

γ +Re(λγσψ̄ − λασλ̄
αγ)V σ. (2.21)

So far, the choice of V has been unspecified; it depends on the choice of coordinates

on our manifold as the time varies. However, once the latter is fixed via the harmonic

coordinate condition (2.15), we can also derive an elliptic equation for the advection field

V :

Lemma 2.6 (Elliptic equation for the vector field V , Lemma 2.5 [7]). Under the harmonic

coordinate condition (2.15), the advection field V solves

∆gV
γ = − 2∇α Im(ψλ̄αγ)− Re(λγσψ̄ − λασλ̄

αγ)V σ

+ 2(Im(ψλ̄αβ) +∇αV β)Γγ
αβ.

(2.22)

Remark 2.6.1. We should emphasize that (2.22) is not a covariant equation but an

equation for the components of V , which depend on the choices of coordinates. In view

of the relation (2.21), a different choice of coordinates would yield a different type of

equation of V . For example, a parabolic equation for V was obtained in [8], where the

heat gauge was chosen.

Next, from the equations (2.18) of motion for the basis we derive the main Schrödinger

equation and the second compatibility condition. The starting point is the commutation

relation

[∂Bt , ∂
A
α ]m = i(∂tAα − ∂αB)m,

which can be expanded via equating the coefficients of the tangent vectors and of the

normal vector m, see [7]. Using the expressions (2.4), (2.18) for the derivatives of the

basis, the above formula yields the evolution equation for λ

∂Bt λ
σ
α + λγα(Im(ψλ̄σγ) +∇γV

σ) = i∇A
α (∂

A,σψ − iλσγV
γ), (2.23)
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as well as the compatibility condition (curvature relation)

∂tAα − ∂αB = Re(λγα∇A
γ ψ)− Im(λγαλ̄γσ)V

σ. (2.24)

This in turn allows us to use the Coulomb gauge condition (2.10) in order to obtain an

elliptic equation for B:

Lemma 2.7 (Elliptic equation for B). The temporal connection coefficient B solves

∇γ∇γB = −∇γ∇σ Re(λ
σ
γψ) +

1

2
∆g|ψ|2 +∇γ[Im(λσγ λ̄σβ)V

β]

+ (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.
(2.25)

Proof. The equation (2.25) is obtained by Lemma 2.6 in [7] and the following relation

Re(λσγ∇A
σψ) = ∇σ Re(λ

σ
γψ)− Re(∇A

γ ψψ) = ∇σ Re(λ
σ
γψ)−

1

2
∇γ|ψ|2.

□

Finally, we use (2.23) to derive the main equation, i.e. the Schrödinger equation for ψ.

By (2.6), contracting (2.23) yields

i(∂Bt − V γ∇A
γ )ψ +∇A

α∇A,αψ = −iλγσ Im(ψλ̄σγ). (2.26)

2.5. The main result for modified Schrödinger system from SMCF. To conclude,

under the Coulomb gauge condition ∇αAα = 0 and the harmonic coordinate condition

gαβΓγ
αβ = 0, by (2.26), (2.9), (2.16), (2.22), (2.11) and (2.25), we obtain the Schrödinger

equation for the complex mean curvature ψ{︄
i(∂Bt − V γ∇A

γ )ψ +∇A
α∇A,αψ = −iλγσ Im(ψλ̄σγ),

ψ(0) = ψ0,
(2.27)

where the metric g, curvature tensor λ, the advection field V , connection coefficients A

and B are determined at fixed time in an elliptic fashion via the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A
αλβγ −∇A

β λαγ = 0, ∇A,αλαβ = ∇A
βψ,

gαβ∂2αβgγσ = [−∂γgαβ∂βgασ − ∂σg
αβ∂βgαγ + ∂γgαβ∂σg

αβ]

+ 2gαβΓσα,νΓ
ν
βγ − 2Re(λγσψ̄ − λαγλ̄

α
σ),

∇α∇αV
γ = 2∇α Im(λαγψ̄)− Re(λγσψ̄ − λασλ̄

αγ)V σ

+ 2(Im(ψλ̄αβ) +∇αV β)Γγ
αβ,

∇αAβ −∇βAα = Im(λγαλ̄βγ), ∇αAα = 0,

∇γ∇γB =−∇γ∇σ Re(λ
σ
γψ) +

1

2
∆g|ψ|2 +∇γ[Im(λσγ λ̄σβ)V

β]

+ (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ.

(2.28)
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Fixing the remaining degrees of freedom (i.e. the affine group for the choice of the coor-

dinates as well as the time dependence of the SU(1) connection) we can assume that the

following conditions hold at infinity:

λ(∞) = 0, g(∞) = Id, V (∞) = 0, A(∞) = 0, B(∞) = 0

These are needed to insure the unique solvability of the above elliptic equations in a

suitable class of functions. For the metric g it will be useful to use the representation

g = Id + h

so that h vanishes at infinity.

We note that the above elliptic system (2.27) is accompanied by a large family of

compatibility conditions as follows: (2.5), (2.7), (2.8), (2.10), (2.15), (2.19) (2.23) and

(2.24). These conditions can all be shown to be satisfied for small solutions to the nonlinear

system (2.27)-(2.28).

Now we recall the small data local well-posedness result for the (SMCF) system in [7,

Theorem 2.7] in terms of the above system:

Theorem 2.8 (Small data local well-posedness in the good gauge). Let s > d
2
, d ≥ 4.

Then there exists ϵ0 > 0 sufficiently small such that, for all initial data ψ0 satisfying

∥ψ0∥Hs ≤ ϵ0,

the modified Schrödinger system (2.27), with (λ, h, V,A,B) determined via the elliptic

system (2.28), is locally well-posed in Hs on the time interval I = [0, 1]. Moreover, the

mean curvature satisfies the bounds

∥(ψ, λ, ∂xV, ∂xA)∥C[0,1;Hs] + ∥∂xh∥C[0,1;Hs+1] + ∥∂xB∥C[0,1;Hs−1] ≲ ∥ψ0∥Hs .

In addition, the mean curvature ψ and the auxiliary functions (λ, h, V,A,B) satisfy the

constraints (2.3), (2.5), (2.7), (2.8), (2.10) and (2.15) for any fixed time t ∈ [0, 1], and

the evolutions (2.19), (2.23) and (2.24).

Actually, in [7] the system (2.27)-(2.28) was solved in a smaller function space, which

includes both Sobolev regularity and local energy bounds. In the above theorem, by

well-posedness we mean a full Hadamard-type well-posedness, see [9].

The main result of this paper is to extend the above local solution for small data to

global for the (SMCF) system in Theorem 1.1 in terms of the above system. The next

theorem represents the harmonic/Coulomb gauge form of our main result in Theorem 1.1:

Theorem 2.9 (Small data global regularity in the good gauge). Let sd, rd be as (1.3)

and (1.4) respectively for d ≥ 4. Then there exists ϵ0 > 0 sufficiently small such that, for

all initial data ψ0 satisfying

∥ψ0∥Hsd ≤ ϵ0, (2.29)
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the modified Schrödinger system (2.27), with (λ, h, V,A,B) determined via the elliptic

system (2.28), is globally well-posed in Hsd. Moreover, the mean curvature satisfies the

bound (1.7) and the scattering (1.8).

This result is achieved by the following bootstrap proposition and continuity method.

Proposition 2.10 (Bootstrap proposition). Let sd, rd be as (1.3) and (1.4) respectively

for d ≥ 4. Assume that (ψ, λ,S) is a solution to (2.27) and (2.28) on some time interval

[0, T ], T ≥ 1, with initial data satisfying the smallness assumption (2.29). Assume also

that the solution satisfies the bootstrap hypothesis

∥ψ∥S[0,T ] + ∥ψ∥L∞(0,T ;H
sd
x ) ≤ C0∥ψ0∥Hsd . (2.30)

Then the following improved bound holds:

∥ψ∥S[0,T ] + ∥ψ∥L∞(0,T ;H
sd
x ) ≤

C0

2
∥ψ0∥Hsd , (2.31)

where C0 > 1 is a large universal constant.

In the remaining sections, we will focus on the proof of this proposition, which splits in

a modular fashion into an energy component and a Strichartz component, as in Proposi-

tions 1.2, 1.3 in the introduction.

3. Function spaces and notations

We define the function spaces for the study of global solutions to the system (2.27)-

(2.28). First we introduce the usual Sobolev spaces W s,p, Hs and the intrinsic Sobolev

spaces Hk for tensors on (Rd, g). The gauge independent intrinsic norms Hk are used in

the energy estimates. Then we state a equivalence relation between the Hk and Hk norms

under some assumptions on metric and magnetic potential.

For a function u(t, x) or u(x), let ˆ︁u = Fu denote the Fourier transform in the spatial

variable x. Fix a smooth radial function φ : Rd → [0, 1] supported in {x ∈ Rd : |x| ≤ 2}
and equal to 1 in {x ∈ Rd : |x| ≤ 1}, and for any i ∈ Z, let

φi(x) := φ(x/2i)− φ(x/2i−1).

We then have the spatial Littlewood-Paley decomposition,

∞∑︂
i=−∞

Pi(D) = 1,
∞∑︂
i=0

Si(D) = 1,

where we use the differential operator D := 1√
−1
∂x, Pi localizes to frequency 2i for i ∈ Z,

i.e,

F(Piu) = φi(ξ)û(ξ),
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and

S0(D) =
∑︂
i≤0

Pi(D), Si(D) = Pi(D), for i > 0.

For simplicity of notation, we set

uj = Sju, u≤j =

j∑︂
i=0

Siu, u≥j =
∞∑︂
i=j

Siu.

We denote W s,p for 1 ≤ p ≤ ∞ as the usual Sobolev spaces, and denote Hs := W s,2.

For simplicity of notation, on some time interval [0, T ], we define

∥u∥Lr
TW s,p = ∥u∥Lr(0,T ;W s,p), 1 ≤ r ≤ ∞.

For the solution ψ of Schrödinger equation in (2.27) and the related second fundamental

form λ, we will be working primarily in L∞
T H

sd ∩ S[0, T ] for sd > d
rd
+2. Here S[0, T ] are

the Strichartz spaces defined by (1.5) and (1.6). For convenience, corresponding to the

L2
t component of the Strichartz norms, we also define the Sobolev norm at fixed time as

∥ψ∥str := ∥ψ∥W 1,4 + ∥ψ∥W sd−2,rd , for d = 4,

and

∥ψ∥str := ∥ψ∥W sd−2,rd , for d ≥ 5.

For the elliptic system (2.28), at a fixed time we define the Hs norm as

∥(h, V,A,B)∥Hs = ∥∂xh∥Hs+1 + ∥∂xV ∥Hs + ∥A∥Hs+1 + ∥∂xB∥Hs−1 .

Next, we define the intrinsic Sobolev spaces Hk for integer k ∈ Z. Since the Schrödinger
equation (2.27) is a quasilinear equations with variable coefficients g, we will use the space

Hk to derive its energy estimates later. Let g be a Riemannian metric on Rd, and Aγ be a

magnetic potential. For any complex tensor T = Tα1···αr

β1···βs
dxβ1 ⊗ ...dxβs ⊗ ∂

∂xα1
⊗ ...⊗ ∂

∂xαr ,

the covariant derivative is defined by

∇A
γ T = ∇γT + iAγT,

where

∇γT
α1···αr

β1···βs
= ∂γT

α1···αr

β1···βs
+

r∑︂
i=1

Γαi
γσT

α1···αi−1σαi+1···αr

β1···βs
−

s∑︂
j=1

Γσ
γβj
Tα1···αr

β1···βj−1σβj+1···βs
. (3.1)

We have

|∇AT |2g = gα1α′
1
· · · gαrα′

r
gβ1β′

1 · · · gβsβ′
s∇A

γ T
α1···αr

β1···βs
∇A,γT

α′
1···α′

r

β′
1···β′

s
.

Then the intrinsic Sobolev norm Hk for nonnegative integer k ∈ N is defined by

∥T∥Hk =
(︂ k∑︂

l=0

∫︂
Σ

|∇A,lT |2g dµ
)︂1/2

, (3.2)
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where volume form is dµ =
√
det gdx and ∇A,l is the l-th order covariant derivative. By

duality, we can also define the negative intrinsic Sobolev spaces as

∥T∥H−k = sup
∥U∥

Hk
≤1

⟨T, U⟩L2 .

Under a suitable smallness assumption on the metric h and the magnetic field A we

have the following equivalence relation between Hk and Hk for a range of integers k.

Lemma 3.1. Let d ≥ 3 and s > d
2
. Assume that ∥∂xh∥Hs−1 + ∥A∥Hs−1 ≤ ϵ. Then for any

integer 0 ≤ k ≤ s we have the equivalent relation

∥T∥Hk ≈ ∥T∥Hk . (3.3)

Proof. By covariant derivative (3.1), schematically we write ∇A,kT as

∇A,kT = ∂kT +
∑︂

1≤n≤k

∑︂
l1+···+ln+1=k−n

∂l1(Γ + iA) · · · ∂ln(Γ + iA) · ∂ln+1T. (3.4)

Then by the smallness of ∂xh we have

∥∇kT∥L2(dµ) ≲ ∥|∇kT |g∥L2(dx)

≲∥∂kT∥L2 +
∑︂

1≤n≤k

∑︂
l1+···+ln+1=k−n

∥∂l1x (Γ + iA) · · · ∂lnx (Γ + iA) · ∂ln+1
x T∥L2 . (3.5)

In order to bound the second term above, it suffices to bound ΓnT in Hk−n. For this we

claim that

∥ΓT∥Hk′−1 ≲ ∥∂xh∥Hs−1∥T∥Hk′ , for any 1 ≤ k′ ≤ k. (3.6)

Then by induction we have

∥ΓnT∥Hk−n ≲ ∥∂xh∥Hs−1∥Γn−1T∥Hk−n+1 ≲ ∥∂xh∥nHs−1∥T∥Hk .

This combined with (3.5) and the smallness of ∂xh and A in Hs−1 implies

∥T∥Hk ≲ ∥T∥Hk + ϵ∥T∥Hk ≲ ∥T∥Hk .

We now return to prove the claim (3.6). Using a Littlewood-Paley decomposition and

Bernstein’s inequality we have

∥Sj(ΓT )∥Hk′−1 ≲
∑︂

0≤j1≤j

2(k
′−1)j∥Γj∥L22dj1/2∥Tj1∥L2 +

∑︂
0≤j1≤j

2dj1/2∥Γj1∥L22(k
′−1)j∥Tj∥L2

+
∑︂
j1>j

2(d/2+k′−1)(j−j1)∥Γj1∥Hd/2−1∥Tj1∥Hk′

:=I1j + I2j + I3j.
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For the first term we have

I1j ≲1<d/2(k
′)

∑︂
0≤j1≤j

2(d/2−1+δ)j∥Γj∥L22(d/2−k′+δ)(j1−j)2k
′j1∥Tj1∥L2

+ 1≥d/2(k
′)

∑︂
0≤j1≤j

2(k
′−1+δ)j∥Γj∥L22(d/2−k′−δ)j12k

′j1∥Tj1∥L2

≲∥Γj∥Hs−1∥T∥Hk′ .

For the second term we have

I2j ≲
∑︂

0≤j1≤j

2j1−j2(d/2−1)j1∥Γj1∥L22k
′j∥Tj∥L2 ≲ ∥Γ∥Hs−1∥Tj∥Hk′ .

The last term I3j is bounded by

I3j ≲
∑︂
j1>j

2(d/2+k′−1)(j−j1)∥Γj1∥Hd/2−1∥T∥Hk′ .

Hence, these give

∥ΓT∥Hk′−1 ≲(
∑︂
j≥0

∥Sj(ΓT )∥2Hk′−1)
1/2 ≲ ∥Γ∥Hs−1∥T∥Hk′ ≲ ∥∂xh∥Hs−1∥T∥Hk′ .

Then the claim (3.6) is obtained.

Conversely, by (3.4) we also have

∥∂kT∥L2 ≲∥∇A,kT∥L2 +
∑︂

1≤n≤k

∑︂
l1+···+ln+1=k−n

∥∂l1(Γ + iA) · · · ∂ln(Γ + iA) · ∂ln+1T∥L2

≲∥|∇A,kT |g∥L2(dµ) + ϵ∥T∥Hk .

This implies

∥T∥Hk ≲ ∥T∥Hk + ϵ∥T∥Hk ≲ ∥T∥Hk ,

which completes the proof of the lemma. □

4. Elliptic estimates

In this section, we consider the elliptic system (2.28). Its solvability was already con-

sidered in [7] under the assumption that ψ is small in Hs. Here we prove some additional

space-time bounds for (λ,S) with S = (h, V,A,B), which are adapted to the Strichartz
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norm we will use later on. We begin with the linearization of the solution map⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A
αλlin,βγ −∇A

β λlin,αγ = −(∇A
α )linλβγ + (∇A

β )linλαγ,

∇A,αλlin,αβ = −(∇A,α)linλαβ + (∇A
βψ)lin,

gαβ∂2αβglin,γσ = −gαβlin∂
2
αβgγσ +

(︁
(−∂γgαβ∂βgασ − ∂σg

αβ∂βgαγ + ∂γgαβ∂σg
αβ)

+ 2gαβΓσα,νΓ
ν
βγ − 2Re(λγσψ̄ − λαγλ̄

α
σ)
)︁
lin
,

∇α∇αV
γ
lin = −(∇α∇α)linV

γ +
(︁
2∇α Im(λαγψ̄)− Re(λγσψ̄ − λασλ̄

αγ)V σ

+ 2(Im(ψλ̄αβ) +∇αV β)Γγ
αβ

)︁
lin
,

∂αAlin,β − ∂βAlin,α = Im(λγαλ̄βγ)lin, gαβ∂αAlin,β = −gαβlin∂αAβ,

∇γ∇γBlin = −(∇γ∇γ)linB +
(︁
−∇γ∇σ Re(λ

σ
γψ) +

1

2
∆g|ψ|2

+∇γ[Im(λσγ λ̄σβ)V
β] + (2 Im(ψλ̄βγ) +∇βV γ +∇γV β)∂βAγ

)︁
lin
,

(4.1)

where (ψlin, λlin,Slin) is the linearization of the solution map (ψ, λ,S) in (2.27)-(2.28).

Then we recall the solvability result in [7]:

Theorem 4.1 ([7], Theorem 4.1). Assume that ψ is small in Hs for s > d/2 and d ≥ 4.

Then the elliptic system (2.28) admits a unique small solution (λ,S) in Hs ×Hs, with

∥λ∥Hs + ∥S∥Hs ≲ ∥ψ∥Hs . (4.2)

Moreover, for the linearization of the solution map above we also have the bound:

∥λlin∥Hσ + ∥Slin∥Hσ ≲ ∥ψlin∥Hσ , σ ∈ (
d

2
− 3, s]. (4.3)

Here we will supplement the above result with an an additional set of estimates:

Lemma 4.2. Let

d

rd
< σ ≤ sd − 2, σ1 ≤ sd + 2− d(d− 2)

2(d− 1)
.

Let ψ be defined in the interval [0, T ] and satisfy the hypothesis of Proposition 2.10. Then

we have

∥λ∥S[0,T ] + ∥h∥L2
TWσ1,2(d−1) + ∥(0, V, A,B)∥L2

THsd ≲ ∥ψ∥S[0,T ], (4.4)

and

∥∂xV ∥L1
TWσ,rd + ∥∂2xV ∥L1

TLd ≲ ∥ψ∥2S[0,T ]. (4.5)

In addition, in dimension d = 4 we have

∥h∥L2
TW 1,4 ≲ ∥ψ∥L2

TW 1,4∥ψ∥L∞
T H1 . (4.6)

We remark that in essence this is a fixed time result, where the evolution equation for

ψ is never used. What we prove in effect is the corresponding bound at fixed time where

all the L2
T norms are dropped.
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Proof. Step 1: The estimate for λ in (4.4). Here we use the div-curl system (2.9), which

we write schematically in the form

∂αλαβ = ∂βψ + Aψ + h∂xλ+ ∂xhλ,

∂αλβγ − ∂βλαγ = Aλ+ ∂xhλ.

By the relation ˆ︁λ(ξ) = |ξ|−2(ˆ︁λ · ξ)ξ + |ξ|−2(ˆ︁λξ⊤ − ξˆ︁λ⊤) · ξ,
we have

∥λ∥Wσ,rd ≲ ∥R(R · λ)∥Wσ,rd + ∥R(Rαλβγ −Rβλαγ)∥Wσ,rd

≲ ∥ψ∥Wσ,rd + ∥|D|−1(Aψ + Aλ+ h∂xλ+ ∂xhλ)∥Wσ,rd ,

where R = ∂x
|D| is the Riesz transform. By Sobolev embeddings and (4.2) we can estimate

∥|D|−1(h∂xλ+ ∂xhλ)∥Wσ,rd ≲ ∥R(hλ)∥Wσ,rd + ∥|D|−1(∂xhλ)∥Wσ,rd

≲ ∥h∥Wσ,rd∥λ∥L∞ + ∥h∥L∞∥λ∥Wσ,rd

+ ∥|D|−1P≤0(∂xhλ)∥Lrd + ∥∂xhλ∥Wσ−1,rd

≲ ∥∂xh∥Hs∥λ∥Wσ,rd + ∥∂xhλ∥L2

≲ ϵ0∥λ∥Wσ,rd .

Similarly, since ψ = Trλ we can bound the other terms by

∥|D|−1(Aλ)∥Wσ,rd ≲ ∥Aλ∥L2 + ∥Aλ∥Wσ−1,rd

≲ ∥∂xA∥Hs∥λ∥Wσ,rd + ∥A∥Wσ−1,rd∥λ∥L∞

≲ ∥∂xA∥Hs∥λ∥Wσ,rd

≲ ϵ0∥λ∥Wσ,rd .

Hence, from these estimates we obtain

∥λ∥L2
TWσ,rd ≲ ∥ψ∥L2

TWσ,rd . (4.7)

Similarly, in dimensions 4 we also have

∥λ∥L2
TW 1,4 ≲ ∥ψ∥L2

TW 1,4 . (4.8)

Step 2: The estimate for the metric g in (4.4) and (4.6). It suffices to consider the

following schematic form of the equations (2.16):

∆h = h∂2xh+ ∂xh∂xh+ h∂xh∂xh+ λ2.
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For the first three terms, we use Sobolev embeddings and Hölder’s inequality to estimate

∥∆−1(h∂2xh+ ∂xh∂xh+ h∂xh∂xh)∥Wσ1,2(d−1)

≲ ∥h∂2xh+ ∂xh∂xh+ h∂xh∂xh∥
L

2d(d−1)
5d−4

+ ∥h∂2xh+ ∂xh∂xh+ h∂xh∂xh∥Wσ1−2,2(d−1)

≲ (1 + ∥∂xh∥Hs+1)∥∂xh∥Hs+1∥h∥Wσ1,2(d−1) ≲ ϵ0∥h∥Wσ1,2(d−1) .

For the last term, by Sobolev embeddings we have

∥∆−1(λ2)∥Wσ1,2(d−1) ≲ ∥λ2∥
L

2d(d−1)
5d−4

+ ∥λ2∥Wσ1−2,2(d−1)

≲ ∥λ∥Ld/2∥λ∥L2(d−1) + ∥λ∥Wσ1−2,2(d−1)∥λ∥L∞

≲ ∥λ∥Hs∥λ∥Wσ,rd ≲ ϵ0∥λ∥Wσ,rd .

Hence, by the above estimates and (4.7) we obtain

∥h∥L2
TWσ1,2(d−1) ≲ ϵ0∥λ∥L2

TWσ,rd ≲ ϵ0∥ψ∥L2
TWσ,rd .

In the same way, from (4.8) we also obtain the bound (4.6) in dimension d = 4.

Step 3: The estimate for the advection field V and the connection coefficients A in

(4.4). Again it suffices to consider the following schematic form of the equations (2.22),

(2.13)

∆V = h∂2xV + ∂xh∂xV + ∂xh∂xhV + λ2(A+ V + ∂xh) + ∂x(λ
2), (4.9)

∆A = ∂x(λ
2) + ∂x(h∂xA).

The estimates for V and A are similar, so we only prove the bound for V .

As in the proof of (4.2), we bound the first three terms on the right by

∥|D|−1(h∂2xV + ∂xh∂xV + ∂xh∂xhV )∥Hsd ≲ (1 + ∥∂xh∥Hsd+1)∥∂xh∥Hsd+1∥∂xV ∥Hsd

≲ ϵ0∥∂xV ∥Hsd .

For the forth term in (4.9), by Sobolev embeddings we have

∥|D|−1(λ2(A+ V + ∂xh))∥Hsd ≲ ∥λ2(A+ V + ∂xh)∥
L

2d
d+2

+ ∥λ2(A+ V + ∂xh)∥Hsd

≲ ∥λ2∥Hsd∥(∂xA, ∂xV, ∂xh)∥Hsd

≲ ϵ20∥λ∥Wσ,rd .

For the last term in (4.9), we also have

∥R(λ2)∥Hsd ≲ ∥λ∥Hsd∥λ∥L∞ ≲ ϵ0∥λ∥Wσ,rd .

Hence, we obtain

∥∂xV ∥Hsd ≲ ϵ0∥λ∥Wσ,rd .
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Step 4: The estimate for B in (4.4). Again it suffices to consider the schematic form

of the equation (2.25):

∆B = h∂2xB + ∂x(λ∂xλ) + λ2(∂xA+ ∂xV + ∂xh(V + A)) + λ∂xλ(V + A+ ∂xh)

+ ∂xV ∂xA+ ∂xhV ∂xA.

By Sobolev embeddings and (4.2), we obtain

∥∂xB∥L2Hsd−1 ≲ ϵ0(∥A∥L2Hsd+1 + ∥∂xV ∥L2Hsd ) + ϵ0∥λ∥L2
tW

σ,rd ≲ ϵ0∥ψ∥L2
tW

σ,rd .

The proof of this bound is similar to the above steps, and we omit the detail.

Step 5: The estimates for V in (4.5). It suffices to consider the form

∆V = h∂2xV + ∂xh∂xV + ∂xh∂xhV + λ2(A+ V + ∂xh) + ∂x(λ
2). (4.10)

First, we prove that

∥∂xV ∥L1
TWσd,rd ≲ ∥λ∥2S[0,T ] + ϵ0∥∂xV ∥L1

TWσd,rd .

This implies the bound (4.5) for the term ∥∂xV ∥L1
TWσd,rd .

By V -equation and Sobolev embeddings we have

∥∂xV ∥L1
TWk0−2,rd ≲ ∥|D|−1

[︁
h∂2xV + ∂xh∂xV + ∂xh∂xhV

]︁
∥L1

TWk0−2,rd

+ ∥|D|−1
[︁
λ2(A+ V + ∂xh)

]︁
∥L1

TWk0−2,rd + ∥R(λ2)∥L1
TWk0−2,rd

:= I + II + III,

where R is Risez transform. For the first term on the right hand side of (4.10), we easily

have

I ≲ ∥P≤0(h∂
2
xV + ∂xh∂xV + ∂xh∂xhV )∥L1

TL2

+ ∥h∂2xV + ∂xh∂xV + ∂xh∂xhV ∥L1
TWk0−3,rd

≲ (1 + ∥∂xh∥L∞
T Hkd )(∥∂xh∥L∞Hkd∥∂xV ∥L1

TWkd−2,rd + ∥∂xh∥L2Wkd−2,rd∥∂xV ∥L2
THkd )

≲ ϵ1∥∂xV ∥L1
TWkd−2,rd + ∥λ∥2S[0,T ].

For the second term in (4.10), by Sobolev embeddings we have

II ≲ ∥P≤0|D|−1[λ2(A+ V + ∂xh)]∥Lrd + ∥P>0[λ
2(A+ V + ∂xh)]∥L1Wσd−1,rd

≲ ∥λ∥L2Lrd∥λ∥L2L∞∥A+ V + ∂xh∥Ld + ∥λ∥2L1L∞∥∇(A+ V + ∂xh)∥L∞Hsd−1

+ ∥λ∥L2Wσd,rd∥λ∥L2L∞∥A+ V + ∂xh∥L∞L∞

≲ ∥λ∥2L2Wσd,rd∥(∂xA, ∂xV, ∂xh)∥L∞Hsd

≲ ϵ0∥λ∥2L2Wσd,rd .

For the last term in (4.10), we also have

III ≲ ∥λ∥L2
TL∞∥λ∥L2

TWk0−2,rd ≲ ∥λ∥2
L2
TWk0−2,rd

≲ ϵ21.
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Hence, we give the bound (4.5) for ∂xV .

Next, we prove that

∥∂2xV ∥L1Ld ≲ ϵ0∥∂2xV ∥Ld + ∥λ∥2S[0,T ] (4.11)

From the general form (4.10), we use (4.4), (4.5) for ∂xV to bound the first three terms

in (4.10)

∥h∂2xV + ∂xh∂xV + ∂xh∂xhV ∥L1Ld

≲ ∥∂xh∥L∞Hsd∥∂2xV ∥L1Ld + ∥∂xh∥L∞Ld∥∂xV ∥L1Wσd,rd + ∥∂xh∥2L2L∞∥∂xV ∥L∞Hsd−2

≲ ϵ0∥∂2xV ∥Ld + ϵ0∥λ∥2S[0,T ].

We bound the last two terms in (4.10) by

∥λ2(A+ V + ∂xh)∥L1Ld + ∥∂x(λ2)∥L1Ld

≲ ∥λ∥2L2L∞∥(∂xA, ∂xV, ∂xh)∥L∞Hsd−1 + ∥λ∥2S[0,T ]

≲ ∥λ∥2S[0,T ](1 + ϵ0).

Then the desired bound (4.11) follows, and we obtain the bound (4.5) for ∂2xV . □

Finally, we turn our attention to the linearization of the elliptic system (2.28). This

has already been studied in [7] in nonnegative Sobolev spaces. However, for our global

estimates here we need instead to work with the linearized equation in H−1. For this case,

the elliptic estimates are as follows:

Proposition 4.3. With the notation and hypothesis in Proposition 2.10, for the linearized

equations of (2.28) we have

∥λlin∥L∞H−1 ≲ ∥ψlin∥L∞H−1 , (4.12)

∥∂xhlin∥L2L2 + ∥Alin∥L2L2 + ∥Vlin∥L2L2 + ∥Blin∥L2H−1 ≲ ∥ψlin∥L∞H−1∥ψ∥S[0,T ]. (4.13)

Proof. Step 1: Prove the hlin bound

∥∂xhlin∥L2L2 ≲ ∥λlin∥L∞H−1∥λ∥L2Wσd,rd . (4.14)

For the h-equations in (2.28), we consider the general form

∆h = h∂2xh+ ∂xh∂xh+ h∂xh∂xh+ λ2.

For the term λlinλ, by Sobolev embeddings we have

∥|D|−1(λlinλ)∥L2

≲ ∥|D|−1(λlin,≤0λ)∥L2 + ∥|D|−1(λlin,>0λ)∥L2

≲ ∥λlin,≤0∥L2∥λ∥Ld + ∥|D|−1(|D|−1λlin,>0|D|λ) + |D|−1λlin,>0λ∥L2

≲ ∥λlin,≤0∥L2∥λ∥Ld + ∥|D|−1λlin,>0∥L2(∥|D|λ∥Ld + ∥λ∥L∞)

≲ ∥λlin∥H−1∥λ∥str.

(4.15)
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For the term hlin∂
2h, we also have

∥|D|−1(hlin∂
2h)∥L2 ≲ ∥hlin∂h∥L2 + ∥|D|−1(∂hlin∂h)∥L2

≲ ∥hlin∥
L

2d
d−2

∥∂h∥Ld + ∥|D|hlin∥L2∥∂h∥Ld

≲ ∥∂hlin∥L2∥∂h∥Ld .

The other terms are controlled at the same way. Hence, by (2.30) we obtain

∥∂hlin∥L2 ≲ ϵ0∥∂hlin∥L2 + ∥λlin∥H−1∥λ∥str.

This implies the bound (4.14).

Step 2: Prove the bound

∥Alin∥L2L2 + ∥Vlin∥L2L2 ≲ ∥λlin∥L∞H−1∥λ∥S[0,T ]. (4.16)

The estimates of Vlin and Alin are similar, so we only prove the first one. For the

V -equation, we consider the form

∆V = h∂2xV + ∂xh∂xV + ∂xh∂xhV + λ2(A+ V + ∂xh) + ∂x(λ
2). (4.17)

For ∂(λ2), we have the bound (4.15). For the term λ2(A+ V + ∂xh), we have

∥∆−1(λ2Vlin)∥L2 ≲ ∥λ2Vlin∥
L

2d
d+4

≲ ∥λ∥2Ld∥Vlin∥L2 ,

and

∥∆−1(λlinλV )∥L2

≲ ∥∆−1(⟨D⟩−1λlin⟨D⟩λV + ⟨D⟩−1λlinλ⟨D⟩V ) + ∆−1⟨D⟩(⟨D⟩−1λlinλV ∥L2

≲ ∥⟨D⟩−1λlin⟨D⟩λV + ⟨D⟩−1λlinλ⟨D⟩V ∥
L

2d
d+4

+ ∥⟨D⟩−1λlin∥L2∥λ∥Ld∩L∞∥V ∥Ld

≲ ∥λlin∥H−1∥λ∥str∥V ∥Ld .

For the term h∂2V , we have

∥∆−1(hlin∂
2V )∥L2 = ∥∆−1(∂hlin∂V ) + |D|−1(hlin∂V )∥L2

≲ ∥∂hlin∥L2∥∂V ∥Hs ,

and

∥∆−1(h∂2Vlin)∥L2 = ∥∆−1(∂2hVlin) + |D|−1(∂hVlin) + hVlin∥L2

≲ ∥∂h∥Hs∥∂Vlin∥L2 .

The second and third term in (4.17) are bounded similarly. Hence, we obtain

∥Vlin∥L2 ≲ ϵ1(∥Vlin∥L2 + ∥Alin∥L2) + ∥λlin∥H−1∥λ∥str.

In the same way, we also have

∥Alin∥L2 ≲ ∥λlin∥H−1∥λ∥str.

These two estimates imply the desired bound (4.16).
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Step 3: Prove the λlin bound (4.12).

As before, it suffices to consider the simplified form of the div-curl system for λ, namely

∂αλαβ = ∂βψ + Aψ + h∂xλ+ ∂xhλ,

∂αλβγ − ∂βλαγ = Aλ+ ∂xhλ.

For the term Aλ we have

∥|D|−1(Alinλ)∥H−1 ≲ ∥Alin∥L2∥λ∥Ld ,

and

∥|D|−1(Aλlin)∥H−1 ≲ ∥A∥Ld∥λlin,≤0∥L2 + ∥|D|−1(|D|A|D|−1λlin,>0) + A|D|−1λlin,>0∥L2

≲ ∥∂A∥Hs∥λlin∥H−1 .

The other terms are controlled by

∥ψlin∥H−1 + ∥∂xhlin∥L2∥λ∥Hs + ∥∂xh∥Hs∥λlin∥H−1 .

Then these estimates combined with (4.14) and (4.16) yield

∥λlin∥H−1 ≲ ∥ψlin∥H−1 + ϵ0∥λlin∥H−1 .

This implies the bound (4.12).

Step 4: Prove the bound

∥Blin∥L2H−1 ≲ ∥λlin∥L∞H−1∥λ∥S[0,T ]. (4.18)

For the B-equation we consider the general form

∆B = h∂2xB + ∂2x(λ
2) + ∂x(λ

2)(∂xh+ V ) + λ2(∂2xh+ ∂xh∂xh+ ∂xA+ ∂xV + ∂xhV )

+ ∂xV ∂xA+ ∂xhV ∂xA.

For the second term ∂2(λ2) we have

∥λlinλ∥H−1 ≲ ∥λlin∥H−1∥λ∥str.

For the third term, we have

∥∆−1
(︁
∂x(λlinλ)V

)︁
∥H−1 ≲ ∥λlin∥H−1∥λ∥str∥∂xV ∥Hs .

and

∥∆−1
(︁
∂x(λ

2)Vlin
)︁
∥H−1 ≲ ∥λ∥2str∥Vlin∥L2 .

We control the other terms at the same way, then by (4.14), (4.16) and (2.30) we obtain

∥Blin∥H−1 ≲ ϵ0∥Blin∥H−1 + ∥λlin∥H−1∥λ∥str.

This gives the bound (4.18).

In conclusion, from (4.14), (4.16), (4.18) and (4.12) we obtain the second bound (4.13).

□
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5. Energy estimates

Here we consider the Schrödinger equation (2.27), and prove the energy estimates in

Proposition 1.2 as well as an energy estimate of linearized Schrödinger equation. These

will be needed in order to prove energy bounds (2.31) in fractional Sobolev spaces. For

two tensors T and ˜︁T, we denote T ∗ ˜︁T any tensor product of two tensors when we do not

need the precise expression.

To start with, we define the energy functional as follows. Let the metric g and con-

nection A be (part of) the solutions to the elliptic equations (2.28). For any nonnegative

integer k ∈ N, we define Ek(ψ) as

Ek(ψ) := ∥ψ∥2Hk =
(︂ k∑︂

l=0

∫︂
Σ

|∇A,lψ|2gdµ
)︂1/2

. (5.1)

We will show that this energy functional satisfies the bounds in Proposition 1.2.

a) Proof of the energy estimates (1.9).

Step 1: Prove that the time derivative of Ek has the form

d

dt
Ek(ψ) =

∑︂
∑︁

|αj |≤2k

∫︂
Re

J=4∏︂
j=1

∇A,αjλ dµ (5.2)

with coefficients depending on the metric g so that each of the terms in the above integrand

is covariant.

We recall the Schrödinger equation (2.27) first

i(∂Bt − V γ∇A
γ )ψ +∆A

g ψ = −iλγσ Im(ψλ̄σγ). (5.3)

On one hand, the energy (5.1) is defined by intrinsic Sobolev norm, which does not depend

on the choice of gauge. On the other hand, the equation (1.2) is equivalent to (1.1) up

to diffeomorphisms tangent to Σt. Indeed, let F : [0, T ] × Rd → Rd+2 be a family of

embeddings satisfying the equation (1.2), and let x(t, y) be a family of diffeomorphisms

of Rd satisfying

DxF (x(t, y), t)
(︂∂x
∂t

(t, y)
)︂
= −

(︂∂F
∂t

(x(t, y), t)
)︂⊤
.

Then F̃ (t, y) = F (x(t, y), t) is a solution of (1.1) with the advection field

Ṽ γ(t, y)∂yγ F̃ = (∂tF̃ )
⊤ = 0.

Hence, inspired by the above two properties, we can derive the energy estimates from

(5.3) with the advection field V = 0. Then the volume form dµ =
√
det g is preserved

along time t.
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Applying d
dt

to ∥|∇A,kψ|g(t)∥2L2(dµ), by (2.19) we obtain

d

dt

∫︂
Σ

|∇A,kψ|2gdµ

=

∫︂
Rd

2Re g(∇B
t ∇A,kψ,∇A,kψ) dµ+ (∇tg)(∇A,kψ,∇A,kψ) dµ

=

∫︂
Rd

2Re g(∇B
t ∇A,kψ,∇A,kψ) + 2G(∇A,kλ,∇A,kψ) dµ. (5.4)

By the equalities (2.20) and (2.24) with V = 0, we have

[∂Bt ,∇A,k]ψ =
∑︂

l1+l2+l3=k

∇A,l1λ ∗ ∇A,l2ψ ∗ ∇A,l2ψ.

Moreover, note that by Gauss equation, the curvature tensor R on Σ can be expressed as

R = λ ∗ λ, so the following commutator equality holds

[∇A,k,∆A]ψ =
∑︂

i+j+m=k

∇A,iλ ∗ ∇A,jλ ∗ ∇A,mψ. (5.5)

So by (5.3), the first term in the right-hand side of (5.4) reduces to∫︂
Rd

2Re g(∇B
t ∇A,kψ,∇A,kψ) dµ

=

∫︂
Rd

2Re g(∇A,k∂Bt ψ,∇A,kψ) +
∑︂

l1+l2+l3=k

Re g(∇A,l1λ ∗ ∇A,l2λ ∗ ∇A,l3ψ,∇A,kψ) dµ

=

∫︂
Rd

2Re g(∇A,ki∆Aψ,∇A,kψ) +
∑︂

l1+l2+l3=k

Re g(∇A,l1λ ∗ ∇A,l2λ ∗ ∇A,l3ψ,∇A,kψ) dµ

=

∫︂
Rd

−2Re i|∇A,k+1ψ|2g +
∑︂

l1+l2+l3=k

Re g(∇A,l1λ ∗ ∇A,l2λ ∗ ∇A,l3ψ,∇A,kψ) dµ

=

∫︂
Rd

∑︂
l1+l2+l3=k

Re g(∇A,l1λ ∗ ∇A,l2λ ∗ ∇A,l3ψ,∇A,kψ) dµ

Hence, we obtain the energy relation (5.2).

Step 2: Prove the energy bound (1.9).

Let us first recall the following interpolation inequality proved by Hamilton [4, Section

12].

Lemma 5.1. If T is any tensor and if 1 ≤ i ≤ l − 1, then with a constant C = C(d, l)

depending only on dimensions d and l, which is independent of the metric g and the

connection Γ, we have the estimate∫︂
Rd

|∇iT |
2l
i dµ ≤ C|T |2(

l
i
−1)

L∞

∫︂
Rd

|∇lT |2 dµ.
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Then by the interpolation inequality, (5.2), (4.3) and (5.6), for each integer k we have

d

dt
Ek(ψ) ≲

∑︂
m≤k

∑︂
i+j+l≤m

∥∇A,iλ∥L2m/i∥∇A,jλ∥L2m/j∥∇A,lψ∥L2m/l∥∇A,mψ∥L2

≲ ∥λ∥2L∞∥λ∥2Hk .

Thus we obtain the energy estimates (1.9). □

b) Proof of the energy equivalence relation (1.10).

The relation (1.10) for k ≤ s with some s > d
2
is already a consequence of (3.3). We

should be more accurate here, we get a better range from (3.3).

It remains to to prove (1.10) for k > s. Our starting point is the higher regularity

bounds for the elliptic system (2.28), which were proved in [7, Section 7.6], as follows:

∥(λ, h, V,A,B)∥Hσ×Hσ ≲ ∥ψ∥Hσ , σ ≥ s. (5.6)

This implies in particular that the Christoffel symbol Γ and connection coefficients Aα

satisfy

∥(Γ, A)∥Hσ+1 ≲ ∥ψ∥Hσ , σ ≥ s. (5.7)

By the expression (3.4), Sobolev embeddings and (5.7) we have

∥ψ∥Hk ≲ ∥ψ∥Hk +
∑︂

1≤n≤k

∑︂
l1+···+ln+1≤k−n

∥∂l1x (Γ + iA) · · · ∂lnx (Γ + iA) · ∂ln+1
x ψ∥L2

≲ ∥ψ∥Hk +
∑︂

1≤n≤k

∥Γ + iA∥Hk∥Γ + iA∥n−1
Hs ∥ψ∥Hs +

∑︂
1≤n≤k

∥Γ + iA∥nHs∥ψ∥Hk

≲ ∥ψ∥Hk +
∑︂

1≤n≤k

∥ψ∥Hk∥ψ∥nHs

≲ ∥ψ∥Hk .

Conversely, by (3.4) we also have

∥ψ∥Hk ≲∥ψ∥Hk +
∑︂

1≤n≤k

∑︂
l1+···+ln+1≤k−n

∥∂l1(Γ + iA) · · · ∂ln(Γ + iA) · ∂ln+1ψ∥L2

≲∥ψ∥Hk + ϵ0∥ψ∥Hk .

Thus we obtain the equivalence relation ∥ψ∥Hk ≈ ∥ψ∥Hk .

In the same way as the above, we also have the equivalence ∥λ∥Hk ≈ ∥λ∥Hk . By (5.6),

(4.3) and the bound

∥ψ∥Hk = ∥gαβλαβ∥Hk ≲ ∥λ∥Hk + ϵ0∥λ∥Hk ≲ ∥λ∥Hk ,

we also have the equivalence ∥ψ∥Hk ≈ ∥λ∥Hk . Hence, the desired equivalence relations

(1.10) are obtained. □
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Finally, we prove an energy estimate in negative Sobolev spaces H−1 for the linearized

equation of (2.27):

i(∂Bt − V γ∇A
γ )ψlin +∆A

g ψlin

= (V γ∇A
γ )linψ − (∆A

g )linψ +Blinψ − [iλγσ Im(ψλ̄σγ)]lin := Flin.
(5.8)

Proposition 5.2. Let d ≥ 4. Under the assumptions (2.29) and (2.30), for the linearized

equation of (2.27) we have the bound

∥ψlin∥L∞
T H−1 ≤ Clin∥ψlin(0)∥H−1 + Clin∥ψ∥2S[0,T ]∥ψlin∥L∞

T H−1 . (5.9)

For clarity, here we note that the linearized equation depends on our gauge choices. The

above proposition and its proof below assume we are in the harmonic/Coulomb gauge.

Proof. Here we will treat the source term Flin in (5.8) perturbatively. This allows us to

split the proof of (5.9) into two parts. Precisely, it suffices to prove the linear bound

∥ψlin∥L∞
T H−1 ≲ ∥ψlin(0)∥H−1 + ∥Flin∥L1

TH−1 . (5.10)

respectively the source term estimate

∥Flin∥L1
TH−1 ≲ ∥ψlin∥L∞

T H−1∥ψ∥2S[0,T ] (5.11)

Together, these two bounds imply the conclusion of the proposition. It remains to prove

(5.10) and (5.11).

We first consider the bound (5.10), which we prove using duality. For this we need the

associated adjoint equation, which has the form

i(∂Bt − V γ∇A
γ )v +∆A

g v − i∇γV
γv = N , (5.12)

The adjoint evolution is considered in the same time interval [0, T ], but as a backward

Cauchy problem with the initial data at time T . Then we claim that this evolution is

(backward) well-posed in H1, and satisfies the the bound

∥v∥L∞(0,T ;H1) ≲ ∥v(T )∥H1 + ∥N∥L1(0,T ;H1). (5.13)

Assuming this holds, then from the duality relation

⟨ψlin, v⟩|T0 = ⟨−iN , Flin⟩

we have the bound

|⟨(ψlin(T ), ψlin), (v(T ),−iN )⟩| ≲ (∥ψlin(0)∥H−1 + ∥Flin∥L1H−1)(∥v(T )∥H1 + ∥N∥L1H1)

which in turn implies that

∥ψlin∥L∞
T H−1 ≲ ∥ψlin(0)∥H−1 + ∥Flin∥L1

TH−1 .
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Since the metric g − Id and connection A are small in harmonic/Coulomb gauge, by

equivalence (3.3) and duality we have

∥u∥H−1 = sup
∥v∥H1≤1

⟨u, v⟩L2 ≲ sup
∥v∥H1≤1

⟨u, v⟩L2 = ∥u∥H−1 .

Then the desired bound (5.10) follows.

Now we prove the bound (5.11) for the nonlinear terms Flin. This is a consequence of

the fixed time bound

∥Flin∥H−1 ≲ ∥ψlin∥H−1∥ψ∥2str, (5.14)

which we now prove by successively considering all the terms in Flin.

Using Sobolev embeddings and (4.13) we bound the worst term (∆g)linψ by

∥(∆g)linψ∥H−1 = ∥hαβlin∂
2
αβψ∥H−1

≲ (∥hlin∥
L

2d
d−2

+ ∥∂xhlin∥L2)∥ψ∥W 1,d

≲ ∥λlin∥H−1∥ψ∥2str
≲ ∥ψlin∥H−1∥ψ∥2str.

For the term Aα
lin∂αψ, by (4.13) we have

∥Aα
lin∂αψ∥H−1 ≲ ∥Alin∥L2∥∂xψ∥Ld ≲ ∥ψlin∥H−1∥ψ∥2str. (5.15)

Similarly, by (4.13) we also have

∥(∇αA
α)linψ∥H−1 + ∥(AαAα)linψ∥H−1 + ∥(λ3)lin∥H−1

≲ (∥Alin∥L2 + ∥(AαA
α)lin∥L2)∥ψ∥str + ∥λlin∥H−1∥λ∥2str

≲ ∥ψlin∥H−1∥ψ∥2str.

(5.16)

and

∥Blinψ∥H−1 ≲ ∥Blin∥H−1(∥ψ∥L∞ + ∥ψ∥W 1,d) ≲ ∥ψlin∥H−1∥ψ∥2str.

For the term (V γ∇A
γ )linψ, by the same argument as (5.15) and (5.16) and the estimate

(4.13) we bound it by

∥(V γ∇A
γ )linψ∥H−1 ≲ ∥Vlin∂xψ∥H−1 + ∥(V A)linψ∥H−1

≲ ∥Vlin∥L2∥∂xψ∥Ld + ∥(V A)lin∥L2∥ψ∥str
≲ ∥ψlin∥H−1∥ψ∥2str

This concludes the proof of (5.14) and thus of (5.11).

Finally, we turn to the proof of the claim (5.13). Since this proof is more complicated

than that of Proposition 1.2, we provide the full details. By (5.12) and integration by
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parts, we have the basic energy estimate

d

dt
∥v∥2L2 =

∫︂
2Re⟨∂Bt v, v⟩+ |v|2∇αV

α dµ

=

∫︂
2Re⟨(V γ∇A

γ v + i∆A
g v +∇γV

γv − iN ), v⟩+ |v|2∇αV
α dµ

=

∫︂
2∇γV

γ|v|2 − 2Re⟨iN , v⟩ dµ

≲ ∥v∥2L2∥∇γVγ∥L∞ + ∥N∥L2∥v∥L2

≲ ∥v∥2L2∥λ∥Wσd,rd + ∥N∥L2∥v∥L2 .

We then derive an energy estimate for ∇Av in L2. By (5.12) and integration by parts

we have

d

dt

∫︂
|∇Av|2 dµ =

∫︂
2Re⟨[∂Bt ,∇A

α ]v +∇A
α∂

B
t v,∇A,αv⟩

+Re⟨∇A
αv,−2Gαβ∇A

β v⟩+ |∇Av|2∇αV
γ dµ

=

∫︂
2Re⟨[∂Bt ,∇A

α ]v,∇A,αv⟩+Re⟨∇A
αv,−2Gαβ∇A

β v⟩+ |∇Av|2∇αV
γ dµ

+

∫︂
2Re⟨∇A

α (V
γ∇A

γ v + i∆A
g v +∇γV

γv − iN ),∇A,αv⟩ dµ

=

∫︂
2Re⟨[∂Bt − i∆A

g ,∇A
α ]v,∇A,αv⟩

+Re⟨∇A
αv,−2Gαβ∇A

β v⟩+ 2|∇Av|2∇αV
γ dµ

+

∫︂
2Re⟨V γ[∇A

α ,∇A
γ ]v +∇αV

γ∇A
γ v +∇α∇γV

γv − i∇A
αN ),∇A,αv⟩ dµ.

This implies

d

dt

∫︂
|∇Av|2 dµ ≲ ∥[∂Bt − i∆A

g ,∇A
α ]v∥L2∥∇Av∥L2 + ∥V γ[∇A

α ,∇A
γ ]v∥L2∥∇Av∥L2

+ ∥v∥2H1(∥λ∥2L∞ + ∥∇V ∥L∞) + ∥∇α∇γV
γ∥Ld∥v∥L2d/(d−2)∥v∥H1

+ ∥N∥H1∥v∥H1 .

(5.17)

We use (2.24) and (5.5) to bound the first term on the right hand side of (5.17) by

∥[∂Bt − i∆A
g ,∇A

α ]v∥L2∥∇Av∥L2 ≲ ∥(λ ∗ ∇Aψ + λ2V )v∥L2∥v∥H1

+ ∥∇Aλ ∗ λ ∗ v + λ ∗ λ ∗ ∇v∥L2∥v∥H1

≲ (∥λ ∗ ∇Aλ∥Ld + ∥λ2V ∥Ld)∥v∥L2d/(d−2)∥v∥H1

+ ∥λ∥2L∞∥v∥2H1

≲ ∥λ∥2str(1 + ∥∇V ∥Hs−2)∥v∥H1

For the second term in (5.17) we have

∥V γ[∇A
α ,∇A

γ ]v∥L2∥∇Av∥L2 = ∥iV γ Im(λαµλ̄
µ
γ)v∥L2∥v∥H1 ≲ ∥λ∥2str∥∇V ∥Hs−2∥v∥H1 .
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For the third and forth terms in (5.17), by Sobolev embeddings and (4.5) we have

∥v∥2H1(∥λ∥2L∞ + ∥∇V ∥L∞) + ∥∇α∇γV
γ∥Ld∥v∥L2d/(d−2)∥v∥H1 ≲ ∥v∥H1∥λ∥2str.

Hence, we conclude that

∥v∥L∞
T H1 ≲ ∥v0∥H1 + ∥λ∥2L2

T str∥v∥L∞
T H1 + ∥N∥L1

TH1

≲ ∥v0∥H1 + ∥λ∥2S[0,T ]∥v∥L∞
T H1 + ∥N∥L1

TH1

By the assumption (2.30) and Hölder’s inequality, this yields the claim (5.13). This

completes the proof of the proposition. □

6. Strichartz estimates

Here we consider the Schrödinger equation (2.27), and prove the Strichartz bounds in

Proposition 1.3. First, we introduce the endpoint Strichartz estimates of Keel-Tao [11]

and the inhomogeneous Strichartz estimates developed by [2, 17, 18, 34]. Then we use

these to bound the linear and nonlinear part, respectively.

We begin with the homogeneous Strichartz estimates obtained by Keel-Tao [11]:

∥eit∆f∥LqLr ≲ ∥f∥L2 , (6.1)

where (q, r) is Schrödinger-admissible pair, that is, 2
q
+ d

r
= d

2
, 2 ≤ q, r ≤ ∞, (q, r, d) ̸=

(2,∞, 2). Here we will use the endpoint pair (q, r) = (2, 2d
d−2

).

Next, we state the inhomogenous Strichartz estimates, which summarize several known

results, see [2, 17, 18, 34].

Definition 6.1. We say that the pair (q, r) is Schrödinger-acceptable if

1 ≤ q <∞, 2 ≤ r ≤ ∞,
1

q
<
d

2
(1− 2

r
), or (q, r) = (∞, 2).

Theorem 6.2 (Inhomogeneous Strichartz estimates). Let d ≥ 3 and p′ be the duality of p

with 1
p
+ 1

p′
= 1. Assume that the pairs (q, r) and (q̃, r̃) are Schrödinger-acceptable pairs,

and satisfy the condition
1

q
+

1

q̃
=
d

2
(1− 1

r
− 1

r̃
).

In addition, assume one of the following:

i) non-sharp case:

1

q
+

1

q̃
< 1,

d− 2

d

1

r
≤ 1

r̃
≤ d

d− 2

1

r
,

1

r
,
1

r̃
≤ 1

2
;

ii) sharp case:

1

q
+

1

q̃
= 1,

d− 2

d

1

r
<

1

r̃
<

d

d− 2

1

r
,

1

r
≤ 1

q
,

1

r̃
≤ 1

q̃
;
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iii) endpoint cases when d ≥ 3:

1

q
+

1

q̃
= 1,

1

r
=

d

d− 2

1

r̃
or

d− 2

d

1

r̃
,

1

r
≤ 1

q
,

1

r̃
≤ 1

q̃
.

Then the following estimate holds

∥
∫︂ t

0

ei(t−s)∆F (s)ds∥LqLr ≲ ∥F∥Lq̃′Lr̃′ . (6.2)

We now aim to prove the space-time bound S[0, T ] for ψ in Proposition 1.3 by combining

the above Strichartz estimates with the elliptic estimates in section 4.

Proof of Proposition 1.3. By Duhamel’s principle, the solution ψ of (2.27) can be ex-

pressed by

ψ(t) = eit∆ψ0 +

∫︂ t

0

ei(t−s)∆N (s)ds,

where

N := h∂2xψ + (V + A)∂xψ + (B + A2 + V A+ λ2)ψ.

Using Sobolev embeddings, the bound (6.1) with (q, r) = (2, 2d
d−2

) and the estimates (6.2)

with pairs (q, r) = (2, rd), (q̃, r̃) = (2, 2(d−1)
(d−2)

), we have

∥ψ∥L2
TWσd,rd ≲ ∥ψ0∥

H
σd+

d−2
2(d−1)

+ ∥N∥L2
TWσd,r̃

′ .

It remains to successively estimate the terms in N . For the first term h∂2xψ, by
1
r̃′

=
1
2
+ 1

2(d−1)
and Littelwood-Paley decomposition, we have

∥h∂2xψ∥L2
TWσd,r̃

′ ≲ ∥
(︁∑︂

k

22σdk|P≤k+3hPk∂
2
xψ|2

)︁1/2∥L2
TLr̃′

+ ∥
(︁∑︂

k

22σdk|PkhP≤k+3∂
2
xψ|2

)︁1/2∥L2
TLr̃′

+ ∥
∑︂
k

2σdk|
∑︂
l>k−3

PlhP[l−3,l+3]∂
2
xψ|∥L2

TLr̃′

≲ ∥h∥L2
TL2(d−1)∥ψ∥L∞

T Hσd+2 + ∥∂2xh∥L∞
T Hσd∥ψ∥L2

TL2(d−1)

+
⃦⃦⃦∑︂

k

∑︂
l>k−3

2σd(k−l)2σdl+2l∥Plh∥L2∥P[l−3,l+3]ψ∥L2(d−1)

⃦⃦⃦
L2
T

, (6.3)

where the last term (6.3) can be bounded by

(6.3) ≲
⃦⃦⃦∑︂

k

∑︂
l>k−3

2σd(k−l)2σdl+2l∥Plh∥L2
x

⃦⃦⃦
L∞
T

∥ψ∥L2
TL2(d−1)

≲ ∥∂2xh∥L∞
T Hσd+ϵ∥ψ∥L2

TL2(d−1)

with ϵ > 0 small. Hence, the above calculations combined with (4.4) and (4.2) yield

∥h∂2xψ∥L2
TWσd,r̃

′ ≲ ∥h∥L2
TL2(d−1)∥ψ∥L∞

T Hσd+2 + ∥∂2xh∥L∞
T Hσd+ϵ∥ψ∥L2

TL2(d−1)

≲ ϵ0∥ψ∥L2
TWσd,rd .
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For the second term (V + A)∂xψ, by (4.4) and (4.2) we have

∥(V + A)∂xψ∥L2
TWσd,r̃

′ ≲ (∥∂xV ∥L2
THsd + ∥∂xA∥L2

THsd )∥ψ∥L∞
T Hsd ≲ ϵ0∥ψ∥L2

TWσd,rd .

Finally, for the other terms in N , by (4.7) we also have

∥(B + A2 + V A+ λ2)ψ∥L2
TWσd,r̃

′

≲ (∥∂xB∥L2
THsd−1 + ∥∂xA∥L2

THsd + ∥∂xV ∥L2
THsd )(1 + ∥S∥L∞

t Hsd )∥ψ∥L∞
T Hsd

+ ∥λ∥L2
TWσd,rd∥λ∥L∞

T Hsd∥ψ∥L∞
T Hsd

≲ ϵ0∥ψ∥L2
TWσd,rd .

This concludes the proof of the bound (1.12) for ψ ∈ L2
TW

σd,rd .

In order to obtain the bound for ψ ∈ L2
TW

1,4, by (6.1) and (6.2) we have

∥ψ∥L2
TW 1,4 ≲ ∥ψ0∥H1 + ∥N∥

L2
TW 1, 43

.

Using (4.6), (4.4), (4.8) and (2.30) we bound the nonlinear terms by

∥N∥L2
TW 1,4 ≲ ∥h∥L2

TW 1,4∥ψ∥L∞
T H3

+ (∥∂xB∥L2
TL2 + ∥∂xA∥L2

TL2 + ∥∂xV ∥L2
TL2)(1 + ∥S∥L∞

t Hsd )∥ψ∥L∞
T H2

+ ∥λ∥L2
TW 1,4∥λ∥L∞

T Hsd∥ψ∥L∞
T H1

≲ (C∥ψ0∥H3)2∥ψ∥L2
TW 1,4 .

These imply the bound (1.12) for ψ ∈ L2
TW

1,4 in dimensions d = 4. □

7. Rough solutions and scattering

In this section, we use elliptic estimates in section 4, energy estimates (1.11), (5.9) and

Strichartz estimates in Proposition 1.3 to prove the improved energy bounds (2.31) for ψ

in fractional Sobolev spaces. This closes the proof of Proposition 2.10. As a byproduct,

we also obtain the scattering property (1.8).

Here we start with an equivalent definition of Hs. Since in the Hilbertian case all

interpolation methods yield the same result, for theHs norm we will use a characterization

which is akin to a Littlewood-Paley decomposition, or to a discretization of the J method

of interpolation. Precisely, we have

Lemma 7.1. Let 0 ≤ s ≤ N . Then Hs can be defined as the space of distributions u

which admit a representation

u =
∞∑︂
j=0

uj

with the property that the following norm is finite:

|||(uj)|||2s =
∞∑︂
j=0

22j(s+1)∥uj∥2H−1 + 22j(s−N)∥uj∥2HN
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and with equivalent norm defined as

∥u∥2Hs = inf |||(uj)|||2s, (7.1)

where the infimum is taken with respect to all representations as above.

7.1. Regularized data. Consider an initial data ψ0 ∈ Hsd small, and let {ck}k≥0 be a

sharp frequency envelope for ψ0 in Hsd . In fact, the ck can be defined as

ck = 2−δk∥ψ0∥Hsd +max
k

2−δ|j−k|∥Sjψ0∥Hsd ,

where constant δ only depends on s and the dimension d. For ψ0 we consider a family of

regularizations at frequencies ≲ 2k, i.e.

ψ
(k)
0 := S≤kψ0 ∈ H∞ := ∩∞

j=0H
j,

where k is a dyadic frequency parameter. This parameter can be taken either discrete

or continuous, depending on whether we have access to difference bounds or only to the

linearized equation. Suppose we work with differences. Then the family ψ
(k)
0 can be taken

to have similar properties to Littlewood-Paley truncations:

i) Uniform bounds:

∥Sjψ
(k)
0 ∥Hsd ≲ cj.

ii) High frequency bounds: for σ > δ,

∥ψ(k)
0 ∥Hsd+σ ≲ 2σkck. (7.2)

iii) Difference bounds:

∥ψ(k+1)
0 − ψ

(k)
0 ∥H−1 ≲ 2−(sd+1)kck. (7.3)

iv) Limit as k → ∞:

ψ0 = lim
k→∞

ψ
(k)
0 in Hsd .

Correspondingly, we obtain a family of smooth solutions ψ(k).

7.2. Uniform bounds. Corresponding to the above family of regularized data, we obtain

a family of smooth solutions ψ(k) on [0, Tn] for Tn > 1 by Theorem 2.8. For this we can

use the energy estimates (1.11) to propagate Sobolev regularity for solutions as well as

difference bounds as in Proposition 5.2. Using induction we will prove that the solutions

ψ(k) are global as follows:

(i) We prove that the solution ψ(0) is global. By local well-posedness in Theorem 2.8,

let T0 be

T0 = sup
T

{︂
T : ∥ψ(0)∥S[0,T ] + ∥ψ(0)∥L∞

T Hsd ≤ C0∥ψ0∥Hsd

}︂
.

Then on the interval [0, T0], by Proposition 1.3 we have

∥ψ(0)∥S[0,T ] ≤ 2C2∥ψ(0)
0 ∥Hsd ≤ 2C2∥ψ0∥Hsd .
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Using (5.9) and (1.11) we have

∥ψ(0)∥L∞
T0

Hsd ≤ ∥ψ(0)∥L∞
T0

H−1 + ∥ψ(0)∥L∞
T0

HN

≤ (1− ClinC
2
0ϵ

2
0)

−1Clin∥ψ0∥H−1 + C1e
CEC2

0 ϵ
2
0∥ψ0∥Hsd

≤ C0

2
∥ψ0∥Hsd .

Here we set

C0 > 4C1 + 4C2 + 4Clin, (7.4)

and choose ϵ0 to be sufficiently small such that

(CE + Clin)C
2
0ϵ

2
0 <

1

4
. (7.5)

This implies that the solution can be extended, and thus the lifespan is T0 = ∞.

(ii) We prove that the the solutions ψ(k) for any k are global. By local well-posedness

in Theorem 2.8, let Tk be

Tk = sup
T

{︂
T : ∥ψ(k)∥S[0,T ] + ∥ψ(k)∥L∞

T Hsd ≤ C0∥ψ0∥Hsd

}︂
.

Then on the interval [0, Tk], by Proposition 1.3 we have the improved Strichartz estimates

in S[0, T ]. We then prove the improved energy estimates for ψ(k).

By (i) we assume that ψ(l) for l ≤ k − 1 are global. Then we have two properties as

follow:

a) High frequency bounds:

∥ψ(l)∥C[0,Tk;H
N1 ] ≤ C1e

CEC0ϵ02(N1−sd)lcl, 0 ≤ l ≤ k, sd < N1 ∈ N. (7.6)

b) Difference bounds:

∥ψ(l+1) − ψ(l)∥C[0,Tk;H−1] ≤ 2Clin2
−(sd+1)lcl, 0 ≤ l ≤ k − 1. (7.7)

The first bound is obtained from (1.11) and (7.2). The second bound (7.7) is obtained by

Proposition 5.2, Proposition 1.3 and (7.3). Indeed,

∥ψ(l+1) − ψ(l)∥C[0,Tk;H−1]

≤ Clin∥ψ(l+1)
0 − ψ

(l)
0 ∥H−1 + Clin∥(ψ(l+1), ψ(l))∥2S[0,Tk]

∥ψ(l+1) − ψ(l)∥C[0,Tk;H−1]

≤ Clin2
−(s+1)lcl + 2Clin(C0ϵ0)

2∥ψ(l+1) − ψ(l)∥C[0,Tk;H−1].

Interpolating the two estimates (7.6) and (7.7), we obtain

∥ψ(l+1) − ψ(l)∥C[0,Tk;HN ] ≤ max{2Clin, C1e
CEC2

0 ϵ
2
0}2−(sd−N)lcl, 0 < N < N1. (7.8)
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We use these bounds to establish uniform frequency envelope bounds for ψ(k),

∥ψ(k)∥2C[0,Tk;H
sd ] ≤ ∥ψ(0)∥2C[0,Tk;H−1] +

k−1∑︂
l=1

22(sd+1)l∥ψ(l+1) − ψ(l)∥2C[0,Tk;H−1]

+ ∥ψ(0)∥2C[0,Tk;HN ] +
k−1∑︂
l=1

22l(sd−N)∥ψ(l+1) − ψ(l)∥2C[0,Tk;HN ]

≤
k−1∑︂
l=0

(2Clincl)
2 +

k−1∑︂
l=0

(max{2Clin, C1e
CEC2

0 ϵ
2
0})2c2l

≤
k−1∑︂
l=0

(︂C0

2
cl

)︂2

≤
(︂C0

2
∥ψ0∥Hsd

)︂2

.

Here C0 and ϵ0 are chose as (7.4), (7.5) respectively. This implies that the solutions ψ(k)

are also global.

Now consider the convergence of solutions ψ(k) in C(R;Hsd) as k → ∞. From the

difference bounds (7.7) we obtain convergence in H−1 to a limit ψ ∈ C[0,∞;H−1], with

∥ψ − ψ(k)∥C(R;H−1) ≤
∞∑︂
l=k

∥ψ(l+1) − ψ(l)∥C(R;H−1) ≤
∞∑︂
l=k

2−(sd+1)lcl ≲ 2−(s+1)k.

On the other hand, expanding the difference as a telescopic sum, where, in view of the

above bounds (7.6) and (7.7), each summand is essentially concentrated at frequency 2l,

with Hsd size cl and exponentially decreasing tails. By the equivalent norm (7.1), (7.7)

and (7.8) we have

∥ψ − ψ(k)∥2C(R;Hsd ) ≤
∞∑︂
l=k

22(sd+1)l∥ψ(l+1) − ψ(l)∥2C(R;H−1)

+
∞∑︂
l=k

22(sd−N)l∥ψ(l+1) − ψ(l)∥2C(R;HN )

≲
∞∑︂
l=k

c2l = c≥k,

so we also have convergence in C(R, Hsd).

Hence, we obtain the solution ψ as the limit of solutions ψ(k), and have the bound

∥ψ∥C(R;Hsd ) ≤ lim
k→∞

∥ψ(k)∥C(R;Hsd ) ≤
C0

2
∥ψ0∥Hsd .

This gives the improved energy bound in Proposition 2.10. The first improved bound in

(2.31) for ψ ∈ S[0, T ] is obtained by Proposition 1.3, (7.4) and (7.5). Hence, we complete

the proof of Proposition 2.10.

Finally, we prove that scattering holds.



38 J. HUANG, Z. LI, AND D. TATARU

Proposition 7.2 (Scattering). Let sd be as in (1.3). There exist ψ± ∈ Hsd−2 such that

lim
t→±∞

∥ψ − eit∆ψ±∥Hsd−2 = 0. (7.9)

Proof. It is standard to deduce (7.9) from

∥(Vα − 2Aα)∇αψ∥L2
tW

sd−2,rd + ∥N∥L2
tW

sd−2,rd ≲ 1,

which has been proved in Proposition 1.3. So our lemma follows. □
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