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ABSTRACT: Confinement breaks translational and rotational
symmetry in materials and makes all physical properties functions of
position. Such spatial variations are key to modulating material
properties at the nanoscale, and characterizing them accurately is
therefore an intense area of research in the molecular simulations
community. This is relatively easy to accomplish for basic mechanical
observables. Determining spatial profiles of transport properties, such
as diffusivity, is, however, much more challenging, as it requires
calculating position-dependent autocorrelations of mechanical ob-
servables. In our previous paper (Domingues, T.S.; Coifman, R.; Haji-
Akbari, A. J. Phys. Chem. B 2023, 127, 5273 10.1021/
acs.jpcb.3c00670), we analytically derive and numerically validate a
set of filtered covariance estimators (FCEs) for quantifying spatial
variations of the diffusivity tensor from stochastic trajectories. In this
work, we adapt these estimators to extract diffusivity profiles from MD trajectories and validate them by applying them to a Lennard-
Jones fluid within a slit pore. We find our MD-adapted estimator to exhibit the same qualitative features as its stochastic counterpart,
as it accurately estimates the lateral diffusivity across the pore while systematically underestimating the normal diffusivity close to
hard boundaries. We introduce a conceptually simple and numerically efficient correction scheme based on simulated annealing and
diffusion maps to resolve the latter artifact and obtain normal diffusivity profiles that are consistent with the self-part of the van Hove
correlation functions. Our findings demonstrate the potential of this MD-adapted estimator in accurately characterizing spatial
variations of diffusivity in confined materials.

I. INTRODUCTION
Confinement is ubiquitous in nature and can change the
physics and chemistry of matter in meaningful ways. For
instance, it can shift phase boundaries1−5 and glass-transition
temperatures,2,6,7 alter mechanical,8,9 dielectric,10,11 and trans-
port12−16 properties of materials, and result in the formation of
new phases.17,18 Moreover, confinement is commonly
employed to modulate the kinetics and mechanism of rare
events, such as nucleation19,20 and cavitation.21,22 The effect of
confinement is not limited to atomic and molecular scales and
can impact the mesoscale behavior of soft matter23 and
biological24 systems. Beyond the potential quantum effects
responsible for some emergent phenomena at the nanoscale,
confinement generally affects materials by breaking transla-
tional symmetry, thereby making all physical properties
functions of position. Characterizing the confinement-induced
dependence of material properties on position is crucial to
understanding material behavior and function under confine-

ment and is therefore of interest from both a theoretical and a
practical perspective.
In recent decades, molecular simulations25 have proven

indispensable in characterizing the role of confinement in
modulating material properties.26−33 One of the main
advantages of molecular simulations is their ability to estimate
spatial profiles of physical properties at resolutions that are not
achievable through experiments. However, obtaining these
profiles is straightforward for only static properties, which are
mechanical observables that can be unambiguously estimated
for each configuration. Spatial profiles of such properties can
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then be estimated by partitioning the simulation box into
sufficiently small bins and estimating time averages of the
relevant quantities within each bin. In contrast, dynamic
properties such as transport coefficients can be estimated only
from autocorrelations of mechanical observables using either
the Green−Kubo34 or the Helfand framework.35 Neither of
these frameworks has been rigorously generalized to systems
with broken translation symmetry. Even assuming their validity
at a local level, there is ambiguity in rigorously accounting for
the contributions of molecules or particles that move across
different bins during a specific observation window. Therefore,
even though several ad hoc extensions36−39 of bulk-based
approaches have been proposed, they have by and large not
been proven analytically or validated numerically.
A notable example of this challenge is diffusivity, which, in

bulk systems, can be readily estimated from either the integral
of the velocity autocorrelation function (VACF)40 or the
asymptotic first derivative of the mean-squared displacement
(MSD).41 Both of these approaches directly follow from the
analytical solution of the Fokker−Planck equation,42,43 which
is satisfied by Gs(r, t), the self-part of the van Hove correlation
function, in bulk systems for sufficiently long t values. Under
confinement, however, Gs(r, t|r0, 0) satisfies the Smoluchowski
equation, which is a generalization of the Fokker−Planck
equation with position-dependent diffusivity and the potential
of mean force (PMF). Since the Smoluchowski equation lacks
a general analytical solution, estimating local diffusivity from
single-particle trajectories is not trivial. Moreover, the Gs(r, t|r0,
0) values computed from molecular dynamics (MD)
trajectories satisfy only the Smoluchowksi equation when t is
sufficiently large. Both of these factors make it difficult to
devise simple rigorous estimators that rely on the local validity
of the Fokker−Planck equation within each bin. Despite
several attempts to construct more rigorous estimators using
sophisticated approaches such as Markov state models and
Bayesian inference,31,44−52 most authors have resorted to
utilizing different flavors of ad hocMSDs and VACFs.32,33,36−39

While the profiles computed from such approaches provide
semiquantitative descriptions of dynamics in confined
materials, they are seldom validated to ensure their consistency
with the Gs(r, t|r0) values computed from MD trajectories.
In an earlier paper,53 we analytically derived and numerically

validated a collection of filtered covariance estimators (FCEs)
for estimating diffusivity from stochastic trajectories whose
displacement statistics are consistent with the Smoluchowski
equation. These estimators are related to what is known in the
statistics literature as Nadaraya-Watson-type estimators,54,55

which are widely used for estimating parameters of stochastic

differential equations56 due to their ease of implementation
and versatility. In this article, we build upon our previous work
by successfully adapting the FCE estimators developed therein
to single-particle trajectories obtained from MD simulations.
We validate our method by demonstrating its ability to provide
accurate estimates of diffusivity in the bulk (consistent with
what one would obtain from MSD), and as a test case, we
apply it to quantify spatial variations in diffusivity in a Lennard-
Jones (LJ) liquid within a slit pore. By regenerating stochastic
differential equation (SDE) trajectories based on the computed
PMF and diffusivity profiles and comparing the Gs(r, t|r0)
values obtained from such trajectories with those obtained
from MD, we confirm that our estimator performs reasonably
well across the board. We observe only minor deviations in the
normal mobility of the particles in the vicinity of the wall. Such
discrepancies arise due to a fundamental limitation of
covariance-based estimators that makes them susceptible to
temporal discretization errors near impermeable boundaries, as
identified in our earlier work. We propose a simulated
annealing approach based on diffusion maps to mitigate such
discrepancies and obtain more accurate normal diffusivity
profiles without a need to shorten our observation window.
This paper is organized as follows. Section II.A outlines the

details of the system setup and molecular dynamics
simulations. The proposed procedure for adapting the FCE
estimators of ref 53 to MD trajectories is discussed in Section
II.B. Section II.C provides technical details of the SDE
integration for validating the computed diffusivity profiles.
Section III presents our results, while Section IV is reserved for
concluding remarks.

II. METHODS
II.A. System Description and Molecular Dynamics

Simulations. We assess the performance of the adopted FCE
estimators by simulating a single-component standard
Lennard-Jones (LJ) liquid in two different geometries, namely,
in the bulk (Figure 1A) and within a slit pore (Figure 1B).
Bulk simulations are conducted solely for the purpose of
ensuring consistency since the diffusivity of the bulk liquid can
be readily estimated via alternative means, such as MSD. The
confined geometry, however, serves as a simple but nontrivial
test case for benchmarking and validating the estimator and is
comprised of an LJ liquid sandwiched between flexible walls
whose constituent atoms are kept together via harmonic
bonds. Liquid particles, A, interact with wall particles, B, via the
LJ potential with ϵAB = 0.3AA and σAB = σAA. All LJ interactions
are truncated at a distance of rc = 2.5σAA. Both liquid and wall

Figure 1. Schematic representation of the simulation box in (A) bulk and (B) confined geometries prepared using injavis.57 A and B particles
are depicted in light green and dark purple, respectively.
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particles have identical masses, mA = mB = m. MD simulations
are conducted using LAMMPS at a reduced temperature of T*
= kT/ϵAA = 1. Equations of motion are integrated using the
ve loc i ty Ver let a lgor i thm with a t ime step of

* = = ×t t m/ / 2.5 10AA AA A
3. All simulations are

carried out in the canonical (NVT) ensemble with temperature
controlled using the Nose−́Hoover thermostat58,59 with a time
constant of 0.25 in reduced LJ units.
In both geometries, the system is initialized using the

following procedure. First, particles of type A are placed on a
face-centered cubic (FCC) lattice of the appropriate number
density. For the slit pore geometry, particles of type B are also
placed on the same lattice but within a different part of the
simulation box. Harmonic bonds of length r0 = 1.08σAA and
spring constant ks = 500ϵAA/σAA

2 are added between the B
particles, the distance of which falls within the [1.07σAA,
1.09σAA] interval. The arising configuration is then used as the
starting point of a long MD trajectory carried out for 5 × 106
time steps. In both bulk and slit pore geometries, the FCC
lattice melts within a few thousand time steps. We save the
liquid configuration every 5 × 105 steps, randomize the
velocities of all particles in accordance with the Boltzmann
distribution, and conduct an equilibration simulation for 106
steps. We then launch production runs from end points of such
trajectories for 5 × 106 steps, with snapshots recorded every 50
steps for postprocessing.
II.B. Estimation of Spatial Profiles of Diffusivity. As

mentioned in Section I, the procedure for obtaining spatial
profiles of static properties from MD trajectories is rigorous
and well established. First, an equilibrium number density
profile ρ(r) is obtained as

=
=

r r r( ) ( )
i

N

i
1 (1)

where N is the total number of particles in the system. Note
that =r r( ) ln ( )1 is the associated potential of mean
force (PMF) and p0(r) = ρ(r)/∫ ρ(s d3s is the equilibrium
probability density. The intensity profile of a mechanical
observable that is well defined on a per-particle level (such
as potential energy) can then be estimated as

=
=

r
r

r r( )
1
( )

( )
i

N

i i
1 (2)

In practice, eqs 1 and 2 are estimated by partitioning the
simulation box into smaller bins and estimating a per-bin
average of the desired quantity. Mathematically, this implies an
approximation of the delta function with the indicator function
of each bin.
When it comes to transport coefficients, such as diffusivity,

the procedure is more complex. In bulk systems and for
observation windows that are sufficiently long, the behavior of
single-particle trajectories is governed by the Fokker−Planck
equation42,43

|
= ·[ · | ]

G t
t

G t
r r

D r r
( , , 0)

( , , 0)s 0
s 0 (3)

which has the following analytical solution:

| =G t t
t

er r
D

( , , )
1

det(4 )
tr r D r r

s 0
( ) ( )/4T

0
1

0

(4)

Here, D is the self-diffusive tensor, which is isotropic in most
fluids. Using this analytical solution, D can be estimated from
either the integral of the velocity autocorrelation function40

=
+

t tD v v( ) (0) dT

0 (5)

or the first derivative of the mean-square displacement:

= [ ][ ]t t
t

D
r r r r

lim
( ) (0) ( ) (0)

2t

T

(6)

In confined systems, single-particle trajectories obey the
Smoluchowski equation, which accounts for the effect of
position-dependent diffusivity D(r) and PMF U(r):

= ·[ · + ]
G
t

G G UD r( ) ( )s
s s (7)

Unlike eq 3, eq 7 does not have an analytical solution.
Consequently, neither of the frameworks given by eqs 5 and 6
can be readily generalized to estimate position-dependent
diffusivity profiles in translationally anisotropic systems. An
alternative approach, which is conceptually feasible, is to use a
Bayesian scheme to infer the diffusivity profile from the Gs(r, t|
r0) values obtained from MD trajectories. One approach that
stands out is the use of Markov state models. This approach
involves partitioning the simulation box into smaller bins and
discretizing Gs(r, t|r0, 0) to obtain a transition matrix for jumps
between the bins.44,52 The Smoluchowski operator is then
temporally discretized to relate the transition matrix to local
diffusivity. Despite being mathematically rigorous, such
approaches are tedious to implement, as estimating Gs(r, t|r0,
0) generally requires spatial binning in a space with a
maximum of six dimensions, and sufficient statistics might
not exist for sampling different regions of such a space.
Moreover, due to large spatial variations in particle mobility
across the system, the statistical accuracy of Gs(r, t|r0, 0) might
be uneven for different r values, and this issue is not easy to
mitigate due to the constraint that a single propagation time
scale needs to be utilized for the entire system.
Due to these challenges, an overwhelming majority of

authors have employed heuristic estimators based on ad hoc
generalizations of the notion of a mean-squared displacement
to spatial bins and estimated the local lateral diffusivity from
the asymptotic slope of the per-bin MSD. There are several
issues with such approaches. First and foremost, the
convergence of such estimators to the true local diffusivity
has yet to be established analytically or validated numerically.
In fact, it has been previously demonstrated that such
generalized MSDs do not exhibit the generic behavior of
bulk MSD even over long time scales due to interlayer
mixing.32 Second, there is ambiguity in how to define the
mean-squared displacement for an open system, e.g., spatial
bins that exchange particles with one another. Finally, such
approaches can at best estimate the lateral components of the
diffusivity tensor (e.g., the xx and yy components in the case of
one-dimensional confinement along the z direction).
In our earlier paper,53 we constructed a series of filtered

covariance estimators (FCEs) that are closely related to
Nadaraya-Watson-type estimators in statistics and that can
accurately estimate anisotropic and position-dependent
diffusivity from stochastic trajectories whose displacement
statistics follow the Smoluchowski equation. It must be noted
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that individual realizations of such trajectories can be
generated using the following SDE,45

= [ · + · ] +tX D X X D X D X Wd ( ) log ( ) ( ) d 2 ( ) dt t t t t t

(8)

Displacements along such trajectories over short observation
windows are then processed using a filter function : 3 ,
a piecewise C2 function that filters displacements along certain
directions and within certain domains. According to Itô’s
Lemma, the temporal evolution of γ(Xt) can be expressed as60

| |
=

+ · †
h

p
X X

D r r rlim
( ) ( )

2
( ) ( ) d

h

t h t pX

0

2
( )

0
3t 0

(9)

In order to retrieve pointwise diffusivities from this general
formalism, we employed filter functions of the form γk(r) ≔
f k(r) g(r−r0) wherein f k(r) = e−iαk·r (with k ∈ S2 being a unit
vector) captures the anisotropy of the diffusivity tensor while
g(r) is a real-valued localization function centered at the origin.
Upon some mathematical rearrangements, it can be demon-
strated that

=
[ ]*[ ]+ +

p g

f f

h

k D r k r r r r

X X X X

( ) ( ) ( ) d

lim
( ) ( ) ( ) ( )

2

T

h

t h t t h t pk k k k

0 0
3

0 2
0

(10)

Note that the left side of eq 10 will converge to Dkk(r0) =
kTD(r0)k as g(r) → δ(r). By choosing a sufficiently short
observation window h > 0 and a sufficiently narrow localization
function, an FCE estimator for Dkk(r0) can be constructed as

=
[ * ]=

=

D
h

f

g

X X

X r
1

2

( ) ( )

( )
i
N

h i t h i t

i
N

i t t

kk
k k

2
1 , ,

1 , 0 (11)

where N is the number of particles and ΔhF(Xt) ≔ F(Xt+h) −
F(Xt). The full diffusivity tensor can then be constructed by
choosing a sufficient number of m ≥ 6 suitable unit vectors and
combining the respective estimates given by eq 11 through a
least-squares approach. It can be demonstrated that the
limiting behaviors of eq 11 at α → 0 will be given by

=
[ + ][ · ]= +

=

D
h

G G

G

X X k X

X
1

4

( ) ( )

( )
i
N

i t h i t h i t

i
N

i t t

kk
0 1 0 , 0 , ,

2

1 0 ,

(12)

where G0(r) = g(r − r0). Hereafter, for notational simplicity,
we will drop α → 0+ from our expressions since this will be the
only version of the estimator that will be used. Instead, we may
write D̃kk

h to highlight the dependency of the estimator on the
time scale h, particularly when different values of the
observation time scale are simultaneously utilized. It is
noteworthy that eq 12 provides a natural means of defining
a generalized MSD for open systems. More specifically, by
replacing g(·) with the indicator function of each spatial bin, a
generalized MSD can be constructed by adopting the
convention that the displacements of particles that are present
within the bin either at the beginning or at the end of the
observation windows will contribute to the MSD, but at 50%
weight. The weight will be 100% for particles located within
the bin both at the beginning and at the end of the observation
window.

Despite the rigorous nature of the estimators proposed in ref
53, they cannot be directly applied to trajectories obtained
from MD simulations, which behave only diffusively (i.e., in
accordance with the Smoluchowski equation) at sufficiently
long time scales. At shorter time scales, what is generally
known as the “ballistic regime” takes hold in which MSD scales
quadratically with time (i.e., ⟨|Xt − X0|2⟩ ∝ t2). Therefore, the
duration of the observation window h needs to be larger than
ttr, the characteristic time scale for transition from the ballistic
regime to the diffusive regime. In bulk systems, ttr can be
readily estimated by examining the slope of log ⟨|Xt − X0|2⟩ vs
log t and identifying the time at which that slope approaches
unity. Applying a similar procedure to confined systems is not
feasible not only since there is ambiguity in the proper
definition of MSD but also because the log−log slope is not
guaranteed to converge to unity. Moreover, ttr can be strongly
dependent on position.
A suitable proxy for ttr in dense liquids is the cage escape

time (i.e., the time that it takes for a particle to escape the cage
formed by its first coordination shell). In the bulk, the first
coordination shell corresponds to all neighbors that are closer
to the central particle than rcage, the first valley of the radial
distribution function (RDF). In confined systems, however, the
first valley of RDF can also depend on position, and one needs
to employ a localized definition of RDF. Here, we use the z-
dependent lateral RDF defined as

| | = | | | | ×
< =

g z
z

z z z zr r r( , )
1
( )

( ) ( ) ( )
i j

N

ij i j
1

(13)

Here, ρ(z)≔ ⟨∑i=1
N δ(zi − z)⟩, r∥ ≡ (x, y, 0), the projection of

the position vector onto the xy plane, and rij = rj − ri. rcage(z) is
then given by the first valley of g(r, z), which can then be used
to define a cage escape autocorrelation function (CEAF) given
by

=
[ ]

[ ]

=

=

C z t

z z z z t

z z z z

r r

r r

( , )

(0) ( , (0)) ( , ( ))

(0) ( , (0)) ( , (0))

i j i j
N

i ij ij

i j i j
N

i ij ij

, 1,

, 1,

(14)

with ξ(z, r) = H[rcage(z) − ∥r∥] and H(·) being the Heaviside
function. Intuitively, C(z, t) corresponds to the fraction of the
neighboring particles that remains within the first coordination
shell of a central particle located at z after t has elapsed. We
compute C(z, t) for central particles belonging to each spatial
bin and fit it to the stretched exponential profile C(z, t) =
exp[−[t/τ(z)]α(z)]. We then use τ(z) as a proxy for ttr(z) in
our estimator.
There is, however, one additional issue in adopting the

estimators given by eqs 11 and 12 to MD trajectories due to
the observation that in dense liquids there is always an
intermediate caging regime between the ballistic and diffusive
regimes. During this caging regime, which can be extremely
long for glassy and deeply supercooled liquids,61 particle
mobility is hampered as particles are trapped within the cages
formed by their nearest neighbors. As a result, there is always a
lag in the development of the diffusive behavior, and even in
bulk systems, the intercept of the linear fit for ⟨∥r(t)− r0∥2⟩ vs
t is almost always negative. Such behavior cannot be directly
captured using the eqs 11 and 12 estimators which assume
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diffusive behavior across all time scales. What is instead needed
is to estimate local diffusivity from mobilities over two distinct
observation windows h1 < h2 (both within the diffusive
regime). In particular, we construct a composite estimator of
the form

=D
h D h D

h h
h h

h h

kk
kk kk, 2 1

2 1

1 2

2 1

(15)

which is mathematically identical to the original FCE estimator
when applied to stochastic trajectories. When applied to MD
trajectories, however, eq 15 ensures that only the relative
mobility of particles is captured over observation windows
during which particle displacements are already diffusive.
As for other features of the FCE estimator, we specifically

employ the limiting estimator for α → 0 and given by eq 12.
Similar to our earlier publication, we use a deterministic stencil
of 13 vectors, which are the normalized versions of the vectors
in the following set:

= { { ± } { }}k k k k k kK ( , , ): , 0, 1 , 0, 1x y z x y z

We also choose g(z) = (1/2κ)e−1/(|1 − (z/2κ)2|2) as our
localization function with κ = 0.05σAA. Estimates of all static
and dynamic properties are obtained within bins that have a
thickness of 0.0762σAA.
II.C. Details of SDE Integration. In order to validate the

statistical consistency of the computed profiles with displace-
ment statistics obtained from MD, we use the open-source
JULIA package, DifferentialEquations.jl,62 for
numerically integrating the SDE given in eq 8 using the
diffusivity profiles obtained from MD trajectories. The
DifferentialEquations.jl package uses an explicit
high-order Runge−Kutta discretization to integrate eq 8. In
order to be consistent with our MD trajectories, we use a time
step of =t m0.0025 / /s AA AA A . From each spatial bin, Npρk

single-particle trajectories are initiated and conducted for
500tcage(z)/δts steps, and the position of the particle is saved
every 50 steps. Here, Np = 6912 is the number of liquid
particles, and ρk is the average number density in bin k.
In order to use the numerical solver of the Differ-

entialEquations.jl package, we need to provide it
with the functional forms of both D(z) and ∇ log ρ(z). We
construct such a functional form of D(z) via a simple linear
interpolation between successive pointwise estimates. A similar
approach is employed for ∇ log ρ(z) with pointwise estimates
obtained as

+
z

z z z z
z

log ( )
( ) ( )

( ) (16)

Here, ρ(z) is obtained using eq 1. For SDE trajectories, it is
also necessary to construct reliable extrapolations of D(z) and
∇ρ(z) for regions of the simulation box not visited in our MD
simulations, as particles might still visit such regions, albeit
with low probability. Therefore, we use a simple procedure
when it comes to diffusivity, assuming that it remains constant
at the last value that we estimate and then drops linearly to 0 as
the particle hits the wall. It is, however, necessary to employ a
more systematic approach for extrapolating the drift term due
to the heightened sensitivity of particle trajectories to it.
Motivated by the seminal work of Magda et al.,29 we fit the last
few estimates obtained from eq 16 to a power law, namely, log
ρ(z) = A(z − zw)−a, with zw being the position of the wall. Due
to the large statistical uncertainties of ρ(z) and ∇ log ρ(z)
estimates obtained from eqs 1 and 16 in the immediate vicinity
of the wall, we use a weighted fitting approach with the weight
of each data point inversely proportional to its absolute
variance.

III. RESULTS AND DISCUSSION
III.A. Application of the FCE Estimator. We first assess

the performance of our estimator in the bulk system, where
diffusivity can be readily obtained from MSD. (We compute
MSD using the method of sliding windows and estimate bulk
diffusivity using the MSD values within the range of 37.5 ≤ t*
≤ 62.5.) As can be noted in Figure 2A, the transition from the
ballistic regime to the diffusive regime occurs over a fairly short
observation windows (i.e., at ttr* ≈ 1). In order to ensure
consistency, we partition the simulation box into 160 bins
along the z direction and compute tcage for each bin, as a proxy
for ttr* ≈ 1. As expected, the tcage values obtained for different
bins are consistent with one another and are found to be
within the same order of magnitude as the ttr inferred from
Figure 2A. More specifically, we obtain tcage* = 5.9534 ±
0.1304, and we use its mean as our observation window, h.
Using the standard FCE estimator given by eq 12 results in a
slight but systematic underestimation of diffusivity as shown in
Figure 2B. This is expected considering the lag in transitioning
into the diffusive regime as can be observed in Figure 2A. The
diffusivity estimates obtained from eq 15 with h1 = h and h2 =
2h are, however, statistically indistinguishable from the true
value (obtained from MSD). Regardless, both estimators (with
or without lag) respect the rotational symmetry of the systems
and predict Dxx, Dyy, and Dzz values that are statistically
indistinguishable from one another. These observations

Figure 2. (A) Mean squared displacement for the bulk system, with the log−log plot shown in the inset. Local diffusivity estimates obtained from
the estimators are given by (B) eq 12 and (C) eq 15. The 95% confidence interval for the bulk diffusivity obtained from MSD is shown in shaded
cyan. Note that not accounting for the caging lag can result in a systematic underestimation of diffusivity.
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suggest that using an h that is comparable in magnitude to ttr
does not result in considerable discretization errors, and as
such, FCE estimators can be readily applied to trajectories
obtained from MD simulations.
We then apply the estimator to the more relevant and

nontrivial case of a slit pore. As can be noted in Figure 3C, the
existence of the confining walls makes the liquid structured, as
evident from the multiple peaks in ρ(z). Such structuring is not
surprising and is a hallmark of liquids under confinement.
Nonetheless, the locus of the first valley of RDF is not sensitive
to such structuring, as can be seen in Figure 3A, and is almost
constant at rcage ≈ 1.5603σAA. Indeed, the characteristic size of
the first coordination shell within a liquid is governed by short-
range steric and energetic interactions and is not expected to
be very sensitive to temperature and pressure. We then use eq
14 to compute C(z, t) for all spatial bins. Figure 3B depicts
representative C(z, t) values for the first three density peaks as
well as the center of the film. We then compute tcage(z) by
fitting each C(z, t) to a stretched exponential. The computed

tcage(z) profile is depicted in Figure 3C. It is noteworthy that
spatial oscillations in the cage escape time follow those of the
number density. Moreover, cage escape times are not very
sensitive to z and change by less than 10%.
By choosing an observation window of h1(z) ≔ tcage(z) and

h2(z) = 2h1(z) for each spatial bin, we use eq 15 to estimate
D(z). The computed diffusivity profile is depicted in Figure
4B. Similar to the bulk, using eq 12 results in a slight
underestimation of diffusivity as can be seen in Figure 4A. As
expected, the diffusivity tensor is both isotropic and
independent of z in the center of the film as the estimated
Dxx(z), Dyy(z), and Dzz(z) profiles are statistically indistin-
guishable therein and fluctuate around an average value. In
other words, the film center exhibits bulklike behavior due to
its sufficiently large distance from the confining walls. In order
to ensure the quantitative accuracy of the diffusivity estimates
at the film center, however, we conduct NVT simulations of
the bulk liquid with number densities within the range of [ρ*
± δρ*], wherein ρ* = 0.7691 and δρ* = 0.0015 are the mean

Figure 3. (A) Lateral radial distribution function as a function of z, the distance from the film center. Vertical dashed lines correspond to the
approximate position of the first valley of RDF and are insensitive to z. (B) C(z, t) for four representative spatial bins highlighted in (C) which
depicts the number density and tcage as a function of z.

Figure 4. D(z) profiles estimated by using (A) eq 12 and (B) eq 15. The bulk diffusivity along with its 95% confidence interval is depicted in
shaded cyan.
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and standard deviation of number density, respectively, for |z|
< 1.14σAA. As can be seen in Figure 4, the diffusivity estimates
obtained from the FCE estimator agree very well with those
computed from MSD (highlighted in shaded cyan in Figure 4).
Upon approaching the confining walls, the diffusivity tensor

starts becoming anisotropic. Nonetheless, Dxx(z) and Dyy(z)
remain statistically indistinguishable from one another. This is
consistent with our expectation that the diffusivity tensor will
have only two independent components in this geometry (due
to the equivalence of x and y directions). Nonetheless, Dzz
estimates differ considerably from those of Dxx = Dyy due to the
anisotropy induced by the wall.
III.B. Numerical Validation of the FCE Estimator.While

the computed profile satisfies all of our basic physical
expectations (isotropy at the center and equivalence of Dxx
and Dyy), its consistency with mobility statistics of individual
particles still needs to be rigorously validated. In order to do
so, we feed the computed diffusivity profile into a numerical
solver of the SDE given by eq 8. As discussed in Section II.C,
we estimate the drift term using eq 16 and the power-law
extrapolation depicted in Figure 5. For such stochastic

trajectories, one can compute the self-part of the van Hove
correlation function Gs(r, z, t|0, z0, 0) and compare it to those
obtained from MD. In order to ensure better statistics,
however, we compute the marginal distributions of Gs(r, z, t|0,
z0, 0) given by

= |
+

G z z t rG r z t z r( , , ) 2 ( , , 0, , 0) ds 0
0

s 0 (17)

= |
+

G z r t G r z t z z( , , ) ( , , 0, , 0) ds 0 s 0 (18)

where r refers to the lateral displacement of a molecule in the
xy plane from its initial position. Alternatively, the marginal
probability densities given in eqs 17 and 18 can be referred to
as normal and radial van Hove correlation functions,
respectively. (Here, “normal” refers to mobility in the z
direction, i.e., perpendicular to the confining wall.) However, it
must be noted that such a comparison is prone to small error
due to the lag in transitioning from the ballistic regime to the
diffusive regime. A more rigorous comparison can be made
between a composite van Hove correlation function given by

| = | |G t t G t G tr r r r r r r( , , , 0) ( , , 0) ( , , 0)ds
comp

0 s
MD

0 s
SDE

(19)

and the Gs(r, t + t′|r0, 0) obtained from MD. Note that
Gs

comp(r, t, t′|r0, 0) is the convolution of the van Hove
correlation functions obtained from MD and SDE for
observation windows t and t′, respectively. In other words,
such an approach combines the actual displacement statistics
over the time window [0, t] with the expected displacement
statistics due to diffusive motion over the time window [t, t +
t′]. Proper normal and radial averages of Gs

comp(·) can be
formulated by using eqs 17 and 18, respectively.
As can be seen in Figure 6, the radial van Hove correlation

functions obtained from MD and SDE for t = h are already

statistically indistinguishable irrespective of the distance from
the confining walls. This not only validates that our estimator
accurately characterizes lateral diffusive behavior across the
film but also implies that not using composite validation
described by eq 19 does not lead to considerable errors. When
it comes to the normal van Hove correlation functions,
however, using the composite approach considerably improves
the agreement between MD and SDE as can be seen in Figure
7. Nonetheless, even the composite G̃s values fail to agree fully
with the ones obtained from MD except in the center of the
film. More precisely, the estimated diffusivity profile correctly
predicts the locations of peaks and valleys of G̃s(z, z0, 2h) but
not their amplitudes. Moreover, this discrepancy becomes
increasingly worse upon approaching the wall.
In order to explain the observed disparities, we refer to our

earlier findings in ref 53, wherein we demonstrated that
covariance-based estimators, specifically the FCE estimator
employed in this study, possess inherent limitations when it
comes to accurately estimating the normal component of the
diffusivity tensor in close proximity to hard boundaries when
finite observation windows are employed. The root cause of
this limitation can be intuitively attributed to the distortion of
the Gaussian shape of the self-component of the van Hove
correlation function upon encountering the hard boundary.

Figure 5. Power-law dependence of the drift term in the immediate
vicinity of the wall.

Figure 6. Comparison of the self-parts of the radial van Hove
correlation functions computed from MD trajectories with those
obtained from purely stochastic trajectories, consistent with the
diffusivity estimate. Labels I−IV correspond to starting positions
highlighted in Figure 3C.
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Consequently, deviations are expected in the estimated Dzz(z)
profile, whereas Dxx(z) and Dyy(z) remain unaffected. For
systems exhibiting Smoluchowski-like behavior across all
temporal scales, this issue can be mitigated by employing
smaller observation windows. However, in the case of MD
trajectories that solely display diffusive behavior over extended
observation windows, such an adjustment is not feasible.
Indeed, the observation window employed in this study
represents the lower threshold beneath which single-particle
trajectories will no longer exhibit diffusive characteristics.
Thus, an alternative approach is imperative to rectify the
estimates obtained from eq 15.
III.C. Correction Scheme. The correction scheme

proposed here is based on defining a notion of distance
between the G̃s(z, z0, 2h) values obtained from MD and the
composite G̃s

comp(z, z0, h, h) constructed by combining MD
and SDE data and using an efficient optimization scheme to
minimize it. Let d(P, Q) denote a smooth convex measure of
distance between two probability density functions, P and Q,
satisfying the conditions d(P, Q) = d(Q, P) and d(P, Q) = 0 ⇔
P ≡ Q. Formally, a typical correction scheme can be expressed
as an optimization problem given by

* = [ ]D z d G z z h G z z h h( ) argmin ( , , 2 ), ( , , , )zz
D z( )

s
MD

0 s
comp

0
zz

(20)

In principle, one can solve eq 20 by adopting an iterative
strategy in which Dzz(z) is perturbed based on an optimization
scheme and is then fed into an SDE integrator to compute the
updated value of d[G̃s

MD(z0, z, 2h), G̃s
comp(z0, z, h, h) ]. In

practice, however, such an approach will be computationally

expensive, as it will involve several rounds of computationally
costly SDE integrations. We therefore adopt a more efficient
alternative based on the concept of diffusion maps,63 which
provides an approximation of a Markov transition matrix for a
particular diffusivity profile. Such a matrix quantifies the
probability of transitioning between different spatial bins over a
short observation window τ ≪ h and is therefore a bin-
discretized approximation of the self-part of the van Hove
correlation function. The implementation details of the
generalized algorithm for an arbitrary three-dimensional
binning of the simulation domain are outlined in Algorithm
1. It is, however, necessary to note that for the specific problem
at hand, binning is conducted in one dimension only, and as
such, D = Dzz is a scalar.
Since diffusion maps are founded upon ideas similar to

kernel-based estimators, their accuracy depends on the choice
of the bandwidth parameter τ, and it is only guaranteed in the
limits of τ → 0 and nb → ∞. Therefore, even though the τ
employed in Algorithm 1 needs to be considerably smaller than
h, it needs to be chosen in conjunction with nb whereby the
optimal τ is a decreasing function of nb. Several sophisticated
techniques have been proposed to identify suitable values for τ.
Nevertheless, in practical applications, the median value of the
pairwise Mahalanobis distance matrix A is commonly
considered an acceptable initial estimate for τ. With such a
choice, PDzz,τ can be computed from diffusion maps, and a
reasonable approximation of G̃s

st(z0, z, h) can be obtained as
G̃s

st(z0, z, h) = (PDzz,τ)Ns wherein Ns ≔ h/τ. The principal
advantage of this approach is its computational efficiency as
contrasted with the numerical integration of an SDE.
Moreover, unlike other applications of diffusion maps, such

Figure 7. Comparison of the self-parts of the normal van Hove correlation functions computed from MD with those obtained (A) from purely
stochastic trajectories, consistent with the diffusivity estimate and (B) via a composite approach described by eq 19 with t = t′ = h. Labels I−IV
correspond to starting positions highlighted in Figure 3C. The orange curves correspond to G̃s values obtained from stochastic trajectories
integrated using the annealed diffusivity profile.
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as dimensionality reduction,64,65 there is no need to
diagonalize the transition matrix. Rather, we are interested
only in the fact that this construction provably approximates

†
et D, where †

D is the infinitesimal generator of the diffusion
operator.63,64 The computational efficiency of this construction
therefore allows us to devise numerically efficient iterative
methods to solve this problem (eq 20).
The next ingredient in our correction scheme is the selection

of an appropriate distance measure, d(·, ·). Among the various
options, the relative entropy emerges as a particularly suitable
choice. Specifically, for two row-stochastic Markov matrices P
and Q, we define a vector comprising the row-wise distances as

= =
=

H d P Q P
P

Q
( ) lni i i

j

n

ij
ij

ij
KL

1

b

(21)

We can then define a distance measure as

=
=

d
n

HP Q( , )
1

i

n

i
b 1

b

(22)

As discussed earlier, our binning is one-dimensional and is
conducted only along the z direction. More precisely, we
partition the simulation domain into nb = 358 evenly spaced
bins with Pij = G̃s

MD(zj, zi, 2h) and Qij = G̃s
comp(zj, zi, h, h). The

stochastic contributions to G̃s
comp are obtained via diffusion

maps. It must also be noted that the correction scheme based
on this particular choice of d(·,·) can be nicely mapped onto a
Bayesian framework, as discussed in Appendix A.
We then employ the simulated annealing technique, utilizing

the Metropolis-Hastings Monte Carlo (MHMC) method, to
solve the optimization problem specified by eq 20, wherein the
objective function is treated as an energy that is gradually
reduced by decreasing the temperature. Naturally, one would
choose the distance measure of eq 22 as the energy function.
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However, we empirically observe that doing so will result in
artificial oscillations of Dzz in the center of the film, possibly
due to uncertainties in the computed G̃s

MD(z0, z, t) values.
Since our initial estimate of Dzz within the film center is already
precise (as validated from MSD), we augment with a
regularization term of the form

=
=

+w D r D r( ) ( )
i

n

i i i
1

1

1
2

b

(23)

to penalize such oscillations. Here, ∥·∥ denotes the Frobenius
norm of a matrix and reduces to |Dzz(zi) − Dzz(zi+1)| for the
specific geometry considered in this work. Note that D( ) is
akin to a “tension”, similar to Tikhonoff regularization utilized
for computing a pseudoinverse matrix.66 One can then choose
w̅i values in such a manner that they vanish close to the walls
(i.e., in regions where the bin-wise relative entropy is large. In
this work, we set w̅i = 0 for the first 50 spatial bins next to each
wall. The procedure employed for assigning w̅i values of central
bins is discussed in Algorithm 4. The energy function utilized
for annealing is then modified to + , wherein λ is a
constant that tunes the relative strength of the tension term.
We start our simulated annealing calculations from the

Dzz(z) obtained from each MD trajectory using our FCE
estimator, starting at an inverse temperature given by

= A
H Hmax min

i n
i

i n
i

a

1 1b b (24)

For the findings presented in this article, we use a value of A =
64. Prior to generating trial moves, we first quantify the
variability of diffusivity profiles obtained from independent
MD trajectories. Specifically, let Dj(ri) denote the diffusivity
estimate at ri obtained from the jth MD trajectory. We
construct Σ = {σ(ri)}i=1

nb , where σαβ(ri) is the standard deviation
of the Nt independent estimates of Dαβ(ri). Proper rescaling of
these matrices provides the maximum step sizes of MC trial
moves, which are generated according to the procedure
described in Algorithm 2. In order to prevent the emergence of
artificial oscillations, the proposed displacements to diffusivity
are smoothed by convolving them with a normal distribution

w0 I( , 2 )b
2 , where wb denotes the characteristic width of a

spatial bin and I is the identity matrix. In total, we conduct 10
annealing calculations, one per MD trajectory. All other
implementation details, such as the quenching regime, are
included in Algorithms 3, 4, and 5. We wish to stress that the
implementation details outlined here are included for
reproducibility purposes only and are not necessarily optimal.
Therefore, it is possible to further optimize this procedure or
to utilize alternative optimization strategies altogether.
Figure 8 depicts the outcome of a single annealing

calculation initiated from a Dzz(z) obtained from one of the
10 MD trajectories using our FCE estimator. As shown in
Figure 8A, the objective function decreases sharply upon
annealing, leading to a corrected diffusivity profile (Figure 8B)
that differs significantly from the initial profile, particularly in
the vicinity of the confining walls. Although the bin-wise
relative entropies decrease considerably across the board, as
depicted in Figure 8C, they do not descend to zero entirely. In
particular, they deviate considerably from zero in the
immediate vicinity of the walls partly due to inadequate
statistics and considerable uncertainties as a result of extremely
low number densities.

Figure 9 depicts the mean of the 10 corrected Dzz(z) profiles
obtained from each annealing calculations. Notably, the FCE
estimator systematically underestimates Dzz in the immediate
vicinity of the wall, which is consistent with our earlier
observations in ref 53. In order to further assess the
performance of our correction scheme, we feed the corrected
Dzz(z) into an SDE integrator and compare the corresponding
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full and composite van Hove correlation functions with those
obtained from MD. As can be seen in Figure 7, annealing
considerably improves the agreement between SDE and MD,
irrespective of whether fully stochastic or composite van Hove
correlation functions are utilized for comparison.
We emphasize that the minor discrepancies that persist even

after annealing do not indicate the inadequacy of the annealing
process. In fact, the annealing optimization approach works as
intended, as demonstrated by the near-disappearance of

disagreements when computing the composite G̃s values of
Figure 7 from diffusion maps, which constitute the basis of the
optimization in the first place. For instance, there is a small but
significant discrepancy between composite G̃s obtained from
SDE and G̃s

MD at the first peak in density (Figure 10A). The
discrepancy, however, almost disappears when diffusion maps
are employed. The bin-wise relative entropy is also
considerably smaller when a comparison is made based on
diffusion maps (Figure 10B). One one hand, diffusion maps
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offer only an approximation of the Smoluchowski operator and
are exact only when τ → 0. Using them is therefore a trade-off
between efficiency and accuracy. Meanwhile, the numerical
integration of eq 8 is not exact and is instead subject to
uncertainties not only due to sensitivity to implementation
details such as the employed time step but also because of the
ambiguity in the form and magnitude of the drift term applied
in the immediate vicinity of the wall. One can also not rule out
the possibility that particle displacements might fundamentally
deviate from the canonical diffusive behavior in the immediate
vicinity of the wall, in which case eq 7 will fail to capture the
statistics of particle mobility. As such, any comparison with
SDE-generated data will be irrelevant. Given these possibilities,
it is unclear whether the minor discrepancies observed in
Figure 7 can ever be fully resolved through improving the
optimization algorithm.

III.D. Comparison with ad hoc Approaches. As
discussed in Section I, several authors have employed ad hoc
definitions of the local MSD to estimate diffusivity. Assuming
one-dimensional confinement along the z dimension, such
extensions generally take the following form

= | + | +z t t w z z zr r( , ) ( ) ( ) ( , ; )t
2

(25)

where r∥ corresponds to the projection of particle position
onto the xy plane and w(zτ, zt+τ; z) is a weight function that
specifies the contribution of each particle to the local MSD.
D∥(z) is then estimated from the slope of a linear fit between t
and z t( , ).
In order to compare our FCE estimator with such

alternatives, we compute two versions of local MSD using
the following weight functions:

Figure 8. Illustration of the performance of the annealing algorithm applied to a Dzz(z) profile computed from a single MD trajectory. (A) Value of
the objective function (without and with regularization) as a function of MHMC sweeps. The sweeps corresponding to each temperature are
depicted using different color. (B) Corrected Dzz(z) profile at the end of the annealing. (C) Binwise relative entropy before and after annealing.
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Figure 9. Average normal diffusivity profile Dzz(z) before and after annealing.

Figure 10. (A) Composite G̃s(z, z0, h, h) values and (B) bin-wise relative entropies computed from SDE integrated trajectories and diffusion maps
using the annealed Dzz(z) profile. For plots in (A), z0 corresponds to the first peak of the number density profile.

Figure 11. (A) ad hoc MSDs computed using the conventions given by eqs 26 and 27 at select positions across the film. Labels I−IV corresponds
to starting positions highlighted in Figure 3C. (B) Lateral diffusivity profile computed via ad hoc MSDs, compared with the FCE estimate obtained
using eq 15.
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In the second convention,32 only particles that reside within
the bin both at the beginning and at the end of an observation
window contribute to the local MSD of that bin. The first
convention, which is inspired by our FCE estimator, includes
particles that are within the bin either at the beginning or at
the end of the window, giving twice as much weight to those
who start and finish at the same bin. Figure 11A demonstrates
that the computed MSDs are not very sensitive to the
employed convention. The diffusivity profiles computed from
such ad hoc MSDs (Figure 11B) are also fairly consistent with
one another and those obtained using our FCE estimators. It
is, however, noteworthy that ad hoc profiles appear to be flatter
than those obtained from our FCE estimator. The observed
flattening of the diffusion profile can be explained by the high
likelihood of particles contributing to the local MSD of each
bin having visited neighboring bins intermittently. As a result,
the diffusivities of these visited bins have an impact on their
mobility. In the current system, the lateral diffusivity exhibits
minimal changes across the film, rendering this flattening
statistically insignificant. Conversely, in systems with large
diffusivity changes, this effect can be more pronounced.

IV. CONCLUSIONS
In this work, we have successfully applied and validated the
filtered covariance estimator (FCE) introduced in our previous
paper53 to extract position-dependent and anisotropic
diffusivity profiles from MD trajectories. We choose as our
observation window the characteristic relaxation time scale of a
position-dependent cage escape autocorrelation function. The
proposed estimator accurately reproduces diffusivity values
computed from the MSD for a bulk LJ liquid. As a simple but
nontrivial test case, we assess the performance of the estimator
for an LJ liquid confined within a slit pore. The estimator
accurately captures the diffusivity tensor’s isotropy at the
center of the pore, and the estimated diffusivities match with
those obtained from bulk simulations at the same number
density. The estimator, however, underestimates the normal
component of diffusivity in the immediate vicinity of the
confining walls, as expected based on our observations in ref
53. To address this, we have proposed an optimization
procedure based on simulated annealing and diffusion maps
that effectively corrects this systematic bias. The overall
performance of the estimator is further validated through a
comparison of the self-parts of the lateral and normal van Hove
correlation functions computed from MD and estimated by
using the diffusivity profile obtained from FCE.
It is important to note that although the annealing

procedure leads to a substantial reduction in the discrepancy
between the van Hove correlation functions generated by MD
and SDE, it does not eliminate it entirely. As outlined in
Section III.C, this outcome is not unexpected since the
optimization algorithm terminates at a small but nonzero
temperature when the change in energy function becomes
sufficiently slow. Further rounds of annealing could produce
improved minima. However, there are several aspects of the
annealing process that require optimization, including the
annealing protocol, trial move generation, and energy function.
We choose to use simulated annealing for its simplicity and
popularity within the molecular simulations community, but it
is generally possible to use any other optimization procedure
to solve it (eq 20). More efficient optimization schemes to
couple with the diffusion maps procedure may be the subject
of future work.

While it is generally possible to use any other optimization
procedure to solve this problem (eq 20), we find several
advantages for using simulated annealing. In addition to its
simplicity and popularity within the molecular simulations
community, simulated annealing might be able to avoid the
“curse of dimensionality”, which is a common issue
encountered by many deterministic optimization algorithms.
This phenomenon arises when the rate of convergence to a
local minimum becomes slower as the dimensionality of the
problem increases. In our case, the dimensionality of the
optimization problem is determined by the number of spatial
bins required for a given level of spatial resolution. Hence,
deterministic optimization algorithms may perform better
when fine discretization of the simulation domain is not
required.
Another relevant issue is regularization. The optimization

problem (eq 20) treats diffusivity values at different positions
independently, disregarding the expectation that diffusivity
needs to be smooth functions of position within a single phase.
Brute optimization of (eq 20) can therefore lead to overfitting
and spurious oscillations in diffusivity, especially given the
uncertainties in van Hove correlation functions obtained from
MD. It is therefore natural to constrain the optimization
problem (eq 20) in such a way that the only admissible
solutions are smooth. For that purpose, we introduce the
notion of tension given by eq 23, which plays much the same
role as a Bayesian prior distribution in the work of Hummer.44

There are, however, several other constructions that could
enforce smoothness. While our method is not necessarily the
most efficient or physically natural, it successfully avoids
overfitting and ensures smoothness of the estimated diffusivity
profiles.
It is worth noting that while our proposed estimator and

correction scheme have been validated using a simple
geometry, they can be readily extended to more complex
systems. Therefore, the application of our methods is not
limited to simple or one-dimensional geometries.
Beyond their use for characterizing spatial variations in

diffusivity, the estimators developed in this work can also be
utilized for providing accurate parameters of mean-field models
for describing the dynamics of confined systems. Such models
can, for instance, be numerically integrated to collect reliable
statistics of particle motion over time scales not accessible via
conventional MD or even coarse-grained methods such as
Langevin dynamics. Such statistics can provide insights into
how materials behave over long time scales and how mobility
statistics impact their functional properties, such as catalytic
activity, optical properties, and self-healing potency.

■ APPENDIX A: MAPPING OF THE PROPOSED
CORRECTION SCHEME ONTO A BAYESIAN
FRAMEWORK

Our correction scheme to mitigate hard wall artifacts can be
nicely mapped onto a Bayesian framework if relative entropy is
used as a distance function. As discussed earlier, our correction
scheme aims at decreasing some notion of distance between P,
the discretized transition probability matrix directly computed
from MD, and Q = f(D), the transition matrix inferred from
the diffusivity profile D according to diffusion maps. Assuming
the validity of Q, the conditional probability of observing a
particle dynamic trajectory (or a collection of trajectories) with
a total number of nw observation windows can be expressed as
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Assuming an uninformative prior over Q (i.e., P(Q) ≡ const.,
P(Q|data) ∝ P(data|Q)), the log of the posterior distribution
can thus be expressed as
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where C1 is an additive constant. Since P also does not depend
on D, nw∑i,j=1

nb Pij log Pij will also be constant and can be added
to and subtracted from both sides of (eq A2) to conclude
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where C2 is a different additive constant. Note that the right-
hand sides of eqs A3 and 22 are similar. More precisely,
conducting MHMC sampling of the energy function given by
eq 22 using an inverse temperature β ≔ nwnb will enable us to
sample from the posterior distribution Q, and minimizing the
said objective function will correspond to obtaining the
maximum likelihood estimator (MLE) of Q. If Q can be
sampled arbitrarily from the set of all stochastic matrices, then
the minimizer will be trivially given by Q = P. However, if we
instead perform the minimization over all choices of Q such
that Q = f(D(r)), then this will implicitly define an MLE for
D(r) associated with the mapping f (which is not in general
surjective). Moreover, the regularization term given by eq 23
can be seen as = Dlog( ( )) (i.e., as the logarithm of a
nonuniform prior on the diffusivity profiles). Putting every-
thing together, we can now express a posterior in terms of
diffusivity:
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