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ABSTRACT: Materials under confinement can possess properties
that deviate considerably from their bulk counterparts. Indeed,
confinement makes all physical properties position-dependent and
possibly anisotropic, and characterizing such spatial variations and
directionality has been an intense area of focus in experimental and
computational studies of confined matter. While this task is fairly
straightforward for simple mechanical observables, it is far more
daunting for transport properties such as diffusivity that can only
be estimated from autocorrelations of mechanical observables. For
instance, there are well established methods for estimating
diffusivity from experimentally observed or computationally
generated trajectories in bulk systems. No rigorous generalizations
of such methods, however, exist for confined systems. In this work,
we present two filtered covariance estimators for computing anisotropic and position-dependent diffusivity tensors and validate them
by applying them to stochastic trajectories generated according to known diffusivity profiles. These estimators can accurately capture
spatial variations that span over several orders of magnitude and that assume different functional forms. Our kernel-based approach is
also very robust to implementation details such as the localization function and time discretization and performs significantly better
than estimators that are solely based on local covariance. Moreover, the kernel function does not have to be localized and can instead
belong to a dictionary of orthogonal functions. Therefore, the proposed estimator can be readily used to obtain functional estimates
of diffusivity rather than a tabulated collection of pointwise estimates. Nonetheless, the susceptibility of the proposed estimators to
time discretization is higher at the immediate vicinity of hard boundaries. We demonstrate this heightened susceptibility to be
common among all covariance-based estimators.

I. INTRODUCTION
Confinement is known to alter the physicochemical properties
of matter,1 as confined materials can exhibit properties that
deviate considerably from their bulk counterparts with
identical compositions and under the same thermodynamic
conditions.2 Examples include changes in thermodynamic
properties such as melting3 and boiling points,4 phase
diagrams,5,6 glass transition temperatures,7,8 phase transition
kinetics and mechanism,9−12 and mechanical,13,14 dielec-
tric,15,16 and transport17−20 properties. While such deviations
can sometimes arise due to quantum effects,21,22 they are
usually a consequence of the broken translational symmetry of
the underlying system due to confinement.23 Such symmetry
breaking makes all thermodynamic, structural, and transport
properties position-dependent, with the latter also becoming
anisotropic, i.e., direction-dependent.24 For instance, diffusiv-
ity, which is isotropic in most materials, becomes both
anisotropic and position-dependent under confinement.
Confinement is a ubiquitous means of tuning materials

properties in systems as diverse as biological cells25,26 and
colonies27 to semiconductors,28 solar cells,29 mesophases,30

and heterogeneous catalysts.31 Understanding the interplay
between symmetry breaking and the subsequent spatial
variations, and materials properties and function is not only
fascinating from a fundamental perspective, but is also key for
designing better materials for a wide variety of applications. As
such, characterizing such spatial variations has been an intense
area of focus in both experiments and simulations.
Since their inception,32,33 molecular simulations have been

extensively utilized for studying confined states of matter and
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for quantifying spatial variations in materials properties.34−38

In the case of static properties, i.e., mechanical observables that
can be unambiguously estimated for a single configuration, this
is a fairly trivial task and can be readily achieved via spatial
binning. When it comes to transport properties such as
diffusivity, viscosity and heat and electric conductivity,
however, such a task is more daunting, as these quantities
can only be computed from autocorrelations of certain
microscopic quantities.39 In bulk systems, rigorous relation-
ships exist between the autocorrelations of mechanical
observables and the transport coefficient of interest (even if
it is anisotropic) as long the corresponding linear constitutive
relationships are applicable. While it is possible to construct
localized forms of such autocorrelations, no rigorous relation-
ship has been established between them and the local transport
coefficient of interest. Consequently, previous efforts to
characterize spatial variations in transport properties have
often involved using heuristic approaches based on the
assumption that such bulk relationships are valid at a local
level.
A notable example is diffusivity. Assuming the validity of

Fick’s law, ρ(r, t|r0, 0), the conditional probability describing
the spatiotemporal evolution of a typical point particle in the
overdamped regime, satisfies the Smoluchowski equation,40−42

t
UD r r( ) ( )= ·[ ·[ + ]]

(1)

where U(r) is an external (free) energy potential, and β = 1/
kBT. Here, D(r) is a second-rank tensor that is a function of r
and incorporates the anisotropy of diffusion. In a mean-field
sense, the mobility statistics of any single point particle within
most particulate systems is expected to follow eq 1 over
reasonably long times.
In systems with translational symmetry, both U(r) and D(r)

are constant, and eq 1 simplifies into the Fokker−Planck
equation,43,44 which has a closed-form analytical solution that
constitutes the basis of the two classes of approaches used for
estimating D from single-particle trajectories. The first
approach is based on the Green−Kubo framework45,46 and
relates diffusivity to the integral of the velocity autocorrelation
function,47 while the second approach, also known as the
Einstein relationship,48 is based on the Helfand framework49

and estimates D from the asymptotic slope of the mean
squared displacement (MSD) at t → ∞. Under confinement,
however, eq 1 no longer has a known closed-form analytical
solution. Consequently, several computational efforts to
estimate D(r) have employed ad hoc estimators that are
based on assuming local validity of the Einstein relationship
and constructing local MSD functions for different regions of
the confined system.50−55 Apart from the fact that the validity
of this core assumption is contested particularly in system
where diffusivity undergoes large changes over short length
scales, there is no intuitive way of defining such localized MSD
functions in open systems.23

There are, however, more sophisticated means of estimating
position-dependent diffusivities. One such class constitutes
Markov state models in which the spatial domain is partitioned
into bins and a discretized version of the propagator of the
Smoluchowski time evolution restricted to each bin is
computed. The local diffusivity can then be estimated as an
expectation using the discretized propagator in the matrix
form56 or approximated from the entries of the transition
matrix.57 This approach has, for instance, been utilized for

estimating position-dependent diffusivities in several systems
such as hard spheres within a slit pore58 and small molecules
within lipid bilayers.59−61 Similar approaches have been used
for estimating diffusivity profiles within a collective variable
space.62 While being more rigorous than the commonly used
ad hoc approaches, such methods have their own challenges,
including their reliance on optimal partitioning of the
simulation box and proper selection of a propagation time
scale. Another factor that limits their applicability to situations
in which the diffusivity undergoes considerable changes
throughout the system is the need to use a single propagation
time scale.
It must be noted that the question of estimating position-

dependent anisotropic diffusivity from particle trajectories
belongs to an important class of problems in applied
mathematics aimed at estimating the unknown parameters of
a differential equation from its observed solution. While mostly
overlooked in the molecular simulations community, such
methods have widespread applications in areas as diverse as
statistics, economics, finance, and high-energy particle physics.
One such class of methods is based on the observation that eq
1 is a forward Kolmogorov equation,63 and, as such, its
solution is equivalent to the probability distribution of particles
evolving according to an associated stochastic differential
equation (SDE). For instance, for isotropic diffusion, it is
possible to use short-time asymptotic analysis to derive a
likelihood function for short trajectories and to develop a
Bayesian framework for estimating diffusivity.64 Using such
methods, however, require employing specialized algorithms
that are fine-tuned to the particular geometry of the
corresponding system. Applying them to the question of
estimating anisotropic diffusivity is therefore not trivial.
An important class of SDE-based methods are kernel-based

estimators, which date back to the seminal works of Dacunha-
Castelle and Florens-Zmirou,65 and Bandi and Moloche.66

Kernel-based estimators have several advantages over their
Bayesian counterparts. In addition to being simpler and easier
to implement, their asymptotic errors are well understood.
Finally, they can be readily applied in nonstationary systems
wherein diffusivity and drift are also time-dependent,67 or
when diffusion is anomalous.68 It is indeed straightforward to
relate isotropic diffusivity profiles to density fluctuations in a
particulate system.69

In these two papers, we apply the idea of kernel-based
estimators to compute spatial profiles of the diffusivity tensor
from single particle trajectories. The estimators that we derive
and validate are general enough to capture both spatial
variations and directionality. In the first paper (i.e., the current
one), we benchmark and validate this estimator using
trajectories generated from SDEs according to known
anisotropic diffusivity profiles. The next paper is dedicated to
adapting these estimators to compute diffusivity profiles from
molecular dynamics simulations.
This paper is organized as follows. In section II, the

mathematical derivation of the proposed estimator is
presented, with details of numerical implementation and
SDE integration outlined in section III. In section IV, we
validate the proposed estimator through a number of
numerical tests and assess its sensitivity to implementation
details as well as the nature of confinement. Section V is
dedicated to concluding remarks.
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II. DERIVATION OF DIFFUSIVITY ESTIMATORS
As mentioned above, the statistics of the spatiotemporal
evolution of a typical fluid particle within a confined fluid can
be described by eq 1. This implies that Xt, the trajectory of
such a particle, has to be a Markov process that does not
undergo discontinuous jumps. It can be demonstrated that
individual realizations of Xt can be generated using the
following SDE,59

U tX D X X D X D X Wd ( ) ( ) ( ) d 2 ( ) dt t t t t t= [ · + · ] + (2)

with Wt being the Wiener process (i.e., the standard white
noise). It must be noted that eq 2 is expressed in the Itô
convention, i.e., that both drift and diffusivity are estimated at
the beginning of the integration window. In general, the single-
particle trajectories obtained from molecular simulations are
statistically distinct from realizations of eq 2 at least at short
time scales. As such, the task of developing accurate estimators
of D(r) from such trajectories is a two-step process. The first
step, which is the focus of the current paper, is aimed at
validating and comparing different estimators in their ability to
accurately compute D(r) from trajectories generated using eq
2. The second step, which will be the focus of the subsequent
paper, will deal with subtleties of applying these estimators to
trajectories that are qualitatively different from realizations of
eq 2 at short observation windows.
When it comes to the first question, we consider two

different approaches. The first approach is based on the
observation that over sufficiently short time windows, a particle
will feel the local diffusivity at its starting point. As such, D(r)
can be estimated from the second-order Kramers-Moyal
coefficients as

h
D r

X X X X
( ) lim

( )( )

2h

t h t t h t X r

0

t= + +
†

=
+ (3)

In theory, eq 3 is sufficient for estimating D(r). In practice
though, the single-particle trajectories emanating from tracking
experiments or molecular simulations will visit each position r
according to a probability distribution p0(r) that is dictated by
the relevant thermodynamic ensemble. Therefore, the
pointwise expectation of eq 3 will turn into the following
integral equation:

p
h

D r r r
X X X X

( ) ( )d lim
( )( )

2h

t h t t h t pX r

0
3

0

( )t 0=
+ +

†

+ (4)

One can, however, derive a localized form of eq 4 by
partitioning the observation domain into sufficiently small bins.
More precisely, if the starting points of individual realizations
of eq 2 are drawn from p1(r) ≔ p0(r)χb(r)/∫ p0(s)χb(s)ds with
χb(r) being the indicator function of bin b, eq 4 can be
rewritten as

p

p h

D r r r

r r

X X X X( ) ( )d

( )d
lim

( )( )

2
b

b
h

t h t t h t pX r0
3

0
3 0

( )t 1=
+ +

†

+
(5)

Note that the integral on the left-hand side is the average
diffusivity within b and converges to pointwise diffusivity when
∫ p0(r)χb(r)d3r → 0. Therefore, for sufficiently small bins and
sufficiently short observation windows, the following estimator
can be constructed for Db, the pointwise diffusivity within bin
b:

h
D

X X X X X

X
1

2

( )( ) ( )

( )
b

i
N

i t h i t i t h i t b i t

i
N

b i t

1 , , , , ,

1 ,

= = + +
†

= (6)

with N the number of trajectories generated using eq 2. It must
be noted that both eqs 5 and 6 can be viewed as rigorous
generalizations of the notion of an ad hoc local mean-square
displacement. The estimator in eq 6 relates local diffusivity to a
covariance matrix constructed from short-time displacements
and is therefore referred to as a local covariance estimator
(LCE).
An alternative approach, which is our method of choice in

this work, involves using a filter function to capture particle
displacements in select regions and along select directions and
leads to a family of estimators known as filtered covariance
estimators (FCEs). More precisely, for a piecewise C2 filter
function : 3 , Yt≔γ(Xt) will evolve according to the
following stochastic process given by Itô’s Lemma,63

Y q t WX X D X H X X D Xd ( ) ( ) ( ): ( ) d ( ) 2 ( ) dt t t t t t t t= [ · + ] + ·
(7)

where q(r) = −βD·∇U + ∇·D and Hγ is the Hessian of the
filter function γ(·). The short-time evolution of γ(Xt) can
therefore be related to the “filtered” diffusivity as follows:63

p
h

r D r r r r
X X

( ) ( ) ( ) ( )d lim
( ) ( )

2h

t h t pX r

0
3

0

2
( )t 0=

| |
† +

+ (8)

It must be noted that since the filter function maps a
vectorial trajectory onto a scalar quantity, a single filter will no
longer be sufficient for resolving the anisotropy of the
diffusivity tensor, but a sufficient number of filters (each
capturing a different direction) can provide an accurate
estimate of D(r). Moreover, by spatially filtering for particles
that are sufficiently close to the measurement point both in the
beginning and the end of the observation window h, FCEs
generally have a smaller localization error than the LCE given
by eq 6, as will be demonstrated in Figure 9 and Appendix C,
Effect of the Localization Parameter ϵ.
The filter functions that we employ in this work are of the

form γk(r)≔f k(r)G(r). Here, f k(r)≔e−iαk·r gives the filter
function its directionality wherein k 3 is a fixed unit vector.
G(r), however, is a localized real-valued function that selects
for the particles that reside within a particular region of the
observation domain. In order to obtain pointwise estimates of
diffusivity, we choose G(r)≔g(r − r0) so that g(r) is a real-
valued bounded function with a compact support and r0 is the
point around which local diffusivity is estimated. It is generally
more convenient for g(r) to approximate the Dirac delta
function. As we will discuss later, however, g(·) does not need
to have compact support and can instead belong to a set of
orthogonal basis functions. Moreover, it is more convenient to
choose a particular functional form for g(r) and then define
G(r) as an ϵ-dilated version of it, namely

G gr r r( ) ( )/d
0= [ ]

That way, the width of the kernel can be readily adjusted by
altering ϵ. For this particular choice of γk(r), eq 8 can be
rearranged to conclude the following (Appendix A):

p G

f f

h

k D r k r r r

X X X X

( ) ( ) ( )d

lim
( ) ( ) ( ) ( )

2

T

h

t h t t h t pk k k k

0
3

0 2
0=

[ ]*[ ]+ +
+ (9)
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where p0
corresponds to the real part of a complex-valued

expectation estimated for Xt ∼ p0(·). The validity of eq 9 at the
limit of h → 0+ implies that the following approximation can be
made for a sufficiently small h:

f

h G

G p

G p

X X

X

k D r k r r r

r r r

( ) ( )

2 ( )

( ) ( ) ( )d

( ) ( )d

h t h t p

t p

T
k k X r

X r

( )

2
( )

0
3

0
3

t

t

0

0

*

(10)

where ΔhF(Xt) ≔ F(Xt+h) − F(Xt). Note that the righthand
side of eq 10 is the weighted average of Dkk = kTD(r)k within
the region probed by G(r), which will converge to the
pointwise diffusivity along k upon letting ϵ → 0. An FCE
estimator of Dkk can therefore be formulated as

D
h

f

G

X X

X
1

2

( ) ( )

( )
i
N

h i t h i t

i
N

i t
kk

k k
2

1 , ,

1 ,

=
[ * ]=

= (11)

One can, however, derive another estimator by observing the
limiting behaviors of eqs 9 and 11 at α → 0 (Appendix B):

p G
G G

h
k D r k r r r

X X k X
( ) ( ) ( )d lim

( ) ( )

4
T

h

t h t h t p

0
3

0

2
0=

[ + ][ · ]+
+

(12)

which, in the case of a localized kernel, yields the α → 0 equiv
of eq 11:

D
h

G G

G

X X k X

X
1

4

( ) ( )

( )
i
N

i t h i t h i t

i
N

i t
kk

0 1 , , ,
2

1 ,

=
[ + ][ · ]= +

= (13)

It must be noted that eq 13 is remarkably simple and states
that local diffusivity along a particular direction k is the
weighted average of mean-squared displacement projected
along k, wherein particles that are present at a particular point
either at the beginning or at the end of an observation window
contribute equally to MSD. In essence, eq 13 provides a
natural, and yet rigorous, means of constructing an ad hoc local
MSD. One could conceivably postulate eq 13 based solely on
heuristics, but our procedure of deriving it starting from the
complex valued estimator based on f k(x) = e−iαk·x can be
viewed as a more rigorous justification for it.

In order to reconstruct the full diffusivity tensor at r0 for
either estimator, one needs to choose S k i i

m
1= { }= , a stencil of

unit vectors, and estimate Dk ki i
for each ki ∈ S. According to

the Onsager reciprocity principle,70 the diffusivity tensor needs
to be symmetric and can have a maximum of six independent
components in three dimensions. As such, a minimum of six
stencil vectors will be needed, and the task of reconstructing
D r( )0 will therefore involve solving the linear system =
, where is an m × 6 matrix with the following components:

ki i x,1 ,
2= (14a)

ki i y,2 ,
2= (14b)

ki i z,3 ,
2= (14c)

k k2i i x i y,4 , ,= (14d)

k k2i i x i z,5 , ,= (14e)

k k2i i y i z,6 , ,= (14f)

and is the following column vector:

D

D

D

D

D

D

xx

yy

zz

xy

xz

yz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=

(15)

, however, is a m × 1 matrix whose entries are the right-
hand side of eq 11 or eq 13 for each filter function. As long as

is a full-rank matrix, the associated linear system can be
solved exactly (in the case of m = 6) or using a least-squares
approach (if m > 6). For systems that are stationary, both LCE
and FCE estimators can also be averaged over time in order to
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obtain more stable estimates. Algorithm l and Algorithm 2
describe procedures for obtaining FCE estimates of using
the estimators given by eqs 11 and 13 with time averaging,
respectively.

III. NUMERICAL VALIDATION OF DIFFUSIVITY
ESTIMATORS

In order to assess the performance of the proposed estimators,
we perform numerical experiments in which single-particle
trajectories are generated using the SDE given by eq 2
according to known anisotropic and position-dependent
diffusivity tensors. Each estimator is then assessed based on
its ability to accurately back-compute the profile utilized for
generating the trajectories. We use the open-source JULIA
package, DIFFERENTIALEQUATIONS.JL,71 for numerically integrat-
ing the SDEs using an explicit high-order Runge−Kutta
discretization and with a time step of Δt = 10−6. Unless
otherwise specified, a total of N = 14400 trajectories were
generated per profile, each integrated for a minimum of 5000
time steps. Despite their different mathematical forms, the
considered diffusivity profiles are all anisotropic, diagonal and
functions of z only. The integration domain is periodic along
the z direction. As such, all diffusivity profiles are periodized
using the following procedure. For a nonperiodic profile, D(z)
defined over the domain z ∈ [0, a], its periodic extension
Dp(z) is defined as

z

z b

z b b z a b

z b a b z b

a a b z a b

D

D

D

D

D

( )

(0)

( )

( )

( ) 2

p

l

m

ooooooooo

n

ooooooooo

=

| | <

+

+ < | | + (16)

Here, b = 2 is the width of a narrow buffer region that is added
between each profile and its periodic image. (We choose a
value of b = 0 if the original diffusivity profile is periodic.)
During integration, particles that leave the simulation box
along the z direction are folded back into the domain from the
other side. Unless otherwise specified, all trajectories are
generated under zero drift, i.e., U(z) = 0.
In estimating the diffusivity profile from the generated

trajectories, we use an observation window of h = 10−4 (i.e.,

100 time steps) unless otherwise specified. In the case of the
FCE estimator of Algorithm 1 and Algorithm 2, we use stencils
of different sizes and compositions, either generated randomly
(by generating m ≥ 6 vectors such that each component is
sampled from a standard normal distribution) or via a
deterministic approach described below. For the majority of
the calculations conducted here, we use a deterministic stencil
of m = 13 unit vectors obtained as follows. First, we start with
the 26 vectors at the edges, vertices, and faces of a unit cube
and eliminate one out of each pair related to one another via
inversion. We also consider deterministic stencils of 6 and 10
vectors by choosing half the vectors connecting the geometric
center of a dodecahedron and icosahedron to the centers of its
faces, respectively. All default implementation details for the
FCE estimator are given in Table 1.

To estimate the error bars in the current study, we partition
the N trajectories obtained from SDE integration into five
blocks of equal sizes and subsequently apply the corresponding
estimator to each block. The resulting profiles are utilized to
compute the mean and standard error of the data. Notably, it
should be emphasized that all the reported error bars
correspond to 95% confidence intervals, which are equivalent
to twice the calculated standard error.

IV. RESULTS AND DISCUSSIONS
Due to its numerical stability and simplicity, we primarily
validate the α → 0 estimator given by eq 13. However, in
certain situations, the α ≠ 0 estimator from eq 11 may offer
advantages by eliminating spurious outliers that could bias the
diffusivity estimate in the absence of the complex exponential.
Therefore, we also evaluate the numerical stability and
sensitivity of the latter estimator. It should be noted, however,

Table 1. Default Implementation Parameters for the
Utilized FCE Estimator

parameter value parameter value

ϵ 0.2637 h 10−4

α 0 N 14400
m 13 g(z) (1 − |z|)H(1 − |z|)
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that in all the validations presented here, the performances of
the two estimators are nearly indistinguishable.
A. Sensitivity to Implementation Details. We first

explore the sensitivity of the FCE estimator given in eq 13 to
properties of the filter function. Our first test is to probe the
effect of the localization function g(·) on the accuracy of the
estimate. As is generally the case with Nadaraya-Watson type
estimators, we do not expect the diffusivity estimate to be
strongly impacted by the particular choice of the kernel
function. Indeed, we demonstrate in Appendix C, Effect of the
Localization Parameter ϵ, that the systematic error introduced
due to the particular form of the localization function scales as
O(ϵ2). As can be noted in eq C6, the prefactor to the leading ϵ2
term only depends on the second moment of the localization
function given by eq C2. Therefore, if ϵ is sufficiently small, the
choice of the kernel will not have a significant impact on the
estimate. We demonstrate this numerically by probing SDE
trajectories generated according to a quadratic diffusivity
profile using the following four localization functions:
(a) g(z) = (1 − |z|)H(1 − |z|)
(b) g z e( ) z1

2
/22

=

(c) g z e H z( ) (1 )z1/(1 )2 2
= | || |

(d) g(z) = (1 − z2)H(1 − |z|)
where H(z) is the Heaviside step function. As can be seen in
Figure 1, the diffusivity estimates obtained from these four

kernels are virtually indistinguishable. This implies that the
choice of the kernel function can be merely made based on
convenience and ease of implementation as long as it satisfies
the properties outlined in Appendix A. As such, we use (a) as
our kernel in the remainder of this work.
We then evaluate the effect of stencil size and composition

on the performance of the estimator. As can be seen in Figure
2, the FCE estimator performs well, irrespective of whether
they are chosen randomly (Figure 2A−C) or deterministically
(Figure 2D−F). This demonstrates that it is not necessary to
identify stencils that contain special vectors, such as the
eigenvectors of the diffusivity tensor. Therefore, the FCE
estimator proposed here is expected to work in more complex
geometries in which special directions such as diffusivity

eigenvectors might also be position-dependent and therefore
unknown.
We finally explore the effect of α on the performance of the

estimator given by eq 11. As outlined earlier, using such an
estimator might offer advantages by mitigating the contribu-
tions of spurious outliers. The parameter α determines the
extent to which f k(r) oscillates within the observation domain.
Indeed, if α is too large, aliasing artifacts might arise due to
particles moving over length scales comparable to the
wavelength of fk(r) during the observation window. Figure 3
depicts how changing α affects the performance of the FCE
estimator in reconstructing an anisotropic quadratic profile.
Clearly, such aliasing effects are not noticeable, and the
estimator given by eq 11 performs as well as the α → 0
estimator.
The main difference between these two estimators, however,

is in their numerical stability, particularly when using stencils
that contain fewer randomly chosen vectors. This is because
the numerical stability of solving the exact matrix inversion
problem (for m = 6) and the least-squares optimization
problem (for m > 6) depends on the condition number of
matrix (defined as ( ) /1 6= , where σi is the i-th largest
singular value of ). Figure 4A depicts, ( ) m the average
condition number of constructed from a random stencil as a
function of m. ( ) m is pathologically large for m = 6, but
decreases as more vectors are included. Yet, even for m values
as large as 8, ( ) can still surpass 102, which can be thought
of as a soft threshold for assuring one can compromise the
numerical stability of solving linear systems. The effect of the
condition number on the performance of the FCE estimator
given by eq 11 can be seen in Figure 4B,D, wherein diffusivity
estimates have been obtained using a stencil of six random
vectors, but with different condition numbers. Clearly, the
uncertainties are considerably larger for the with the larger
condition number (Figure 4D). Such susceptibilities are not
discernible for deterministic stencils that generally have
considerably smaller condition numbers. The three determin-
istic stencils employed in this work, in particular, have

( ) 2. Such instabilities are barely noticeable for the α
→ 0 estimator of eq 13, as can be noted in Figure 4E.
Nonetheless, introducing redundancy by including more
vectors in the stencil can make the estimator given by eq 11
more robust to such instabilities.
Condition number of the stencil also impacts aliasing. As can

be seen in Figure 4F−H, for instance, using too large of an α
can lead to an overestimation of diffusivity by an order of
magnitude when a poorly conditioned random stencil is
utilized. Moreover, such aliasing artifacts tend to impact the
diffusivity prediction in an anisotropic manner. In Figure 4F−
H, for instance, it is the Dzz estimate that is most adversely
impacted while aliasing artifacts are virtually nonexistent in Dxx
and Dyy estimates. We must, however, note that this
observation is due to the idiosyncrasy of the particular stencil
employed here, and altering the composition of the stencil will
also change the particular component(s) of the diffusivity
tensor that will be impacted by large ( ) and α. Using a
sufficiently small α, however, mitigates all these artifacts even
for poor draws of random vectors.

B. Validation of the Versatility of the Proposed
Estimator.We then assess the overall performance of the FCE
estimator given by eq 13 in resolving a number of anisotropic
diffusivity profiles with different mathematical forms; namely

Figure 1. Effect of the localization function, g(·), on the accuracy of
the employed FCE in estimating the (A) Dxx, (B) Dyy, and (C) Dzz
components of an anisotropic quadratic diffusivity profile. Here, “Hat”
and “Custom” refer to the kernels (a) and (c) given at the start of
Section IVA.
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linear, quadratic, tangent hyperbolic and trigonometric profiles.
Figure 5 depicts the FCE diffusivity estimates for several
nonoscillatory profiles. It can be observed that the FCE
estimator is fully capable of accurately capturing the anisotropy
and the position dependence of the diffusivity tensor,
irrespective of their mathematical form and even when the
diffusivity changes by orders of magnitude within the
observation domain. Moreover, even though the error bars
of the diffusivity estimators might appear to be larger in some
components rather than others, a closer inspection of the
relative error reveals that uncertainties are indeed proportional
to the local value of the diffusivity. This can, for instance, be
vividly observed in Figure 6, which depicts D z( )r, =
D z D( )/ max vs z. Here, ν ∈ {x, y, z} and Dmax is the
maximum value of Dνν(z) within the observation domain.
Indeed, the magnitudes of the error bars are comparable for
different scaled profiles, irrespective of the magnitude of Dmax ,
which suggests that the relative error of the FCE estimator is
fairly uniform and is insensitive to spatial variations of D(r).

Figure 2. Sensitivity of the FCE estimator to the size and composition of the stencil. (A−C) Random and (D−F) deterministic stencils with (A, D)
m = 6, (B, E) m = 10, and (C, F) m = 13 vectors are considered.

Figure 3. Effect of α on the accuracy of the employed FCE in
estimating the (A) Dxx, (B) Dyy, and (C) Dzz components of an
anisotropic quadratic diffusivity profile using a deterministic stencil of
m = 13 vectors.

Figure 4. Effect of ( ), the condition number of the matrix , on the performance of the FCE estimator. (A) ( ) vs m, the number of
random vectors in the stencil, obtained from 100 independent draws for each m. (B−E) Diffusivity estimates obtained from two random stencils of
m = 6 vectors with condition numbers (B, C) 21 and (D, E) 2003 using (B, D) eq 11 and (C, E) eq 13. (F−H) Sensitivity of FCE estimates of (F)
Dxx, (G) Dyy, and (H) Dzz to α upon using a random stencil with a large condition number. Using a large α results in an overestimation of Dzz by an
order of magnitude.
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Despite the diverse mathematical forms of the profiles
considered in Figures 5 and 6, they are all nonoscillatory. In
order to further test the robustness of the proposed FCE
estimator, we apply it to trajectories obtained from an
oscillatory anisotropic profile of the form:

D z A z
( ) 1 sin

4
2

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

i
k
jjj y

{
zzz

É

Ö
ÑÑÑÑÑÑÑÑÑ

= + +
(17)

with Aν = 1, 3, and 9 for ν = x, y, and z, respectively. As
demonstrated in Figure 7, the FCE estimates are in excellent
agreement with the true diffusivity profiles even though the
amplitude Aν differs by almost an order of magnitude across
different components. The agreement is also observed whether
all (Figure 7A) and some (Figure 7B) of the diffusivity
components are in-phase or if all the components are out-of-
phase (Figure 7C).
Next, we evaluate the extent by which the FCE estimator

can capture rapid oscillations in diffusivity. It must be noted
that low wavelength oscillations in diffusivity make it necessary
to use smaller localization parameter ϵ’s. As depicted in Figure

8, there is still a good agreement between the estimates and the
true diffusivity profiles. To better illustrate the effect of the

width of the localization kernel ϵ, we employ Taylor expansion
in terms of ϵ in Appendix C, Effect of the Localization
Parameter ϵ, to demonstrate that

D D U D Or H r K r K r( ) ( ): 2 ( ) ( ) ( )D
T

kk kk kk
( )

0
2

0 2 0 2 0
3

kk
= [ ] +

which directly follows from eq C6 by noting that ∇ ln p0(r) =
−β∇U(r). Here, K2 is the tensorial second moment of g(·)
defined in eq C2 and Hu stands for the Hessian of an arbitrary
function u(r). In the absence of any external field (or free
energy profile), the localization error is expected to be strongly
correlated with the second derivative of diffusivity. More
precisely, Dkk is expected to systematically underestimate
diffusivity at the maxima of Dkk(z) and overestimate it at the
minima, due to the negative and positive signs of the second
derivative, respectively. As such, the FCE estimator will be less
sharp at extrema. This makes intuitive sense, since the FCE
estimator obtains a weighted average of diffusivity within the
support of the localization kernel, and such a weighted average
will be systematically smaller (or larger) than the maximum (or
the minimum) of true diffusivity.

Figure 5. Diffusivity estimates obtained from trajectories generated in
accordance to (A) linear, (B, C) quadratic, and (D) tangent
hyperbolic diffusivity profiles. The original profiles are depicted in
solid lines while diffusivity estimates and their 95% confidence
intervals are depicted using light-colored circles and shades,
respectively.

Figure 6. Diffusivity profiles of Figure 5 scaled with respect to the
maximum value of the corresponding diffusivity component. The
error bars have comparable magnitudes suggesting that the relative
error is uniform irrespective of the mathematical form and variability
of the diffusivity profile.

Figure 7. Anisotropic sinusoidal profiles constructed in accordance
with eq 17 with Ax = 1, Ay = 3, and Az = 9 and with phases (A) ϕx =
ϕ y = ϕ z = 0 , ( B ) 0, ,x y z6

2
6

= = = , a n d (C )

0, ,x y z3
2
3

= = = .

Figure 8. Sinusoidal profiles with increasing wavenumbers. The
profiles are of the form D A z1 sin ( /8)u

2= [ + ] with (A) ω = 1,
ϵ = 0.264, (B) ω = 2, ϵ = 0.159, and (C) ω = 4, ϵ = 0.053.
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In order to numerically demonstrate this point, we estimate
local diffusivity at three fixed points in Figure 8; a maximum, a
minimum, and an inflection point, but with different values of
ϵ. The estimates are depicted in Figure 9. At the maximum and

the minimum, increasing ϵ results in a monotonic deviation
from the true diffusivity. This effect is not observed at an
inflection point where increasing ϵ has no discernible impact
on the accuracy of the estimate. It must be noted that there is a
trade-off between mitigating such systematic biases (by
decreasing ϵ) and minimizing the sampling uncertainty (by
increasing ϵ). Indeed, decreasing ϵ beyond a certain threshold
produces large errors due to insufficient number of particles
that are included within the filter as can be seen in Figure 9.
We must emphasize that this systematic error is not specific

to our FCE estimator and is a fundamental feature of any
method that relies on partitioning the observation domain into
smaller bins. Indeed, the LCE estimator that is based on
defining a generalized MSD function for small bins is more
sensitive to ϵ (i.e., the thickness of each bin) than our kernel-
based FCE estimator. This is simply because an LCE estimator
is a Nadaraya-Watson estimator constructed using the
characteristic function of each bin as the kernel, which has a
larger second moment K2 than the kernel employed here.

C. Compatibility with Orthogonal Basis Sets. We then
numerically test the assertion that the kernel function g(·) does
not necessarily have to be localized, i.e., an approximation of
the Kronecker delta function. Rather, one can choose a
complete basis set of orthogonal functions g r( )q q 1{ } =

+ and note
that Dkk(r) can be expressed as an infinite sum of its
projections along the elements of the basis set:

D c gr r( ) ( )
q

q qkk kk
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=

+

with the coefficients of this summation estimated as
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(18)

As has been depicted in Figure 10, a global diffusivity profile
can be obtained by using three different basis sets, and the
partial sums provide a decent approximation of the true
diffusivity profile. This implies that FCE estimators are easier
to generalize than their LCE counterparts, in the sense that
they can be verifiably formulated to obtain functional estimates
of diffusivity (as finite sums of basis functions) rather than a
tabulated collection of pointwise diffusivity estimates. In order
for this procedure to work, however, it is necessary for the
equilibrium probability density p0(r) to be a weight function
for the functional inner product employed in eq 18. In the
current study, p0(r) ≡ const. since particles are chosen from a
uniform density profile. As such, conventional basis sets with
trivial weight functions, such as Fourier series, can be used
without any modification. Applying this approach to systems
with nonuniform probability densities (e.g., stochastic systems
with external fields or molecular dynamics trajectories) will
require identifying basis sets with weight functions that
emerges from the underlying equilibrium behavior of the
system. An alternative approach will be to use the estimator in
eq 18 to compute the projections of Dkk(r)ρ0(r) (and not
Dkk(r)) onto the elements of a standard basis set, and to divide
the arising functional approximation of Dkk(r)ρ0(r) by ρ0(r) to
obtain Dkk(r). This procedure might, however, lead to
numerical instabilities particularly when ρ0(r) is very small at
parts of the observation domain.

D. Hard Boundary Artifacts. Intuitively, the temporal
discretization at the heart of FCE and LCE estimators rely on
the assertion that p(r, t|r0, 0) is expected to remain “almost”
Gaussian for sufficiently short t’s. What constitutes sufficiently

Figure 9. Effect of the width of the kernel function ϵ on the accuracy
of the pointwise diffusivity estimate at: (A) an inflection point, (B) a
maximum, and (C) a minimum of the diffusivity profile given in
Figure 8. In each panel, the true diffusivity, the estimates, and the
associated uncertainties are depicted in black, solid colored lines, and
shades, respectively.

Figure 10. Use of orthogonal basis sets for obtaining the diffusivity profile of Figure 5D. Solid lines correspond to the true diffusivity profiles while
the symbols correspond to projection estimates using 15 terms of (A) Legendre and (B) Chebyshev polynomials, and (C) Fourier series.
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short, however, can depend on the nature of confinement and
the existence, or lack thereof, strong drifts. As an example,
consider one-dimensional diffusion with fixed diffusivity D
within the domain |z| ≤ w that has two reflective boundaries at
z = ± w. Such reflective behavior will, for instance, arise in the
presence of hard walls that repel an approaching particle with a
diverging force. The solution of the Fokker−Planck equation
in such a scenario will no longer be Gaussian and will instead
be given by the following Fourier series that can be readily
obtained using the separation of variables approach:
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Figure 11A−D depict the solution of eq 19 for D = 1 and w
= 0.5. As can be seen in Figure 11B−D, for particles that do
not start at the boundary (i.e., for |z0| < w), p(z, t|z0, 0) always
starts as a Gaussian but eventually deforms as the probability
cloud collides with the closer reflective boundary. The case of
starting right at the reflective boundary (i.e., z0 = ±w) is
unique in the sense that p(z, t|0, 0) is never Gaussian but
rather resembles a folded normal distribution for small t’s.
Nonetheless, it also gets deformed upon colliding with the
second reflective boundary, as shown in Figure 11A.
Such deviations adversely impact the performance of

covariance-based estimators, first and foremost the mean-
squared displacement. For fixed diffusivity and unbounded
ob s e r v a t i o n doma i n s , i t c a n b e s hown th a t

z t z Dt( ) /2 1z0
2

0
[ ] = . As demonstrated in Figure 11E,

however, z t z Dt( ) /2z0
2

0
[ ] starts deviating from unity at a

time scale that is comparable in magnitude to

t
w z

D
( )

c
0

2| |
(20)

which corresponds to the characteristic time that it takes for a
tracker to diffuse by a distance w − |z0|. Indeed, there is a
quadratic scaling between t t r , the time at which

z t z Dt( ) /2z0
2

0
[ ] drops below 0.98 for the first time, and
w − |z0|, as can be seen in the inset of Figure 11E. Once again,
the case of z0 = ±w is special in the sense that ttr is
considerably longer since deviations only arise when the folded
normal cloud collides with the other wall. Consistent with this
observation, t z wtr 0

| = (not shown in Figure 11E) is almost four
times larger than t ztr 00

| = as the folded normal cloud has to
travel twice as long to reach the other boundary.
When it comes to a fixed observation window t, deviations of

z t z Dt( ) /2z0
2

0
[ ] from unity are not spatially uniform, as
shown in Figure 11F. For short times, such deviations are only
confined to the immediate vicinity of the reflective boundaries,
but they then propagate to the entire domain as t increases.
One can expect similar artifacts for other covariance-based
estimators (including the FCE introduced in this work) when
it comes to estimating the component of the diffusivity tensor
normal to a hard boundary. Such artifacts are, however, likely
to be mitigated by choosing a sufficiently small observation
window (as suggested by Figure 11F).
In order to assess the significance of such artifacts for more

realistic scenarios, we generated SDE trajectories according to
an oscillatory diffusivity profile (solid lines of Figure 12B) but
under the influence of the potential energy landscape given by
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and shown in Figure 12A. This potential energy profiles
mimics the existence of two stiff boundaries at z = 0, L. As
demonstrated in Figure 12B, using an observation window of h

Figure 11. (A−D) The solution of eq 19 for w = 0.5 and D = 1 at (A) z0 = −0.5, (B) z0 = −0.4, (C) z0 = −0.3, and (D) z0 = 0. Reduced time refers
to tD/4w2. (E) Mean-squared displacement vs t for particles initiated at different z0’s. For z0 ≠ ±w, ttr, the time at which MSD falls below 0.98Dt for
the first time, exhibits a quadratic scaling with w − |z0| as can be in the inset. (F) Diffusivity estimate obtained from MSD for different observation
widows. The colormap for observation times matches the one used in (A)−(D).
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= 10−4 leads to considerable systematic errors in Dzz, the
component of the diffusivity tensor perpendicular to the stiff
boundary. No such artifact is observed for the tangential
components of diffusivity, namely, Dxx and Dyy. The magnitude
of such systematic errors can, however, be effectively mitigated
upon choosing a smaller h, as shown in Figure 12C. Indeed
choosing an observation window of h = 10−5 resolves these
artifacts for z’s at which sufficient statistics is available, i.e.,
within parts of the domain at which βU(z) ≲ O(1).
It must be emphasized that these artifacts are only limited to

situations in which the drift term diverges at a particular
boundary. Otherwise, if changes in number density (or
concentration) are mild, the estimators given by eqs 11 and
13 will still be capable of capturing spatial variations in
diffusivity only with a slight decrease in the observation
window, h. In order to test this assertion numerically, we
generate SDE trajectories in which particles adopt a nonuni-
form number density profile given by Figure 13A, correspond-
ing to a mild barrier of 3kT between z ≈ 2 and z ≈ 4. As can be

seen in Figure 13B, the estimator given by eq 13 accurately
captures oscillations in diffusivity without a need to decrease h.
This simple test reveals that the FCE estimators proposed here
are general and can be readily used in most realistic
circumstances where particle density or concentration is not
spatially uniform but undergoes mild spatial variations.

V. CONCLUSIONS
In this work, we present two closely related filtered covariance
estimators for computing position-dependent anisotropic
diffusivity profiles from single-particle trajectories. We assess
the performance of these estimators by applying them to
trajectories generated according to eq 2 with known diffusivity
profiles. Overall, the estimators perform reasonably well in
accurately capturing the spatial variations and the anisotropy of
the diffusivity tensor even when it changes by several orders of
magnitude within the observation domain or when its different
components differ by several orders of magnitude at a
particular point. We also demonstrate that the estimators are
very robust to the particular choice of the kernel function and
the localization parameter. We, however, observe systematic
errors in estimating normal components of diffusivity at the
vicinity of stiff boundaries. Luckily, such errors can be
mitigated by choosing a shorter observation window. Finally,
we find the α → 0 estimator to be more robust to numerical
instabilities caused by poorly conditioned stencils.
It must be noted that an approach similar to ours can be

employed to construct more potent LCE estimators, i.e., by
using a localization kernel to define a more localized p1(·) in eq
5. Moreover, the covariance at the right-hand side of eqs 5 and
6 can be modified by projecting displacement along a stencil of
unit vectors. We, however, contend that the FCE estimator
introduced here may still be superior to such LCE general-
izations since it spatially resolves the position of the particle
both at the beginning and at the end of the observation
window, something that is not feasible even with its LCE-based
counterparts.
The FCE estimators introduced here are prone to two types

of errors. The first is the localization error, or the error due to
the finite thickness of the localization kernel. We demonstrate
that the localization error might systematically bias the
estimates of diffusivity at the maxima and minima, or when
there is a strong external force. While using a narrower kernel
will mitigate this bias, decreasing the width of the kernel
beyond a certain level can adversely impact the variance of the
estimator. As such, the task of identifying an optimal ϵ might
require solving an optimization problem.
The second source of uncertainty is the discretization error,

which arises due to the finite duration of the observation
window, i.e., the time frame over which the displacement of the
particle is processed by the filter function. As discussed in
section IVD, such discretization errors can be particularly
significant in the presence of stiff boundaries with divergent
repelling forces. They are, however, generally minimal if
changes in particle density or concentration are mild. While
discretization errors will generally decrease upon letting h →
0+, there might be a lower practical limit for h, e.g., due to the
limited temporal resolution of experiments, or the fundamental
inability of eq 2 to describe the behavior of single-particle
displacements over short time scales. We, however, describe a
framework in Appendix C, Effect of Time Discretization, to
estimate the extent of the discretization error by solving the
adjoint Smoluchowski equation analytically or numerically. As

Figure 12. (A) The potential energy landscape given by eq 21
experienced by a particle that moves in accordance with the
anisotropic diffusivity profile depicted in solid lines in (B). The
estimates obtained from the FCE estimator with h = 10−4 and the
associated uncertainties are depicted in (B) by circles and shades,
respectively. In order to mitigate hard boundary artifacts, a
considerably smaller h needs to be employed as shown in (C).

Figure 13. Performance of the FCE estimator when p0(r) is not
uniform but lacks diverging drifts, such as the one depicted in (A).
The diffusivity estimates obtained using eq 13 (B) perfectly match
with actual diffusivity.
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to how to detect and solve such artifacts is beyond the focus of
this paper and will be discussed in our follow-up paper.
One of the issues that was not addressed in this work is the

corrections due to measurement errors. While this is not an
issue of concern in trajectories attained from simulations, it is
something that can impact the applicability of the estimator to
experimental data. Another issue that was not probed here is
the possibility of many-body effects (e.g., correlated motion of
many particles), which might require introducing corrections
to the proposed FCE estimator. Both these issues will be topics
of future explorations. Despite these limitations, however, the
estimator proposed in this work is a useful contribution to the
problem of estimating diffusivity profiles from single-particle
trajectories given its simplicity and flexibility (particularly its
compatibility to be used with a dictionary of orthogonal
functions). Moreover, while these estimators were developed
to compute diffusivity from actual single-particle trajectories,
they can in principle be applied to quantify diffusivity in
collective variable spaces, which can also evolve according to
overdamped Langevin dynamics.

■ APPENDIX A

Derivation of Eq 9
Consider the functions
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However, the last term vanishes because D is symmetric
according to Onsager’s reciprocity principle. The left hand side
of eq 8 will therefore be given by

p G Gp

G p

D r r D r r

k Dk r r r

( ) d ( )d

( )
1
4

( )d

T

T

0
3

0
3

2
2

0
3

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

=

+ ±

±
†

±

(A2)

The left hand side of eq 9 can thus be obtained through the
following subtraction:

p p

G p G p

G p

D r r D r r

k Dk r r r k Dk r r r

k Dk r r r

( ) d ( ) d

( ) 1
4

( )d ( ) 1
4

( )d

( ) ( )d

T T

T

0
3

0
3

2
2

0
3 2

2

0
3

2
0

3

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ= +

=

+
†

+
†

When it comes to the right hand side of eq 8, it can be
expressed as
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Subtracting the two expectations completed the proof for eq
9.

■ APPENDIX B

Derivation of Eq 13, the FCE Estimator at the Limit α → 0
It can be readily demonstrated that

f

e G e G

X X

X X

( ) ( )

1 ( ) 1 ( )

h i t h i t

i
i t h

i
i t

k k
k X k X

, ,

, ,
h i t h i t, ,

*

= [ ] + [ ]·
+

·

As such, the real part of fX X( ) ( )h i t h i tk k, ,* is given by
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The proof readily follows by noting that limx→0[1 − cos ax]/
x2 = a2/2.

■ APPENDIX C

Asymptotic Properties of the Estimator
Effect of the Localization Parameter ϵ. The expression on

the right-hand side of eq 10 can be cast as
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where ωϵ is a localization function weighted by the stationary
measure p0:

p g

p g
r r

r r r

s s r s
( , )

( ) ( )

( ) ( )d0
0 0

0 0
3=

Here, gϵ(r) = ϵ−dg(ϵ−1r). Suppose that gϵ(·) satisfies the
property that
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Letting r = r0 + ϵy and conducting a Taylor expansion
around r0 yields
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where H r( )D 0kk
and H r( )p 00

are the Hessians of Dkk(r) and
p0(r) estimated at r0, respectively, and A:B corresponds to full
contraction between tensors A and B. For the denominator,
one can use (C1), (C2), and (C4) to demonstrate that
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Similarly, Dkk can be expressed as
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This proves that the localization errors of the FCEs
described in Algorithm 1 and Algorithm 2 scale with ϵ2.
Similarly to the theory of finite difference approximations to
derivatives, one can obtain more accurate estimators by
eliminating the desired powers of ϵ via constructing linear
combinations of estimators (each using a slightly different ϵ).
For instance, the leading localization error term in the
following estimator will be O(ϵ3):

D D D2kk kk kk
3rd order 2= (C7)

It is also possible to compute D r( )kk 0 for different ϵ values and
then perform a quadratic regression to extrapolate to the limit
of ϵ → 0. It must, however, be noted that reducing ϵ, beyond a
certain level, can adversely impact the performance of the
estimator due to lack of proper statistics.
Effect of Time Discretization. The second question that we

wish to address is how temporal discretization (i.e., using a
finite h) impacts the error in the estimator. In order to analyze
such errors, one can observe that the right-hand side of the
FCE estimator given by eqs 9 and 12 can be expressed in terms
of p p es r X s X r s r( ) ( ) ( )0

s| = | = = , which is also
known as the self-part of the van Hove correlation function.72

Here, UD s s( ) ( ( ))s s s s·[ · + ] is the differential
operator in the right-hand side of eq 1. Now suppose that
F: d d is an integrable smooth function such that
F(x, x) = 0. It can thus be demonstrated that
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Here, u U u ur s D D D H( , ) ( ) ( ) :T
us s s s s,[ ] + · · +†

is the adjoint operator of s. The task of evaluating eq C8 can
therefore be reduced for identifying the gradient and the
Hessian of F. For the α ≠ 0 estimator of eq 9, F(s, r) is given
by
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with the application of s
† to each term given by
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It can be demonstrated that replacing the relevant terms in
C10 with C11, C12, and C13 and integrating with respect to r
leads to many cancellations. Equation C8 can therefore be
simplified as
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Taking the real part yields the left-hand side of eq 9. For the
α → 0 estimator of eq 12, it can be noted that F is given by

F g gs r k s r s r r r( , )
1
4

( ) ( ) ( )2
0 0= [ · ] [ + ]

(C15)

The gradient and Hessian of F will thus be given by
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Equations C16 and C17 can then be used to obtain the full
expression for F s r( , )s

† . We, however, remark that such an
expression will be integrated against δ(s − r). As such, all the
terms that contain s − r will disappear. Therefore, the only
surviving term will be the leading term in the Hessian, which
will yield the following:
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When it comes to small, but nonzero, τ values, one can employ
a similar approach to obtain error terms using eq C8 for both
estimators as follows:
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Given the above mathematical structure, it is possible to
estimate the discretization error, i.e., the terms arising due to
the higher-order powers of . The most obvious (but not
straightforward) means of doing so will involve applying † to
F(s, r) multiple times and evaluating the integral. One might
also consider solving the adjoint Smoluchowski equation
numerically.73 It is also possible to derive higher-order finite
difference approaches that allows for the usage of larger τ’s and
thus displacements over longer time windows.
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