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Abstract. This article is devoted to a general class of one dimensional NLS problems with
a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such
problems has attracted a lot of attention in recent years, and many global well-posedness
results have been proved for a number of models under the assumption that the initial data
is both small and localized. However, except for the completely integrable case, no such
results have been known for small but not necessarily localized initial data.

In this article we introduce a new, nonperturbative method, to prove global well-posedness
and scattering for L2 initial data which is small and non-localized. Our main structural
assumption is that our nonlinearity is defocusing. However, we do not assume that our
problem has any exact conservation laws. Our method is based on a robust reinterpretation
of the idea of interaction Morawetz estimates, developed almost 20 years ago by the I-team.

In terms of scattering, we prove that our global solutions satisfy both global L6 Strichartz
estimates and bilinear L2 bounds. This is a Galilean invariant result, which is new even for
the classical defocusing cubic NLS1. There, by scaling our result also admits a large data
counterpart.
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1. Introduction

The question of obtaining scattering, global in time solutions for one dimensional dispersive
flows with quadratic/cubic nonlinearities has attracted a lot of attention in recent years, and
many global well-posedness results have been proved for a number of models under the
assumption that the initial data is both small and localized ; without being exhaustive, see
for instance see [12, 13, 21, 18, 14]. The nonlinearities in these models are primarily cubic,
though the analysis has also been extended via normal form methods to problems which also
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have nonresonant quadratic interactions; several such examples are [1, 15, 9, 16, 20], see also
further references therein.

In this article we consider instead the much more difficult case where the initial data is just
small, but without any localization assumption. Here it is natural to restrict the analysis to
defocusing problems, as focusing one-dimensional cubic NLS type problems typically admit
small solitons and thus, generically, the solutions do not scatter at infinity. Then one may
formulate the following broad conjecture:

Conjecture. One dimensional dispersive flows with cubic defocusing nonlinearities and
small initial data have global in time, scattering solutions.

The goal of this article is to prove the first global in time well-posedness result of this type.
As part of our results, we also prove that our global solutions are scattering at infinity in
a very precise, quantitative way, in the sense that they satisfy both L6 Strichartz estimates
and bilinear L2 bounds. This is despite the fact that the nonlinearity is non-perturbative on
large time scales.

1.1. Cubic NLS problems in one space dimension. One of the fundamental one-
dimensional dispersive flows in one space dimension is the cubic NLS flow,

(1.1) iut + uxx = ±u|u|2, u(0) = u0.

Depending on the choice of signs, this comes in a defocusing (+) and a focusing (-) flavor.
Both of these equations are important not only by themselves, but also as model problems
for more complex one-dimensional dispersive flows, both semilinear and quasilinear.

The above cubic NLS flow is globally well-posed in L2 both in the focusing and in the
defocusing case, though the global behavior differs in the two cases.

Precisely, the focusing problem admits small solitons, so the solutions cannot in general
scatter at infinity. If in addition the initial data is localized, then one expects the solution to
resolve into a superposition of (finitely many) solitons, and a dispersive part; this is called
the soliton resolution conjecture, and is known to hold in a restrictive setting, via the method
of inverse scattering, see e.g. [2].

In the defocusing case, the inverse scattering approach also allows one to treat the case
of localized data, and show that global solutions scatter at infinity, see for instance [8].
This can also be proved in a more robust way, without using inverse scattering, under the
assumption that the initial data is small and localized, see [14] and references therein. Much
less is known in terms of scattering for nonlocalized L2 data. However, if more regularity is
assumed for the data, then we have the following estimate due to Planchon-Vega [22], see
also the work of Colliander-Grillakis-Tzirakis [3]:

(1.2) ∥u∥6L6 + ∥∂x|u|2∥2L2 ≲ ∥u0∥3L2∥u0∥H1 .

This allows one to estimate the L6 Strichartz norm of the solution, i.e. to prove some type
of scattering or dispersive decay.

Because of the above considerations, our interest in this paper is in defocusing cubic
problems. Precisely, we will consider a cubic nonlinear Schrödinger equation (NLS) type
model in one space dimension

(1.3) iut + uxx = C(u, ū, u), u(0) = u0,
2



where u is a complex valued function, u : R × R → C. Here C is a trilinear translation
invariant form, whose symbol c(ξ1, ξ2, ξ3) can always be assumed to be symmetric in ξ1, ξ3;
see section 2.3 for an expanded discussion of multilinear forms. The arguments u, ū and u
of C are chosen so that our equation (1.3) has the phase rotation symmetry, u → ueiθ, as it
is the case in most examples of interest. The symbol c(ξ1, ξ2, ξ3) will be required to satisfy
a minimal set of assumptions:

(H1) Bounded and regular:

(1.4) |∂α
ξ c(ξ1, ξ2, ξ3)| ≤ cα, ξ1, ξ2, ξ3 ∈ R, for every multi-index α.

(H2) Conservative:

(1.5) ℑc(ξ, ξ, η) = 0, ξ, η ∈ R, where ℑz = imaginary part of z ∈ C.
(H3) Defocusing:

(1.6) c(ξ, ξ, ξ) ≥ c > 0, ξ ∈ R and c ∈ R+.

In selecting these assumptions we have tried to strike a balance between the generality of
the result on one hand, and a streamlined exposition on the other hand.

The simplest example of such a trilinear form C is of course C = 1, which corresponds to
the classical one-dimensional cubic NLS problem. But this problem is of course completely in-
tegrable, and thus has infinitely many conservation laws. In particular global well-posedness
is straightforward, though our L6 Strichartz and bilinear L2 bounds are new even for this
problem in the L2 data setting. By contrast, the assumptions we impose on our model do
not guarantee any exact conservation law at the L2 level or at any other regularity level.

At the other end, both our use of the linear Schrödinger operator and the boundedness
condition (H1) are non-optimal, and we hope to relax both of these restrictions in subsequent
work. However, using these restrictions brings the major expository advantage that our
model has a Galilean invariance, in the sense that a Galilean transformation yields a problem
that is in the same class, even though it is not exactly the same. This allows us to provide
cleaner, shorter proofs for our results, and to keep the focus on the main ideas.

1.2. The main result. Our main result asserts that global well-posedness holds for our
problem for small L2 data. In addition, our solutions not only satisfy uniform L2, but also
global space-time L6 estimates, as well as bilinear L2 bounds, as follows:

Theorem 1. Under the above assumptions (H1), (H2) and (H3) on the symbol of the cubic
form C, small initial data

∥u0∥L2 ≤ ϵ ≪ 1,

yields a unique global solution u for (1.3), which satisfies the following bounds:

(i) Uniform L2 bound:

(1.7) ∥u∥L∞
t L2

x
≲ ϵ.

(ii) Strichartz bound:

(1.8) ∥u∥L6
t,x

≲ ϵ
2
3 .

(iii) Bilinear Strichartz bound:

(1.9) ∥∂x(uū(·+ x0))∥
L2
tH

− 1
2

x

≲ ϵ2, x0 ∈ R.
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Here we note that in the case x0 = 0 the last bound gives

(1.10) ∥∂x|u|2∥
L2
tH

− 1
2

x

≲ ϵ2,

which is the more classical formulation of the bilinear L2 bound. However, making this
bound uniform with respect to the x0 translation captures the natural separate translation
invariance of this bound, and is also quite useful in our proofs.

We also remark that all the bounds above are indeed Galilean invariant. As noted earlier,
our main equation is not Galilean invariant, but the class of equations we are considering is.
The estimates in the theorem do not represent the full strength of what we actually prove,
but are a merely a simple but relevant sample. Our actual proof yields stronger frequency
envelope bounds associated to a decomposition of the solution u on a unit frequency scale
(rather than the more traditional dyadic decomposition); see Theorem 5 in Section 6.

Applied to the model cubic NLS problem (1.1), by scaling we have the following result
which applies to the large data problem:

Theorem 2. Consider the defocusing 1-d cubic NLS problem (1.1)(+) with L2 initial data
u0. Then the global solution u satisfies the following bounds:

(i) Uniform L2 bound:

(1.11) ∥u∥L∞
t L2

x
≲ ∥u0∥L2

x
.

(ii) Strichartz bound:

(1.12) ∥u∥L6
t,x

≲ ∥u0∥L2
x
.

(iii) Bilinear Strichartz bound:

(1.13) ∥∂x|u|2∥
L2
t (Ḣ

− 1
2

x +cL2
x)
≲ ∥u0∥2L2 , c = ∥u0∥L2 .

One may compare the above L6 bound with the Planchon-Vega estimate (1.2), see [22],
which applies only to H1 solutions.

There are several ideas which play key roles in our analysis, all of which are used in a
nonstandard fashion in the present work:

1. Energy estimates via density flux identities. This is a classical idea in pde’s, and
particularly in the study of conservation laws, namely that the density-flux identities play a
more fundamental role than just energy identities. The new twist in our context is that this
analysis is carried out in a nonlocal setting, where both the densities and the fluxes involve
translation invariant multilinear forms.

2. The use of energy corrections. This is an idea originally developed in the context of
the so called I-method [4] or more precisely the second generation I-method [7], whose aim
was to construct more accurate almost conserved quantities. Here we implement this idea
at the level of density-flux identities, in a form closer to [19].

3. Interaction Morawetz bounds. These were originally developed in the context of the
three-dimensional NLS problems by Colliander-Keel-Stafillani-Takaoka-Tao in [5], and have
played a fundamental role in the study of many nonlinear Schrödinger flows, see e,g. [6, 23],
and also for one-dimensional quintic flows in the work of Dodson [10, 11]. Our take on this
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is somewhat closer to the one-dimensional approach of Planchon-Vega [22], though recast in
the setting and language of nonlocal multilinear forms.

4. Tao’s frequency envelope method. This is used as a way to accurately track the evolution
of the energy distribution across frequencies. Unlike the classical implementation relative
to dyadic Littlewood-Paley decompositions, here we adapt and refine this notion for lattice
decompositions instead. This is also very convenient as a bootstrap tool, see e.g. Tao [24],
[25] but with the added twist of also bootstrapping bilinear Strichartz bounds, as in the
authors’ paper [17].

1.3. An outline of the paper. In the next section we begin by setting up the notations
for function spaces and multilinear forms. More importantly, we also introduce our class
of admissible frequency envelopes associated to lattice decompositions; this is based on the
maximal function.

In Section 3 we carry our a preliminary step in the proof of our main result, namely we
prove the small data local well-posedness result. This is independent of the global result,
and uses a contraction argument in a well chosen function space defined via a wave packet
type decomposition.

The goal of Section 4 is to recast energy identities for the mass and the momentum in
density-flux form. We supplement this with two additional steps, where we first consider
frequency localized mass and momentum densities, and then we improve their accuracy by
adding a well chosen quartic correction.

In Section 5 we begin with the classical idea of interaction Morawetz identities for the
linear Schrödinger flow, and then we use our density-flux identities for the sharp frequency
localized mass and momentum in order to obtain a set of refined interaction Morawetz
identities for our problem. For clarity of exposition we consider separately the diagonal case,
where the interaction of equal frequency components is considered, and the transversal case,
which corresponds to separated frequency ranges.

The proof of our global result uses a complex bootstrap argument, involving both energy,
Strichartz and bilinear L2 bounds in a frequency localized setting and based on frequency
envelopes. The bootstrap set-up is laid out in Section 6, which also contains a sharper,
frequency envelope version of our result in Theorem 5. Our main estimates closing the
bootstrap argument are carried out in Section 7, using the density-flux and interaction
Morawetz identities previously obtained.

Finally, in the last section of the paper we return from frequency localized bounds to
global bounds, in order to complete the proof of our main global result.

1.4. Acknowledgements. The first author was supported by a Luce Professorship, by the
Sloan Foundation, and by an NSF CAREER grant DMS-1845037. The second author was
supported by the NSF grant DMS-2054975 as well as by a Simons Investigator grant from the
Simons Foundation. Some of this work was carried out while both authors were participating
in the MSRI program “Mathematical problems in fluid dynamics” during Spring 2021.

The authors also wish to thank the anonymous referee for the very careful reading of the
manuscript and for the very useful corrections and suggestions.
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2. Notations and preliminaries

2.1. Lattice frequency decompositions. For our analysis it will be convenient to localize
functions in (spatial) frequency on the unit scale. For this we consider a partition of unity

1 =
∑︂
k∈Z

pk(ξ),

where pk are smooth bump functions localized in [k−1, k+1]. Correspondingly, our solution
u will be decomposed as

u =
∑︂
k∈Z

uk, uk = Pku.

The main estimates we will establish for our solution u will be linear and bilinear estimates
for the functions uk.

For a larger interval A ⊂ Z, we denote

uA =
∑︂
k∈A

uk.

2.2. Frequency envelopes. This is a tool which allows us to more accurately track the
distribution of energy at various frequencies for the solutions to nonlinear evolution equa-
tions. In the present paper, they play a key bookkeeping role in the proof of the linear and
bilinear bounds for our solutions in the context of a complex bootstrap argument. In brief,
given some standard decomposition of, say, an L2 function

u =
∑︂

uk,

a frequency envelope for u is a sequence {ck} with the property that

∥uk∥L2 ≲ ck, ∥ck∥ℓ2 ≈ ∥u∥L2 .

In addition, one also limits how rapidly the sequence {ck} is allowed to vary. As origi-
nally introduced in work of Tao, see e.g. [24], in the context of dyadic Littlewood-Paley
decompositions, one assumes that the sequence {ck} is slowly varying, in the sense that

cj
ck

≤ 2δ|k−j|.

Here we will instead work with a uniform lattice decomposition on the unit frequency
scale. This requires a major revision of the above notion of “slowly varying”, which turns
out to be far too weak for our purposes.

Instead we want to strengthen this property in order to say that c ≈ Mc (the maximal
function):

Definition 2.1. A lattice frequency envelope {ck} is said to have the maximal property if

(2.1) Mc ≤ Cc,

where Mc represents the maximal function of c,

(Mc)k = sup
j≥0

1

2j + 1

k+j∑︂
l=k−j

cl.

Here C is a universal constant.
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Frequency envelopes that have this property will be called admissible. An important
observation is that admissible envelopes can always be found:

Lemma 2.2. Any ℓ2 frequency envelope c0 can be placed under a comparable maximal fre-
quency envelope c, i.e.

(2.2) c0 ≤ c, ∥c∥ℓ2 ≈ ∥c0∥ℓ2 .

Proof. We will use two properties of the maximal function:
(i) ∥Mf∥L2 ≤ C∥f∥L2

(ii) M(f + g) ≤ Mf +Mg.
Given c0, we define c as

c =
∞∑︂
k=0

(2C)−kMkc0.

By property (i), this series converges in ℓ2, with

∥c∥ℓ2 ≤ 2∥c0∥ℓ2 .
Then by property (ii) we have

Mc ≤ 2Cc.

The proof is concluded. □

For an interval A ⊂ Z we denote
c2A =

∑︂
k∈A

c2k.

Also for a dyadic integer n we set

c2n =
∑︂
|k|≈n

c2k.

Also given a translation invariant function space X, we denote by Xc the associated
frequency envelope controlled norm

(2.3) ∥u∥Xc = sup
k

c−1
k ∥uk∥X .

2.3. Multilinear forms and symbols. A key notion which is used throughout the paper is
that of multilinear form. All our multilinear forms are invariant with respect to translations,
and have as arguments either complex valued functions or their complex conjugates.

For an integer k ≥ 2, we will use translation invariant k-linear forms

(D(R))k ∋ (u1, · · · , uk) → L(u1, ū2, · · · ) ∈ D′(R),
where the nonconjugated and conjugated entries are alternating.

Such a form is uniquely described by its symbol ℓ(ξ1, ξ2, · · · , ξk) via

L(u1, ū2, · · · )(x) = (2π)−k

∫︂
ei(x−x1)ξ1e−i(x−x2)ξ2 · · · ℓ(ξ1, · · · , ξk)

u1(x1)ū2(x2) · · · dx1 · · · dxkdξ1 · · · dξk,
or equivalently on the Fourier side

FL(u1, ū2, · · · )(ξ) = (2π)−
k−1
2

∫︂
D

ℓ(ξ1, · · · , ξk)û1(ξ1)¯̂u2(ξ2) · · · dξ1 · · · dξk−1,
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where, with alternating signs,

D = {ξ = ξ1 − ξ2 + · · · }.
They can also be described via their kernel

L(u1, ū2, · · · )(x) =
∫︂

K(x− x1, · · · , x− xk)u1(x1)ū2(x2) · · · dx1 · · · dxk,

where K is defined in terms of the Fourier transform of ℓ

K(x1, x2, · · · , xk) = (2π)−
k
2 ℓ̂(−x1, x2, · · · , (−1)kxk).

All the symbols in this article will be assumed to be smooth, bounded and with bounded
derivatives.

We remark that our notation is slightly nonstandard because of the alternation of complex
conjugates, which is consistent with the set-up of this paper. Another important remark is
that, for k-linear forms, the cases of odd k, respectively even k play different roles here, as
follows:

i) The 2k + 1 multilinear forms will be thought of as functions, e.g. those which appear
in some of our evolution equations.

ii) The 2k multilinear forms will be thought of as densities, e.g. which appear in some of
our density-flux pairs.

Correspondingly, to each 2k-linear form L we will associate a 2k-linear functional L defined
by

L(u1, · · · , u2k) =

∫︂
R
L(u1, · · · , ū2k)(x) dx,

which takes real or complex values. This may be alternatively expressed on the Fourier side
as

L(u1, · · · , u2k) = (2π)1−k

∫︂
D

ℓ(ξ1, · · · , ξ2k)û1(ξ1)¯̂u2(ξ2) · · · ¯̂u2k(ξ2k)dξ1 · · · dξ2k−1,

where, with alternating signs, the diagonal D0 is given by

D0 = {0 = ξ1 − ξ2 + · · · }.
Note that in order to define the multilinear functional L we only need to know the symbol
ℓ on D0. There will be however more than one possible smooth extension of ℓ outside D0.
This will play a role in our story later on.

2.4. Cubic interactions in Schrödinger flows. Given three input frequencies ξ1, ξ2, ξ3
for our cubic nonlinearity, the output will be at frequency

ξ4 = ξ1 − ξ2 + ξ3.

This relation can be described in a more symmetric fashion as

∆4ξ = 0, ∆4ξ := ξ1 − ξ2 + ξ3 − ξ4.

This is a resonant interaction if and only if we have a similar relation for the associated time
frequencies, namely

∆4ξ2 = 0, ∆4ξ2 := ξ21 − ξ22 + ξ23 − ξ24 .
8



Hence, we define the resonant set in a symmetric fashion as

R := {∆4ξ = 0, ∆4ξ2 = 0}.
It is easily seen that this set may be characterized as

R = {{ξ1, ξ3} = {ξ2, ξ4}}.

2.5. The Galilean symmetry. Here we investigate how the equation (1.3) changes if we
apply a Galilean transformation. In particular, we will justify our claim in the introduction
that the transformed equation is of the same type.

We first recall the linear case. Suppose u solves the linear Schrödinger equation

(i∂t + ∂2
x)u = f, u(0) = u0.

Given a frequency k, its Galilean transform v is defined by

v(t, x) := e−i(kx+k2t)u(t, x+ 2kt),

and solves the linear Schrödinger equation

(i∂t + ∂2
x)v = g, v(0) = v0,

where
v0(x) = e−ikxu0, g(t, x) = e−i(kx+k2t)f(t, x+ 2kt).

Now suppose that u solves (1.3). Then the above computation shows that v will solve a
similar equation,

(i∂t + ∂2
x)v = C̃(v, v̄, v),

where
C̃(v, v̄, v) = e−ikxC(veikx, veikx, veikx).

This allows us to compute the symbol of C̃ as

c̃(ξ1, ξ2, ξ3) = c(ξ1 − k, ξ2 − k, ξ3 − k).

This translated symbol is easily seen to have exactly the same properties as c.

3. Local well-posedness

Before approaching the global problem, an initial step is to establish local in time well-
posedness. Since we only assume boundedness and smoothness on the symbol C, this is not
an entirely straightforward matter. Our main result can be summarily stated as follows:

Theorem 3. The evolution (1.3) is locally well-posed for small data in L2.

Here we need to clarify the meaning of well-posedness. For this problem, we will establish
a semilinear type of well-posedness result. Precisely, for each initial data u0 which is small
in L2 a unique solution exists in C([0, 1];L2), with Lipschitz dependence on the initial data.
However, as it is often the case in the dispersive realm, we will not try to prove uncon-

ditional uniqueness, and contend ourselves with having both existence and uniqueness of
solutions in a ball in a restricted space X ⊂ C([0, 1];L2).

A natural follow-up question here would be whether the same result holds for large data in
our context. The answer is indeed affirmative; however, in this article we have chosen to only
consider small data because this is all we need on one hand, and a large data result would
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require a more complex choice of the space X mentioned above, as well as a correspondingly
more complex proof, on the other hand.

Another related question is whether a standard scaling argument could be used here. The
scaling transformation would be the standard one for the cubic NLS problem,

uλ(t, x) = λu(λ2t, λx).

For the initial data this corresponds to

u0λ(x) = λu0(λx).

It is then easy to see that uλ solves an equation of the same type as (1.3), but with the
rescaled symbol

cλ(ξ1, ξ2, ξ3) = c(ξ1/λ, ξ2/λ, ξ3/λ).

This satisfies the bound (1.4) uniformly only for λ ≥ 1, so it cannot be used to reduce the
large data problem to the small data problem. However, it can be used to obtain better
life-span bounds for small data:

Corollary 3.1. Assume that the initial data u0 for (1.3) satisfies ∥u0∥L2 ≤ ϵ. Then the
solution u exists on [0, Tϵ] with Tϵ := cϵ−2, with similar bounds.

The rest of this section is devoted to the proof of Theorem 3. The first step in our proof
is to construct a suitable function space X where we seek the solutions.

Given a function u in [0, 1]× R, we start with a decomposition u =
∑︁

k∈Z uk on the unit
frequency scale, and then a partition of unity in the physical space, also on the unit scale,

1 =
∑︂
j∈Z

χj(x).

Finally, we define the norm of the space X for solutions

(3.1) ∥u∥2X =
∑︂
k∈Z

∥uk∥2Xk
, ∥uk∥2Xk

=
∑︂
j∈Z

∥χj(t, x− 2tk)uk∥2L∞
t L2

x
.

Here the second argument of χj is consistent with the group velocity of frequency k waves.
Indeed, if u were an L2 solution to the homogeneous Schrödinger equation then this would
be nothing but a wave packet decomposition of u on the unit time scale. It is easily seen
that we have the embedding

X ⊂ L∞
t L2

x.

Remark 3.2. Due to the unit frequency localization of uk and Bernstein’s inequality, we
may freely replace the L∞

t L2
x norm in (3.1) by L∞

t,x.

Correspondingly, we define a similar space Y for the source term in a linear Schrödinger
equation, namely

(3.2) ∥f∥2Y =
∑︂
k∈Z

∥fk∥2Yk
, ∥fk∥2Yk

=
∑︂
j∈Z

∥χj(t, x− 2tk)fk∥2L1
tL

2
x
,

so that we have the duality relation
X = Y ∗,

with equivalent norms.
Then for the small data local well-posedness result inX it suffices to establish the following

two properties. The first is a linear mapping property:
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Lemma 3.3. The solution to the linear Schrödinger equation

(3.3) (i∂t + ∂2
x)u = f, u(0) = u0

in the time interval [0, 1] satisfies

(3.4) ∥u∥X ≲ ∥u0∥L2 + ∥f∥Y .

The second is an estimate for the nonlinearity:

Lemma 3.4. For the cubic nonlinearity C we have the bound

(3.5) ∥C(u, ū, u)∥Y ≲ ∥u∥3X .

Once we have these two lemmas, the proof of the local well-posedness result follows in a
standard manner using the contraction principle in a small ball in X. However, for later use
we also need to have a more precise, frequency envelope version of Theorem 3. This is as
follows:

Theorem 4. For each small initial data

∥u0∥L2 ≤ ϵ ≪ 1

there exists a unique solution u to (1.3) which is small in X. In addition, suppose ck is an
ℓ2 normalized admissible frequency envelope so that

∥u0∥L2
c
≲ ϵ.

Then the solution u satisfies

(3.6) ∥u∥Xc ≲ ϵ.

This requires stronger, frequency envelope versions of Lemmas 3.3, 3.4:

Lemma 3.5. The solution to the linear Schrödinger equation

(3.7) (i∂t + ∂2
x)u = f, u(0) = u0

in the time interval [0, 1] satisfies

(3.8) ∥u∥Xc ≲ ∥u0∥L2
c
+ ∥f∥Yc .

The second is an estimate for the nonlinearity:

Lemma 3.6. Let ck be an ℓ2 normalized admissible frequency envelope. Then for the cubic
nonlinearity C we have the bound

(3.9) ∥C(u, ū, u)∥Yc ≲ ∥u∥3Xc
.

Proof of Lemmas 3.3, 3.5. We can freely localize on the unit scale in frequency, and reduce
the problem to the frequency localized estimate

(3.10) ∥uk∥Xk
≲ ∥u0k∥L2 + ∥fk∥Yk

.

We can further reduce the problem by applying a Galilean transformation, by setting

v(t, x) = e−i(kx+k2t)uk(t, x− 2kt), v0(x) = e−ikxu0k, g(t, x) = e−i(kx+k2t)fk(t, x− 2kt).

Here the functions v, v0, g are now localized at frequency 0 and solve

(i∂t + ∂2
x)v = g, v(0) = v0,

11



whereas the bound (3.10) reduces to

(3.11) ∥v∥X0 ≲ ∥v0∥L2 + ∥g∥Y0 .

Inserting a harmless frequency localization P0, we represent v as

v(t) = eit∂
2
xP0v0 − i

∫︂ t

0

ei(t−s)∂2
xP0g ds.

Here by a slight abuse a notation we allow P0 to have slightly larger support. Finally, we
localize spatially at both ends,

χjv(t) =
∑︂
l∈Z

(︃
χje

it∂2
xP0χlv0 +

∫︂ t

0

χje
i(t−s)∂2

xP0χlg ds

)︃
.

Here the kernels for eit∂
2
xP0 are uniformly Schwartz for t ∈ [0, 1], so we get an L2 bound with

off-diagonal decay,

∥χje
it∂2

xP0χl∥L2→L2 ≲ ⟨j − l⟩−N .

This implies that

∥χjv∥L∞
t L2

x
≲

∑︂
l∈Z

⟨j − l⟩−N
(︁
∥χlv0∥L2

x
+ ∥χlg∥L1

tL
2
x

)︁
,

which in view of the off-diagonal decay implies the bound (3.11).
□

Proof of Lemmas 3.4, 3.6. Here the second lemma implies the first. We need to prove the
estimate

∥PkC(u, ū, u)∥Yk
≲ ck∥u∥3Xc

.

By duality, this reduces to the integral bound

(3.12) |I| ≲ ck∥u∥3Xc
∥vk∥Xk

, I =

∫︂
C(u, ū, u)v̄k dxdt.

Without any restriction in generality we may assume that

∥u∥Xc = 1, ∥vk∥Xk
= 1.

We use the unit scale frequency decomposition to separate the above integral as

I =
∑︂

k1−k2+k3=k

∫︂
Ck1k2k3(uk1 , ūk2 , uk3)v̄k dxdt,

where we have also localized the kernel of C near frequencies k1, k2, k3 on the unit scale.
The symbol of Ck1k2k3 is smooth and bounded on the unit scale, so the above summands
are essentially like products, and may be indeed thought of as products via separation of
variables. For bilinear products we have the estimate

(3.13) ∥uk1vk2∥L2
x,t

≲
1

⟨k1 − k2⟩
1
2

∥uk1∥Xk1
∥vk2∥Xk2

.

This is obtained simply by examining the intersection of the supports of the bump functions
traveling with speeds 2k1, respectively 2k2.
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Denoting δkhi = max |ki − kj|, the relation k1 + k3 = k2 + k insures that we can group
the four frequencies into two pairs at distance δkhi. Then, using twice the above bilinear
estimate, we have

|I| ≲
∑︂

k1−k2+k3−k=0

1

⟨δkhi⟩
ck1ck2ck3 .

Let n represent the dyadic size of δkhi. Without loss of generality, by relabeling, suppose
that

|k − k3| ≈ |k − k2| ≈ n, |k − k1| ≲ n.

Then using the Cauchy-Schwartz inequality for the pair (k2, k3) for fixed k1 we estimate

|I| ≲
∑︂
n

1

n

∑︂
|k1−k|≲n

ck1c
2
n, c2n :=

∑︂
|j−k|≈n

c2j .

Now we use the maximal function inequality for c, which gives

1

n

∑︂
|k1−k|≲n

ck1 ≲ ck.

We obtain
|I| ≲ ck

∑︂
n

c2n ≈ ck.

Thus (3.12) is proved. □

For later use, we note that the frequency envelope bounds for u together with the bilinear
L2 bound (3.13) imply the following

Corollary 3.7. Let u be a solution for (1.3) in [0, 1] as in Theorem 4. Then the following
bounds hold:

(3.14) ∥uk∥L6
t,x

≲ ϵck,

(3.15) ∥∂x(uk1ūk2(·+ x0))∥L2
t,x

≲ ϵ2⟨k1 − k2⟩
1
2 ck1ck2 .

4. Energy estimates and conservation laws

4.1. Conservation laws for the linear problem. We begin our discussion with the linear
Schrödinger equation

(4.1) iut + uxx = 0, u(0) = u0.

For this we consider the following three conserved quantities, the mass

M(u) =

∫︂
|u|2 dx,

the momentum

P(u) = 2

∫︂
ℑ(ū∂xu) dx,

as well as the energy

E(u) = 4

∫︂
|∂xu|2 dx.
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To these quantities we associate corresponding densities

M(u) = |u|2, P (u) = i(ū∂xu− u∂xū), E(u) = −ū∂2
xu+ 2|∂xu|2 − u∂2

xū.

The choice of densities here is not entirely straightforward. Symmetry is clearly a criteria,
but further motivation is provided by the conservation law computation,

(4.2) ∂tM(u) = ∂xP (u), ∂tP (u) = ∂xE(u).

The symbols of these densities viewed as bilinear forms are

m(ξ, η) = 1, p(ξ, η) = −(ξ + η), e(ξ, η) = (ξ + η)2.

More generally, we can start start with a symbol a(ξ, η) which is symmetric, in the sense
that

a(η, ξ) = a(ξ, η),

and then define an associated weighted mass density by

Ma(u) = A(u, ū).

We also define corresponding momentum and energy symbols pa and ea by

pa(ξ, η) = −(ξ + η)a(ξ, η), ea(ξ, η) = (ξ + η)2a(ξ, η).

Then a direct computation yields the density flux relations

d

dt
Ma(u, ū) = ∂xPa(u, ū),

d

dt
Pa(u, ū) = ∂xEa(u, ū).

4.2. Nonlinear density flux identities for the mass and momentum. Here we develop
the counterpart of the linear analysis above for the nonlinear problem (1.3).

4.2.1. The modified mass. To motivate what follows, we begin with a simpler computation
for the L2 norm of a solution u of (1.3):

d

dt
∥u∥2L2 =

∫︂
−iC(u, ū, u) · ū+ iu · C(u, ū, u) dx :=

∫︂
C4

m(u, ū, u, ū) dx.

A-priori the symbol of the quartic form C4
m, defined on the diagonal ∆4ξ = 0, is given by

c4m(ξ1, ξ2, ξ3, ξ4) = −ic(ξ1, ξ2, ξ3) + ic̄(ξ2, ξ3, ξ4).

However, we can further symmetrize and replace it by

c4m(ξ1, ξ2, ξ3, ξ4) =
i

2
(−c(ξ1, ξ2, ξ3)− c(ξ1, ξ4, ξ3) + c̄(ξ2, ξ3, ξ4) + c̄(ξ2, ξ1, ξ4)) .

In particular we are interested in the behavior of c4m(ξ1, ξ2, ξ3, ξ4) on the resonant set

R = {(ξ1, ξ2, ξ3, ξ4) ∈ R4 /∆4ξ = 0, ∆4ξ2 = 0} = {{ξ1, ξ3} = {ξ2, ξ4}}.
On this set we compute

c4m(ξ1, ξ1, ξ3, ξ3) =
i

2
(−c(ξ1, ξ1, ξ3)− c(ξ1, ξ3, ξ3) + c̄(ξ1, ξ3, ξ3) + c̄(ξ1, ξ1, ξ3))

= ℑ(c(ξ1, ξ1, ξ3) + c(ξ1, ξ3, ξ3)).

Then we observe that our (H2) assumption on C shows that this expression vanishes. One
might wonder here if we could not weaken this assumption by requiring that the sum of
the two terms is zero, rather than each of them separately. This would indeed be the case
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if all we were interested in is the almost conservation of mass. However, we will later add
localization weights which will act differently on the two terms.

The fact that c4m vanishes on the resonant set R implies (see Lemma 4.1 below) that we
can smoothly divide

b4m(ξ1, ξ2, ξ3, ξ4) = −ic4m(ξ1, ξ2, ξ3, ξ4)

∆4ξ2

on ∆4ξ = 0. We now use B4
m as an energy correction. Then we obtain the modified energy

relation

(4.3)
d

dt
(∥u∥2L2 +B4

m(u, ū, u, ū)) = R6
m(u, ū, u, ū, u, ū),

where R6
m is a symmetric 6-linear form. Here the left hand side may be viewed as a modified

energy, while the right hand side can potentially be estimated using the L6
t,x norm of u.

4.2.2. The modified mass and momentum density-flux pairs. The key idea here is that, cor-
responding to the above modified mass, we also want to write a conservation law for an
associated mass density

(4.4) M ♯(u) = M(u) +B4
m(u, ū, u, ū).

However, when doing this, we remark that the symbol of B4
m was previously defined only

on the diagonal ∆4ξ = 0, whereas in order for the above expression to be well defined we
need to extend it everywhere. For the purpose of this computation we simply assume that
we have chosen some smooth extension. A more careful choice will be considered later in
Lemma 4.1.

Now we compute

∂tM
♯(u) = ∂xP (u) + C4

m(u, ū, u, ū) + i(∆4ξ2B4
m)(u, ū, u, ū) +R6

m(u, ū, u, ū, u, ū).

By the choice of B4
m, the symbol of the quartic term above c4m + i∆4ξ2b4m vanishes on the

diagonal {∆4ξ = 0}, therefore we can express it smoothly in the form

(4.5) c4m + i∆4ξ2 b4m = i∆4ξ r4m.

Hence the above relation can be written in the better form

(4.6) ∂tM
♯(u) = ∂x(P (u) +R4

m(u, ū, u, ū)) +R6
m(u, ū, u, ū, u, ū).

One may view here the relation (4.5) as a division problem, where c4m vanishes on the
resonant set R. The symbols b4m and r4m are not uniquely determined by the relation (4.5),
as we can change them by

b4m → b4m + q∆4ξ, r4m → r4m + q∆4ξ2,

for any smooth q. However, this is the only ambiguity. In particular r4m is uniquely deter-
mined on the set ∆4ξ2 = 0, while b4m is uniquely determined on the set ∆4ξ = 0.

One could carry out a similar computation for the momentum, where the starting point
is the relation

∂tP (u) = ∂xE(u) + C4
p(u, ū, u, ū).

Precisely, the symbol of C4
p is initially given by

c4p(ξ1, ξ2, ξ3, ξ4) = i(ξ1 − ξ2 + ξ3 + ξ4)c(ξ1, ξ2, ξ3)− i(ξ1 + ξ2 − ξ3 + ξ4)c̄(ξ2, ξ3, ξ4).
15



However, we can further symmetrize it exactly as in the case of C4
m. Then it also vanishes

on the resonant set R, so it admits a (nonunique) representation of the form

(4.7) c4p + i∆4ξ2b4p = i∆4ξr4p.

Hence, as in the case of the mass, we define a quartic correction for the momentum density

P ♯(u) = P (u) +B4
p(u, ū, u, ū).

This satisfies a conservation law of the form

(4.8) ∂tP
♯(u) = ∂x(E(u) +R4

p(u, ū, u, ū)) +R6
p(u, ū, u, ū, u, ū).

4.3. The choice for the density-flux corrections. Here we consider the division problem
in (4.5), and ask what should be a good balance between the symbols B4

m and R4
m. We recall

that b4m is uniquely determined on the diagonal ∆4ξ = 0, but we can choose it freely away
from the diagonal.

To move away from the diagonal, it is useful to do it in a Galilean invariant fashion. The
expression ∆4ξ2 is not Galilean invariant, but we do have a suitable replacement, namely
the expression

∆̃4ξ2 := ∆4ξ2 − 2ξavg∆
4ξ =

1

2
((ξ1 − ξ3)

2 − (ξ2 − ξ4)
2).

This is easily seen to be invariant with respect to translations. To measure the size of both
∆4ξ and ∆̃4ξ2 we introduce two parameters,

(4.9)
δξhi = max{|ξ1 − ξ2|+ |ξ3 − ξ4|, |ξ1 − ξ4|+ |ξ3 − ξ2|},

δξmed = min{|ξ1 − ξ2|+ |ξ3 − ξ4|, |ξ1 − ξ4|+ |ξ3 − ξ2|},

where δξhi measures the diameter of the full set of ξ’s whereas δξmed measures the distance
of the sets {ξ1, ξ3} and {ξ2, ξ4}. With these notations, we have bounds from above as follows:

(4.10) |∆4ξ| ≲ δξmed, |∆̃4ξ2| ≲ δξhiδξmed.

We will think of the symbol ∆4ξ as being elliptic where approximate equality holds in the
first relation, and of ∆̃4ξ2 as being elliptic where approximate equality holds in the second
relation. Based on this, we will decompose the phase space into three overlapping regions
which can be separated using cutoff functions which are smooth on the unit scale:

i) The full division region,

Ω1 = {δξmed ≲ 1},
which represents a full unit size neighbourhood of the resonant set R.

ii) The region

Ω2 = {1 + |∆4ξ| ≪ δξmed},
where ∆̃4ξ2 must be elliptic, |∆̃4ξ2| ≈ δξhiδξmed, and thus we will favor division by
the symbol ∆̃4ξ2.

iii) The region

Ω3 = {1 ≪ δξmed ≲ |∆4ξ|},
we will instead divide by ∆4ξ; this is compensated by the relatively small size of this
region.

This decomposition leads us to the following division lemma:
16



Lemma 4.1. Let c4 be a bounded symbol which is smooth on the unit scale, and which
vanishes on R. Then it admits a representation

(4.11) c4 = ∆4ξ r̃4 − ∆̃4ξ2 b4,

where r̃4 and b4 are also smooth on the unit scale, with the following properties:

i) Size

(4.12)

|∂αr̃4| ≲ 1

⟨δξmed⟩
,

|∂αb4| ≲ 1

⟨δξhi⟩⟨δξmed⟩
.

ii) Support: b4 is supported in Ω1 ∪ Ω2 and r̃4 is supported in Ω1 ∪ Ω3.

Here and later in the paper by “smooth on the unit scale” we mean that the above
functions and all their derivatives are bounded, with bounds as in (4.12), and where the
implicit constant is allowed to depend on α, but not on anything else. As usual, only finitely
many derivatives are needed on our analysis, but we do not take the extra step of determining
how many.

To return to ∆4ξ, we have the following straightforward observation:

Remark 4.2. Later we will need similar decompositions but with ∆̃4ξ2 replaced by ∆4ξ2,

c4 = ∆4ξr4 −∆4ξ2b4.

This is easily done via the substitution

r4 = r̃4 + 2ξavgb
4.

But in doing this, we loose the above bound for r̃4 unless |ξavg| ≲ δξhi. Precisely, we obtain
instead

(4.13) |∂αr4| ≲ 1

⟨δξmed⟩

(︃
1 +

|ξavg|
⟨δξhi⟩

)︃
.

Proof. Using a partition of unity which is smooth on the unit scale, we can reduce the
problem to the case when c4 is supported in exactly one of the regions Ω1, Ω2 and Ω3. We
consider each of these cases separately.

i) c4 is supported in Ω1. To simplify notations here we introduce new linear coordinates
(η1, η2, η3, η4) where

η1 = ∆4ξ, η2 = ξ1 + ξ2 − ξ3 − ξ4, η3 = ξ1 − ξ2 − ξ3 + ξ4, 2η2η3 = ∆̃4ξ2.

For η4 we can choose in a symmetric fashion

η4 = ξ1 + ξ2 + ξ3 + ξ4,

though this does not play any role in the sequel.
In these coordinates we have

Ω1 = {|η1|+min{|η2|, |η3|} ≲ 1} = Ω11 ∪ Ω12 ∪ Ω13,

where
Ω11 = {|η1|+ |η2|+ |η3| ≲ 1} , Ω12 = {|η1|+ |η2| ≲ 1 ≲ |η3|} ,

Ω13 = {|η1|+ |η3| ≲ 1 ≲ |η2|} .
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Using another partition of unity which is smooth on the unit scale, the problem reduces to
separately considering the case when c4 is supported in each of these three sets.
Within the set Ω12 we have c4(0, 0, η3, η4) = 0 therefore we can easily represent

c4(η1, η2, η3, η4) = (c4(η1, η2, η3, η4)− c4(0, η2, η3, η4)) + (c4(0, η2, η3, η4)− c4(0, 0, η3, η4)),

where the first difference may be smoothly divided by η1 and the second by η2, with the
quotients contributing to r̃4, respectively b4. The set Ω13 can be dealt with in a similar
fashion.

It remains to consider Ω11, where we know that c4 = 0 in η1 = η2η3 = 0. Here we write

c4(η1, η2, η3, η4) = (c4(η1, η2, η3, η4)− c4(0, η2, η3, η4)) + c4(0, η2, η3, η4).

Now the first difference can be smoothly divided by η1, while the last term can be successively
and smoothly divided by η2 and η3.

ii) c4 is supported in Ω2. Here we set

b4 =
c4

∆̃4ξ2
, r̃4 = 0,

and we observe that ⃓⃓⃓⃓
∂α 1

∆̃4ξ2

⃓⃓⃓⃓
≲

1

δξmedδξhi
.

iii) c4 is supported in Ω3. Here we set

b4 = 0, r̃4 = − c4

∆4ξ
,

and we observe that ⃓⃓⃓⃓
∂α 1

∆4ξ

⃓⃓⃓⃓
≲

1

δξmed
.

□

4.4. The Galilean invariance. While the assumptions (H1-3) on the cubic nonlinearity C
are Galilean invariant, our density-flux identities are not. In order to rectify that, suppose
heuristically that we are looking at linear waves concentrated around a frequency ξ0. This
corresponds to a linear group velocity of 2ξ0, so in the density-flux identities it would be
natural to replace the operator ∂t by ∂t+2ξ0∂x. At the linear level, this is done by recentering
the energy and momentum densities at ξ0,

(4.14)
pξ0(ξ1, ξ2) = − ξ1 − ξ2 + 2ξ0 = p+ 2ξ0m,

eξ0(ξ1, ξ2) = (ξ1 + ξ2 − 2ξ0)
2 = e+ 4ξ0p+ 4ξ20m.

Then the density-flux identities (4.2) become

(4.15) (∂t + 2ξ0∂x)M(u) = ∂xPξ0(u), (∂t + 2ξ0∂x)Pξ0(u) = ∂xEξ0(u).

Next we consider the nonlinear setting. There M ♯ is the same as before, but P ♯
ξ0

is

P ♯
ξ0
= P ♯ − 2ξ0M

♯ = Pξ0 +B4
p,ξ0

,

where the symbol for B4
p,ξ0

is given by

(4.16) b4p,ξ0 = b4p + 2ξ0b
4
m.
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Then our density-flux identities have the form

(4.17) (∂t + 2ξ0∂x)M
♯(u) = ∂x(pξ0(u) +R4

m,ξ0
(u, ū, u, ū)) +R6

m,ξ0
(u, ū, u, ū, u, ū),

(4.18) (∂t + 2ξ0∂x)P
♯
ξ0
(u) = ∂x(eξ0(u) +R4

p,ξ0
(u, ū, u, ū)) +R6

p,ξ0
(u, ū, u, ū, u, ū),

where the symbols for R4
m,ξ0

and R4
p,ξ0

are defined by

r4m,ξ0
= r4m + 2ξ0b

4
m, r4p,ξ0 = r4p + 2ξ0b

4
p + 2ξ0r

4
m + 4ξ20b

4
m.

4.5. Localized density-flux identities for mass and momentum. In our analysis later
on, we will not use density-flux pairs for global estimates, but instead we will use them only
in a frequency localized setting.

Here we begin our discussion with a symmetric bilinear symbol a(ξ, η). We are assuming
it generates a real valued quadratic form A(u, ū), i.e. that

a(ξ, η) = ā(η, ξ),

and that its symbol is bounded and uniformly smooth. Later we will use such symbols a to
localize our analysis to intervals I in frequency, either of unit size or larger.
Corresponding to such a we define corresponding quadratic localized mass, momentum

and energy by

ma(ξ, η) = a(ξ, η), pa(ξ, η) = −(ξ + η)a(ξ, η), ea(ξ, η) = (ξ + η)2a(ξ, η),

A direct computation yields the relation

(4.19) ∂tMa(u) = Pa(u) + C4
m,a(u),

where the symbol C4
m,a is given by

c4m,a(ξ1, ξ2, ξ3, ξ4) = − i

2
[ c(ξ1, ξ2, ξ3)ma(ξ1 − ξ2 + ξ3, ξ4) + c(ξ1, ξ4, ξ3)ma(ξ1 − ξ4 + ξ3, ξ2)

− c̄(ξ2, ξ3, ξ4)ma(ξ3, ξ2 − ξ3 + ξ4)− c̄(ξ2, ξ1, ξ4)ma(ξ3, ξ2 − ξ1 + ξ4)].

A similar identity applies in the case of the localized momentum, where we simply replace
the symbol ma by pa.
As before, this symbol vanishes on the resonant set R, so we can represent it as in the

division relation (4.5),

(4.20) c4m,a + i∆4ξ2b4m,a = i∆4ξr4m,a,

as well as

(4.21) c4p,a + i∆4ξ2b4p,a = i∆4ξr4p,a.

Then, defining M ♯
a and P ♯

a as before,

(4.22) M ♯
a(u) = Ma(u) +B4

m,a(u, ū, u, ū),

(4.23) P ♯
a(u) = Pa(u) +B4

p,a(u, ū, u, ū),

we obtain density-flux identities akin to (4.6), namely

(4.24) ∂tM
♯
a(u) = ∂x(Pa(u) +R4

m,a(u)) +R6
m,a(u),
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and

(4.25) ∂tP
♯
a(u) = ∂x(Ea(u) +R4

p,a(u)) +R6
p,a(u).

We will consider these relations together with their Galilean shifts obtaining relations of
the form

(4.26) (∂t + 2ξ0∂x)M
♯
a(u) = ∂x(Pa,ξ0(u) +R4

m,a,ξ0
(u)) +R6

m,a,ξ0
(u),

respectively

(4.27) (∂t + 2ξ0∂x)P
♯
a,ξ0

(u) = ∂x(Ea,ξ0(u) +R4
p,a,ξ0

(u)) +R6
p,a,ξ0

(u).

These correspond to the algebraic division relations

(4.28) c4m,a + i∆4(ξ − ξ0)
2b4m,a = i∆4ξr4m,a,ξ0

,

respectively

(4.29) c4p,a,ξ0 + i∆4(ξ − ξ0)
2b4p,a,ξ0 = i∆4ξr4p,a,ξ0 ,

where
(4.30)

c4p,a,ξ0(ξ1, ξ2, ξ3, ξ4) =− i

2
[c(ξ1, ξ2, ξ3)pa,ξ0(ξ1 − ξ2 + ξ3, ξ4) + c(ξ1, ξ4, ξ3)pa,ξ0(ξ1 − ξ4 + ξ3, ξ2)

− c̄(ξ2, ξ3, ξ4)pa,ξ0(ξ1, ξ2 − ξ3 + ξ4)− c̄(ξ2, ξ1, ξ4)pa,ξ0(ξ3, ξ2 − ξ1 + ξ4)].

The symbols above are connected in the obvious way. Precisely, we have

(4.31) r4m,a,ξ0
= r4m,a + 2ξ0b

4
m,a,

and

(4.32) P ♯
a,ξ0

= P ♯
a + 2ξ0M

♯
a, b4p,a,ξ0 = b4p,a + 2ξ0b

4
m,a,

and finally

(4.33) r4p,a,ξ0 = r4p,a + 2ξ0b
4
p,a + 2ξ0r

4
m,a,ξ0

.

To use these density flux relations we need to have appropriate bounds for our symbols:

Proposition 4.3. Let J ⊂ R be an interval of length r, and d(ξ0, J) ≲ r. Assume that a is
supported in J × J , with bounded and uniformly smooth symbol. Then the relations (4.28)
and (4.29) hold with symbols b4m,a, b

4
p,a,ξ0

, r4m,a,ξ0
and r4p,a,ξ0 which can be chosen to have the

following properties:

i) Support: they are all supported in the region where at least one of the frequencies is
in J .

ii) Size:

(4.34) |b4m,a| ≲
1

⟨δξhi⟩⟨δξmed⟩
, |b4p,a,ξ0| ≲

r

⟨δξhi⟩⟨δξmed⟩
,

(4.35)

|r4m,a,ξ0
| ≲ 1

⟨δξmed⟩
1Ω1∪Ω3 +

r

⟨δξhi⟩⟨δξmed⟩
1Ω1∪Ω2 ,

|R4
p,a,ξ0

| ≲ r

⟨δξmed⟩
1Ω1∪Ω3 +

r2

⟨δξhi⟩⟨δξmed⟩
1Ω1∪Ω2 .

iii) Regularity: similar bounds hold for all derivatives.
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Proof. This is easily done by applying Lemma 4.1, see also Remark 4.2. □

5. Interaction Morawetz identities

5.1. The linear Schrodinger equation. The interaction Morawetz inequality aims to
capture the fact that the momentum moves to the right faster than the mass. Here the
left/right symmetry is broken due to the sign choice which is implicit in the choice of the
momentum.

5.1.1. A global computation. To warm up, we start with two solutions u and v for the linear
Schrödinger equation. To these we associate the interaction functional

I(u, v) =

∫︂
x>y

M(u)(x)P (v)(y)− P (u)(x)M(v)(y) dxdy,

and compute dI/dt using the conservation laws (4.2). We have

d

dt
I(u, v) =

∫︂
x>y

∂xP (u)(x)P (v)(y) +M(u)(x)∂yE(v)(y)

− ∂xE(u)(x)M(v)(y)− P (u)(x)∂yP (v)(y) dxdy

=

∫︂
M(u)E(v) +M(v)E(u)− 2P (u)P (v) dx :=

∫︂
J4(u, ū, v, v̄) dx.

Here J4 can be chosen1 to have symbol

j4(ξ1, ξ2, ξ3, ξ4) = 4(ξ1 − ξ4)(ξ2 − ξ3).

This is because of the following computation on the diagonal ∆4ξ = 0:

(ξ1 + ξ2)
2 + (ξ3 + ξ4)

2 − 2(ξ1 + ξ2)(ξ3 + ξ4) = (ξ1 + ξ2 − ξ3 − ξ4)
2 = 4(ξ1 − ξ4)(ξ2 − ξ3).

Thus we have the positivity

J4(u, ū, v, v̄) = 4|∂x(uv̄)|2.
The above computation is classically done using integration by parts, see [22]. However, it is
more interesting to do it at the symbol level because we want to apply it in a more general
context. Classically this is done with u = v, but here we find it convenient to break the
symmetry. Primarily, our v’s will be spatial translations of u.

5.1.2. A frequency localized bound. Here we start with a symbol a which is localized on the
unit scale near some frequency ξ0, and consider the interaction Morawetz functional

(5.1) Ia(u, v) =

∫︂
x>y

Ma(u)(x)Pa(v)(y)− Pa(u)(x)Ma(v)(y) dxdy.

As above, its time derivative is

d

dt
Ia(u, v) = J4

a(u, ū, v, v̄),

where J4
a has symbol

ja(ξ1, ξ2, ξ3, ξ4) = 4a(ξ1, ξ2)a(ξ3, ξ4)(ξ1 − ξ4)(ξ2 − ξ3).

1Recall that a-priori the symbol of j4 is only determined uniquely on the diagonal ∆4ξ = 0.
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This no longer has obvious positivity. However, if a has separated variables

(5.2) a(ξ, η) = a0(ξ)a0(η),

then Ja is nonnegative,

J4
a(u, v) = 4

∫︂
|Ka(u, v̄)|2 dx,

where Ka has symbol (ξ − η)a0(ξ)a0(η), i.e.

Ka(u, v̄) = ∂x(A0uA0v),

where A0 is the multiplier associated to the symbol a0.

5.1.3. Interaction Morawetz for separated velocities. Here we instead take two symbols a
and b localized to two frequency intervals A and B so that |A|, |B| ≲ r and A and B have
separation r (say A is to the left of B). Then we take the interaction functional

IAB =

∫︂
x>y

MA(u)(x)PB(v)(y)− PA(u)(x)MB(v)(y) dxdy,

or equivalently

IAB =

∫︂
x>y

MA(x)PB,ξ0(y)− PA,ξ0(x)MB(y) dxdy,

where ξ0 is arbitrary, but can be chosen more efficiently at distance O(r) from both A and
B.

Then we compute

d

dt
IAB =

∫︂
MA(u)EB(v) + EA(u)MB(v)(x)− 2PB(u)PA(u) dx := J4

AB(u, ū, v, v̄),

where J4
AB has symbol

j4AB(ξ1, ξ2, ξ3, ξ4) = 2a(ξ1, ξ2)b(ξ3, ξ4)(ξ1 − ξ4)(ξ2 − ξ3).

Assuming that

a(ξ, η) = a0(ξ)a0(η), b(ξ, η) = b0(ξ)b0(η),

we can write J4
AB as

J4
AB =

∫︂
|KAB(u, v̄)|2 dx,

where

KAB(u, ū) = ∂x(A0uB0v).

Now the differences (ξ1 − ξ4) and (ξ2 − ξ3) have size r so this leads to a bilinear L2 bound
for A0u ·B0u,

JAB ≈ r2∥A0u ·B0u∥2L2 .

5.2. Nonlinear interaction Morawetz estimates. Here we consider the same interaction
Morawetz functional as above, but now apply it to (two) solutions for the nonlinear equation
(1.3).
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5.2.1. A simple case. As a starting point, here we consider density-flux pairs as in (4.6),
(4.8) to which we associate the nonlinear interaction functional

(5.3) I(u, v) =

∫︂∫︂
x>y

M ♯(u)(x)P ♯(v)(y)− P ♯(u)(x)M ♯(v)(y) dxdy.

Using the density-flux relations we obtain

(5.4)
dI

dt
= J4 + J6 + J8 +K8,

where J4 is the same as above, while J6 and J8 are given by

(5.5)
J6(u, v) =

∫︂
M(u)R4

p(v) +B4
m(u)E(v)− P (u)B4

p(v)−R4
m(u)P (v)+

M(v)R4
p(u) +B4

m(v)E(u)− P (v)B4
p(u)−R4

m(v)P (u) dx,

respectively

(5.6) J8(u, v) =

∫︂
B4

m(u)R
4
p(v)−R4

m(u)B
4
p(v) +B4

m(v)R
4
p(u)−R4

m(v)B
4
p(u) dx.

Finally, we are also left with the double integral

(5.7)

K8 =

∫︂∫︂
x>y

M ♯(u)(x)R6
p(v)(y) + P ♯(v)(y)R6

m(u)(x) dxdy

−
∫︂∫︂

x>y

M ♯(v)(y)R6
p(u)(x) + P ♯(u)(x)R6

m(v)(y) dxdy,

whose leading part has order 8 but also contains terms of order 10; but we will treat it all
perturbatively later.

It is instructive to consider the case of the cubic defocusing NLS. There B4
m = 0, B4

p = 0

and thus R6
m = 0, R6

p = 0. Further, R4
m = 0 but R4

p = 1. Thus in particular we get

J6(u, u) =

∫︂
|u|6 dx.

This is where the focusing/defocusing type of the equation comes in, as it determines the
sign of J6 (relative to the sign of J4).

5.2.2. Nonlinear interaction Morawetz: the localized diagonal case. Here we use the fre-
quency localized mass density-flux (4.17) and the corresponding momentum density-flux
(4.18) in order to produce a localized interaction Morawetz estimate. We consider a smooth
symbol a as in (5.2), where a0 is localized around a frequency ξ0 on the unit scale.
Correspondingly, we have the localized mass and momentum densities

M ♯
a = Ma(u, ū) +B4

m,a(u, ū, u, ū),

P ♯
a,ξ0

= Pa,ξ0(u, ū) +B4
p,a,ξ0

(u, ū, u, ū),

which satisfy the conservation laws

(∂t + 2ξ0∂x)M
♯
a(u) = ∂x(Pa,ξ0(u) +R4

m,a,ξ0
(u)) +R6

m,a,ξ0
(u).

(∂t + 2ξ0∂x)P
♯
a,ξ0

(u) = ∂x(Ea,ξ0(u) +R4
p,a,ξ0

(u)) +R6
p,a,ξ0

(u).
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For these we define the interaction Morawetz functional

(5.8) Ia(u, v) =

∫︂∫︂
x>y

M ♯
a(u)(x)P

♯
a,ξ0

(v)(y)− P ♯
a,ξ0

(u)(x)M ♯
a(v)(y) dxdy,

where, by writing it in a symmetric fashion, we have completely eliminated its dependence
on ξ0.
The time derivative of Ia is

(5.9)
d

dt
Ia = J4

a + J6
a + J8

a +K8
a,

where all the terms are independent of ξ0.
Here the quartic contribution J4

a is the same as in the linear case,

J4
a(u, v) =

∫︂
Ma(u)Ea,ξ0(v) +Ma(v)Ea,ξ0(u)− 2Pa,ξ0(u)Pa,ξ0(v) dx.

The sixth order term J6
a has the form

(5.10)

J6
a(u, v) =

∫︂
Ma(u)R

4
p,a,ξ0

(v) +B4
m,a(u)Ea,ξ0(v)− Pa,ξ0(u)B

4
p,a,ξ0

(v)−R4
m,a,ξ0

(u)Pa,ξ0(v)

+Ma(v)R
4
p,a,ξ0

(u) +B4
m,a(v)Ea,ξ0(u)− Pa,ξ0(v)B

4
p,a,ξ0

(u)−R4
m,a,ξ0

(v)Pa,ξ0(u) dx.

Next we have
(5.11)

J8
a(u, v) =

∫︂
B4

m,a(u)R
4
p,a,ξ0

(v)−R4
m,a,ξ0

(u)B4
p,a,ξ0

(v)+B4
m,a(v)R

4
p,a,ξ0

(u)−R4
m,a,ξ0

(v)B4
p,a,ξ0

(u) dx.

Finally the 8-linear term K8
a has the form

(5.12)
K8

a(u, v) =

∫︂∫︂
x>y

M ♯
a(u)(x)R

6
p,a,ξ0

(v)(y) + P ♯
a,ξ0

(v)(y)R6
m,a(u)(x)

−M ♯
a(v)(y)R

6
p,a,ξ0

(u)(x)− P ♯
a,ξ0

(u)(x)R6
m,a(v)(y) dxdy.

This also includes a 10-linear term.
Importantly, here we compute the symbol of J6

a,ξ0
on the diagonal ξ1 = ξ2 = ξ3 = ξ4 =

ξ5 = ξ6 := ξ. This will be essential later on in order to obtain bounds for the L6 Strichartz
norm.

Lemma 5.1. The diagonal trace of the symbol j6a is

(5.13) j6a(ξ) = a2(ξ)c(ξ, ξ, ξ).

Proof. Since our symbol does not actually depend on ξ0, it suffices to compute it at ξ = ξ0.
The advantage is that pa,ξ0(ξ0) = ea,ξ0(ξ0) = 0, so we are left with the simpler expression

j6a(ξ0) = ma(ξ0)r
4
p,a,ξ0

(ξ0).

For r4p,a,ξ0 we have the relation

c4p,a,ξ0 + i∆4(ξ − ξ0)
2b4p,a,ξ0 = i∆4ξr4p,a,ξ0 .

We differentiate with respect to ξ1 and then set all ξ’s equal to obtain

∂1c
4
p,a,ξ0

(ξ0) = ir4p,a,ξ0(ξ0).
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It remains to compute the ξ1 derivative of c
4
p,a,ξ0

on the diagonal. This is a direct computation
using the formula (4.30). Recalling that

pa(ξ1, ξ2) = ma(ξ1, ξ2)(−ξ1 − ξ2 + 2ξ0),

it follows that

r4p,a,ξ0(ξ0) = ma(ξ0)c(ξ0),

where we recall that c is real on the diagonal. Therefore

j6a,ξ0(ξ0) = a2(ξ0)c(ξ0),

as needed. □

5.2.3. Nonlinear interaction Morawetz: the transversal case. Here we return to the setting of
Section 5.1.3 where we have two frequency intervals A,B with size at most M and separation
also M , and two smooth and bounded symbols a, b which are localized in the two intervals.
Our interaction Morawetz functional is given by

(5.14) IAB =

∫︂
x>y

M ♯
a(u)(x)P

♯
b,ξ0

(v)(y)− P ♯
a,ξ0

(u)(x)M ♯
b (v)(y) dxdy,

and we observe as before that this does not depend on ξ0.
Using again the frequency localized mass density-flux (4.17) and the corresponding mo-

mentum density-flux (4.18) we produce a localized interaction Morawetz estimate,

(5.15)
d

dt
IAB = J4

AB + J6
AB + J8

AB +K8
AB.

Here the quartic contribution J4
AB is the same as in the linear case,

J4
AB =

∫︂
Ma(u)(x)Eb,ξ0(v)(x) +Mb(v)(x)Ea,ξ0(u)(x)− 2Pa,ξ0(u)(x)Pb,ξ0(v)(x) dx,

and captures the bilinear L2 bound.
The sixth order term J6

AB has the form

J6
AB =

∫︂
−(Pa,ξ0B

4
p,b,ξ0

+ Pb,ξ0R
4
m,a,ξ0

) + (MaR
4
p,b,ξ0

+ Eb,ξ0B
4
m,a,ξ0

)− symmetric dx,

where in the symmetric part we interchange both the indices a, b and the functions u, v.
Next we have

J8
AB =

∫︂
−R4

m,a,ξ0
B4

p,b,ξ0
+B4

m,a,ξ0
R4

p,b,ξ0
− symmetric dx.

Finally the 8-linear term K8
a,ξ0

has the form

K8
AB =

∫︂∫︂
x>y

M ♯
a(x)R

6
p,b,ξ0

+ P ♯
b,ξ0

R6
m,a,ξ0

− symmetric dxdy.

As before this also includes a 10-linear term.
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6. Frequency envelopes and the bootstrap argument

The primary goal of the proof of our main result in Theorem 1 is to establish a global L∞
t L2

x

bound for small data solutions; by the local well-posedness result in Section 3, this implies
the desired global well-posedness result. However, along the way, we will also establish
bilinear L2 and Strichartz bounds for the solutions. These will both play an essential role
in the proof of Theorem 1, and will also establish the scattering properties of our global
solutions.

Since the proof of our estimates loops back in a complex manner, it is most convenient to
establish the bilinear L2 and the L6 Strichartz bounds in the setting of a bootstrap argument,
where we already assume that the desired bilinear and Strichartz estimates hold but with
weaker constants.

The set-up for the bootstrap is most conveniently described using the language of fre-
quency envelopes. This was originally introduced in work of Tao, see e.g. [24], but in the
context of dyadic Littlewood-Paley decompositions. But here instead we work with a uni-
form decomposition on the unit scale, which requires a substantial revision of the notion of
“slowly varying”, which we replace by the new notion of “maximal property” introduced in
Section 2.2.

To start with, we assume that the initial data has small size,

∥u0∥L2 ≲ ϵ.

We consider a frequency decomposition for the initial data on a unit spatial scale,

u0 =
∑︂
k∈Z

u0,k.

Then we place the initial data components under an admissible frequency envelope on the
unit scale,

∥u0,k∥L2 ≤ ϵck, c ∈ ℓ2,

where the envelope {ck} is not too large,

∥c∥ℓ2 ≈ 1.

Our goal will be to establish the following frequency envelope bounds for the solution:

Theorem 5. Let u ∈ C([0, T ];L2) be a solution for the equation (1.3) with initial data u0
which has L2 size at most ϵ. Let {ϵck} be an admissible frequency envelope for the initial
data in L2, with ck normalized in ℓ2. Then the solution u satisfies the following bounds:

(i) Uniform frequency envelope bound:

(6.1) ∥uk∥L∞
t L2

x
≲ ϵck,

(ii) Localized Strichartz bound:

(6.2) ∥uk∥L6
t,x

≲ (ϵck)
2
3 ,

(iii) Localized Interaction Morawetz:

(6.3) ∥∂x|uk|2∥L2
t,x

≲ ϵ2c2k,
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(iv) Transversal bilinear L2 bound:

(6.4) ∥∂x(uAūB(·+ x0))∥L2
t,x

≲ ϵ2cAcB ⟨dist(A,B)⟩
1
2 ,

for all x0 ∈ R whenever |A|+ |B| ≲ ⟨dist(A,B)⟩.

Here (6.3) can be seen as a particular case of (6.4) when A = B have unit length; we
stated it separately in order to ease comparison with earlier work on Interaction Morawetz
estimates.

To prove this theorem, we make a bootstrap assumption where we assume the same bounds
but with a worse constant C, as follows:

(i) Uniform frequency envelope bound,

(6.5) ∥uk∥L∞
t L2

x
≲ Cϵck,

(ii) Localized Strichartz bound,

(6.6) ∥uk∥L6
t,x

≲ C(ϵck)
2
3 ,

(iii) Localized Interaction Morawetz,

(6.7) ∥∂x|uk|2∥L2
t,x

≲ Cϵ2c2k,

(iv) Transversal Interaction Morawetz,

(6.8) ∥∂x(uk1ūk2(·+ x0))∥L2
t,x

≲ Cϵ2ck1ck2⟨k1 − k2⟩
1
2

uniformly for all x0 ∈ R.
Then we seek to improve the constant in these bounds. The gain will come from the fact

that the C’s will always come paired with extra ϵ’s.
We remark that the bootstrap hypothesis for the transversal bilinear L2 bound (6.8) only

requires unit size localization, unlike the corresponding conclusion (6.4). On one hand this
simplifies the continuity argument closing the bootstrap. On another hand this is related
to the fact that closing the bootstrap argument for global well-posedness only requires (6.4)
for unit size sets. The full bound (6.4) is only used in the last section in order to obtain the
global Strichartz and bilinear L2 bounds, which are of course very interesting but secondary
to the proof of the global result.

We also remark on the need to add translations to the bilinear L2 estimates. This is
because, unlike the linear bounds (6.5) and (6.6) which are inherently invariant with respect
to translations, bilinear estimates are not invariant with respect to separate translations for
the two factors. One immediate corollary of (6.8) is that for any multipliers L1 and L2 with
smooth and bounded symbols we have

(6.9) ∥∂x(L1(D)uk1L2(D)uk2(·+ x0))∥L2 ≲ Cϵ2ck1ck2⟨k1 − k2⟩
1
2 .

This is essentially the only way we will use this translation invariance in our proofs.
For the rest of this section, we provide the continuity argument which shows that it suffices

to prove Theorem 5 under the bootstrap assumptions (6.5)-(6.8).
For this, we denote by T the maximal time for which the bounds (6.5)-(6.8) hold in [0, T ].

By the local well-posedness result we have T ≥ 1. Assume by contradiction that T is finite.
Then the bootstrap version of the theorem implies that the bounds (6.1)-(6.4) hold in [0, T ].
In particular, u(T ) will also be controlled by the same maximal envelope cj coming from
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the initial data. By the local well-posedness result, this implies in turn that the bounds
(6.5)-(6.8) hold in [T, T + 1] with C ≈ 1. Adding this to the bounds (6.1)-(6.4) in [0, T ], it
follows that (6.5)-(6.8) hold in [0, T + 1], thereby contradicting the maximality of T .

7. The frequency envelope bounds

The aim of this section is to prove the frequency envelope bounds in Theorem 5, given
the bootstrap assumptions (6.5)-(6.8). In the proof we will rely on our modified energy and
momentum functionals, whose components we estimate first. The frequency localized energy
estimate (6.1) will be an immediate consequence of these bounds. For the Strichartz and
L2 bilinear bounds we will then use the interaction Morawetz identities, first in a localized
diagonal setting and then in a transversal setting.

7.1. Spatial and space-time L1 bounds. Here we consider the corrections B4
m,a and errors

R6
m,a and their momentum counterparts associated to a smooth bump function a selecting

a frequency interval A ⊂ Z. For B4
m,a we will prove a fixed time L1 bound, while for R6

m,a

we will prove a space-time L1 bound. These bounds will be repeatedly used in each of the
following subsections, first in the case when A has unit size and then in the case when A has
a larger size. We begin with the B4

m,a bound.

Lemma 7.1. Assume that the bootstrap bound (6.5) holds. Then we have the fixed time
estimate

(7.1) ∥B4
m,a(u)∥L1

x
≲ ϵ4C4c2A.

The corresponding bound for the momentum follows as a corollary, once we add an addi-
tional assumption in order to fix the momentum size:

Corollary 7.2. Assume that the bootstrap bound (6.5) holds. Let ξ0 ∈ R, and
n = max

k∈A
|k − ξ0|.

Then we have the fixed time estimate

(7.2) ∥B4
p,a,ξ0

(u)∥L1
x
≲ nϵ4C4c2A,

Proof. The bounds (7.1) and (7.2) are similar, the only difference arises from the additional
n factor in the size of the symbol pA. So we will prove the first bound. Using our partition
of unity in frequency on the unit scale we expand

B4
m,a(u) =

∑︂
k1,k2,k3,k4∈Z

B4
m,A(uk1 , ūk2 , uk3 , ūk4).

Here we will separately estimate each term in L1
x based on the size of the symbol. By

Proposition 4.3, for frequencies within a unit neighbourhood of [k] = (k1, k2, k3, k4) the
symbol b4m,a and its derivatives can be estimated by

b4m,a[k] :=
1

⟨δkhi⟩⟨δkmed⟩
.

In addition, its support is contained in the region Ω1 ∪ Ω2, where at least one frequency is
in A. The region Ω1 ∪ Ω2 can be described as the set of those quadruples [k] so that

(7.3) either |∆4k| ≲ 1, or |∆4k| ≪ δkmed.
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Without loss in generality we assume that k1 ∈ A. Then, using the above properties, we
can estimate the L1

x bound in the lemma as

∥B4
m,a(u)∥L1

x
≲ ϵ4

∑︂
k1∈A

∑︂
[k]∈Ω1∪Ω2

1

⟨δkhi⟩⟨δkmed⟩
ck1ck2ck3ck4 .

Fixing k1 ∈ A, it suffices to show that

(7.4) Sk1 :=
∑︂

k2,k3,k4

1

⟨δkhi⟩⟨δkmed⟩
ck2ck3ck4 ≲ ck1 .

This no longer has anything to do with the set A. For later use we have also removed the
restriction [k] ∈ Ω1 ∪ Ω2.

To discuss the possible configurations for [k] we denote by n1 ≤ n2 the dyadic size of δk
med,

respectively δkhi. By Galilean invariance we set k1 = 0, and then the rest of the indices may
be reordered so that

|k2| ≲ n1, |k3| ≲ n2, |k4| ≈ n2, |k3 − k4| ≲ n1.

Then we have

S ≲
∑︂
n1≤n2

∑︂
|k2|≲n1

∑︂
|k4|≈n2

∑︂
|k3−k4|≲n1

1

n1n2

ck2ck3ck4 .

Here we use twice the envelope maximal function bound to write

1

n1

∑︂
|k2|≲n1

ck2 ≲ c0,
1

n1

∑︂
|k3−k4|≲n1

ck3 ≲ ck4 .

This gives

S ≲ c0
∑︂
n1≤n2

n1

n2

∑︂
|k4|≈n2

c2k4 ≈ c0
∑︂
n2

∑︂
|k4|≈n2

c2k4 ≲ c0.

This concludes the proof of (7.4), and therefore the proof of the lemma. □

Next we turn our attention to R6
m,a, which we estimate as follows:

Lemma 7.3. Under our bootstrap assumptions (6.5)-(6.8), we have the space-time bound

(7.5) ∥R6
m,a∥L1

t,x
≲ ϵ4C6c2A.

As above, we also have a similar bound for the momentum:

Corollary 7.4. Assume that the bootstrap bounds (6.5)-(6.8) hold. Let ξ0 ∈ R, and

n = max
k∈A

|k − ξ0|.

Then we have the space-time bound

(7.6) ∥R6
p,a,ξ0

∥L1
t,x

≲ nϵ4C6c2A.

Proof. As in the case of the earlier fixed time bound, we will focus on (7.5), as the proof of
(7.6) is essentially the same. We recall R6

m,a is obtained from the cubic terms in the time

derivative of B4
m,a. We denote the four frequencies in B4

m,a by k0, k1, k2, k3, where the k0
factor gets differentiated in time. One of these four frequencies, call it kA, must be in A.
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With kA as above, we expand

R6
m,a(u) =

∑︂
kA∈A

R6
m,a,kA

(u).

Then it suffices to establish the bound

(7.7) ∥R6
m,a,kA

(u)∥L1
t,x

≲ ϵ4C6c2kA .

Here by Galilean invariance we can set kA = 0. We also drop the index A, as no localization
associated to the set A will be used in the sequel. In particular we replace B4

m,a by B4
m,0 to

emphasize that one of the frequencies in B4 is assumed to be near zero.
To describe the size and localization of the symbol b4m,0 we introduce as before the notations

δkmed and δkhi for the distances between k0, k1, k2, k3, n1 < n2 for the dyadic size of δkmed

and δkhi, and ∆4k associated to the same indices. In the support of b4m,0 we must have

(7.8) |∆4k| ≲ 1 or |∆4k| ≪ n1, 0 ∈ {k0, k1, k2, k3}.

In this region, the symbol of b4m,0 as well as its derivatives have size

(7.9) |b4m,0| ≲
1

n1n2

.

The time differentiation is producing three additional frequencies k4, k5, k6, so that

(7.10) k0 = k4 − k5 + k6.

Then (7.8) translates to

(7.11) |∆6k| ≲ 1 or |∆6k| ≪ n1

relative to the indices k1, · · · , k6.
Overall, for R6

m,0 we have the decomposition

R6
m,0(u) =

∑︂
n1≤n2

∑︂
k0−7∈Γ

R6
m,0(uk1 , ūk2 , uk3 , ūk4 , uk5 , ūk6),

where Γ describes the set of indices satisfying (7.8) and (7.10). To bound this sum in L1
t,x

we consider several cases:

A. If all six frequencies are near 0, then we use the localized L6 bound to obtain

∥R6
m,0(uk1 , ūk2 , uk3 , ūk4 , uk5 , ūk6)∥L1

t,x
≲ C4(ϵc0)

4,

which suffices.

B. Otherwise, we denote by 1 ≪ n the minimal dyadic size of the interval containing
all six k indices. Clearly we have n1 ≤ n2 ≤ n. Also due to (7.11) we must also have
|∆6k| ≪ n. This implies that within the set (k1, · · · , k6) there must be at least two disjoint
pairs of frequencies at distance comparable to n. Applying two bilinear L2 estimates, and
L∞ bounds for the other two factors, we can bound

(7.12) ∥R6
m,0(u)∥L1

t,x
≲ ϵ6C4S, S =

∑︂
n1≤n2

∑︂
k0−6∈Γ

1

n1n2n
ck1ck2ck3ck4ck5ck6 .
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It remains to bound the above sum S by

(7.13) S ≲ c20.

There are several cases to consider:

B1. k0 = 0. Relabeling, we may assume that

(7.14) |k1| ≈ n1, |k2 − k3| ≈ n1, |k2|, |k3| ≈ n2.

We distinguish further cases by comparing n2 and n.

B1a. n ≫ n2. Then we may assume that

(7.15) |k4| ≲ |k5| ≈ |k6| ≈ n,

For fixed k4 we can apply the Cauchy-Schwarz inequality for the pair of indices (k5, k6), and
also for (k2, k3). We obtain

S ≲
∑︂

n1≤n2≪n

∑︂
|k1|≈n1,|k4|≲n

1

n2n
ck1ck4c

2
n2
c2n =

∑︂
n2≪n

∑︂
|k1|≤n2,|k4|≲n

1

n2n
ck1ck4c

2
n2
c2n.

Now we use twice the envelope maximal bound for the k1, respectively k4 summation to get

S ≲ c20
∑︂
n2≪n

c2n2
c2n ≈ c20.

B1b. k0 = 0, n ≈ n2. In this case we can introduce another dyadic parameter n3 ≤ n so
that, after relabeling,

(7.16) |k4| ≤ |k5| ≈ |k6| ≈ n3.

Then applying Cauchy-Schwarz inequality exactly as above we arrive at

S ≲
∑︂
n3≤n2

∑︂
|k1|≤n2,|k4|<n3

1

n2
2

ck1ck4c
2
n2
c2n3

,

where we can conclude again by applying twice the envelope maximal bound for the k1,
respectively the k4 summation relative to 0.

B2. k1 = 0, |k0| ≈ n1. In this case we must also have

(7.17) |k2 − k3| ≈ n1, |k2|, |k3| ≈ n2.

Again we compare n and n2:

B2a. n ≫ n2. Here we can assume again that (7.15) holds. As in case B1a we apply
Cauchy-Schwarz inequality for the pair of indices (k5, k6), and also for (k3, k2), with the
difference that now the difference k5 − k6 is no longer fixed, instead it varies in an n1 range.
Thus we lose two n1 factors, obtaining

S ≲ c0
∑︂

n1≤n2≪n

∑︂
|k4|<n

n1

n2n
ck4c

2
n2
c2n.

The n1 summation is trivial now, and for the k4 summation we use the envelope maximal
bound to obtain

S ≲ c20
∑︂
n2≪n

c2n2
c2n ≈ c20.
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B2b. n ≈ n2. Here we take two subcases.

B2b(i). If

|k4|+ |k5|+ |k6| ≲ n1,

then we use Cauchy-Schwarz inequality for the pair (k2, k3) to obtain

S ≲ c0
∑︂
n1≤n2

1

n2
2

c2n2

∑︂
|k4|+|k5|+|k6|≲n1

ck4ck5ck6 .

Finally we use the envelope maximal bound for the k4 summation relative to 0 and for k5
relative to k6 to get

S ≲ c20
∑︂
n1≤n2

n2
1

n2
2

c2n2
c2≤n1

≲ c20
∑︂
n2

c2n2
c2≤n2

≲ c20,

which suffices.

B2b(ii). If instead

|k4|+ |k5|+ |k6| ≫ n1,

then we can introduce n3 as in (7.16), with n1 ≪ n3 ≤ n2. Applying Cauchy-Schwarz
inequality for the pair of indices (k5, k6), and (k2, k3) yields

S ≲ c0
∑︂

n1≪n3≤n2

∑︂
|k4|<n3

n1

n2
2

ck4c
2
n2
c2n3

≈ c0
∑︂
n3≤n2

∑︂
|k4|<n3

n3

n2
2

ck4c
2
n2
c2n3

.

At this stage we complete the argument by using the envelope maximal bound for the k4
summation.

B3. k1 = 0, |k0| ≈ n2 ≫ n1. In this case we may assume that

(7.18) |k2| ≈ n1, |k3| ≈ n2, |k0 − k3| ≈ n1.

Next we compare n2 and n:

B3a. n2 ≪ n. Retaining k0 as a summation index, we first apply Cauchy-Schwarz inequal-
ity for the pair (k5, k6) to obtain

S ≲ c0
∑︂

n1≪n2≪n

∑︂
|k0|≈n2

∑︂
|k2|≈n1

∑︂
|k0−k3|≈n1

∑︂
|k4|≲n

1

n1n2n
ck2ck3ck4c

2
n

≲ c0
∑︂

n1≪n2≪n

∑︂
|k3|≈n2

∑︂
|k2|≈n1

∑︂
|k4|≲n

1

n2n
ck2ck3ck4c

2
n

= c0
∑︂
n2≪n

∑︂
|k3|≈n2

∑︂
|k2|≪n2

∑︂
|k4|≲n

1

n2n
ck2ck3ck4c

2
n.

Now we use the envelope maximal bound for k4 relative to 0 and for k2 relative to k3. This
yields

S ≲ c20
∑︂
n2≪n

∑︂
|k3|≈n2

c2k3c
2
n ≈ c20.
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B3b. n = n2. In this case we dispense with k0 as a summation index, retaining instead
the relation

|k3 − k4 + k5 − k6| ≲ n1.

At least one of the frequencies k4, k5, k6 must have size n2, say |k6| ≈ n2. Then we use Cauchy-
Schwarz inequality for the (k3, k6) pair, losing an n1 factor due to the relation above, and
arriving at

S ≲ c0
∑︂
n1≤n2

∑︂
|k2|≈n1

∑︂
|k4|,|k5|≤n2

1

n2
2

ck2ck4ck5c
2
n2

≈ c0
∑︂

|k2|,|k4|,|k5|≤n2

1

n2
2

ck2ck4ck5c
2
n2
.

Finally we use the envelope maximal bound for k2 relative to 0 and for k4 relative to k5 to
obtain

S ≲ c20c
2
≤n2

c2n2
≲ c20.

This concludes the proof of the lemma.

B4. k2 = 0. Here we can assume that

|k1| ≈ n1, |k3| ≈ |n2|,
but the size of k0 is both not set and not needed. Instead, we will simply rely on (7.11) and
consider two subcases.

B4a. n2 ≪ n, where we can assume that (7.15) holds. Here we first use the maximal
function for ck1 to estimate

S ≤ c20
∑︂

n1≤n2≪n

1

n2n
ck3ck4ck5ck6 ,

where we retain the constraint relative to k3, k4, k5, k6,

|∆4k| ≲ k1.

Here we can fix ∆4k at the expense of another n1 factor. Then fixing k3 and k4 fixes the
difference k5− k6, so applying Cauchy-Schwarz inequality with respect to k5, k6 we arrive at

S ≤ c20
∑︂

n1≤n2≪n

n1

n2n
ck3ck4c

2
n.

Finally, using Hölder’s inequality for k3 and k4, which have size n2, respectively ≤ h yields

S ≤ c20
∑︂

n1≤n2≪n

n1

n2n

√
n2ncn2c≤nc

2
n ≲ c20

∑︂
n

c2≤nc
2
n ≲ c20.

B4b. n2 ≈ n. Here the case n1 ≈ n2 is straightforward, as we can directly apply once the
Cauchy-Schwartz inequality for two size n frequencies, twice Hölder’s inequality and once
the maximal function bound for the three remaining frequencies of size ≲ n. We are left
with the more interesting case when n1 ≪ n. There, using again the maximal function for
ck1 we estimate

S ≤ c20
∑︂

n1≤n2≪n

1

n2
ck3ck4ck5ck6 ,

where for the four remaining indices we have |∆4k| ≲ n1 ≪ n. Here |k3| ≈ n, so there
must be at least one other frequency of size n. Then, as in the previous case, we apply once
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Cauchy-Schwartz inequality for the two size n frequencies, and twice Hölder’s inequality for
the two remaining frequencies of size ≲ n. This concludes the proof of the lemma.

□

7.2. The energy estimate. Our objective here is to prove the bound (6.1). We remark that
once this is proved, we may drop the C4 factor in Lemma 7.1. By the Galilean invariance,
it suffices to prove the desired bound (6.1) at k = 0. For this we consider a symbol a(ξ1, ξ2)
of the form

(7.19) a(ξ1, ξ2) = a0(ξ1)a0(ξ2),

with a0 localized near frequency 0 on the unit scale. Then

Ma(u) = ∥A0(D)u∥2L2 ,

and we need to bound this quantity uniformly in time,

(7.20) Ma(u) ≲ c20ϵ
2.

For this we use the density-flux relation (4.26) with ξ0 = 0, which yields

d

dt
M ♯

a(u) = ∂x(Pa(u) +R4
m,a(u)) +R6

m,a(u),

where

M ♯
a(u, ū) = Ma(u, ū) +B4

m,a(u).

To prove (7.20) we integrate the above density-flux relation in t, x to obtain:

(7.21)

∫︂
Ma(u) +B4

m,a(u) dx

⃓⃓⃓⃓T
0

=

∫︂ T

0

∫︂
R
R6

m,a(u) dxdt.

Finally, we can estimate the contributions of B4
m,a and R6

m,a using Lemma 7.1, respectively
Lemma 7.3.

Remark 7.5. For later use, we observe that once the energy bounds (6.1) have been es-
tablished, then they can be used instead of the bootstrap assumption (6.5) in the proof of
Lemma 7.1. This leads to a stronger form of (7.1), (7.2), with the constant C removed:

(7.22) ∥B4
m,A(u)∥L∞

t L1
x
+ ∥B4

p,A(u)∥L∞
t L1

x
≲ c2Aϵ

4.

7.3. The localized interaction Morawetz. Our objective here is to prove the bounds
(6.2) and (6.3) using our bootstrap assumptions. By the Galilean invariance it suffices to
do this at k = 0. This will be achieved using our interaction Morawetz identity (5.9) with
v = u and with a localized at frequency 0, exactly as in (7.19). For such a we can simply
set ξ0 = 0. It will suffice to estimate the quantities in (5.9) as follows:

(7.23) |Ia(u, u)| ≲ ϵ4c40,

(7.24) J4
a(u, u) ≈ ∥∂x|A0(D)u|2∥2L2

x
,

(7.25)

∫︂ T

0

J6
a(u, u) dt ≈ ∥A0(D)

2
3u∥6L6

t,x
+O(ϵ5C6c40),
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(7.26)

∫︂ T

0

J8
a(u, u) dt = O(ϵ5C6c40),

(7.27)

∫︂ T

0

K8
a(u, u) dt = O(ϵ5C8c40).

This allows us to estimate the localized interaction Morawetz term, as well as the localized
L6 norm as in (6.2) and (6.3), provided that ϵ is small enough. There is nothing to do for
J4
a so we consider the remaining contributions:

7.3.1. The Ia bound. The interaction Morawetz functional Ia is as in (5.8), with ξ0 = 0,

(7.28) Ia =

∫︂∫︂
x>y

M ♯
a(u)(x)P

♯
a(v)(y)− P ♯

a(u)(x)M
♯
a(v)(y) dxdy

with
M ♯

a(u) = Ma(u) +B4
m,a(u), P ♯

a(u) = Pa(u) +B4
p,a(u).

For B4
m,a and B4

p,a we have the L∞
t L1

x bound (7.22). For Ma(u) and Pa(u) we have the
straightforward uniform in time bounds

(7.29) ∥Ma(u)∥L∞
t L1

x
+ ∥Pa(u)∥L∞

t L1
x
≲ ϵ2c2a.

Combining this with (7.22), the estimate (7.23) immediately follows.

7.3.2. The J6
a bound. This is a 6-linear expression whose expression we recall from (5.10),

(7.30) J6
a = 2

∫︂
−(PaB

4
p,a + PaR

4
m,a) + (MaR

4
p,a + EaB

4
m,a) dx,

where again we have set ξ0 = 0.
We first discuss the symbol localization properties for J6

a with respect to the six entries
at frequencies k1, k2, k3, k4, k5 and k6. Here we a-priori have two frequencies close to 0,
say k5 = k6 = 0, namely those arising from Ma, Pa and Ea, all of which have smooth and
bounded symbols. In the symbols for B4

a and R4
a, on the other hand, we have at least one

frequency equal to zero, say k1 = 0, and the near-diagonal property ∆4k = 0.
Next we consider the size of the symbols, where we use Proposition 4.3. This gives the

following symbol bounds regardless of the p or m index:

|b4a| ≲
1

⟨δkhi⟩⟨δkmed⟩
, |r4a| ≲

1

⟨δkmed⟩
,

and similarly for their derivatives. We split the analysis in two cases, depending on whether
all frequencies are equal (i.e. δkhi ≲ 1) or not.

A. The case of separated frequencies, δkhi ≫ 1. To fix the notations, suppose that |k2| ≈
δkmed ≈ n1 and |k3| ≈ |k4| ≈ δkhi ≈ n2 where n1 ≤ n2 represent dyadic scales. Then we
can apply two bilinear L2 bounds (6.7) for the frequency pairs (k1 = 0, k4) and (k2, k3) and
simply estimate the k5 and k6 factors in L∞ by Bernstein’s inequality. This yields the bound
for the corresponding portion of J6

a⃓⃓⃓⃓∫︂ T

0

J6,unbal
a (u) dt

⃓⃓⃓⃓
≲ ϵ6C6c30

∑︂
k2,k3,k4

1

n1n2

ck2ck3ck4 .
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Since k4−k3 = k2, for fixed k2 we can apply Cauchy-Schwartz inequality with respect to the
k3 and k4 indices to obtain⃓⃓⃓⃓∫︂ T

0

J6,unbal
a (u) dt

⃓⃓⃓⃓
≲ ϵ6C6c30

∑︂
|k2|≈n1≤n2

1

n1n2

ck2c
2
n2
.

Finally, using the maximal function property for ck2 we arrive at⃓⃓⃓⃓∫︂ T

0

J6,unbal
a (u) dt

⃓⃓⃓⃓
≲ ϵ6C6c40

∑︂
n2

log n2

n2

c2n2
,

which suffices.

B. The case of equal frequencies, δkhi ≲ 1. Here we have |kj| ≲ 1 for all j, and the symbol
of j6a is smooth and bounded. The important feature here is the symbol of the 6-linear form
J6
0 on the diagonal

{ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = ξ6},
which we would like to be positive. But we know this by (5.13), which shows that this equals

j6a(ξ) = a40(ξ)c(ξ, ξ, ξ).

It follows that we can write the symbol j6a in the form

j6a(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = b0(ξ1)b(ξ2)b(ξ3)b(ξ4)b(ξ5)b(ξ6) + j6,rema (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6),

where b0(ξ) = a0(ξ)
2
3 c(ξ, ξ, ξ)

1
6 and j6,rem0 vanishes when all ξ’s are equal. Then we can write

j6,rem0 as a linear combination of terms ξeven − ξodd with smooth coefficients. The first term
yields the desired L6 norm,

J6
a(u) = ∥B0(D)u∥6L6

x
+ J6,rem

a .

On the other hand the contribution J6,rem
a of the second term be estimated using a bilinear

L2 bound (6.7), three L6 bounds (6.6) and one L∞ via Bernstein’s inequality,⃓⃓⃓⃓∫︂ T

0

J6,rem
a (u) dt

⃓⃓⃓⃓
≲ ∥J6,rem

a (u)∥L1
t,x

≲ (Cϵ2c20)C
3(ϵc0)

2Cϵc0 = C5ϵ5c50,

which suffices.

7.3.3. The bound for J8
0. We recall that J8

0 has an expression of the form

(7.31) J8
a =

∫︂
B4

m,a(u)R
4
p,a(u)−R4

m,a(u)B
4
p,a(u) +B4

m,a(u)R
4
p,a(u)−R4

m,a(u)B
4
p,a(u) dx,

see (5.11) where we set ξ0 = 0. For this we need to show that⃓⃓⃓⃓∫︂ T

0

J8
a dt

⃓⃓⃓⃓
≲ ϵ6c40.

This is an 8-linear term which has two factors, both of which are 4-linear terms with output
at frequency 0 and one factor at frequency 0. But the symbols are not the same, i.e. we
have more decay in B4

a than in R4
a.

As usual, we localize the entries of J8
a on the unit frequency scale and estimate each term

separately. We denote the four frequencies in B4
a by k1, k2, k3.k4 with k1 = 0, and the four
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frequencies in R4
a by l1, l2, l3, l4 with l1 = 0. These are constrained by the relations ∆4k = 0,

∆4l = 0. In addition, their symbols are bounded, along with their derivatives, as follows:

|b4a| ≲
1

⟨δkhi⟩⟨δkmed⟩
, |r4a| ≲

1

⟨δlmed⟩
.

We consider several cases:

A) All eight frequencies are close to zero. Then we use six L6
t,x Strichartz bounds as in

(6.6), and two L∞ bounds obtained from the energy via Bernstein’s inequality.

B) Some frequencies are away from zero. Denote by n1 ≤ n2 the dyadic separations for
the kj frequencies in B4, and by o1 ≤ o2 the dyadic separations for the lj frequencies in R4.
We consider two cases depending on how n2 and o2 compare.

B1) n2 ≲ o2. Then the R4 frequencies are in two o2 separated clusters with distance below
o1 within each cluster. We use two bilinear L2 bounds there, and L∞ bounds for all the B4

a

factors to estimate ⃓⃓⃓⃓∫︂ T

0

J8
a(u) dt

⃓⃓⃓⃓
≲ ϵ8C6c20

∑︂ 1

n1n2

ck2ck3ck4
1

o1o2
cl2cl3cl4 .

Suppose k2 and l2 are the smaller frequencies in each group, so that |k2| ≈ n1 and |l2| ≈ o1.
For fixed k2 respectively l2 we apply the Cauchy-Schwarz inequality for the pairs (k3, k4),
respectively (l3, l4). We obtain⃓⃓⃓⃓∫︂ T

0

J8
a(u) dt

⃓⃓⃓⃓
≲ ϵ8C6c20

∑︂ 1

n1n2

ck2c
2
n2

1

o1o2
cl2c

2
o2
.

Now we use the maximal function to also fix k2 and l2,⃓⃓⃓⃓∫︂ T

0

J8
a(u) dt

⃓⃓⃓⃓
≲ ϵ8C6c40

∑︂
n2≤o2

log n2

n2

c2n2

log o2
o2

c2o2 ≲ ϵ8C6c40.

B2) o2 ≪ n2. Here we proceed exactly as before but using instead two bilinear L2 bounds
in B4

a. Following the same steps, we arrive at⃓⃓⃓⃓∫︂ T

0

J8
a(u) dt

⃓⃓⃓⃓
≲ ϵ8C6c40

∑︂
o2≤n2

log n2

n2
2

c2n2
log o2c

2
o2

≲ ϵ8C6c40.

Here the denominators are unbalanced compared to the previous case, but in a favourable
way.

7.3.4. The bound for K8
a. We recall that K8

a has the form

(7.32)
K8

a(u) =

∫︂∫︂
x>y

M ♯
a(u)(x)R

6
p,a(u)(y) + P ♯

a(u)(y)R
6
m,a(u)(x)

−M ♯
a(u)(y)R

6
p,a(u)(x)− P ♯

a(u)(x)R
6
m,a(u)(y) dxdy.

The time integral of K8
a(u) is estimated directly using the L1

t,x bound for R6 in Lemma 7.3

and the uniform L1
x bound for M ♯ and P ♯, provided by Lemma 7.1 together with the simpler

bound (7.29).
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7.4. Near parallel interactions. Here we briefly discuss the bilinear L2 bound (6.4) in
the case when the sets A and B are of size ≲ 1 and at distance ≲ 1. This can be viewed
on one hand as a slight generalization of the argument in the previous subsection, where
instead of v = u we take v = u(· + x0). The only difference in the proof is that, because
of the translations, we can no longer use the defocusing property to control the sign of the
diagonal J6 contribution. However, this is not a problem because the localized L6 norm of
uk has already been estimated in the previous subsection.

7.5. The transversal bilinear L2 estimate. Here we prove the bilinear L2 bound (6.4).
This repeats the same analysis as before, but using the interaction Morawetz functional
associated to two separated frequency intervals A and B, of size at most n and with n
separation. Here we no longer take v = u, and instead we let v = u(·+ x0). The parameter
x0 ∈ R is arbitrary and the estimates are uniform in x0.

Since x0 does not play any role in the analysis, we simply drop it from our notations. To
further simplify the notations in what follows, we take advantage of the Galilean invariance
to translate the problem in frequency so that 0 is roughly half-way between the intervals A
and B. This will allow us to set ξ0 = 0 in (5.14), and to assume that both A and B are
within distance n from the origin. We consider mass ma, mb and momentum forms pa, pb,
where a and b are bump functions, smooth on the unit scale, selecting the sets A and B.
The interaction functional takes the form (see (5.14))

(7.33) IAB(u, v) =

∫︂∫︂
x>y

M ♯
a(u)(x)P

♯
b (v)(y)− P ♯

a(u)(x)M
♯
b (v)(y) dxdy.

Its time derivative is given, see (5.9), by

(7.34)
d

dt
IAB = J4

AB + J6
AB + J8

AB +K8
AB.

Following the same pattern as in the earlier case of the localized interaction Morawetz case,
we will estimate each of these terms as follows:

(7.35) |IAB(u, v)| ≲ nϵ4c2Ac
2
B,

(7.36) J4
AB(u, v) ≈ ∥∂x(uAv̄B)∥2L2

x
,

(7.37)

⃓⃓⃓⃓∫︂ T

0

J6
AB dt

⃓⃓⃓⃓
≲ n(ϵ6C6 + ϵ4)c2Ac

2
B,

(7.38)

⃓⃓⃓⃓∫︂ T

0

J8
AB dt

⃓⃓⃓⃓
≲ nϵ8C8c2Ac

2
B,

(7.39)

⃓⃓⃓⃓∫︂ T

0

K8
AB dt

⃓⃓⃓⃓
≲ nϵ6C8c2Ac

2
B.
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7.5.1. The fixed time estimate for IAB. Here we prove the bound (7.35), which is a conse-
quence of fixed time L1 estimates for the energy densities, namely

(7.40) ∥M ♯
a(u)∥L1

x
≲ ϵ2c2A, ∥P ♯

a(u)∥L1
x
≲ nϵ2c2A,

and the similar estimates with a replaced by b and u replaced by v. This is obvious for the
quadratic part of the above densities, where we note that the n factor for the momentum
bound arises due to the distance o(n) between the set A and the origin. It remains to consider
the quartic terms, where we can use Lemma 7.1 together with Corollary 7.2.

7.5.2. The bound for J6
AB. Here we prove the bound for J6

AB in (7.37). We recall that J6
AB

has the form

J6
AB =

∫︂
Ma(u)R

4
p,b(v)− Pb(v)R

4
m,a(u) +B4

m,a(u)Eb(v)−B4
p,b(v)Pa(u)− symmetric dx,

where the symmetric term is obtained by interchanging the indices a and b, and also u and
v. The symbols for the M , P and E factors have size 1, n and n2 respectively, with a similar
balance between the B4

m and B4
p terms, respectively the R4

m and R4
p terms. So it suffices to

consider one R4 term and one B4 term.

A) The B4 term B4
m,a(u)Eb(v). Here we denote by l1, l2 the Eb frequencies and by

k1, k2, k3, k4 the B4
m,a frequencies where

∆2l +∆4k = 0.

The symbol for Eb has size n
2, with both frequencies in B. The symbol for B4

m,a(u) has size

(⟨δkmed⟩⟨δkhi⟩)−1 and support in the region where |∆4k| ≪ 1+ kmed, and at least one of the
frequencies is in A. We denote the dyadic sizes of kmed and khi by n1 ≤ n2. Without any
loss in generality we may assume that k1, k2, k3, k4 are chosen so that

(7.41) k1 ∈ A, |k1 − k2| ≈ n1, |k1 − k3| ≈ n2, |k1 − k4| ≈ n2, |k3 − k4| ≈ n1.

Depending on the size of n relative to n1, n2 we consider two cases:

A1) n2 ≪ n. Since A and B are n-separated, within the set of six frequencies we can find
two pairs of n -separated frequencies. Then we can apply twice the bilinear L2 bound and
estimate the remaining factors in L∞. We arrive at the frequency envelope bound⃓⃓⃓⃓∫︂ T

0

J6
AB dt

⃓⃓⃓⃓
≲ ϵ6C6n

∑︂ 1

n1n2

cl1cl2ck1ck2ck3ck4 ,

where the summation indices are restricted as discussed above. Then, applying the Cauchy-
Schwarz inequality for the pair (l1, l2) we obtain⃓⃓⃓⃓∫︂ T

0

J6
AB dt

⃓⃓⃓⃓
≲ ϵ6C6n

∑︂ 1

n1n2

∑︂
|∆4k|<n1

ck1ck2ck3ck4

∆l=−∆4k∑︂
l1,l2∈B

cl1cl2

≲ ϵ6nC6c2B
∑︂ 1

n1n2

∑︂
|∆4k|<n1

ck1ck2ck3ck4 .

.
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Hence it remains to estimate the last sum above as follows:

(7.42) SA :=
∑︂
n1<n2

1

n1n2

∑︂
D

ck1ck2ck3ck4 ≲ c2A,

where the summation set D is described by (7.3). In this estimate the parameter n no longer
appears. Recalling that k1 ∈ A, we fix k1 and split

SA =
∑︂
k1∈A

ck1Sk1 , Sk1 :=
∑︂
D

∑︂
n1<n2

1

n1n2

∑︂
D

ck2ck3ck4 .

Then it suffices to show that

Sk1 ≲ ck1 ,

which is exactly the bound (7.4) proved earlier.

A2) n2 ≳ n. This time, within the set of four k frequencies we can find two pairs of n2

-separated frequencies. Applying twice the bilinear L2 bound and estimating the remaining
factors in L∞ we arrive at⃓⃓⃓⃓∫︂ T

0

J6
AB dt

⃓⃓⃓⃓
≲ ϵ6C6n2

∑︂ 1

n1n2
2

cl1cl2ck1ck2ck3ck4 ,

Applying the Cauchy-Schwarz inequality for the pair (l1, l2) now yields⃓⃓⃓⃓∫︂ T

0

J6
AB dt

⃓⃓⃓⃓
≲ ϵ6C6n2c2B

∑︂ 1

n1n2
2

∑︂
|∆4k|<n

ck1ck2ck3ck4 .

Since n ≲ n2, we can conclude again using the bound (7.42) which was already proved in
(A1).

B. The R4 terms are also all similar, so to fix the notations we will discuss the expression
Pb(u)R

4
m,a(u). We denote again the six frequencies by l1, l2 for Pb, respectively by k1, k2, k3, k4

for B4
m,a. The symbol of pB is supported in B×B and has size n. The symbol R4

m,a has size

|r4m,a([k])| ≲
n+ δkhi

⟨δkmed⟩⟨δkhi⟩
.

The bound for the portion containing the n term in the denominator is identical to the one
in case A, so in the sequel we dismiss this term and simplify the above bound to

|r4m,a([k])| ≲
1

δkmed
.

Retaining the notations n1 ≤ n2 for the dyadic sizes of δkmed and δkhi, we may also restrict
our analysis to the case when n2 ≫ n. This is similar to case A above. We get the better
n−1
2 factor from the bilinear L2 bounds, which allows us to reduce the problem to proving

exactly the bound (7.42), but for a larger set of indices

(7.43) k1 ∈ A, |k1 − k2| ≲ n1, |k1 − k3| ≈ n2, |k1 − k4| ≈ n2, |k3 − k4| ≲ n1.

But this still follows from (7.4).
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7.5.3. The bound for J8
AB. Here we prove the bound (7.38). We recall that J8

AB has the form

J8
AB =

∫︂∫︂
B4

m,a(u)R
4
p,b(v)−B4

p,b(v)R
4
m,a(u) +B4

m,b(v)R
4
p,a(u)−B4

p,a(u)R
4
m,b(v) dxdt.

All terms here are similar, so it suffices to consider the first one. To avoid a lengthy proof
which would largely repeat the arguments in the proof of (7.37), we make a simple observa-
tion, namely that the proof of the bound for this term becomes a corollary of the previous
bound if we can establish a representation

B4
m,a(u) ≈

∑︂
l1,l2∈A

ul1wl2 ,

so that, for each k which is M -separated from l2, the function wl2 satisfies a bilinear L2

bound of the form

(7.44) ∥wl2uk∥L2
t,x

≲ M− 1
2C4ϵ4cl2ck.

If that is true, then wl2 would play exactly the role of ul2 in the J6
AB estimate.

Indeed, we may represent

B4
m,a(u) =

∑︂
l1,l2∈A

∑︂
k2−k3+k4=l2

B4
m,a(ul1 , uk2 , uk3 , uk4).

Here the symbol for B4
m,a and its derivatives have size ≲

1

n1n2

in a unit region around fre-

quency (l1, k2, k3, k4). Hence, we may separate variables and represent B4
m,a(ul1 , uk2 , uk3 , uk4)

as the sum of a rapidly convergent series

B4
m,a(ul1 , uk2 , uk3 , uk4) =

∑︂
j

Djul1B
4,j
m,a(uk2 , uk3 , uk4) :=

∑︂
Djul1w

j
l2
,

where the symbols for Dj, respectively B4,j
m,a have unit size, respectively ≲ 1

n1n2
with rapid

decay in j. Then it remains to prove the estimate (7.44) for the functions wj
l2
.

Indeed, at least one of the k’s must be M -separated from k, so using a bilinear L2 bound
we have

∥wj
l2
uk∥L2 ≲ M− 1

2 ϵ4C4ckj
−10

∑︂
k2−k3+k4=l2

1

n1n2

ck2ck3ck4 .

It remains to estimate the last sum. Suppose k2 is within distance n1 from l2, then we use
the maximal function to estimate∑︂

k2−k3+k4=l2

1

n1n2

ck2ck3ck4 ≲ cl2 sup
k2

∑︂
k2−k3+k4=l2

1

n2

ck3ck4 ≲ cl2 ,

as needed.

7.5.4. The bound for K8
AB. This is immediate by combining the bound (7.40) with the R6

bounds in Lemma 7.3 and Corollary 7.4.
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8. Global bilinear and Strichartz estimates

Our objective in this last section is to supplement the unit frequency scale bilinear L2 and
Strichartz estimates with their more global counterparts:

Theorem 6. The global small data solutions u for (1.3) in Theorem 5 satisfy the following
bounds:

• Strichartz estimate:

(8.1) ∥u∥6L6
t,x

≲ ϵ4,

• Bilinear L2 bound:

(8.2) ∥∂x|u|2∥2
L2
tH

− 1
2

x

≲ ϵ4.

Proof. We successively consider the two estimates:

A. The global L6 bound. We prove the global L6 bound using the previous localized
estimates. We aim to estimate the integral

I =

∫︂∫︂
R×R

|u|6 dxdt

by taking a suitable frequency decomposition. Given six unit frequency regions indexed by
k1, k2, k3, k4, k5 and k6, they can only contribute to the above integral iff ∆6k = 0. We
divide them as follows:

(1) The diagonal case |ki − kj| ≲ 1.
(2) The nondiagonal case. we index these frequencies by the dyadic size n ≫ 1 of the

set of frequencies, i.e. so that

max |ki − kj| ≈ n.

Within this range, we organize frequencies in intervals A1, · · ·A6 of size n/100. Of
these intervals, at least two pairs must be n-separated in order to contribute to the
above integral.

Based on this, we split I as

I = I0 +
∑︂
n

In,

where

I0 =
∑︂

|ki−kj |≲1

∫︂∫︂
uk1ūk2uk3ūk4uk5ūk6 dxdt,

and

In =
∑︂∫︂∫︂

uA1ūA2uA3ūA4uA5ūA6 dxdt,

where the last sum is indexed over the sets Aj of size n/100, with largest distance ≈ n and
at least two distances ≥ n/10.
For the diagonal part we use the L6 bound (6.2) to estimate

|I0| ≲ ϵ4
∑︂
k

c4k ≲ ϵ4,

which suffices.
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For the off-diagonal part we apply two bilinear L2 bounds for the separated intervals
(gaining n− 1

2 each time) and two L∞ bounds via Bernstein’s inequality (losing n
1
2 each time)

to bound the corresponding term by

|In| ≲ ϵ6
∑︂

cA1cA2cA3cA4cA5cA6 .

We retain only the separated parts and apply Cauchy-Schwarz inequality to estimate

|In| ≲ ϵ6
∑︂

d(A1,A2)>n/10

c2A1
c2A2

≲ ϵ6
∑︂

|k1−k2|≈n

c2k1c
2
k2
.

Then summation over n yields ∑︂
n

|In| ≲ ϵ6
∑︂
k1,k2

c2k1c
2
k2

≲ ϵ6,

which again suffices.

B. The global bilinear L2 bound. Here we prove the estimate (8.2). Expanding relative to
the dyadic difference n of the two input frequencies we have

∂x(|u|2) = ∂xw0 +
∑︂
n

∂xwn,

where

w0 =
∑︂

|k1−k2|≲1

uk1ūk2 ,

wn =

d(A1,A2)≈n∑︂
|A1|,|A2|≈n

uA1ūA2 .

We use (6.3) to estimate w0 as

∥∂xw0∥2L2
t,x

≲ ϵ4
∑︂
k

c4k ≲ ϵ4.

On the other hand for wn we get

∥∂xwn∥2
L2
tH

− 1
2

x

≲ n

d(A1,A2)≈n∑︂
|A1|,|A2|≈n

d(A3,A4)≈n∑︂
|A3|,|A4|≈n

∫︂
uA1ūA2uA3ūA4 dx.

Denoting by n0 ≥ n the largest distance between two Aj’s we have two pairs of intervals
with separation O(n0) therefore, applying twice the bilinear L2 bound we obtain

∥∂xwn∥2
H− 1

2
≲ ϵ4

∑︂
n0≥n

n

n0

d(A1,A2)≈n∑︂
|A1|,|A2|≈n

d(A3,A4)≈n∑︂
|A3|,|A4|≈n

cA1cA2cA3cA4 .

We separate the cases when n0 ≈ n and n0 ≫ n. In the first, diagonal case we simply bound
the corresponding part of the sum by

ϵ4
d(A1,A2)≈n∑︂
|A1|,|A2|≈n

c2A1
c2A2

.
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In the off-diagonal case we apply Cauchy-Schwarz inequality separately for the pairs A1, A2

and A3, A4 to obtain a bound

ϵ4
n

n0

d(B1,B2)≈n0∑︂
|B1|,|B2|≈n0

c2B1
c2B2

.

Incorporating the first case into the second we arrive at

∥∂xwn∥2
L2
tH

− 1
2

x

≲ ϵ4
∑︂
n0≥n

n

n0

d(B1,B2)≈n0∑︂
|B1|,|B2|≈n0

c2B1
c2B2

.

Finally, using orthogonality in frequency we have

∥
∑︂
n

∂xwn∥2
L2
tH

− 1
2

x

≲ ϵ4
∑︂
n

∑︂
n0≥n

n

n0

d(B1,B2)≈n0∑︂
|B1|,|B2|≈n0

c2B1
c2B2

≲ ϵ4
∑︂
n0

d(B1,B2)≈n0∑︂
|B1|,|B2|≈n0

c2B1
c2B2

≲ ϵ4.

The proof of the theorem is concluded.
□
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920, 2018.

[3] J. Colliander, M. Grillakis, and N. Tzirakis. Tensor products and correlation estimates with applications
to nonlinear Schrödinger equations. Comm. Pure Appl. Math., 62(7):920–968, 2009.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Almost conservation laws and global
rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett., 9(5-6):659–682, 2002.

[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global existence and scattering for rough
solutions of a nonlinear Schrödinger equation on R3. Comm. Pure Appl. Math., 57(8):987–1014, 2004.

[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global well-posedness and scattering for
the energy-critical nonlinear Schrödinger equation in R3. Ann. of Math. (2), 167(3):767–865, 2008.

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Resonant decompositions and the I-method
for the cubic nonlinear Schrödinger equation on R2. Discrete Contin. Dyn. Syst., 21(3):665–686, 2008.

[8] Percy Deift and Xin Zhou. Long-time asymptotics for solutions of the NLS equation with initial data in
a weighted Sobolev space. Comm. Pure Appl. Math., 56(8):1029–1077, 2003. Dedicated to the memory
of Jürgen K. Moser.

[9] Jean-Marc Delort. Semiclassical microlocal normal forms and global solutions of modified one-
dimensional KG equations. Ann. Inst. Fourier (Grenoble), 66(4):1451–1528, 2016.

[10] Benjamin Dodson. Global well-posedness and scattering for the defocusing, L2 critical, nonlinear
Schrödinger equation when d = 1. Amer. J. Math., 138(2):531–569, 2016.

[11] Benjamin Dodson. Global well-posedness and scattering for the defocusing, mass-critical generalized
KdV equation. Ann. PDE, 3(1):Paper No. 5, 35, 2017.

[12] Nakao Hayashi and Pavel I. Naumkin. Asymptotics for large time of solutions to the nonlinear
Schrödinger and Hartree equations. Amer. J. Math., 120(2):369–389, 1998.

44



[13] Nakao Hayashi and Pavel I. Naumkin. Large time asymptotics for the fractional nonlinear Schrödinger
equation. Adv. Differential Equations, 25(1-2):31–80, 2020.

[14] Mihaela Ifrim and Daniel Tataru. Global bounds for the cubic nonlinear Schrödinger equation (NLS) in
one space dimension. Nonlinearity, 28(8):2661–2675, 2015.

[15] Mihaela Ifrim and Daniel Tataru. Two dimensional water waves in holomorphic coordinates II: Global
solutions. Bull. Soc. Math. France, 144(2):369–394, 2016.

[16] Mihaela Ifrim and Daniel Tataru. The lifespan of small data solutions in two dimensional capillary water
waves. Arch. Ration. Mech. Anal., 225(3):1279–1346, 2017.

[17] Mihaela Ifrim and Daniel Tataru. Well-posedness and dispersive decay of small data solutions for the
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