GLOBAL SOLUTIONS FOR 1D CUBIC DEFOCUSING DISPERSIVE
EQUATIONS: PART I

MIHAELA IFRIM AND DANIEL TATARU

ABSTRACT. This article is devoted to a general class of one dimensional NLS problems with
a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such
problems has attracted a lot of attention in recent years, and many global well-posedness
results have been proved for a number of models under the assumption that the initial data
is both small and localized. However, except for the completely integrable case, no such
results have been known for small but not necessarily localized initial data.

In this article we introduce a new, nonperturbative method, to prove global well-posedness
and scattering for L? initial data which is small and non-localized. Our main structural
assumption is that our nonlinearity is defocusing. However, we do not assume that our
problem has any exact conservation laws. Our method is based on a robust reinterpretation
of the idea of interaction Morawetz estimates, developed almost 20 years ago by the I-team.

In terms of scattering, we prove that our global solutions satisfy both global L% Strichartz
estimates and bilinear L? bounds. This is a Galilean invariant result, which is new even for
the classical defocusing cubic NLSH There, by scaling our result also admits a large data

counterpart.
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1. INTRODUCTION

The question of obtaining scattering, global in time solutions for one dimensional dispersive
flows with quadratic/cubic nonlinearities has attracted a lot of attention in recent years, and
many global well-posedness results have been proved for a number of models under the
assumption that the initial data is both small and localized; without being exhaustive, see
for instance see [12) 13], 21, 18, 14]. The nonlinearities in these models are primarily cubic,
though the analysis has also been extended via normal form methods to problems which also
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have nonresonant quadratic interactions; several such examples are [I], 15, 9, [16, 20], see also
further references therein.

In this article we consider instead the much more difficult case where the initial data is just
small, but without any localization assumption. Here it is natural to restrict the analysis to
defocusing problems, as focusing one-dimensional cubic NLS type problems typically admit
small solitons and thus, generically, the solutions do not scatter at infinity. Then one may
formulate the following broad conjecture:

Conjecture. One dimensional dispersive flows with cubic defocusing nonlinearities and
small initial data have global in time, scattering solutions.

The goal of this article is to prove the first global in time well-posedness result of this type.
As part of our results, we also prove that our global solutions are scattering at infinity in
a very precise, quantitative way, in the sense that they satisfy both L Strichartz estimates
and bilinear L? bounds. This is despite the fact that the nonlinearity is non-perturbative on
large time scales.

1.1. Cubic NLS problems in one space dimension. One of the fundamental one-
dimensional dispersive flows in one space dimension is the cubic NLS flow,

(1.1) iy + Uy = Fulul?, u(0) = up.

Depending on the choice of signs, this comes in a defocusing (+) and a focusing (-) flavor.
Both of these equations are important not only by themselves, but also as model problems
for more complex one-dimensional dispersive flows, both semilinear and quasilinear.

The above cubic NLS flow is globally well-posed in L? both in the focusing and in the
defocusing case, though the global behavior differs in the two cases.

Precisely, the focusing problem admits small solitons, so the solutions cannot in general
scatter at infinity. If in addition the initial data is localized, then one expects the solution to
resolve into a superposition of (finitely many) solitons, and a dispersive part; this is called
the soliton resolution conjecture, and is known to hold in a restrictive setting, via the method
of inverse scattering, see e.g. [2].

In the defocusing case, the inverse scattering approach also allows one to treat the case
of localized data, and show that global solutions scatter at infinity, see for instance [§].
This can also be proved in a more robust way, without using inverse scattering, under the
assumption that the initial data is small and localized, see [I4] and references therein. Much
less is known in terms of scattering for nonlocalized L? data. However, if more regularity is
assumed for the data, then we have the following estimate due to Planchon-Vega [22], see
also the work of Colliander-Grillakis-Tzirakis [3]:

(1.2) lullzs + 110s[ul*[172 < lluollz2 l[uollz-

This allows one to estimate the L® Strichartz norm of the solution, i.e. to prove some type
of scattering or dispersive decay.

Because of the above considerations, our interest in this paper is in defocusing cubic
problems. Precisely, we will consider a cubic nonlinear Schrodinger equation (NLS) type
model in one space dimension

(1.3) Uy + Uz = O(u, @, u),  u(0) = u,
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where u is a complex valued function, u : R x R — C. Here C is a trilinear translation
invariant form, whose symbol ¢({;, &2, &3) can always be assumed to be symmetric in &, 3;
see section for an expanded discussion of multilinear forms. The arguments u,u and u
of C' are chosen so that our equation has the phase rotation symmetry, u — ue”, as it
is the case in most examples of interest. The symbol c(&1, &2, &) will be required to satisfy
a minimal set of assumptions:

(H1) Bounded and regular:
(1.4) 0¢'c(&1,62,83)| < ca, £1,&,8 € R, for every multi-index a.

(H2) Conservative:

(1.5) Se(€,€,n) =0, ¢, n € R, where Sz = imaginary part of z € C.
(H3) Defocusing:
(1.6) c(&,6,8) >c>0, £€Randcec R,

In selecting these assumptions we have tried to strike a balance between the generality of
the result on one hand, and a streamlined exposition on the other hand.

The simplest example of such a trilinear form C' is of course C' = 1, which corresponds to
the classical one-dimensional cubic NLS problem. But this problem is of course completely in-
tegrable, and thus has infinitely many conservation laws. In particular global well-posedness
is straightforward, though our L% Strichartz and bilinear L? bounds are new even for this
problem in the L? data setting. By contrast, the assumptions we impose on our model do
not guarantee any exact conservation law at the L? level or at any other regularity level.

At the other end, both our use of the linear Schrodinger operator and the boundedness
condition (H1) are non-optimal, and we hope to relax both of these restrictions in subsequent
work. However, using these restrictions brings the major expository advantage that our
model has a Galilean invariance, in the sense that a Galilean transformation yields a problem
that is in the same class, even though it is not exactly the same. This allows us to provide
cleaner, shorter proofs for our results, and to keep the focus on the main ideas.

1.2. The main result. Our main result asserts that global well-posedness holds for our
problem for small L? data. In addition, our solutions not only satisfy uniform L2, but also
global space-time L® estimates, as well as bilinear L? bounds, as follows:

Theorem 1. Under the above assumptions (H1), (H2) and (H3) on the symbol of the cubic
form C', small initial data
lluollz < ek 1,
yields a unique global solution u for (L.3)), which satisfies the following bounds:
(i) Uniform L* bound:

(1.7) lullgerz S €.
(i1) Strichartz bound:
(1.8) lullzg, S €.
(111) Bilinear Strichartz bound:
(1.9) || O (ut(- + :Uo))HL%H,% <é xo € R.
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Here we note that in the case xy = 0 the last bound gives

(1.10) 10z [ul? <

_1
7~

L2H,

which is the more classical formulation of the bilinear L? bound. However, making this
bound uniform with respect to the z translation captures the natural separate translation
invariance of this bound, and is also quite useful in our proofs.

We also remark that all the bounds above are indeed Galilean invariant. As noted earlier,
our main equation is not Galilean invariant, but the class of equations we are considering is.
The estimates in the theorem do not represent the full strength of what we actually prove,
but are a merely a simple but relevant sample. Our actual proof yields stronger frequency
envelope bounds associated to a decomposition of the solution v on a unit frequency scale
(rather than the more traditional dyadic decomposition); see Theorem [5[in Section @

Applied to the model cubic NLS problem , by scaling we have the following result
which applies to the large data problem:

Theorem 2. Consider the defocusing 1-d cubic NLS problem (L.1])(+) with L? initial data
ug. Then the global solution u satisfies the following bounds:

(i) Uniform L? bound:
(1.11) [ullgerz < lluollzz-
(i1) Strichartz bound:
(1.12) [ullzg, < lluoll 2
(#i) Bilinear Strichartz bound:

2 2 _
(113) L
One may compare the above L° bound with the Planchon-Vega estimate ((1.2)), see [22],
which applies only to H' solutions.

There are several ideas which play key roles in our analysis, all of which are used in a
nonstandard fashion in the present work:

1. Energy estimates via density flur identities. This is a classical idea in pde’s, and
particularly in the study of conservation laws, namely that the density-flux identities play a
more fundamental role than just energy identities. The new twist in our context is that this
analysis is carried out in a nonlocal setting, where both the densities and the fluxes involve
translation invariant multilinear forms.

2. The use of energy corrections. This is an idea originally developed in the context of
the so called I-method [4] or more precisely the second generation I-method [7], whose aim
was to construct more accurate almost conserved quantities. Here we implement this idea
at the level of density-flux identities, in a form closer to [19].

3. Interaction Morawetz bounds. These were originally developed in the context of the
three-dimensional NLS problems by Colliander-Keel-Stafillani-Takaoka-Tao in [5], and have
played a fundamental role in the study of many nonlinear Schrédinger flows, see e,g. [6], 23],

and also for one-dimensional quintic flows in the work of Dodson [I0, [II]. Our take on this
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is somewhat closer to the one-dimensional approach of Planchon-Vega [22], though recast in
the setting and language of nonlocal multilinear forms.

4. Tao’s frequency envelope method. This is used as a way to accurately track the evolution
of the energy distribution across frequencies. Unlike the classical implementation relative
to dyadic Littlewood-Paley decompositions, here we adapt and refine this notion for lattice
decompositions instead. This is also very convenient as a bootstrap tool, see e.g. Tao [24],
[25] but with the added twist of also bootstrapping bilinear Strichartz bounds, as in the
authors’ paper [17].

1.3. An outline of the paper. In the next section we begin by setting up the notations
for function spaces and multilinear forms. More importantly, we also introduce our class
of admissible frequency envelopes associated to lattice decompositions; this is based on the
maximal function.

In Section 3| we carry our a preliminary step in the proof of our main result, namely we
prove the small data local well-posedness result. This is independent of the global result,
and uses a contraction argument in a well chosen function space defined via a wave packet
type decomposition.

The goal of Section ! is to recast energy identities for the mass and the momentum in
density-flux form. We supplement this with two additional steps, where we first consider
frequency localized mass and momentum densities, and then we improve their accuracy by
adding a well chosen quartic correction.

In Section [5f we begin with the classical idea of interaction Morawetz identities for the
linear Schrodinger flow, and then we use our density-flux identities for the sharp frequency
localized mass and momentum in order to obtain a set of refined interaction Morawetz
identities for our problem. For clarity of exposition we consider separately the diagonal case,
where the interaction of equal frequency components is considered, and the transversal case,
which corresponds to separated frequency ranges.

The proof of our global result uses a complex bootstrap argument, involving both energy,
Strichartz and bilinear L? bounds in a frequency localized setting and based on frequency
envelopes. The bootstrap set-up is laid out in Section [0, which also contains a sharper,
frequency envelope version of our result in Theorem Our main estimates closing the
bootstrap argument are carried out in Section [7] using the density-flux and interaction
Morawetz identities previously obtained.

Finally, in the last section of the paper we return from frequency localized bounds to
global bounds, in order to complete the proof of our main global result.
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Simons Foundation. Some of this work was carried out while both authors were participating
in the MSRI program “Mathematical problems in fluid dynamics” during Spring 2021.

The authors also wish to thank the anonymous referee for the very careful reading of the
manuscript and for the very useful corrections and suggestions.
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2. NOTATIONS AND PRELIMINARIES

2.1. Lattice frequency decompositions. For our analysis it will be convenient to localize
functions in (spatial) frequency on the unit scale. For this we consider a partition of unity

1= ZPk(f%

keZ

where py, are smooth bump functions localized in [k —1, k+1]. Correspondingly, our solution
u will be decomposed as
U = Zuk, u = Pyu.
keZ
The main estimates we will establish for our solution u will be linear and bilinear estimates
for the functions wuy.
For a larger interval A C Z, we denote

up = E g .-

keA

2.2. Frequency envelopes. This is a tool which allows us to more accurately track the
distribution of energy at various frequencies for the solutions to nonlinear evolution equa-
tions. In the present paper, they play a key bookkeeping role in the proof of the linear and
bilinear bounds for our solutions in the context of a complex bootstrap argument. In brief,
given some standard decomposition of, say, an L? function

UIE Uk,

a frequency envelope for u is a sequence {c;} with the property that

lukllez S ek, llerlle = flull 2.
In addition, one also limits how rapidly the sequence {c;} is allowed to vary. As origi-
nally introduced in work of Tao, see e.g. [24], in the context of dyadic Littlewood-Paley
decompositions, one assumes that the sequence {c;} is slowly varying, in the sense that
S < 90lk—j|
Ck
Here we will instead work with a uniform lattice decomposition on the unit frequency
scale. This requires a major revision of the above notion of “slowly varying”, which turns
out to be far too weak for our purposes.
Instead we want to strengthen this property in order to say that ¢ ~ Mec (the maximal
function):

Definition 2.1. A lattice frequency envelope {ci} is said to have the maximal property if
(2.1) Me < Ce,

where Mc represents the mazimal function of c,
k+j

1
(Mc);, = sup Z .

iz0 2j +1 2=

Here C' is a universal constant.



Frequency envelopes that have this property will be called admissible. An important
observation is that admissible envelopes can always be found:

Lemma 2.2. Any (? frequency envelope ® can be placed under a comparable mazimal fre-
quency envelope ¢, i.e.

(2.2) d<e, el =1

Proof. We will use two properties of the maximal function:

1) [M fllrz < C|If |12
(ii) M(f+g) < Mf+ Mg.

Given CO we define ¢ as
)
00

c= Z(ZC’)_’“M]“CO.
k=0
By property (i), this series converges in £, with

lellez < 2[1c°]| 2.

Then by property (ii) we have
Mec < 2Ce.

The proof is concluded. O

G=3c
keA

For an interval A C Z we denote

Also for a dyadic integer n we set

|k|~=n
Also given a translation invariant function space X, we denote by X, the associated
frequency envelope controlled norm

(2.3) lullx. = sup ¢ fuelx.
2.3. Multilinear forms and symbols. A key notion which is used throughout the paper is
that of multilinear form. All our multilinear forms are invariant with respect to translations,

and have as arguments either complex valued functions or their complex conjugates.
For an integer k > 2, we will use translation invariant k-linear forms

(DR))* > (uy, -+ ,up) = L(uy, g, - - ) € D'(R),

where the nonconjugated and conjugated entries are alternating.
Such a form is uniquely described by its symbol (&1, &, - -+, &) via

L(ula 627 e )(ZL’) - <27T)_k / ei(w_zl)&e_i(m_xQ)& U g(glv T 7£k)
up (@) Ug(z2) - - - dxy - - - dagdéy - - - dEy,

or equivalently on the Fourier side

FL(ur, iz, -~ )(€) = 2m) "% /Dg(fl, &)U (&) (&) - - déy - dEg,
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where, with alternating signs,

D={t=&-&+}

They can also be described via their kernel

L(uy, tg, -+ )(x) = /K(a:—xl,--- & — xp)uy () ue(xe) - - - dy - - - dy,

where K is defined in terms of the Fourier transform of ¢
K (21,2, yx3) = (2m) 2 (—a1, @, -+, (—1)Fay).

All the symbols in this article will be assumed to be smooth, bounded and with bounded
derivatives.

We remark that our notation is slightly nonstandard because of the alternation of complex
conjugates, which is consistent with the set-up of this paper. Another important remark is
that, for k-linear forms, the cases of odd k, respectively even k play different roles here, as
follows:

i) The 2k + 1 multilinear forms will be thought of as functions, e.g. those which appear
in some of our evolution equations.

ii) The 2k multilinear forms will be thought of as densities, e.g. which appear in some of
our density-flux pairs.

Correspondingly, to each 2k-linear form L we will associate a 2k-linear functional L defined

by
L(us, - ) :/L<u1,--- i) () dz,
R

which takes real or complex values. This may be alternatively expressed on the Fourier side
as

L(uy, -« ug) = (QW)l_k/ 0, 5 an )t (61) i (&a) - - - Uk (on ) dEy - - - dap 1,
D
where, with alternating signs, the diagonal Dy is given by

Dy={0=& &+ -}

Note that in order to define the multilinear functional L. we only need to know the symbol
¢ on Dy. There will be however more than one possible smooth extension of ¢ outside Dj.
This will play a role in our story later on.

2.4. Cubic interactions in Schrodinger flows. Given three input frequencies &1, &, &3
for our cubic nonlinearity, the output will be at frequency

§a=8& — &+ &3

This relation can be described in a more symmetric fashion as
A =0, Al =6 — &+ & —
This is a resonant interaction if and only if we have a similar relation for the associated time
frequencies, namely
A =0, AE=g-g+8-¢
8



Hence, we define the resonant set in a symmetric fashion as
R = {A* =0, A** =0}
It is easily seen that this set may be characterized as

R = {{&, &) = {6 &Gt}

2.5. The Galilean symmetry. Here we investigate how the equation ((1.3) changes if we
apply a Galilean transformation. In particular, we will justify our claim in the introduction
that the transformed equation is of the same type.

We first recall the linear case. Suppose u solves the linear Schrédinger equation

(z@t + 8§)u = f, U(O) = Ugp.

Given a frequency k, its Galilean transform v is defined by
o(t, @) = e TR0y (¢ 3 4 2ket),

and solves the linear Schrodinger equation

(z@t + 85)7} =g, U(O) = ¥y,
where

vo(z) = e *ug,  g(t,x) = e B f(t x + 2kt).
Now suppose that u solves (|1.3)). Then the above computation shows that v will solve a
similar equation,
(i0; + 02)v = C(v,v,v),
where
C(v,0,v) = e C(ve'*™ vetkz pe'*®),

This allows us to compute the symbol of C' as

5(517527£3> = C<£1 - k7£2 - k7£3 - k)

This translated symbol is easily seen to have exactly the same properties as c.

3. LOCAL WELL-POSEDNESS

Before approaching the global problem, an initial step is to establish local in time well-
posedness. Since we only assume boundedness and smoothness on the symbol C' this is not
an entirely straightforward matter. Our main result can be summarily stated as follows:

Theorem 3. The evolution (1.3) is locally well-posed for small data in L*.

Here we need to clarify the meaning of well-posedness. For this problem, we will establish
a semilinear type of well-posedness result. Precisely, for each initial data uy which is small
in L? a unique solution exists in C([0, 1]; L?), with Lipschitz dependence on the initial data.

However, as it is often the case in the dispersive realm, we will not try to prove uncon-
ditional uniqueness, and contend ourselves with having both existence and uniqueness of
solutions in a ball in a restricted space X C C([0,1]; L?).

A natural follow-up question here would be whether the same result holds for large data in
our context. The answer is indeed affirmative; however, in this article we have chosen to only

consider small data because this is all we need on one hand, and a large data result would
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require a more complex choice of the space X mentioned above, as well as a correspondingly
more complex proof, on the other hand.

Another related question is whether a standard scaling argument could be used here. The
scaling transformation would be the standard one for the cubic NLS problem,

ux(t, ) = Au(N’t, A\x).
For the initial data this corresponds to
upx () = Aug(Az).

It is then easy to see that u) solves an equation of the same type as , but with the
rescaled symbol
C,\(fl, £2a 63) = C(fl/)V 52/>\7 63/>\)
This satisfies the bound uniformly only for A > 1, so it cannot be used to reduce the
large data problem to the small data problem. However, it can be used to obtain better
life-span bounds for small data:

Corollary 3.1. Assume that the initial data uy for (1.3)) satisfies ||uo|lz2 < €. Then the
solution u exists on [0, T.] with T, := ce 2, with similar bounds.

The rest of this section is devoted to the proof of Theorem |3| The first step in our proof
is to construct a suitable function space X where we seek the solutions.

Given a function u in [0, 1] x R, we start with a decomposition v = )", _, u;, on the unit
frequency scale, and then a partition of unity in the physical space, also on the unit scale,

1= ij(st).

JEZ

Finally, we define the norm of the space X for solutions

(3.1) lalfe =D lunlk, el = D I o = 2tk)u] G o

keZ JEZ

Here the second argument of x; is consistent with the group velocity of frequency & waves.
Indeed, if u were an L? solution to the homogeneous Schrodinger equation then this would
be nothing but a wave packet decomposition of u on the unit time scale. It is easily seen
that we have the embedding

X C LL2.

Remark 3.2. Due to the unit frequency localization of u, and Bernstein’s inequality, we
may freely replace the L L2 norm in (3.1]) by LS.

Correspondingly, we define a similar space Y for the source term in a linear Schrodinger
equation, namely

(3.2) A5 =D Il Il = D It e = 2tk) fill3 2
keZ jez
so that we have the duality relation
X =Y
with equivalent norms.
Then for the small data local well-posedness result in X it suffices to establish the following

two properties. The first is a linear mapping property:
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Lemma 3.3. The solution to the linear Schrodinger equation

(3.3) (10, + *)u = f, u(0) = 1
in the time interval [0,1] satisfies
(3.4) lullx < llwollze + [1.flly-

The second is an estimate for the nonlinearity:
Lemma 3.4. For the cubic nonlinearity C' we have the bound
(3.5) I1C (u, @, w)ly < Jlullx.

Once we have these two lemmas, the proof of the local well-posedness result follows in a
standard manner using the contraction principle in a small ball in X. However, for later use
we also need to have a more precise, frequency envelope version of Theorem [3] This is as
follows:

Theorem 4. For each small initial data
HuoHLQ S ekl

there exists a unique solution u to (1.3|) which is small in X. In addition, suppose cy is an
0? normalized admissible frequency envelope so that

[uollze < e.
Then the solution u satisfies
(3.6) Jullx. S e
This requires stronger, frequency envelope versions of Lemmas [3.3], [3.4}

Lemma 3.5. The solution to the linear Schrodinger equation

(3.7) (i0; + 0P)u = f, u(0) = ug
in the time interval [0,1] satisfies
(3.8) lullx. < lluollzz + [f[ly.-

The second is an estimate for the nonlinearity:

Lemma 3.6. Let ¢;, be an ? normalized admissible frequency envelope. Then for the cubic
nonlinearity C we have the bound

(3.9) I1C (u, w,w)ly, S llull.-

Proof of Lemmas [3.5. We can freely localize on the unit scale in frequency, and reduce
the problem to the frequency localized estimate

(3.10) el S Ntowllzz + [ Felyi-

We can further reduce the problem by applying a Galilean transformation, by setting
o(t, x) = e ROy (¢ — 2kt),  vo(z) = e FPug,,  g(t, x) = e FTHEO L (4 0 — 2kt).

Here the functions v, vy, g are now localized at frequency 0 and solve

(i0;+ 2w =g,  v(0)=0y,
11



whereas the bound (3.10]) reduces to
(3.11) [0llxo < llvollz2 + [lgllvs-

Inserting a harmless frequency localization Py, we represent v as
t

v(t) = eitagpono — z/ ei(t_s)agPog ds.
0

Here by a slight abuse a notation we allow F, to have slightly larger support. Finally, we
localize spatially at both ends,

t
va(t) — E (XjGZt85P0X100+/ Xjel(t_s)8%P0Xlgd3)~
0

leZ

Here the kernels for e Py are uniformly Schwartz for ¢ € [0, 1], so we get an L? bound with
off-diagonal decay,
e Poxallomsze S (G — D7
This implies that
Ixjvllppere S ) (— DY (Ihavollzz + HngHLng) )
leZ.

which in view of the off-diagonal decay implies the bound (3.11])).
0

Proof of Lemmas [3.6. Here the second lemma implies the first. We need to prove the
estimate

1P C (@, w)lly;, < exllull,

By duality, this reduces to the integral bound
(3.12) 1 < eullald ol I = /C(u,ﬂ,u)@k drdt.

Without any restriction in generality we may assume that

ul|x, = 1, vk llx, = 1.

We use the unit scale frequency decomposition to separate the above integral as

[ - Z / CklekS (ukl ) ﬂkg; U/k3)@k dl’dt,

k1—ko+ks=k

where we have also localized the kernel of C' near frequencies ki, ko, k3 on the unit scale.
The symbol of Cj, .k, 15 smooth and bounded on the unit scale, so the above summands
are essentially like products, and may be indeed thought of as products via separation of
variables. For bilinear products we have the estimate

1
(3.13) [ty vko 2, S m”uklnxkl vk, I x, -
This is obtained simply by examining the intersection of the supports of the bump functions

traveling with speeds 2k, respectively 2ks.
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Denoting §k" = max |k; — k;|, the relation ky + k3 = ko + k insures that we can group
the four frequencies into two pairs at distance 6k™. Then, using twice the above bilinear
estimate, we have

1
|]| S Z Wclﬂckzclﬂ'
k1—ko+ks—k=0

Let n represent the dyadic size of §k". Without loss of generality, by relabeling, suppose
that

|k — k3| = |k — ko| = n, |k — k1] < n.
Then using the Cauchy-Schwartz inequality for the pair (ko, k3) for fixed k; we estimate
1
| ’SZH Z Cr, C2, = Z c?.
n |k1—k|<n |i—k|~n

Now we use the maximal function inequality for ¢, which gives

We obtain
|| Scchi R Ck.
n

Thus (3.12) is proved. O

For later use, we note that the frequency envelope bounds for u together with the bilinear
L? bound ({3.13)) imply the following

Corollary 3.7. Let u be a solution for (1.3)) in [0,1] as in Theorem[f Then the following
bounds hold:

(3.14) lunlzs, S cr

D=

(3'15) Ha:v(u]ﬂﬂka(' + CCO))HLfm 5 €2<k1 - k2> Chy Chy -

4. ENERGY ESTIMATES AND CONSERVATION LAWS

4.1. Conservation laws for the linear problem. We begin our discussion with the linear
Schrodinger equation

(4.1) iU+ Uyy = 0, u(0) = up.

For this we consider the following three conserved quantities, the mass
M) = [ fuf
the momentum
P(u) =2 / S(udyu) de,
as well as the energy

E(u) = 4/ |0, u|? dz.
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To these quantities we associate corresponding densities
M(u) = |ul?, P(u) = i(ud,u — ud,u), E(u) = —ud?u + 2|0,ul* — ud*u.

The choice of densities here is not entirely straightforward. Symmetry is clearly a criteria,
but further motivation is provided by the conservation law computation,

(4.2) Oy M (u) = 0, P(u), 0:P(u) = 0. E(u).
The symbols of these densities viewed as bilinear forms are

m&n) =1,  p&n)=—E+n), e&n) =(E+n)?

More generally, we can start start with a symbol a(¢,n) which is symmetric, in the sense
that

a(777 5) = a(£7 77)7
and then define an associated weighted mass density by
M, (u) = A(u, ).
We also define corresponding momentum and energy symbols p, and e, by

pa(&n) = —(E+nal&n), e n) = (E+n)al&n).

Then a direct computation yields the density flux relations

d - _ d _ _
%Ma(u, u) = 0, P, (u,u), EPa(u, u) = 0, E,(u,u).

4.2. Nonlinear density flux identities for the mass and momentum. Here we develop
the counterpart of the linear analysis above for the nonlinear problem (|1.3]).
4.2.1. The modified mass. To motivate what follows, we begin with a simpler computation
for the L? norm of a solution u of (1.3)):
d -
%HUH%Q = / —iC(u,u,u) - u +iu - C(u,a,u) dr = /C’i(u,ﬂ,u,ﬂ) dx.

A-priori the symbol of the quartic form C% | defined on the diagonal A*¢ = 0, is given by
cfn(gh 527 637 54) - _Z.C(gla 527 53) + 26(627 537 €4)

However, we can further symmetrize and replace it by

i
(61,62, 65,84) = B (—c(1,62,83) — (81,6, 83) + (&2, €3, 8a) +E(62,61,64)) -
In particular we are interested in the behavior of ¢t (&1, &y, &3, €,) on the resonant set

R = {(51752753764) S R4/A4§ - 07 A4£2 = 0} = {{§17§3} = {62754}}'

On this set we compute
i

n(&,6,8,86) = 5 (—c(&1,&1, &) — (&1, 83, 83) + (61,63, 83) + (61,61, 83))
= S(c(61, 61, 83) + (61,63, 63))-

Then we observe that our (H2) assumption on C' shows that this expression vanishes. One
might wonder here if we could not weaken this assumption by requiring that the sum of

the two terms is zero, rather than each of them separately. This would indeed be the case
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if all we were interested in is the almost conservation of mass. However, we will later add
localization weights which will act differently on the two terms.

The fact that ¢} vanishes on the resonant set R implies (see Lemma below) that we
can smoothly divide

-
b (61,60, 60, 61) = — L B 6

on A*¢ = 0. We now use B as an energy correction. Then we obtain the modified energy
relation

(4.3)

T lulze + By (w00, ) = Ry, (u, 0, v, 0, 0, w),
where RS is a symmetric 6-linear form. Here the left hand side may be viewed as a modified
energy, while the right hand side can potentially be estimated using the ng norm of u.

4.2.2. The modified mass and momentum density-flux pairs. The key idea here is that, cor-
responding to the above modified mass, we also want to write a conservation law for an
associated mass density

(4.4) M*(u) = M (u) + B (u, @, u, w).

However, when doing this, we remark that the symbol of Bl was previously defined only
on the diagonal A*¢ = 0, whereas in order for the above expression to be well defined we
need to extend it everywhere. For the purpose of this computation we simply assume that
we have chosen some smooth extension. A more careful choice will be considered later in

Lemma .11

Now we compute
O, M*(u) = 0, P(u) + C* (u, @, u,u) + i(A*¢?B ) (u, @, u, @) + RS (u, @, u, @, u, 7).

By the choice of B2 the symbol of the quartic term above ¢} + iA*¢?b} vanishes on the
diagonal {A*¢ = 0}, therefore we can express it smoothly in the form

(4.5) ch A+ iAYER D) =AY
Hence the above relation can be written in the better form
(4.6) O, M*(u) = 0,(P(u) + R (u, @, u, @) + RS (u, @, u,q,u, ).

One may view here the relation (4.5 as a division problem, where ¢! vanishes on the
resonant set R. The symbols b} and r! are not uniquely determined by the relation (4.5)),
as we can change them by

b = by T aA'E, T, = 7+ gAY,
for any smooth q. However, this is the only ambiguity. In particular r? is uniquely deter-

mined on the set A*¢? = 0, while b2, is uniquely determined on the set A%¢ = 0.

One could carry out a similar computation for the momentum, where the starting point
is the relation
Oy P(u) = 0, E(u) + C;l(u,ﬂ, u, ).

Precisely, the symbol of C7) is initially given by
(61,8,8.&) =i(6 — &+ &+ &)c(6r,6,8) — (& + & — &+ &), &, &).
15



However, we can further symmetrize it exactly as in the case of C%. Then it also vanishes
on the resonant set R, so it admits a (nonunique) representation of the form

(4.7) e+ iAEPhy = iNYEr)
Hence, as in the case of the mass, we define a quartic correction for the momentum density
P¥(u) = P(u) + By (u, 1, u, ).
This satisfies a conservation law of the form

(4.8) 0, P*(u) = 0, (E(u) + Rﬁ(u, w,u,u)) + Rg(u, U, Uy Uy U, W)

4.3. The choice for the density-flux corrections. Here we consider the division problem
in (4.5)), and ask what should be a good balance between the symbols B, and R;,. We recall
that b is uniquely determined on the diagonal A*¢ = 0, but we can choose it freely away
from the diagonal.

To move away from the diagonal, it is useful to do it in a Galilean invariant fashion. The
expression A%¢? is not Galilean invariant, but we do have a suitable replacement, namely
the expression

R o= A2 — 260y N = (61— &) — (6~ &))).

This is easily seen to be invariant with respect to translations. To measure the size of both
A% and A*¢? we introduce two parameters,

5fhi = max{[§ — &| + &3 — &, &1 — &l + |& — &}
6&™° = min{|& — &| 4 |& — &l [é — &l +1&6 — &}

where &M measures the diameter of the full set of £’s whereas 5¢™ measures the distance
of the sets {&1,&3} and {&2, &4 }. With these notations, we have bounds from above as follows:

(4.10) At S ogmed, AT < aghiggmed,

We will think of the symbol A*¢ as being elliptic where approximate equality holds in the
first relation, and of A*¢? as being elliptic where approximate equality holds in the second
relation. Based on this, we will decompose the phase space into three overlapping regions
which can be separated using cutoff functions which are smooth on the unit scale:

(4.9)

i) The full division region,
0, = {om <13,
which represents a full unit size neighbourhood of the resonant set R.
ii) The region
Qy = {1+ |A%E] < 66™eY,
where A¢2 must be elliptic, |ALE2| ~ deMgemed and thus we will favor division by
the symbol A%£2.
iii) The region
0y = {1 < o™ S |A%},
we will instead divide by A%¢; this is compensated by the relatively small size of this
region.

This decomposition leads us to the following division lemma:
16



Lemma 4.1. Let ¢* be a bounded symbol which is smooth on the unit scale, and which
vanishes on R. Then it admits a representation

(4.11) = AN - AN
where ™ and b* are also smooth on the unit scale, with the following properties:
i) Size
1
(3
1
(0M) (&)
ii) Support: b* is supported in Q; UQy and 7 is supported in Q; U Q3.

077 <

(4.12)
0°0] <

Here and later in the paper by “smooth on the unit scale” we mean that the above
functions and all their derivatives are bounded, with bounds as in , and where the
implicit constant is allowed to depend on «, but not on anything else. As usual, only finitely
many derivatives are needed on our analysis, but we do not take the extra step of determining
how many.

To return to A*¢, we have the following straightforward observation:
Remark 4.2. Later we will need similar decompositions but with A*¢2 replaced by A*€2,
= Atert — ATt
This s easily done via the substitution
rt = 26,0

But in doing this, we loose the above bound for 7 unless [Euy| < 0™, Precisely, we obtain

instead
| oo )
(5Emea) (1 ey )

Proof. Using a partition of unity which is smooth on the unit scale, we can reduce the
problem to the case when ¢* is supported in exactly one of the regions €, €y and Q3. We
consider each of these cases separately.

(4.13) |0%rt| <

i) ¢* is supported in Q. To simplify notations here we introduce new linear coordinates
(11, 2,13, 1) where
m=A%, m=&L+&—-& &, m=L-&L—&+&, a1 = A€
For ny we can choose in a symmetric fashion
n=& + &+ &+ &,

though this does not play any role in the sequel.
In these coordinates we have

0 = {|771| +min{|7]2], ‘773|} S 1} =1 U QU Qys,

where
Q1 = {|m] + [m2] + ns] S 1}, Qo = {|m| + 2| S1S |nsl},

Q43 = {’771| + ‘773| S1S |772’}-
17



Using another partition of unity which is smooth on the unit scale, the problem reduces to
separately considering the case when ¢* is supported in each of these three sets.
Within the set Q15 we have ¢*(0,0,73,74) = 0 therefore we can easily represent

04(771777277]37774) = (04(77177727773,774) - 04(07772,7737774)) + (04(077]277737774) - 04(0707773’774)%

where the first difference may be smoothly divided by 7, and the second by 7, with the
quotients contributing to 74, respectively b*. The set ;3 can be dealt with in a similar
fashion.

It remains to consider 1, where we know that ¢* = 0 in 7, = non3 = 0. Here we write

(1,2, m3,ma) = (¢* (01, m2,m3,ma) — €*(0, 02, M3, ma)) + ¢*(0, 2, M3, 7a).

Now the first difference can be smoothly divided by 7, while the last term can be successively
and smoothly divided by 7, and 3.

ii) ¢t is supported in 2y. Here we set
4

N
A4 52’ T
and we observe that
1 1
(6% _ < .
A4£2 ~ 5£med5£h1
iii) ¢ is supported in Q3. Here we set
B0, = O
) A4€7
and we observe that
1 1
[ < .
A4€ ~ 6§med

O

4.4. The Galilean invariance. While the assumptions (H1-3) on the cubic nonlinearity C
are Galilean invariant, our density-flux identities are not. In order to rectify that, suppose
heuristically that we are looking at linear waves concentrated around a frequency &;. This
corresponds to a linear group velocity of 2§y, so in the density-flux identities it would be
natural to replace the operator 9; by 0;+2&,0,. At the linear level, this is done by recentering
the energy and momentum densities at &g,

Peo(€1,62) = — &1 — &+ 26 = p + 25m,

e, (£1,6) = (614 & — 280)° = e+ 4&p + 4E5m.

Then the density-flux identities become

(4.15) (O + 2£00:) M (u) = 0, P, (u), (Or 4 2£00:) Pe, (1) = Oy B, (u).

Next we consider the nonlinear setting. There M* is the same as before, but Pgo is

Pgo = P¥—26,M* = Pe, + B |

(4.14)

where the symbol for B, is given by
(4.16) by g = by + 2600y,
18



Then our density-flux identities have the form

(4.17) (0r + 2600:) M*(u) = 02(pe, (u) + Ry, ¢ (u, Uy u, @) + R, o (u, @, u, @, u, ),
(4.18) (0 + 2{0895)1[’?0 (u) = Ox(eg, (u) + Rﬁ,go(% ,u,u)) + Rg@ (u, 4, u, 4, u, ),

where the symbols for R), . and R, . are defined by
Pgo = Tm + 28000, Tpey = Tp + 260b, + 28077, + 4€50,,,.

m,&o P,§0

4.5. Localized density-flux identities for mass and momentum. In our analysis later
on, we will not use density-flux pairs for global estimates, but instead we will use them only
in a frequency localized setting.

Here we begin our discussion with a symmetric bilinear symbol a(&,n). We are assuming
it generates a real valued quadratic form A(u,u), i.e. that

a(§,n) =a(n,§),

and that its symbol is bounded and uniformly smooth. Later we will use such symbols a to
localize our analysis to intervals I in frequency, either of unit size or larger.

Corresponding to such a we define corresponding quadratic localized mass, momentum
and energy by

ma(&,n) =a(&,n),  pa(&n)=—(E+n)al&n),  el&n) = (E+n)’al&n),

A direct computation yields the relation
(4.19) O M,(u) = Py(u) + Cp, ,(u),
where the symbol C, , is given by

Chalé1,6,8,&) = —%[ (&1, 82, 83)ma(&1 — &2 + &3, &) + (81,84, E3)ma(§1 — €4 + &3, 62)
— (&2, 83, €a)ma(83, S — &3+ &a) — (62, &1, Ea)ma(€s, 62 — & + &)

A similar identity applies in the case of the localized momentum, where we simply replace
the symbol m, by p,.

As before, this symbol vanishes on the resonant set R, so we can represent it as in the
division relation (4.5)),

(4.20) O TN, =AY,
as well as

(4.21) Ch o +IAED, = iNYEr .
Then, defining M¥ and P? as before,

(4.22) M (u) = M,(u) + Bfm(u,u, u, ),
(4.23) Pi(u) = P,(u) + By (u, t,u, @),

we obtain density-flux identities akin to (4.6)), namely

(4.24) O M (u) = 0u(Pu(u) + Ry, 4(w)) + By, o (u),
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and
(4.25) 8tP(§(u) = 0, (E,(u) + R;a(u)) + Rga(u).

We will consider these relations together with their Galilean shifts obtaining relations of
the form

(4.26) (0r + 26002 ) M (u) = 0y (Pugy (w) + Ry 06, (W) + Biy g, (1),

respectively

(4.27) (e + 26002 P ¢, () = 0u(Bagy () + Ry, (1) + Ry 4 g (w).
These correspond to the algebraic division relations

(4.28) Cma T IANE = &0) 2,0 = 1A g,

respectively

(429) pa£0 + ZA (£ 50) p,a,lo ZA4€TPG§O’

where

(4.30)

Cﬁ,a,fo (1,62, 63,84) = — %[C(fb €2, €3)Paeo (§1 — 2 + &3, 8a) + (€1, €4, E3)Pago (§1 — Ea + €3, 62)
— (62, €3, §a)Paygo (€1, 62 — &3+ &1) — (62, &1, €0)Pasgo (€3, 2 — &1 + &)

The symbols above are connected in the obvious way. Precisely, we have

(4.31) Trags = Tma T 2800m o

and

(4.32) Pl = Pi4+26ME by = by, + 26000, .,
and finally

(4.33) T ato = Toa + 2600y 4 + 2607 4 6o

To use these density flux relations we need to have appropriate bounds for our symbols:

Proposition 4.3. Let J C R be an interval of length r, and d(&y,J) < r. Assume that a is
supported in J x J, with bounded and um’formly smooth symbol. Then the relations (4.28|)
and ([£.29) hold with symbols by, ,, bﬁaéo’ moagy ond rd vag, Which can be chosen to have the
following properties:

i) Support: they are all supported in the region where at least one of the frequencies is

mn J.
i) Size:
(4.34) il S e Whasl S s
4 (Eh) (6€med) ” (6&hT) (6 med)
1
rd | < —+1 R R —
m,a,&ol ~ <5§med> Q1UQ3 <5€h1><5§med> Qluﬂza
(4.35) )

r T
1 —1 :
1R a£o| ~ (Sgmed) 205 T (3EhY (§&med) U0,

ii1) Regularity: similar bounds hold for all derivatives.
20



Proof. This is easily done by applying Lemma [4.1], see also Remark 4.2 U

5. INTERACTION MORAWETZ IDENTITIES

5.1. The linear Schrodinger equation. The interaction Morawetz inequality aims to
capture the fact that the momentum moves to the right faster than the mass. Here the
left /right symmetry is broken due to the sign choice which is implicit in the choice of the
momentum.

5.1.1. A global computation. To warm up, we start with two solutions v and v for the linear
Schrodinger equation. To these we associate the interaction functional

)= [ M@E@PE) - Pu)@M)y) dudy,
x>y
and compute dI/dt using the conservation laws (4.2)). We have

Gl = [ 2PE)@PE)6) + M) @O,EW
— 0 E(u)(x) M (v)(y) — P(u)(x)9, P (v)(y) drdy
:/M(U)E(v) + M(w)E(u) —2P(u)P(v) dz = /J4(u,u,v,v) dx.

Here J* can be choser[] to have symbol
761,62, 63, €a) = 4(& — &) (& — &)

This is because of the following computation on the diagonal A*¢ = 0:

(G +&E)+H(G+84) 26 +&)( G+ =(G+o—&—&) =46 —&)(&— &)
Thus we have the positivity
J4(u, @, v,0) = 4|0, (uv)]?.
The above computation is classically done using integration by parts, see [22]. However, it is
more interesting to do it at the symbol level because we want to apply it in a more general

context. Classically this is done with © = v, but here we find it convenient to break the
symmetry. Primarily, our v’s will be spatial translations of u.

5.1.2. A frequency localized bound. Here we start with a symbol a which is localized on the
unit scale near some frequency &y, and consider the interaction Morawetz functional

(5.1) L(wo) = [ M) P (0)0) = ) @) M, (0)(0) dody
As above, its time derivative is

ala(u,v) = Ji(u,ﬂ,v,@),

where J} has symbol

Ja(§1,82,E3,60) = 4a(&1,&)al€s, €a) (61 — &a) (&2 — &3)-

IRecall that a-priori the symbol of j* is only determined uniquely on the diagonal A%¢ = 0.
21



This no longer has obvious positivity. However, if a has separated variables

(5.2) a(&,n) = ao(§)ao(n),

then J, is nonnegative,
T ) =1 [ [Ka(w,0) de,
where K, has symbol (£ — n)ao(§)ao(n), i.e.
Ko (u,v) = 0,(AguAgv),

where Aj is the multiplier associated to the symbol ag.

5.1.3. Interaction Morawetz for separated velocities. Here we instead take two symbols a
and b localized to two frequency intervals A and B so that |A|,|B| < r and A and B have
separation r (say A is to the left of B). Then we take the interaction functional

Lin = | | MA)(@)Pole)(5) = Pa(u)(@) Mp(0)(4) dady,
or equivalently
Lip = /> Ma(x)Pp g (y) — Pago () Mp(y) dzdy,

where & is arbitrary, but can be chosen more efficiently at distance O(r) from both A and
B.
Then we compute
d

%IAB = /MA(U)EB(’U) + Ex(u)Mp(v)(x) — 2Pp(u) Pa(u) dx := I 5(u, @, v,v),

where J% 5 has symbol

Jap(&, &, &, &) = 2a(&1, £)b(&s, &) (&1 — &) (& — &).
Assuming that
a(§,n) = ao(§ao(n),  b(&m) = bo(§)bo(n),

we can write J% 5 as
T = [ Kantu.0) da.
where
Kap(u,u) = 0,(Aou Bov).
Now the differences (£, — &) and (& — &) have size r so this leads to a bilinear L? bound
for Agu - Byu,

JAB ~ 7“2||A0u . BOUH%Q

5.2. Nonlinear interaction Morawetz estimates. Here we consider the same interaction
Morawetz functional as above, but now apply it to (two) solutions for the nonlinear equation

©3).
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5.2.1. A simple case. As a starting point, here we consider density-flux pairs as in (4.6]),
(4.8) to which we associate the nonlinear interaction functional

(5.3) T(u, 0) = / / | MH@)()PA()(5) — PH) )M () 0) oy

Using the density-flux relations we obtain
dl
(5.4) o =J'+J0 4+ J% + KB,

where J? is the same as above, while J® and J® are given by

JO(u,v) = / M(u)Rf,(v) + B (u)E(v) — P(u)B;‘(v) — R} (u)P(v)+

(5.5)

M(v)Ry(u) + By, (v)E(u) — P(v)B,(u) — R,,(v)P(u) dz,
respectively
(5.6) I8 (u,v) = /Bfn(u)Rf)(v) - Ri(u)Bﬁ(v} + Bil(v)Ré(u) — an(v)B;f(u) dzx.

Finally, we are also left with the double integral

K= [[ M@ B0 + P) )R (u)(z) dudy
(5.7) Y
=[] M) R ) @) + P @) R (0)0) o,

whose leading part has order 8 but also contains terms of order 10; but we will treat it all
perturbatively later.

It is instructive to consider the case of the cubic defocusing NLS. There B;, =0, B, =0
and thus R, = 0, RS = 0. Further, R, = 0 but R} = 1. Thus in particular we get

JO(u, u) :/|u|6dx.

This is where the focusing/defocusing type of the equation comes in, as it determines the
sign of J¢ (relative to the sign of J%).

5.2.2. Nonlinear interaction Morawetz: the localized diagonal case. Here we use the fre-

quency localized mass density-flux and the corresponding momentum density-flux

in order to produce a localized interaction Morawetz estimate. We consider a smooth

symbol a as in (5.2)), where ag is localized around a frequency &, on the unit scale.
Correspondingly, we have the localized mass and momentum densities

M = M,(u, @) + Bfn’a(u, u,u, ),

Pﬁ’go - Pa,go (u’ ﬂ) + B;,a,ﬁo (u> U, U, ﬂ),

which satisfy the conservation laws
(0y + 2£00,) M (1) = Oy (Pogy(u) + RE e (w)) + RS o (u).

m,a,§0 ™m,a,§0

(9 + 2600:) P, (1) = 0o Bagy (1) + Ry, (1)) + Ry o g (w).
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For these we define the interaction Morawetz functional

(5.8) / ME(u) () P g (0) () — P, (1) () M (o) (y) dady,
where, by writing it in a symmetr1c fashion, we have completely eliminated its dependence
on &).
The time derivative of I, is
d
(5.9) il =J1+30+ 3% + K5,

where all the terms are independent of &.
Here the quartic contribution J# is the same as in the linear case,

Ti00) = [ Mol (0) + Mal0)Eu (1) — 2Pagy () Pagy (0) o

The sixth order term J% has the form
(5.10)

38(u,v) = / My(u)RY o (0) + B o () Bao(v) — Pagy (w) By (v) — R o) (1) Pay(0)
My ()RS o)1) + By (0) B (1) — Py (0) By o)1) — R, g0 (1) Pagy (1) dt.

Next we have
(5.11)

JS(U’?U):/B;;,( )R4a£0< ) Rmaéo( )B;lago( )+Bfn, ( >R4a§0( ) Rma&g( )B;lafo( )d$

Finally the 8-linear term K8 has the form
Ki0) = [ [ ME) ) R 0)0) + Pl ()0 0)(2)

— ME(W) ()RS, 6, () (@) — Pr e (u)(2) RS, ,(0)(y) ddy.
This also includes a 10-linear term.
Importantly, here we compute the symbol of JS@ on the diagonal & = & = &3 = &4 =
& = & := £. This will be essential later on in order to obtain bounds for the L% Strichartz
norm.

(5.12)

Lemma 5.1. The diagonal trace of the symbol j6 is
(5.13) Ja(€) = a*(§)e(§,€,€).

Proof. Since our symbol does not actually depend on &, it suffices to compute it at £ = &.
The advantage is that p,e, (&) = €ag,(€o) = 0, so we are left with the simpler expression

79(&0) = Ma(&)7) 4.0, (0)-

For r gy We have the relation

pa&o +iAYE — )b, pabo iA! STpafo
We differentiate with respect to & and then set all {’s equal to obtain

a P‘lfo(go) pa§0(§0)
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It remains to compute the & derivative of c a.g, O1 the diagonal. This is a direct computation
using the formula (4.30]). Recalling that

Pal61,&2) = ma(§1, &) (=61 — & + 2&0),
it follows that
T;,a,go (60) = ma(&o)e(o),

where we recall that ¢ is real on the diagonal. Therefore

Jae (&) = a*(€0)e(&),
as needed. W
5.2.3. Nonlinear interaction Morawetz: the transversal case. Here we return to the setting of
Section where we have two frequency intervals A, B with size at most M and separation

also M, and two smooth and bounded symbols a, b which are localized in the two intervals.
Our interaction Morawetz functional is given by

G L= [ M@ 0)) - Pl 0)@M)) dedy,

and we observe as before that this does not depend on &.
Using again the frequency localized mass density-flux (4.17)) and the corresponding mo-
mentum density-flux (4.18]) we produce a localized interaction Morawetz estimate,

d
(5.15) %IAB =Jip + 305+ Tip + Kip

Here the quartic contribution J% 5 is the same as in the linear case,

Jip = /M ) By g (0)(2) + My(0) () Eago (u) () — 2Pog (u) (@) Pog, (v) (x) da,

and captures the bilinear L? bound.
The sixth order term J%; has the form

Jop = / _(Pa,éoBﬁ,b,go + Pb,foan,a@) (M, Rp beo T Eb gOBm agy) — Symmetric dx,

where in the symmetric part we interchange both the indices a,b and the functions u, v.
Next we have

4 4 .
Jip = / Ry .60 Bpaco + Bunago Bppg, — symmetric da.

Finally the 8-linear term Ki&) has the form

K%, = // M¥( b,ﬁo + Pb éoRmafo symmetric dzdy.

As before this also includes a 10-linear term.
25



6. FREQUENCY ENVELOPES AND THE BOOTSTRAP ARGUMENT

The primary goal of the proof of our main result in Theorem is to establish a global L°L?
bound for small data solutions; by the local well-posedness result in Section [3] this implies
the desired global well-posedness result. However, along the way, we will also establish
bilinear L? and Strichartz bounds for the solutions. These will both play an essential role
in the proof of Theorem [I] and will also establish the scattering properties of our global
solutions.

Since the proof of our estimates loops back in a complex manner, it is most convenient to
establish the bilinear L? and the L°® Strichartz bounds in the setting of a bootstrap argument,
where we already assume that the desired bilinear and Strichartz estimates hold but with
weaker constants.

The set-up for the bootstrap is most conveniently described using the language of fre-
quency envelopes. This was originally introduced in work of Tao, see e.g. [24], but in the
context of dyadic Littlewood-Paley decompositions. But here instead we work with a uni-
form decomposition on the unit scale, which requires a substantial revision of the notion of

“slowly varying”, which we replace by the new notion of “maximal property” introduced in
Section

To start with, we assume that the initial data has small size,
[uol[r2 < €.
We consider a frequency decomposition for the initial data on a unit spatial scale,

Up = E Ug k-

kEZ

Then we place the initial data components under an admissible frequency envelope on the
unit scale,

|uo ke < eck, ce
where the envelope {c;} is not too large,
lellez =~ 1.

Our goal will be to establish the following frequency envelope bounds for the solution:

Theorem 5. Let u € C([0,T]; L?) be a solution for the equation (1.3)) with initial data ug
which has L* size at most €. Let {ecy} be an admissible frequency envelope for the initial
data in L?, with c;, normalized in (2. Then the solution u satisfies the following bounds:

(i) Uniform frequency envelope bound:
(6.1) urllLperz S €ck,
(ii) Localized Strichartz bound:
(6.2) kg, S (ecw)?,
(1i) Localized Interaction Morawetz:

(63) [0:lus 2, < €,
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(iv) Transversal bilinear L* bound:
(6.4) 102 (watin(- + 70))l| 22, S Ecacy (dist(A, B))?,
for all zg € R whenever |A| + |B| < (dist(A, B)).
Here can be seen as a particular case of when A = B have unit length; we

stated it separately in order to ease comparison with earlier work on Interaction Morawetz
estimates.

To prove this theorem, we make a bootstrap assumption where we assume the same bounds
but with a worse constant C, as follows:

(i) Uniform frequency envelope bound,

(65) HukHLtooL% SJ CECk,
(ii) Localized Strichartz bound,
(6.6) lurllze, S Cleer)3,

(iii) Localized Interaction Morawetz,
(6.7) [0clual?l 2, S €€,
(iv) Transversal Interaction Morawetz,
(6.8) 102 (e, Ty (- + o)) 22, S CPenyry (Br — ha)

uniformly for all xq € R.

NI

Then we seek to improve the constant in these bounds. The gain will come from the fact
that the (s will always come paired with extra €’s.

We remark that the bootstrap hypothesis for the transversal bilinear L? bound only
requires unit size localization, unlike the corresponding conclusion . On one hand this
simplifies the continuity argument closing the bootstrap. On another hand this is related
to the fact that closing the bootstrap argument for global well-posedness only requires
for unit size sets. The full bound is only used in the last section in order to obtain the
global Strichartz and bilinear L? bounds, which are of course very interesting but secondary
to the proof of the global result.

We also remark on the need to add translations to the bilinear L? estimates. This is
because, unlike the linear bounds and which are inherently invariant with respect
to translations, bilinear estimates are not invariant with respect to separate translations for
the two factors. One immediate corollary of is that for any multipliers L; and Lo with
smooth and bounded symbols we have

(6.9) 10: (L1 (D)ug, La(D)ugy (- + o)) |12 S Cnyeny (kr — ko).

This is essentially the only way we will use this translation invariance in our proofs.

For the rest of this section, we provide the continuity argument which shows that it suffices
to prove Theorem [b| under the bootstrap assumptions —.

For this, we denote by 7" the maximal time for which the bounds (6.5)-(6.8) hold in [0, T7.
By the local well-posedness result we have T' > 1. Assume by contradiction that T is finite.
Then the bootstrap version of the theorem implies that the bounds — hold in [0, 7.

In particular, u(T") will also be controlled by the same maximal envelope ¢; coming from
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the initial data. By the local well-posedness result, this implies in turn that the bounds

(6.5)-(6.8) hold in [T, T + 1] with C' ~ 1. Adding this to the bounds (6.1))-(6.4) in [0, 77, it
follows that (6.5))-(6.8) hold in [0, 7 + 1], thereby contradicting the maximality of 7.

7. THE FREQUENCY ENVELOPE BOUNDS

The aim of this section is to prove the frequency envelope bounds in Theorem [3], given
the bootstrap assumptions —. In the proof we will rely on our modified energy and
momentum functionals, whose components we estimate first. The frequency localized energy
estimate will be an immediate consequence of these bounds. For the Strichartz and
L? bilinear bounds we will then use the interaction Morawetz identities, first in a localized
diagonal setting and then in a transversal setting.

7.1. Spatial and space-time L! bounds. Here we consider the corrections Bﬁw and errors
R?ma and their momentum counterparts associated to a smooth bump function a selecting
a frequency interval A C Z. For B, , we will prove a fixed time L' bound, while for R, ,
we will prove a space-time L! bound. These bounds will be repeatedly used in each of the
following subsections, first in the case when A has unit size and then in the case when A has

a larger size. We begin with the B, , bound.

Lemma 7.1. Assume that the bootstrap bound (6.5) holds. Then we have the fized time
estimate

(7.1) 1B, o (w)llzy S €'C e,

The corresponding bound for the momentum follows as a corollary, once we add an addi-
tional assumption in order to fix the momentum size:

Corollary 7.2. Assume that the bootstrap bound (6.5)) holds. Let & € R, and

n= Iileaj(|k — &l

Then we have the fized time estimate
(7.2) B0 (Wllry S netCiey,

Proof. The bounds (7.1 and ((7.2) are similar, the only difference arises from the additional
n factor in the size of the symbol p4. So we will prove the first bound. Using our partition
of unity in frequency on the unit scale we expand

Bfn,a (U) = Z B;Ln,A (uk1 ) akza Uk, ﬂk4)-
k1,k2,k3,k4€Z

Here we will separately estimate each term in L. based on the size of the symbol. By
Proposition for frequencies within a unit neighbourhood of [k] = (ki, k2, k3, k4) the
symbol bfma and its derivatives can be estimated by

1
<5khz> <5kmed> ’
In addition, its support is contained in the region €2 U €25, where at least one frequency is
in A. The region ©; Uy can be described as the set of those quadruples [k] so that

(7.3) either |A'K| <1, or |A%k| < k™.
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Without loss in generality we assume that k; € A. Then, using the above properties, we
can estimate the L. bound in the lemma as

HB HLl Se Z Z khz kmed) TSRy {5 pomedy, Ok Chaz Chs Cha -
ki€A[k }teuQQ

Fixing k, € A, it suffices to show that

1
(74) Skl = Z ch20k30k4 5 Cly -
k2,k3,ka

This no longer has anything to do with the set A. For later use we have also removed the
restriction [k] € O U Q.

To discuss the possible configurations for [k] we denote by n; < n, the dyadic size of §k™¢,
respectively dk". By Galilean invariance we set k; = 0, and then the rest of the indices may
be reordered so that

|ka| S na, k3| Sna,  |ka] = no, kg — ka| S

DD IED VDY

n1§n2 |k2\§n1 |k4\%n2 |k3—k4|§n1

Then we have

CkoClaClLy -
nineg 2 VK3 kg

Here we use twice the envelope maximal function bound to write

1
E : CkQ ~ L0 - E Cks S Cly -

n
|k2‘<"1 |3 —ka|Sna
This gives
S50 LY dreY Y disa
n1<n2 \k4|~n2 N2 |ka|mng
This concludes the proof of (7.4 7 and therefore the proof of the lemma. O
Next we turn our attention to R, ,, which we estimate as follows:
Lemma 7.3. Under our bootstrap assumptions —, we have the space-time bound
(7.5) Rl S €C°.

As above, we also have a similar bound for the momentum:

Corollary 7.4. Assume that the bootstrap bounds |) hold. Let & € R, and

n= r}gleajdk — &l

Then we have the space-time bound
(7.6) 1R ol S me*Co.

Proof. As in the case of the earlier fixed time bound, we will focus on (7.5)), as the proof of
(7.6)) is essentially the same. We recall RS _ is obtained from the cubic terms in the time

derivative of Bfma. We denote the four frequencies in Bﬁw by ko, k1, ko, k3, where the kg

factor gets differentiated in time. One of these four frequencies, call it k4, must be in A.
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With k4 as above, we expand

Z RmakA

ka€A
Then it suffices to establish the bound

(7.7) 1R e (Wl S €' COc

Here by Galilean invariance we can set k4 = 0. We also drop the index A, as no localization
associated to the set A will be used in the sequel. In particular we replace B2 o by B2 'm0 tO
emphasize that one of the frequencies in B* is assumed to be near zero.

To describe the size and localization of the symbol by, , we introduce as before the notations
dk™ed and 0k™ for the distances between ko, ki1, ks, ks, n1 < nsy for the dyadic size of §k™e?
and 0k™, and A'k associated to the same indices. In the support of by, , we must have

(78) |A4k" <1 or ‘A4l€’ <K ny, 0e {]{30, ]{?1, ]{32, k’3}
In this region, the symbol of b? mo as well as its derivatives have size
1
7.9 b ool < .
(7.9 ol S

The time differentiation is producing three additional frequencies ky, ks, kg, so that

(7.10) ko = ky — ks + kg.

Then translates to

(7.11) A%k <1 o A%k <y
relative to the indices kq, - - - , kg.

Overall, for ano we have the decomposition
E E R ukl 9 ukz ) U’k37 uk47 uksu U’kg)
n1<ng ko_7€l’

where I' describes the set of indices satisfying (7.8) and (7.10). To bound this sum in Li,
we consider several cases:

A. If all six frequencies are near 0, then we use the localized L° bound to obtain
6 — - - 4 4
||Rm,0(uk1 » Ukg s Wkgy Ukys Uks u’%‘) ||Ltlz 5 ¢ (600) )

which suffices.

B. Otherwise, we denote by 1 <« n the minimal dyadic size of the interval containing
all six k indices. Clearly we have n; < ny < n. Also due to (7.11) we must also have
|A%k| < n. This implies that within the set (ky,--- , kg) there must be at least two disjoint
pairs of frequencies at distance comparable to n. Applying two bilinear L? estimates, and
L> bounds for the other two factors, we can bound

(7.12) IR oy, S C*S, S=>" >~

ni<ng kg_g€l
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It remains to bound the above sum S by
(7.13) S < el

There are several cases to consider:

B1l. ky = 0. Relabeling, we may assume that
(7.14) |k1| = ny, |ko — ks| &= ny, |ka|, |ks| = no.
We distinguish further cases by comparing ny and n.

Bla. n > ny. Then we may assume that
(7.15) \ka| S |ks| = |ks| = n,

For fixed k4 we can apply the Cauchy-Schwarz inequality for the pair of indices (ks, kg), and
also for (ko, k3). We obtain

1 1
S < g g ———C, C O O = g g O R
~ Nom, 1 4-n9 n nzn 1 4 N2 "N’
n1<ne<Kn |ki|~n1,lka|Sn ne<n |ki|<ng,|ka|Sn
Now we use twice the envelope maximal bound for the k;, respectively k; summation to get
2 2 2,2
S < E CryCr &2 Ch.
na<<n

B1lb. ky = 0, n = ny. In this case we can introduce another dyadic parameter n3 < n so
that, after relabeling,

(7.16) |k < |ks| ~ [ke| = ns.
Then applying Cauchy-Schwarz inequality exactly as above we arrive at
1
S < Z: Z n—%cklck4cn20n3,
n3<nz |k1|<na,|ks|<ns

where we can conclude again by applying twice the envelope maximal bound for the ki,
respectively the k, summation relative to 0.

B2. ky =0, |ko| = ny. In this case we must also have
(717) |k2_k3| ~ Ny, |k2|7|k3| ~ Na.
Again we compare n and ny:

B2a. n > ny,. Here we can assume again that holds. As in case Bla we apply
Cauchy-Schwarz inequality for the pair of indices (ks, kg), and also for (ks, ks), with the
difference that now the difference ks — kg is no longer fixed, instead it varies in an n; range.
Thus we lose two n; factors, obtaining

S < ¢ E E —ck4cn2 o
n1<na<Kn \k4|<n
The n; summation is trivial now, and for the k; summation we use the envelope maximal
bound to obtain
2 2 2.2
S < E CryCrn 2 Cy.

non
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B2b. n =~ ny. Here we take two subcases.
B2b(i). If
|kl + |Ks| =+ [Fe| S na,
then we use Cauchy-Schwarz inequality for the pair (ks, k3) to obtain
Ly
S <o Z n—%cm Z Chy Chis Chig -
n1<ne |kal+|ks|+ ke | <

Finally we use the envelope maximal bound for the k4 summation relative to 0 and for kj
relative to kg to get

S < cg Z Z—icizczgm < chciQCim < cg,
ni<ng 2 n2
which suffices.
B2b(ii). If instead
|kl + [ks| + |ke| > na,

then we can introduce ngz as in ([7.16]), with n; < n3 < ny. Applying Cauchy-Schwarz
inequality for the pair of indices (ks, kg), and (ko, k3) yields

m 2 2 n3 2 2
S S Z Z 3 ChaCy Cny ™ Co Z Z 34y -
ni<ng<ng |ky|<ng 2 n3<ny |ka|<ng 2
At this stage we complete the argument by using the envelope maximal bound for the ky
summation.
B3. k1 =0, |ko| & na > ny. In this case we may assume that
(7.18) ko =1, |ks| & no, ko — k| ~ .
Next we compare ny and n:

B3a. no < n. Retaining ky as a summation index, we first apply Cauchy-Schwarz inequal-
ity for the pair (ks, kg) to obtain

S <o Z Z Z Z Z nliznck20k3ck4ci

n1<KLngKn |k0|%n2 ‘k2|%n1 |k0—k3|zn1 |k4\§n

1
2
S <o E E E E nz—n%ckg%cn

n1<KneKn |k3|~ns |ka2|~ni |ka|Sn

= Cp —CkyCkr Cie, C -
nen - oA

na2<n |k3|zn2 ‘k‘2|<<712 |k4\§n

Now we use the envelope maximal bound for k4 relative to 0 and for ks relative to ks. This

yields
2 2 2 . 2
S < ¢ g E CpoyCpy ™2 Cp.

na<Kn |k‘3‘%n2
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B3b. n = ny. In this case we dispense with ky as a summation index, retaining instead
the relation
|k’3 — k’4—|—k’5 — k6| S ni.
At least one of the frequencies ky, k5, k¢ must have size no, say |kg| = nz. Then we use Cauchy-
Schwarz inequality for the (ks, kg) pair, losing an n; factor due to the relation above, and
arriving at

1 1
2 2
S < e E E g Fckzclmcks% R o E Fcbcmckscm.
ni<ng |kolana [kal,lks|<na 2 Kol eal|ks| <no "2
Finally we use the envelope maximal bound for ks relative to 0 and for k4 relative to k5 to
obtain
22 2 2
S < C0C<nyCns R T
This concludes the proof of the lemma.

B4. ky = 0. Here we can assume that
k1| ~ na, k| ~ [nal,

but the size of k¢ is both not set and not needed. Instead, we will simply rely on ([7.11]) and
consider two subcases.

Bda. ns < n, where we can assume that (7.15)) holds. Here we first use the maximal
function for ¢y, to estimate

1
2
S <¢ E —— Cloy Choy Chis Chg »
non
n1<na<Kn

where we retain the constraint relative to ks, k4, ks, kg,
|AYK| < k.

Here we can fix A*k at the expense of another n; factor. Then fixing k3 and k, fixes the
difference k5 — kg, so applying Cauchy-Schwarz inequality with respect to ks, kg we arrive at

n
S <ct 5 ——Chy Chy Co-
non

n1<na<n

Finally, using Holder’s inequality for k3 and k4, which have size ns, respectively < h yields

n

2 1 2 < 2 2 2 < 2

S <c¢ E - n\/ngncmcSncn NI E CnCn S Co-
ni<na<n 2 n

B4b. ny &~ n. Here the case n; &~ ny is straightforward, as we can directly apply once the
Cauchy-Schwartz inequality for two size n frequencies, twice Holder’s inequality and once
the maximal function bound for the three remaining frequencies of size < n. We are left
with the more interesting case when n; < n. There, using again the maximal function for
cr, we estimate

1
2
S <¢ 5 3 Gy s s Ch
n1<na<n
where for the four remaining indices we have |[A%k| < n; < n. Here |ks3| & n, so there

must be at least one other frequency of size n. Then, as in the previous case, we apply once
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Cauchy-Schwartz inequality for the two size n frequencies, and twice Holder’s inequality for
the two remaining frequencies of size < n. This concludes the proof of the lemma.
O

7.2. The energy estimate. Our objective here is to prove the bound (6.1]). We remark that
once this is proved, we may drop the C* factor in Lemma By the Galilean invariance,
it suffices to prove the desired bound (6.1) at £ = 0. For this we consider a symbol a(&;, &)
of the form

(7.19) a(§1,62) = ao(§1)ao(&2),

with ag localized near frequency 0 on the unit scale. Then
M, (u) = [|Ao(D)ullZ,

and we need to bound this quantity uniformly in time,

(7.20) M, (u) < cie’.
For this we use the density-flux relation (4.26)) with £, = 0, which yields
d

M) = Ou(Pal) + b o) + RS, (),

where
ME(u, @) = My(u, @) + By, ,(u).
To prove ([7.20)) we integrate the above density-flux relation in ¢,z to obtain:

T T
= / / RS (u) dxdt.
0 0 R ’

Finally, we can estimate the contributions of Bf;w and ng using Lemma , respectively
Lemma [7.3l

(7.21) /Ma(u) + By, o(u) dx

Remark 7.5. For later use, we observe that once the energy bounds (6.1) have been es-
tablished, then they can be used instead of the bootstrap assumption (6.5) in the proof of
Lemma[7.1. This leads to a stronger form of (7.1)), (7.2), with the constant C' removed:

(7.22) 1By, a(u)llzeerr + | By a(u)|l oo s S e

7.3. The localized interaction Morawetz. Our objective here is to prove the bounds
and using our bootstrap assumptions. By the Galilean invariance it suffices to
do this at £ = 0. This will be achieved using our interaction Morawetz identity with
v = u and with a localized at frequency 0, exactly as in (7.19)). For such a we can simply
set & = 0. It will suffice to estimate the quantities in as follows:

(7.23) La(u, )| < €'c,
(7.24) Ja(u,u) = [|0:] Ao(D)ul||7:,
T 2
(7.25) / IS (u,u) dt = ||A0(D)§u||6L?I + O(°C°¢y),
0 :
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(7.26) /TJS(U W) dt = O(ECch),

T
(7.27) / K (u, u) dt = O(FCBel).
0

This allows us to estimate the localized interaction Morawetz term, as well as the localized
L5 norm as in ([6.2) and (6.3), provided that € is small enough. There is nothing to do for

J4 so we consider the remaining contributions:

7.3.1. The I, bound. The interaction Morawetz functional I, is as in (5.8]), with & = 0,
(7.28) I, = / M (u)(x) Pi(v)(y) — Pi(u)(2) M(v)(y) dady
x>y

with

Mi(u) = Ma(u) + By, o(u),  Pi(u) = Pu(u) + By, (u).
For By, , and B, we have the L{°L, bound (7.22). For M,(u) and P,(u) we have the
stralghtforward umform in time bounds

(7.29) Mo ()|l gy + (| Pa(w) || ey S ¢
Combining this with ([7.22)), the estimate (7.23]) immediately follows.
7.3.2. The J% bound. This is a 6-linear expression whose expression we recall from ([5.10)),

6 _ 4 4 4 4
(7.30) J, =2 / —(Papra + PaRm’a) + (Mavaa + EaBmﬂ) dzx,

where again we have set £, = 0.

We first discuss the symbol localization properties for J with respect to the six entries
at frequencies ky, ko, k3, k4, ks and kg. Here we a-priori have two frequencies close to 0,
say ks = k¢ = 0, namely those arising from M,, P, and F,, all of which have smooth and
bounded symbols. In the symbols for B2 and R?, on the other hand, we have at least one
frequency equal to zero, say k; = 0, and the near-diagonal property A*k = 0.

Next we consider the size of the symbols, where we use Proposition [4.3] This gives the
following symbol bounds regardless of the p or m index:

1 | < 1
<5khz> <5kmed> ’ ~ <5kmed> ’
and similarly for their derivatives. We split the analysis in two cases, depending on whether
all frequencies are equal (i.e. 5k < 1) or not.

[bal <

A. The case of separated frequencies, k™ > 1. To fix the notations, suppose that |ko| ~
Sk™ed ~ ny and |ks| = |ks4| = k™ ~ ny where n; < ny represent dyadic scales. Then we
can apply two bilinear L? bounds for the frequency pairs (k; = 0,k4) and (ko, k3) and
simply estimate the k5 and kg factors in L* by Bernstein’s inequality. This yields the bound
for the corresponding portion of J°

T
1
/Jg’“"b“l(u)dt‘,SeﬁCGcg E Chiy Chig Chy -
0

nin
ka,k3,ka 172

35



Since k4 — k3 = ko, for fixed ky we can apply Cauchy-Schwartz inequality with respect to the
ks and k4 indices to obtain

T
1
/ Jg’“nb“l(u) dt’ < 805 E ckQCiQ.
0

ning

|k2|~n1<ns

Finally, using the maximal function property for cj, we arrive at

T
logn
/ Jg,unbal(u) dt’ f§ 6606035 : g1 i27
0 no

c
No
which suffices.

B. The case of equal frequencies, k™ < 1. Here we have |k;| < 1 for all j, and the symbol
of 55 is smooth and bounded. The important feature here is the symbol of the 6-linear form
J¢ on the diagonal

G =6=886=8=E5=E6),
which we would like to be positive. But we know this by (5.13)), which shows that this equals
Ja(€) = ag(€)e(§ €, €).-

It follows that we can write the symbol j¢ in the form

o1, &2, 65,64, &5, &6) = bo(€1)D(E2)b(E3)b(Ea)b(E5)b(E6) + o™ (&1, 2, €3, €4, &5, E6),

where by(€) = ao(€)3¢(&, &, €)s and Jo"™ vanishes when all €s are equal. Then we can write
jg’mm as a linear combination of terms &.en — Eoqq With smooth coefficients. The first term
yields the desired L% norm,

Ja(u) = [|Bo(D)ullzg + Jg"".

On the other hand the contribution J&"*™ of the second term be estimated using a bilinear
L? bound (6.7), three L® bounds and one L™ via Bernstein’s inequality,

T
[ @ S 1l S e @t = 0,
0 T

which suffices.

7.3.3. The bound for J§. We recall that J§ has an expression of the form
(731) Ji = /B:}n,a<u)R§,a<u> - an,a(u)Bﬁ,a(u) + Bfn,a(u)R;a(u) - an,a<u>Bg,a(u) d%,

see ([5.11]) where we set &, = 0. For this we need to show that

T
/ I3 dt
0

This is an 8-linear term which has two factors, both of which are 4-linear terms with output
at frequency 0 and one factor at frequency 0. But the symbols are not the same, i.e. we
have more decay in B! than in R}.

As usual, we localize the entries of J& on the unit frequency scale and estimate each term

separately. We denote the four frequencies in B} by ki, ko, k3.kq with k; = 0, and the four
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frequencies in R2 by Iy, 15, 13,14 with [; = 0. These are constrained by the relations Ak = 0,
A%l = 0. In addition, their symbols are bounded, along with their derivatives, as follows:

|bal < L -
al ~ <6kh1><5kmed> <5lmed>

4
ral S
We consider several cases:

A) All eight frequencies are close to zero. Then we use six Ly, Strichartz bounds as in
, and two L*° bounds obtained from the energy via Bernstein’s inequality.

B) Some frequencies are away from zero. Denote by n; < mny the dyadic separations for
the k; frequencies in By, and by 0; < o, the dyadic separations for the [; frequencies in Ry.
We consider two cases depending on how ns and 0, compare.

B1) ny < 0y. Then the R* frequencies are in two o, separated clusters with distance below
01 within each cluster. We use two bilinear L? bounds there, and L> bounds for all the BflL

factors to estimate
T
/ 35 (u) dt
0

1 1
<8C’602§—ccc—ccc.
~ € 0 n1Ns ko Cks Cky 0109 laCl3ly
Suppose ky and [y are the smaller frequencies in each group, so that |ks| &~ ny and |l5| ~ 0.
For fixed ks respectively [y we apply the Cauchy-Schwarz inequality for the pairs (ks, k4),
respectively (l3,1y). We obtain
/TJS( )dt<8062 1 2 1 2
u eC’c Chy € Cl,Co
0 a ~ 0 ning k2Cng 09 12Co,

Now we use the maximal function to also fix ky and s,

T
1 1
/ J3(u) dt‘ < 8C%; Z 28T 2 0802 2 < 8C0%;.
0

nz ng 02 02 N~V

n2<o02

B2) 0y < ny. Here we proceed exactly as before but using instead two bilinear L? bounds
in B}, Following the same steps, we arrive at

g 8 8,16 A lognsy , 2 86 A
/ J5(u) dt| < e€C%¢ Z o C log oyc;, S €°CPcy.
0

2 n2

02<ng

Here the denominators are unbalanced compared to the previous case, but in a favourable
way.

7.3.4. The bound for K8. We recall that K2 has the form
Kiw) = [ ME@R(0)) + P @), (0)(2)
x>y

— M{(u)(y) Ry . (u)(x) — Pi(u)(x)Ry, ,(u)(y) dedy.
The time integral of Kj(u) is estimated directly using the Ly, bound for R° in Lemma
and the uniform L. bound for M* and P* provided by Lemma together with the simpler

bound ([7.29)).

(7.32)
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7.4. Near parallel interactions. Here we briefly discuss the bilinear L? bound in
the case when the sets A and B are of size < 1 and at distance < 1. This can be viewed
on one hand as a slight generalization of the argument in the previous subsection, where
instead of v = u we take v = u(- + xy). The only difference in the proof is that, because
of the translations, we can no longer use the defocusing property to control the sign of the
diagonal J% contribution. However, this is not a problem because the localized L® norm of
uy has already been estimated in the previous subsection.

7.5. The transversal bilinear L? estimate. Here we prove the bilinear L? bound .
This repeats the same analysis as before, but using the interaction Morawetz functional
associated to two separated frequency intervals A and B, of size at most n and with n
separation. Here we no longer take v = u, and instead we let v = u(- + xo). The parameter
o € R is arbitrary and the estimates are uniform in z.

Since xg does not play any role in the analysis, we simply drop it from our notations. To
further simplify the notations in what follows, we take advantage of the Galilean invariance
to translate the problem in frequency so that 0 is roughly half-way between the intervals A
and B. This will allow us to set {§; = 0 in , and to assume that both A and B are
within distance n from the origin. We consider mass m,, m, and momentum forms p,, ps,

where a and b are bump functions, smooth on the unit scale, selecting the sets A and B.
The interaction functional takes the form (see ([5.14))

(7.33) Lus(u,v) / M () (2) PE(0) (y) — PH(u) () M (v) () ey,

Its time derivative is given, see (5.9)), by

d
(7.34) T lap = Vg +I0s+ I+ Kip
Following the same pattern as in the earlier case of the localized interaction Morawetz case,

we will estimate each of these terms as follows:

(7.35) [Lap(u,v)| < netcdes,
(7.36) Tap (1, v) = 1|0 (wavs) |72,
T

(7.37) /0 Iz dt) S n(8C + ') e,

T
(7.38) / J? Bdt‘ < neCP ek,

0

T
(7.39) / K% 5 dt‘ < nebCB ey

0
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7.5.1. The fized time estimate for 145. Here we prove the bound ([7.35)), which is a conse-
quence of fixed time L' estimates for the energy densities, namely

(7.40) MGy S €*ch, IPi(w)lley S nech,

and the similar estimates with a replaced by b and u replaced by v. This is obvious for the
quadratic part of the above densities, where we note that the n factor for the momentum
bound arises due to the distance o(n) between the set A and the origin. It remains to consider
the quartic terms, where we can use Lemma together with Corollary [7.2]

7.5.2. The bound for J% 5. Here we prove the bound for J%, in (7.37). We recall that Jp
has the form

P /M — Py(v)Ry, o (u) + By, ,(u) Ey(v) — By, (v) Py(u) — symmetric dz,

where the symmetric term is obtained by interchanging the indices a and b, and also v and
v. The symbols for the M, P and E factors have size 1, n and n? respectively, with a similar
balance between the B, and B, terms, respectively the R}, and R} terms. So it suffices to
consider one R* term and one B* term.

A) The B* term By, ,(u)Ey(v). Here we denote by Iy, l, the Ej frequencies and by
k1, ko, k3, ks the Bﬁw frequencies where
A%+ A'k = 0.

The symbol for Ej, has size n*, with both frequencies in B. The symbol for By, ,(u) has size
((6k™e?)(5k""))~1 and support in the region where |[A%k| < 1+ k™, and at least one of the
frequencies is in A. We denote the dyadic sizes of k¢ and k" by n; < n,. Without any
loss in generality we may assume that ki, ks, k3, k4 are chosen so that

(741) k1 EA, |k1—l{}2| ~ni, |]{?1—]€3’ ~ Na, |]€1—I{Z4| = Na, |]€3—]€4’ ~ Nnj.

Depending on the size of n relative to ny, ny we consider two cases:

A1) ny < n. Since A and B are n-separated, within the set of six frequencies we can find
two pairs of n -separated frequencies. Then we can apply twice the bilinear L? bound and
estimate the remaining factors in L>°. We arrive at the frequency envelope bound

T
1
J6 . dt| < 50
| ]Ne o

where the summation indices are restricted as discussed above. Then, applying the Cauchy-
Schwarz inequality for the pair (I1,l3) we obtain

Cl1 Cly Cky Cko Clig Chy
2

T Al=—A%k
6 6,6
/ Jos dt‘ < C°n E E Chy Chy Chis Chy E 1, Cl,
0 2 | A%k|<ny l1,la€B
< Sp 62 1
S En Cp o Cky Clo Cl3 Coy -
%2 Atk <ny
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Hence it remains to estimate the last sum above as follows:

(742) SA == Z " chlck20k30k4 ~ YA
1762

ni<ng

where the summation set D is described by ([7.3)). In this estimate the parameter n no longer
appears. Recalling that ky € A, we fix k; and split

Sy = E Chy Sky s E E E Chy Chey Chey -
ning

ki1€A D ni<ng

Then it suffices to show that
Skl S Cky s
which is exactly the bound (7.4]) proved earlier.
A2) ny 2 n. This time, within the set of four k& frequencies we can find two pairs of ns

-separated frequencies. Applying twice the bilinear L? bound and estimating the remaining
factors in L> we arrive at

T 1
6 6,6, 2
/ Jon dt’ S eCn E p— n20110120k10k2ck30k4,
0

1762

Applying the Cauchy-Schwarz inequality for the pair (I1,l3) now yields

T
6 SC0n22
/ JABdt‘ C°n“cy E g Chy Cliy Chs Chiy
0

|A4k|<n

Since n < ny, we can conclude again using the bound (7.42)) which was already proved in

(A1).

B. The R* terms are also all similar, so to fix the notations we will discuss the expression
Pb(u)R;‘;w(u). We denote again the six frequencies by [y, [ for P, respectively by ky, ko, k3, k4
for Bfn,a- The symbol of pg is supported in B x B and has size n. The symbol Rﬁw has size

4 n + okM
ma([ED] S hmedy (kR

The bound for the portion containing the n term in the denominator is identical to the one
in case A, so in the sequel we dismiss this term and simplify the above bound to

1
4
D) S 5

|7

Retaining the notations n; < ny for the dyadic sizes of Jk™*? and k", we may also restrict
our analysis to the case when ny > n. This is similar to case A above. We get the better
ny ! factor from the bilinear L? bounds, which allows us to reduce the problem to proving
exactly the bound , but for a larger set of indices

(743) kl EA, |k1—k2| §n1, |]€1—]€3’ ~ Ngo, |]€1—I{Z4| ~ Ng, |]{?3—]€4’ Snl.

But this still follows from ([7.4)).
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7.5.3. The bound for J5 5. Here we prove the bound (7.38]). We recall that J%; has the form

I = / / BY ()R, (v) — By (0)RY o (u) + BL (o)L, (u) — BY ()R, ,(v) drdt.

All terms here are similar, so it suffices to consider the first one. To avoid a lengthy proof
which would largely repeat the arguments in the proof of , we make a simple observa-
tion, namely that the proof of the bound for this term becomes a corollary of the previous
bound if we can establish a representation

Bfn,a(u) ~ Z Uy Wiy

l1,l2€A

so that, for each k& which is M-separated from I, the function w,, satisfies a bilinear L?
bound of the form

7.44 w2 < M™2C% e, .
( 2 Ly, ~ 2

If that is true, then w;, would play exactly the role of u;, in the J%; estimate.
Indeed, we may represent

Bfn,a(u) - Z Z Bfn,a(uh ) uk:Qa uk‘37 uk4)'

l1,l2€A ko—k3+ks=l2

Here the symbol for B? = and its derivatives have size <

ma in a unit region around fre-

ning
quency (ly, ko, k3, ks). Hence, we may separate variables and represent Bfn,a(uzl,%, Ukes s Ukey )
as the sum of a rapidly convergent series

4 — E J 4,5 — E J J
Bm7a(ul1>uk2auks>uk4) - D ulle,a(ukmuks’u/m) S D W, wy,,,
J

where the symbols for D7, respectively B,/, have unit size, respectively < ﬁ with rapid

decay in j. Then it remains to prove the estimate (7.44)) for the functions wljz.
Indeed, at least one of the k’s must be M-separated from k, so using a bilinear L? bound
we have

- 1 1
] 1 44, 10
|w] urll2 S M2 Cexj E Chiy Chis Chy
ning
ko—kz+ka=lo

It remains to estimate the last sum. Suppose ky is within distance n; from [, then we use
the maximal function to estimate

1 1
E Chy ChyChy S Clp SUP E —ChyChy S Clas
ning ko U
ko—k3+ks=l2 ko—k3+ks=l2

as needed.

7.5.4. The bound for K%5. This is immediate by combining the bound (7.40)) with the RS

bounds in Lemma [7.3 and Corollary [7.4]
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8. GLOBAL BILINEAR AND STRICHARTZ ESTIMATES

Our objective in this last section is to supplement the unit frequency scale bilinear L? and
Strichartz estimates with their more global counterparts:

Theorem 6. The global small data solutions u for (1.3)) in Theorem@ satisfy the following
bounds:

o Strichartz estimate:
(8.1) lullgy < e
e Bilinear L* bound:
(52 Joul?IE,y S ¢

Proof. We successively consider the two estimates:

A. The global L° bound. We prove the global L® bound using the previous localized
estimates. We aim to estimate the integral

I= // lu|® dwdt
RxR

by taking a suitable frequency decomposition. Given six unit frequency regions indexed by
ki, ko, ks, k4, ks and kg, they can only contribute to the above integral iff A%k = 0. We
divide them as follows:

(1) The diagonal case |k; — k;| < 1.
(2) The nondiagonal case. we index these frequencies by the dyadic size n > 1 of the
set of frequencies, i.e. so that
max |k; — k;| =~ n.

Within this range, we organize frequencies in intervals Ay, --- Ag of size n/100. Of
these intervals, at least two pairs must be n-separated in order to contribute to the
above integral.

Based on this, we split [ as

I=Io+) I,
fo = Z // Uy Uy Uy Uy Uy U Tl

|ki—k;|<1

I, = E //UAIUAQUA3UA4UA5UAG dl’dt,

where the last sum is indexed over the sets A; of size n/100, with largest distance ~ n and
at least two distances > n/10.
For the diagonal part we use the L° bound (6.2)) to estimate

o] S ') ch S
k

where

and

which suffices.
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For the off-diagonal part we apply two bilinear L? bounds for the separated intervals
.. 1 . . . . . . 1 .
(gaining n~2 each time) and two L bounds via Bernstein’s inequality (losing nz each time)

to bound the corresponding term by

|I,| < € Z CALCAyCA5CALCASCAG-
We retain only the separated parts and apply Cauchy-Schwarz inequality to estimate

6 2 2 6 2 2
I, <€ E CA,Cay S € E Chey Cioy -

d(A17A2)>TL/10 |k1—k2|%n

z:|_f|<¢56z:c,€1(:/,€2N )

k1,k2

Then summation over n yields

which again suffices.

B. The global bilinear L? bound. Here we prove the estimate (8.2]). Expanding relative to
the dyadic difference n of the two input frequencies we have

aﬂﬁ(‘uP) = al‘wo + Z aana

where

E uk1 ak‘g?

|k1—k2|<1
d(A1,A2)=n
Wy, = Z UA,UA,-
|A1],|A2|~n
We use to estimate wq as

J0awolZ S S e S
k

On the other hand for w,, we get
d(A1,A2)~n d(As,As4)~n
||8$wn||i2H_% <n Z Z Up, UA,UpzUa, AT
e |A1],|Az|=n |As],|Aa|~n
Denoting by ny > n the largest distance between two A;’s we have two pairs of intervals
with separation O(ng) therefore, applying twice the bilinear L? bound we obtain
d(A1,A2)~n d(As,As)~
||a$wn||§{—% 5 € Z Z Z CA16A20A3CA4.
nozn 0 | Ayf [ Aglxn |As] Aalen
We separate the cases when ng &~ n and ng > n. In the first, diagonal case we simply bound
the corresponding part of the sum by
d(A1,Az)~n
4 2 2
€ Z Ch, Ca,-
|A1],|A2|~n
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In the off-diagonal case we apply Cauchy-Schwarz inequality separately for the pairs Ay, A
and Az, A4 to obtain a bound

d(Bl,Bg)zno

n
4 2 2
€ § €B,CB,-

no
| B1|,| B2|~=no

Incorporating the first case into the second we arrive at

d(31732 ~no
2 4 2
HaanHL2 -1 Se€ E E : CBchz'
t z 7'LO>TL |Bll ‘Bg|~n0
Finally, using orthogonality in frequency we have
d(B1,B2)=ng
Z 2 Z Z Z 2 2
|| aanHLQH_% 5 € CB,CB,
n L n no>n " 0 |B1),|Balrno
B17B2 <Nno

The proof of the theorem is concluded.
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