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Abstract 

Recent developments in machine learning interatomic potentials (MLIPs) have empowered even 

non-experts in machine learning to train MLIPs for accelerating materials simulations. However, 

the current literature lacks clear standards for documenting the use of MLIPs, which hinders the 

reproducibility and independent evaluation of the presented results. In this perspective, we aim to 

provide guidance on best practices for documenting MLIP use while walking the reader through 

the development and deployment of MLIPs including hardware and software requirements, 
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generating training data, training models, validating predictions, and MLIP inference. We also 

suggest useful plotting practices and analyses to validate and boost confidence in the deployed 

models. Finally, we provide a step-by-step checklist for practitioners to use directly before 

publication to standardize the information to be reported. Overall, we hope that our work will 

encourage reliable and reproducible use of these MLIPs, which will accelerate their ability to make 

a positive impact in various disciplines including materials science, chemistry, and biology, among 

others. 

TOC Graphic 

1. Introduction 

Computational analysis is an indispensable tool for understanding the behavior of materials. 

Such analysis has led to crucial insight in various fields such as catalysis1-3, bio-4-6, nano-6-8, and 

soft9, 10 materials among others, even enabling the computation-led design of materials in some 

cases. First-principles methods based on density functional theory (DFT) have been adopted by 

most communities to gain insights into materials properties due to a good balance between 

accuracy and computational cost. However, due to computational constraints, DFT is typically 

limited to simulating systems up to hundreds of atoms11, 12 and time scales of up to hundreds of 

picoseconds13, 14. 
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Recently, machine learning interatomic potentials (MLIPs) that are trained on DFT data have 

emerged as a promising method to expand the time and length scale of atomistic simulations while 

potentially maintaining DFT-like accuracy15, 16. Many ready-to-use software packages17-28 are now 

available for prospective practitioners to download, install, and use within hours. The relative ease 

of using such packages has generated considerable interest, resulting in a rapid increase in 

scientific applications such as accelerating molecular dynamics22, 29, 30, probing chemical 

reactivity31-33, and investigating long-time- and length-scale phase transitions34-36. Some MLIPs 

may now be extended to provide estimates on other properties as well such as dipole moments25, 

charge distribution37, the density of states38, 39, magnetic moments of atoms40, 41, and the local 

electron density around an atom42. 

Due to this rapid growth in the field of MLIPs, standards for documenting the use of MLIPs 

have yet to be developed by the community, leading to inconsistencies in reporting on the 

developed MLIPs. Specifically, the materials modeling community has not reached a consensus 

on how to ensure reproducible accurate43 use of MLIPs similar to what has been achieved for DFT-

based simulations44, 45. As a result, widely different standards of reporting can be found in the 

literature ranging from merely mentioning the use of MLIPs to open-sourcing all data and scripts46. 

As MLIPs are still new and evolving, such differences are understandable. Nevertheless, their 

reliability can vary widely depending on MLIP construction and training procedures. Reproducing 

results from literature may be difficult even for experienced researchers. For example, simple 

physical interactions such as nuclear repulsion are not always included in models and atoms may 

collapse together unphysically. Improper training procedures may also overfit certain properties 

such as energy at the cost of forces, which may lead to unphysical dynamics. Thus, considering 

that current MLIPs are typically not robust constructions, there is a thin line between useful and 
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misleading results. There is an urgent need for community to document the usage and validation 

of MLIPs with greater care to avoid misleading studies and over-interpreting results when there 

might be considerable uncertainty. 

In this perspective, we aim to provide the community with guidelines for documenting the 

development, validation, and application of MLIPs (Figure 1) similar to previous works that 

establish guidelines for experimental and computational subfields47-49. Specifically, we highlight 

different aspects of MLIPs that should be reported: hardware and software requirements, 

generation of training data, training of models, validation of predictions, and inference of MLIPs. 

We discuss the validation and inference of MLIPs with a focus on predicting energy, force, and 

stress as these are currently the most common prediction types in literature. In addition, we provide 

a detailed checklist that MLIP users can apply to self-review manuscripts before submission. 

Proper documentation of such information will foster greater trust in computational analyses and 

increase reproducibility. Promoting direct data availability will also accelerate the standardized 

development of MLIPs. Ultimately, developing better standards for detailing MLIP usage will help 

increase the adoption of MLIPs and allow the community to reap its full benefits.  

 

Figure 1. General workflow of data generation, training, validating, and deploying MLIPs for use in 
scientific research. Reporting is included as a final stage which is often overlooked in works utilizing MLIPs 
and is the focus of this perspective. 



 5 

2. Best Practices for Reporting 

2.1. Reporting Checklist 

Based on the guidelines that will be discussed in this perspective, we have provided a convenient 

and comprehensive checklist of the process of documenting various aspects of MLIP usage, 

including the choice of software and hardware, training data generation, training, validation, and 

inference as seen in Figure 1. This checklist is provided in the Supporting Information (SI) for 

practitioners to go through before publication to help ensure reproducible research. The checklist 

also guides reviewers on what types of data should be present in submitted manuscripts, or at 

minimum aids in looking out for potentially missing information. An up-to-date version of the 

checklist may be found in the GitLab repository at https://gitlab.com/szilvasi-group/mlip-

reporting-checklist. We encourage the community to make suggestions in the future as the 

development of MLIPs continues and new MLIP types become commonplace . The checklist may 

also be found in different formats if groups wish to improve the general checklist. We envision the 

checklist as a living document that will be maintained by the community to follow the standards 

of the field and the needs of researchers. We encourage MLIP developers to make pull requests 

for code-specific checklists if they wish to establish a more detailed standard for their own codes. 

2.2. Software and Hardware 

A range of software and hardware may be utilized by researchers. For software, we suggest 

reporting all aspects of the environment in which MLIPs are trained and used, such as the versions 

of the MLIP software package, Python, PyTorch/TensorFlow, CUDA, and the specifications of 

the used CPU/GPU. If an environment manager such as Conda or Python’s venv is used, a 

versioned list of all packages installed may help track down potentially conflicting packages and 

allow others to reproduce the same environment.  

https://gitlab.com/szilvasi-group/mlip-reporting-checklist
https://gitlab.com/szilvasi-group/mlip-reporting-checklist
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It is also useful to note the type of hardware used as GPUs tend to be limited by memory 

requirements imposed by the size of the model. For example, an H100 GPU may have 80 or 188 

GB while an A100 GPU may have 40 or 80 GB of memory. We suggest reporting detailed 

information regarding the GPU, CPU, memory, and parallelization to ensure that readers 

understand the viability of running the model.  

2.3. Training Data 

Training data for MLIPs may be generated and/or selected by a diverse range of methods. In this 

section, we detail various data generation strategies and their critical parameters to report. Training 

data typically consists of atomic configurations calculated with DFT, although any ground truth 

may be considered as well. The used atomistic data should be reported by providing the data 

source, version number, and access date that may be obtained from public repositories designed 

for MLIP development such as RevMD1750, IonSolvR50, and the Open Catalyst Project51, 52. Such 

repositories provide either the raw calculation files or the configurations in a compact format (xyz, 

npy, traj) including atomic positions, energy, forces, and stresses. If only a portion of the 

configurations were used, the subset of data used should be stated.  

Existing molecular dynamics (MD) runs from the literature that were not originally intended for 

machine learning can also be possible sources of training data. The reuse of literature data can help 

may accelerate research projects in their initial stages, highlighting how the increased data 

availability may have positive effects beyond reproducibility. However, when no appropriate 

dataset is available for the specific use case, researchers are required to generate their training data 

since current MLIPs cannot typically generalize from one system to another unless there is a match 

in composition and conditions such as temperature and pressure. If this is so, the exact methods 

for generating new datasets should be rigorously documented.  
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This is especially so as new methods for data generation can advance the field and their value 

should not be underestimated by the researchers generating the training data and MLIPs53. While 

it is understandable that groups may have in-house tools that are not suitable for public sharing, 

the general methodology must be reported and is not restricted to the suggestions that follow in 

this section. Instead, we provide guidance on common methods and highlight critical parameters 

needed to reproduce the method. It is important to note that methods of generating training data 

should be viewed with equal value and disclosed as their reproducibility is not guaranteed by 

reporting the raw data. 

When generating training data, it is helpful to start with simple and efficient methods, which 

usually involve enumerating different configurations of the system and evaluating them with 

single-point calculations. Yet, such methods can be surprisingly difficult to reproduce as critical 

details are often omitted. Three common methods for generating suitable atomic configurations 

involve random displacements54, 55, phonon-like displacements56-58, or combinatorial methods59-64. 

Random displacements, or structure rattling, perturb atomic positions to provide higher 

energy/force/stress structures from an optimized structure. Displaced structures provide a 

definition to the local PES but must be performed carefully and filtered to avoid generating 

unphysical configurations. Phonon displacements are similar to random displacements but are 

more physically motivated as they represent movements that may occur in MD simulations without 

directly performing them. Rattling structures or using phonons tends to be effective at exploring 

the local PES and it is helpful to provide the original structures before the displacement56, 65-67. For 

these displacement techniques, the type and magnitude of displacements, starting structures, unit 

cell, and phonon modes, should be provided. 
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Combinatorial methods involve the use of an algorithm to generate structures that ideally cover 

the entire configuration space required. The exact algorithm and method should be reported to 

identify possible biases, and a representative script should be provided. For example, unoptimized 

structures of liquids may be generated using a code such as Packmol68 and thus an input file for 

Packmol68 would be ideal to report. In contrast, crystalline materials such as high entropy alloys 

would require an entirely different algorithm with knowledge of a lattice structure to randomly 

place elements and distort the cell to reasonable lattice constants.69 The SI should contain an 

example script or pseudocode that illustrates the logical flow and allows the reader to implement 

it in their choice of programming language. If the cost of generating additional structures is low, 

there may also be value in generating a supplementary dataset without calculated properties that 

can be used in the future to augment the main dataset. 

In contrast to single-point methods, dynamical simulations can explore the potential energy 

surface directly and therefore give physically meaningful configurations for a given temperature, 

pressure, and composition. Reporting the MD ensemble (NVE, NVT, NPT), timestep, and 

thermostat/barostat settings is critical as these MD parameters directly affect the system’s 

dynamics. Directly providing the input files required for the simulation is a bonus as it resolves 

any doubts about what has been done. Additionally, MD-based methods such as simulated 

annealing70, 71, contour exploration72, or minima/basin hopping73-78 may be effective for exploring 

a wide variety of configurations. If such methods are used, their parameters must be reported 

consistent with literature studies utilizing them for molecular dynamics.  

It may also be helpful to point out when simulations can be performed in parallel and when 

equilibration is not reached. When training MLIPs, it may not be necessary to perform MD runs 

that are suitable for analysis since the goal of the MLIP is typically to avoid performing long MD 
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runs. Non-equilibrium MD should thus not be an issue when used as training data, especially as it 

is likely to improve the stability and robustness of the MLIP potential (stability itself is discussed 

in the Inference section) and biasing potentials that move the system away from equilibrium are 

helpful to use and report. If the bias is not directly implemented in the code being used, it is best 

to provide a small example of how to perform the biased MD79.  

Constraints in dynamical simulations can influence training data by intentionally biasing the 

system towards a given state and as such must be reported. Simple constraints such as the 

relationship between cell vectors or fixing atoms can be reported in the text and may be obvious 

in the trajectories supplied. However, it is crucial to provide unconstrained training data with all 

atoms having original forces restored, as calculated by the method used, even though some 

packages, such as ASE, zero the forces of fixed atoms by default. This is because some MLIP 

codes are not designed to read atomic constraints and the constrained atoms are included in the 

loss function with the constrained forces rather than the true forces. While some codes can mask 

atoms in the loss function to account for constraints, it is easier to simply store and use 

unconstrained data, which also ensures that the total energy and the forces in the system are fully 

consistent. More sophisticated constraint schemes (e.g., enhanced sampling80-82) must be reported 

as well and it is up to the author to properly describe them and/or provide an example script in the 

SI. For example, collective variables may be defined that control a bond distance as a function of 

some other property of the system to allow for a rare event to be performed that would be unlikely 

to occur naturally in an MD simulation.83-86 

After generating the initial training data, it is also important to consider how relevant training 

points are selected. For example, using all frames of an MD simulation will result in highly 

correlated data. As such it is necessary to have a procedure for data selection, such as including 
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only every Xth
 atomic configuration. Alternatively, sampling configurations that cover a range of 

MD properties such as energy, force, pressure, or volume may avoid correlated structures.79, 87 

While more data is assumed to be helpful in improving an MLIP, our experience with modern 

codes suggests that smaller curated datasets tend to require fewer resources to train to high 

accuracy. If active learning is used, it will be necessary to note down the criteria for selection of 

sampled configurations88-90. For example, if an uncertainty metric is utilized, the method for 

determining uncertainty must be described well and thresholds for data selection reported. It is 

common for uncertainty metrics to be used with active/iterative learning schemes, but 

standardization of reporting these learning schemes is non-trivial. Algorithms for active learning 

may also differ widely. Our suggestion is to report the detailed learning scheme and make the code 

public that is used if possible. Reporting the selection method and the unfiltered dataset allows for 

other selection methods to be tried later as they are discovered. 

2.4 Training MLIPs 

As model parameters may vary from package to package, detailed documentation of the model 

architecture, hyperparameters, and training methods is especially important for reproducibility. 

Although modern MLIP parameters might be confusing to those unfamiliar with specific packages, 

they can still be documented in a way that is generally useful and does not necessitate expert 

knowledge. For example, reporting of radial cutoff(s) allows for fundamental limits of the MLIP’s 

knowledge of long-range order to be evaluated in a way that is completely agnostic to the code 

being used. We note, however, that while the radial cutoff determines the direct range of the MLIP, 

message-passing or non-local MLIPs may include contributions beyond this radial cutoff 91-93. 

Similarly, a model’s complexity can be estimated by its degrees of freedom with the caveat that 

not all degrees of freedom are equal within an MLIP or between different MLIPs. Most other MLIP 
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parameters, however, may be crucial but difficult for non-expert readers to understand. We suggest 

including only the crucial parameters in the main document, especially those that have been 

explicitly tuned, while tabulating the rest in the SI. Another simple and efficient method for 

reporting is to disclose the full input file. We encourage MLIP developers to output files during 

training that can be directly used as input files. Such files should explicitly define all defaults to 

enable easy reporting in a way that is more agnostic to the specific version being used or if defaults 

are changed on installed package. 

If changes are made to the publicly available version of the code and licensing permits, patches 

that are critical to training, together with their purpose, should be provided in the SI. Software 

improvements and implementation of alternative approaches should be viewed positively when 

they improve training; their value should not be underestimated even if they are simple.  

While software packages may differ greatly, generic rules can be constructed for common 

models such as neural network (NN) potentials18-21, 23-25, 27, 28. The architecture and descriptors of 

a NN potential must be fully described with its layers, widths, and model features. The architecture 

of the model limits its accuracy given a fixed set of descriptors and as such determines the final 

quality of the model. Learning rates and loss functions may also influence the model strongly and 

any changes during training (multi-phase training, learning rate schedulers, etc.) should be 

detailed. Recently, the introduction of equivariance to MLIPs has also been seen to improve 

models19, 94, 95. For such codes, one should report related parameters such as the symmetries 

allowed or the maximum tensor ranks. Other general ML parameters such as activation function 

may not appear to be important but should be reported regardless as they may have unintended 

impact. If GPUs are used, it is important to report what numerical precision is used within the 

model as the usage of FP32, FP64, and TF3296 may influence results depending on system size 
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and normalization of data. If CPUs are used, FP64 should always be used (or higher precision) as 

most modern CPUs do not perform better on FP32 and precision will be lost unnecessarily. 

Precision in the model is unlikely to matter except when sub-meV/atom errors are reached97. The 

precision dependence can be evaluated by retraining or by reducing the model from FP64 to FP32 

or TF32 in the inference stage.  

Gaussian process potentials have also become common in the field especially for on-the-fly 

training 22, 98, 99 due to their predictable deterministic training time and inherent uncertainty 

quantification100. If calculated as part of the training process, the method of optimizing Gaussian 

process hyperparameters as well as the optimized hyperparameters for the model kernels and noise 

should also be reported to provide a good starting point for training similar models.  It should be 

disclosed directly if hyperparameters are determined non-systematically. A non-systematic search 

of hyperparameters may produce good models but indicate that better hyperparameters might be 

possible to identify in future studies. 

As an example of the importance of detailed reporting of the kernel parameters, Gaussian process 

models can be developed using 2-body, 3-body, or n-body multi-element kernels22, 99, 101. The 2-, 

3-, and n-body terms may have differing radial cutoff definitions between atoms; these radial 

cutoffs should be reported as a table such that particular interactions (e.g., C-H pairs) can be easily 

identified and compared with radial distribution functions. These models may also be precalculated 

in terms of its decomposed n-body interactions and approximated by mapping the n-body terms 

directly to a tabulated form to be looked up during simulation, known as a mapped Gaussian 

process (MGP). The model is approximated by mapping the n-body terms directly to a tabulated 

form to be looked up during simulation, known as a mapped Gaussian process (MGP).102 MGPs 

provide much faster predictions but may be less accurate if not determined on a fine enough grid. 
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It is therefore critical to report the exact form of the approximation (e.g., grid spacing between 

tabulated points, linear vs. spline interpolation, error prediction, etc.). Plotting the 2 or 3 body 

terms may be helpful to identify issues at extreme distances. We also note that training data for 

Gaussian processes come from typical DFT calculations but may be added on a per-atom basis 

rather than the entire configuration in some codes supporting active learning. The per-atom DFT 

data must be accounted for in the reporting. Training data may be better provided in the form of a 

list of configurations and atoms or by modifying the training dataset to include tags for atoms that 

are trained on if utilized. A standardized format for sparse atomic data which is supported across 

codes would be a useful development for the reproduction and cross-validation of codes. Any 

format can be used that supports tagging of atoms (extxyz, traj, npz) with an extra parameter that 

indicates to train on those atoms. 

Hyperparameter optimization is commonly performed to search for the best models.103 In such 

cases, it would be useful to note down the search space and the tabulate the tested parameters, 

which may save time and effort for prospective users looking to study similar systems. If online 

tools such as Weights & Biases are used for hyperparameter scans, the tools should also be 

mentioned together with the specific algorithms applied for hyperparameter optimizations103-105. 

It is also helpful to think of MLIPs as being either feature-based or deep-learning-based. Feature-

based MLIPs, such as BPNNs106, 107 and GAP108, usually involve a transformation of the input 

structures into suitable features/descriptors for subsequent regression to map these features to the 

computed energies and forces. These features have properties such as being invariant to 

translations and rotations that make them conducive for training. On the other hand, deep-learning 

based MLIPs, learn the features on-the-fly during training. Examples of these MLIPs include 

NequIP20 and MACE 19, which use graphs to represent the input structures. Message passing neural 
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networks109 (MPNNs) then operate on these graphs, where a series of interaction blocks can 

generate higher order features on-the-fly. 

We note that depending on the type of MLIP trained, different analyses of the training data can 

be performed. For example, in feature-based MLIPs, it is simple to obtain the feature vectors and 

so it can be helpful to plot the distribution of the features to visualize the training space. On the 

other hand, for deep-learning-based MLIPs, obtaining the features can be difficult. We therefore 

suggest that for deep-learning-based models, the model itself—including the network architecture 

and weights—can be shared to ensure reproducibility and facilitate follow-up studies. 

2.5. Validating MLIPs 

Evaluating the accuracy of an MLIP is commonly performed by assessing errors in uncorrelated 

structure predictions and in statistical/thermodynamic properties relevant to physical insights that 

will be drawn from the MLIP. The MLIP should predict energies, forces, and stresses accurately 

or any predictions will be a result of coincidence or error cancellation which may harm 

transferability or robustness43, 110. For proper evaluation of the model performance, the “test set”, 

used for evaluating inference errors, must include carefully sampled data that is representative of 

the configurations the MLIP will need to predict although computational limitations may limit the 

system size. If that is the case, authors should report known limitations to inform the readers. A 

common error in creating test sets is to include atomic configurations from intermediate MD steps 

between those used as training images, which will give artificially low errors. Instead, we 

recommend building test sets from MD runs independent of those used for training so that the 

model’s performance is evaluated on data that is not directly correlated with the training set. In 

addition, validation must not be performed using “validation set”, used for selecting models during 

training, as reported by MLIP codes as these errors are simply a metric to select an ideal model. 
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The validation set leaks knowledge of its data into the model indirectly and influences the training 

process. In addition, the test set and validation set meaning should be well-defined in the methods 

section of the paper as the literature is not consistent in their definitions. 

Error metrics, such as the mean absolute error (MAE), mean signed error (MSE), mean 

percentage error (MPE), or root mean square errors (RMSE), allow for easy quantification of the 

quality of the MLIP model and can highlight where systematic errors exist for improvement. Errors 

must be reported for all predicted properties such as energy, force, and stress. Force error can also 

be reported in terms of angle and magnitude, which are more meaningful and are rotationally 

invariant quantities. Force errors should also be computed based on the unmodified ground truth 

without constraints such as fixed atoms. Contributions from fixed atoms may be removed on a per-

image basis instead but removing such contributions is not directly supported by all codes. Stress 

errors must also be reported carefully with the ideal gas contribution of velocities to stress removed 

before analysis as ideal gas contributions come from velocity in the MD simulation. The stress 

error should also be partitioned into the normal and shear components separately before analysis 

as it is common for shear stresses to not be considered during NPT simulations and the normal 

stress solely controls the pressure dependence.  
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Figure 2. Improving the presentation of energy errors and force magnitude errors. Plots (a) and (d) are 
intended as examples of parity plots that show very little useful information, while plots (b) and (e) are the 
corresponding error distribution plots generated with KDE coloring highlight residual errors more 
effectively. The angle error of force is presented in plot (c). Plot (f) is the histogram analog of plot (e), 
showing the KDE plots are superior to a histogram due to distortion of data in the histogram. Data is 
generated as mock data from NumPy to highlight how to best plot MLIP errors and is not intended to be 
interpreted as a result of any simulation or training. A script to generate a similar plot is provided in the 
Supplementary Information. All plots are colored according to the default matplotlib color mapping 
(viridis), except for the hexbin plot (plasma) due to the change to a log scale. 

Validation of MLIP potentials is often presented graphically as a function of system properties. 

For simple statistics such as energy or force errors, parity plots (Figures 2a and 2d) are typically 

the go-to choice as they allow the reader to easily compare predictions with benchmarks and 

determine if systematic errors are present. However, when parity plots are calculated over a wide 

range of values, the resolution of points is reduced, which may hide important discrepancies. In 

such cases, plotting the error distribution can help highlight specific patterns that cannot be seen 

on parity plots and indicate issues of the model (Figures 2b and 2e). For example, in Figure 2b 

there is a systematic deviation that is hidden in the parity plot of the same data. In Figure 2e, two 

distributions appear to be present, which may be due to atoms in different chemical environments 
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or accidental mixing of training sets with different ground truths. Errors may also be correlated to 

other properties to highlight how predictions change as a function of the ground truth or predicted 

properties. For example, Figure 2c demonstrates a clear relationship between the force angle error 

and the magnitude of the force, with low magnitudes having larger angle errors in general. We 

suggest also plotting errors against properties such as pressure, atomic composition, and system 

size to check for correlations that might indicate simulation regions of concern and possible ways 

to improve the model. If the MLIP provides a direct prediction of additional properties (e.g., 

magnetic moment, local electron density, density of states) these may also be validated at this 

stage. 

To improve visual clarity when there is significant data overlap, the distribution of points can be 

colored via a kernel density estimation (KDE). This is visually clearer in comparison to a 

histogram, which more explicitly puts the data into bins to calculate a distribution but distorts the 

appearance as seen in Figure 2f. Note that the choice of bandwidth and kernel function can greatly 

affect the KDE, and as such these parameters should be reported as well. However, a histogram 

may be helpful if the data needs to be digitalized as discrete points may not be present when using 

a KDE in a region of high density. We also stress the importance of choosing a good color scheme 

when using color to encode data and suggest providing color bars and/or mentioning the color map 

if it has a common name. We provide an example script capable of producing both parity and error 

distribution plots in the SI.  
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Figure 3. Example plots of (a) equation of state,111 (b) two-body potential energy curves,112 (c) vibrational 
density of states,113 (d) density,114 (e) radial distribution function,115 (f) isothermal compressibility,114 (g) 
coverage dependent adsorption energy,116 and (h) phonon band structure101 using MLIPs in literature 
studies. These highlighted plots demonstrate a wide variety of styles found in the literature for reporting 
MLIP predicted properties; we suggest the reader view them in the context of the original publication. (a) 
Adapted with permission111. Copyright 2022 Elsevier. (b) Adapted with permission112. Copyright 2022 IOP 
Publishing Ltd. (c) Adapted with permission113. Copyright 2022 Elsevier. (d, f) Adapted with permission114. 
Copyright 2021 AIP Publishing. (e) Adapted with permission115. Copyright 2021 American Chemical 
Society. (g) Adapted with permission116. Copyright 2023 American Physical Society. (h) Adapted with 
permission101. Copyright 2021 Springer Nature. 

A particularly meaningful way to validate MLIPs is to check if the predictions in MD simulations 

match with the ground truth they are based upon. Such practice is especially useful when the 

validated property is directly related to the physical insights the MLIP study is intended to provide. 

Examples of MD-derived properties are the vibrational density of states, density, radial distribution 

function (RDF), and isothermal compressibility as seen in Figures 3c, 3d, 3e, and 3f, respectively. 

Evaluation of MD properties may be limited by equilibration time in DFT, so it may not be possible 
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to directly validate with MD properties. Instead, it may be possible to equilibrate using the MLIP 

and report if a DFT simulation started from the final MLIP configuration starts to deviate in any 

thermodynamic properties over a short time, which may indicate a disagreement with the MLIP 

prediction. Tabulating all calculated properties in the SI will also facilitate direct comparison in 

the future when new methods or more comprehensive DFT simulations become available. We also 

suggest presenting differences of properties when the MLIP and DFT results appear to be well 

converged, since the resolution of data in plots may make it difficult to see where agreement is 

better or worse. For example, in Figure 3e the radial distribution function (RDF) appears to be 

very similar for the MLIP and MD runs. However, the agreement is not perfect, and a difference 

plot of RDFs would be informative. We note that the MLIP results should not be compared with 

experiments: this is a common mistake during validation of the MLIP and is addressed further in 

the inference section of the perspective. 

Relevant thermodynamic quantities related to the studied research questions, such as n-body 

interactions, thermal expansion coefficients, binding energies, and phonons/vibrations, should also 

be evaluated and reported from analyses such as many-body decomposition114, 117, 118 or analyses 

of static systems119, 120 to ensure the MLIP provides meaningful physical insights. In many-body 

decomposition, DFT is used to calculate various configurations of 2-body, 3-body, or n-body 

isomers, enabling the precise determination of their decomposed interaction energies. Differences 

between MLIP and DFT interaction energies reveal the presence of systematic errors or instances 

of unphysical error cancellation. Two-body interactions may also be presented as a dissociation 

curve as seen in Figure 3b. Optimizing structures using DFT and MLIPs and reporting the residual 

mean square displacements (RMSD) can provide additional information about the low-energy 

structures predicted by the MLIP. Properties based solely on system energy, such as the formation 
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energy of nanoparticles, cohesive energies of bulk structures, and binding energies of adsorbates, 

can be validated without running a full MD simulation at the DFT level. Other examples are an 

equation of state121, the binding energy of adsorbates on a surface,122 or the phonon band structure 

of a system58, 123 as seen in Figures 3a, 3g, and 3h, respectively. We also suggest reporting 

validation of thermodynamic properties both statistically (for quick comparison) and graphically 

(for identification of trends) when possible.  

Modern MLIPs are commonly strictly local potentials with their interactions confined to their 

radius of interaction, which guarantees that the models are size-consistent and size-extensive. 

However, in large unit cells, the long-range order that forms may be longer than the MLIP radius 

of interaction. On the other hand, in small unit cells, there can be artificial short-range order. The 

orders that form can thus bias the training set towards interactions that arise in specific system 

sizes and the MLIP may not generalize well as a result. It is logical to validate the system as a 

function of system size as well when the system size is changing. However, validating the model 

on large systems may present unique challenges, as MLIPs are typically used when the ground 

truth for larger systems is too expensive to compute. Therefore, when applying MLIPs trained on 

small systems to larger ones, it's advisable to invest in a limited set of single-point calculations to 

assess the MLIP's transferability to these larger systems. Potential errors may be verified and 

reported by checking for discontinuous or unphysical dissociation curves of atoms or by evaluating 

MD properties as a function of the number of atoms. 

We also suggest reporting the test results of MLIPs beyond their training set conditions as 

extreme conditions, such as elevated temperatures, can help identify problems with stability and 

help us understand how the potential will extrapolate to unknown configurations124, 125. This test 

is particularly useful since the test accuracy of a model is not necessarily a good proxy of its 
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extrapolative ability124, 126. Deliberately creating non-physical interactions in simulations may help 

identify when and why the MLIP fails during longer MD runs. For example, the O-H bond of water 

might break during MD runs, forming OH. If OH is not present in the training dataset, it would be 

good to include it to analyze how an unknown interaction will be handled in MD simulations if it 

occurs by chance. Similarly, performing a topology analysis in the water system would ensure that 

the simulation is still in a stable state given knowledge of the training dataset.  

2.6 Inferring MLIPs 

The most common use for MLIPs is to perform accelerated MD simulations in suitably modified 

classical MD software such as LAMMPS127, GROMACS128, or OpenMM129. Suggestions on how 

to perform and report MD simulations is beyond the scope of this perspective, as they should be 

performed identically to similar classical simulations. We do, however, suggest providing direct 

input files for reproduction. It can additionally be helpful for practitioners to know the MLIP 

evaluation speed, preferably reported in “atoms/second”, as this is agnostic to system size and time 

step and may be related to the hardware reported. We also suggest reporting actual memory usage 

as the hardware provides a hard constraint on memory and requirements for inference may be 

significantly higher or lower than that for training depending on system size. Determining memory 

usage as a function of system size and providing this information in the SI will assist readers in 

understanding scaling of codes that they may be unfamiliar with. 

MLIP inference is often challenging as major, hidden problems can arise due to stability 

issues130. While some guidelines for MLIP stability exist, addressing this complex issue is difficult 

as failures may occur differently on a code-to-code basis. MLIPs can sometimes predict unrealistic 

behavior even if the test dataset shows low errors as ML models typically do not follow physical 

constraints. For example, the MLIP might incorrectly predict bonding at unphysical distances or 
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bonds may break unexpectedly. Such stability issues should be reported even if a solution may be 

out of reach. To improve stability, augmenting the MLIP with physically motivated terms such as 

nuclear repulsion, dispersive forces, and force constraints can help.91, 131-133 If augmentations are 

applied, their exact form must be reported. It is also important to report any known limitations 

with regard to the temperature, pressure, or material phase they intended to operate in as it is 

common for stability issues to arise whenever the potential is extrapolating beyond its original 

training set. The limitations may be discussed in a “Limitations” section of the manuscript (or 

added to SI if there are space constraints) so that readers can find all known inference issues with 

MLIPs. A limitations section may also be utilized to discuss strategies to keep potentials stable 

within known instabilities by use of adaptive timesteps or schemes to restart MD runs from slightly 

different random seeds. 

Validation of trained MLIPs by experimental comparison is a misguided practice as the 

underlying training data is not necessarily correlated with experiments and may result in false 

confidence in the quality of the MLIP. Errors arising from the computational method or model 

approximations will cause deviations from experiments, which must be reproduced in the MLIP. 

As a result, experimental comparisons should not be used to validate the quality of MLIPs, but 

instead treated as emergent results to serve as predictions of the DFT simulation. As such, if the 

MLIP is expected to reproduce the DFT method well, any agreement with experiments likely 

indicates the underlying method would agree in absence of the use of MLIPs. Experimental 

comparisons are therefore useful for gaining physical insights into the underlying method used in 

data generation. However, they must be reported with caution to avoid grand claims that cannot 

be supported by the work when direct verification is not possible. Here, we stress to the reader that 
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“validation” of the MLIP by experimental results is not validation but is instead computing results 

from the inference stage. 

2.7 Data Availability / FAIR 

Data lies at the heart of machine learning. To promote software development and verify the 

results resulting from MLIPs, proper archival of data should be required. Data requests to authors 

may initially work but will be less effective as the publication and authors age. Adhering to the 

FAIR data principles134-136—making data findable, accessible, interoperable, and reusable—is 

most painless at the publication stage and must be advocated for by journals hosting MLIP 

publications. Public, unaltered datasets necessary for reproducing the results should be provided 

for publication. This should be provided in standard formats compatible with common software 

(Atomic Simulation Environment137, pymatgen138, etc.) to facilitate interoperability between 

codes. It is important to keep useful information when possible, such as magnetic moments, even 

if this is not used by the MLIP developer in their current work. This extra information may be used 

in future MLIPs if the dataset is reused or verify that future data generation is consistent with the 

old dataset if it is extended. While the SI can serve as a backup of training inputs, large datasets 

are better hosted on research repositories like Zenodo139 or NOMAD140. These repositories also 

provide DOIs for easy referencing of specific versions (which may be updated after publication) 

and retrieval of specific files from the dataset if properly formatted. We advise against using 

software-focused Git-based repositories such as GitHub and GitLab, since they may be modified 

less transparently, and bandwidth and size limitations may force authors to reduce the amount of 

data available. However, even research repositories may have limited file sizes. In that case, we 

suggest uploading a representative portion of the data. All training data should be reported, and it 

should be disclosed if it is not 
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Sharing trained models can also be very useful. As models are difficult to generally deploy 

across different computational systems without modification, we suggest providing all tools 

required for retraining. In some cases, the MLIP training code is not publicly available, making 

direct reproduction impossible. The models should still be reported as they will be useful for 

comparison with other MLIP training codes available at or after publication, encouraging healthy 

competition between development groups. Additional effort should be applied towards sharing 

trained models when training times are large due to the size of the dataset and retraining the model 

invokes an excessive cost on future practitioners preventing reproduction. An open interface online 

which is provided for a pre-trained model, such as that of the Open Catalyst project demo on the 

OC20 dataset51, 141, 142, can be a helpful alternative when sharing the model is not possible. 

However, there must be still caution with the suggested practices as there is no way to guarantee 

that third-party services hosted by individual researchers will be available long term. If it is 

possible, providing the repository containing everything required to self-host the service helps 

ensure it is not lost if the original service provider is no longer functional. 

3. Conclusions 

Establishing clear and comprehensive reporting standards for MLIPs is critical for ensuring the 

reliability, reproducibility, and advancement of MLIP-accelerated simulations. This perspective 

highlights various aspects that may not currently be rigorously documented but are critical for 

increasing the usefulness and reproducibility of publications. We encourage the adoption of 

standardized reporting practices that are enforced at the personal, group, and journal levels before 

publication. A more standardized approach will also assist in peer review by ensuring that 

reviewers have all pertinent information on their first viewing, accelerating the publication process 

by reducing the need for lengthy revisions. The challenges with MLIP reporting arise largely from 
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the diverse reporting requirements of newer software available and the lack of long-term, field-

specific standards. To tackle this, we provide a checklist in the Supporting Information 

encompassing the suggestions of this perspective. The dynamic and evolving nature of MLIPs and 

their applications requires an adaptable standard that lays the groundwork for all MLIPs to be 

reported similarly. We hope that the establishment of such standards may also accelerate the 

adoption of MLIPs in the common workflows of DFT practitioners.  

Supporting Information. 

The following files are available free of charge. 

Checklist of parameters to report for authors to reference prior to publication and a script to serve 

as an example of how to plot validation data using matplotlib. (PDF) 

Author Information 

Corresponding Author 

Tibor Szilvási - Department of Chemical and Biological Engineering, University of Alabama, 

Tuscaloosa, AL 35487, United States; Email: tibor.szilvasi@ua.edu 

Authors 

Tristan Maxson - Department of Chemical and Biological Engineering, University of Alabama, 

Tuscaloosa, AL 35487, United States 

Ademola Soyemi - Department of Chemical and Biological Engineering, University of Alabama, 

Tuscaloosa, AL 35487, United States 

mailto:tibor.szilvasi@ua.edu


 26 

Benjamin W. J. Chen - Institute of High Performance Computing (IHPC), Agency for Science, 

Technology, and Research (A*STAR), 1 Fusionopolis Way, #16–16 Connexis, Singapore 138632, 

Singapore 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript. All authors have contributed equally. 

Notes 

The authors declare no competing financial interest. 

Acknowledgements 

T.M., A.S. and T.S. would like to acknowledge the financial support of the National Science 

Foundation (NSF) under grant number 2245120 and the financial support of the Department of 

Energy (DOE) under grant number DE-SC0024654. T.M. would like to acknowledge this material 

is based upon work supported by the U.S. Department of Energy, Office of Science, Office of 

Advanced Scientific Computing Research, Department of Energy Computational Science 

Graduate Fellowship under Award Number(s) DE-SC0023112. A.S would like to acknowledge 

the financial support of the University of Alabama Graduate School as a Graduate Council Fellow. 

B.W.J.C is grateful for support by the A*STAR SERC Central Research Fund award. T.M., A.S. 

and T.S. would also like to thank the University of Alabama and the Office of Information 

Technology for providing high-performance computing resources and support that has contributed 

to these research results. This work was also made possible in part by a grant of high-performance 

computing resources and technical support from the Alabama Supercomputer Authority. This 



 27 

research used resources of the National Energy Research Scientific Computing Center (NERSC), 

a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley 

National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award 

BES-ERCAP0024218. Any opinions, findings, conclusions, and/or recommendations expressed 

in this material are those of the authors(s) and do not necessarily reflect the views of the NSF or 

DOE. 

References 

1. Liu, D.-J.; Evans, J. W., Fluorine spillover for ceria- vs silica-supported palladium 
nanoparticles: A MD study using machine learning potentials. The Journal of Chemical Physics 
2023, 159 (2), 024101. 
2. Zhou, C.;  Ngan, H. T.;  Lim, J. S.;  Darbari, Z.;  Lewandowski, A.;  Stacchiola, D. J.;  
Kozinsky, B.;  Sautet, P.; Boscoboinik, J. A., Dynamical Study of Adsorbate-Induced 
Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. Journal of 
the American Chemical Society 2022, 144 (33), 15132-15142. 
3. Schaaf, L.;  Fako, E.;  De, S.;  Schäfer, A.; Csányi, G., Accurate Reaction Barriers for 
Catalytic Pathways: An Automatic Training Protocol for Machine Learning Force Fields. arXiv 
preprint arXiv:2301.09931 2023. 
4. Noé, F.;  De Fabritiis, G.; Clementi, C., Machine learning for protein folding and 
dynamics. Current Opinion in Structural Biology 2020, 60, 77-84. 
5. Bereau, T.;  DiStasio, R. A., Jr.;  Tkatchenko, A.; von Lilienfeld, O. A., Non-covalent 
interactions across organic and biological subsets of chemical space: Physics-based potentials 
parametrized from machine learning. The Journal of Chemical Physics 2018, 148 (24), 241706. 
6. Gkeka, P.;  Stoltz, G.;  Barati Farimani, A.;  Belkacemi, Z.;  Ceriotti, M.;  Chodera, J. D.;  
Dinner, A. R.;  Ferguson, A. L.;  Maillet, J.-B.;  Minoux, H.;  Peter, C.;  Pietrucci, F.;  Silveira, 
A.;  Tkatchenko, A.;  Trstanova, Z.;  Wiewiora, R.; Lelièvre, T., Machine Learning Force Fields 
and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological 
Systems. Journal of Chemical Theory and Computation 2020, 16 (8), 4757-4775. 
7. Lai, K. C.;  Liu, D.-J.; Evans, J. W., Nucleation-mediated reshaping of facetted metallic 
nanocrystals: Breakdown of the classical free energy picture. The Journal of Chemical Physics 
2023, 158 (10), 104102. 
8. Lim, J. S.;  Vandermause, J.;  van Spronsen, M. A.;  Musaelian, A.;  Xie, Y.;  Sun, L.;  
O’Connor, C. R.;  Egle, T.;  Molinari, N.;  Florian, J.;  Duanmu, K.;  Madix, R. J.;  Sautet, P.;  
Friend, C. M.; Kozinsky, B., Evolution of Metastable Structures at Bimetallic Surfaces from 
Microscopy and Machine-Learning Molecular Dynamics. Journal of the American Chemical 
Society 2020, 142 (37), 15907-15916. 
9. Ye, H.;  Xian, W.; Li, Y., Machine Learning of Coarse-Grained Models for Organic 
Molecules and Polymers: Progress, Opportunities, and Challenges. ACS Omega 2021, 6 (3), 
1758-1772. 



 28 

10. Hong, S. J.;  Chun, H.;  Lee, J.;  Kim, B.-H.;  Seo, M. H.;  Kang, J.; Han, B., First-
Principles-Based Machine-Learning Molecular Dynamics for Crystalline Polymers with van der 
Waals Interactions. The Journal of Physical Chemistry Letters 2021, 12 (25), 6000-6006. 
11. Ding, L.;  Davidchack, R. L.; Pan, J., A molecular dynamics study of sintering between 
nanoparticles. Computational Materials Science 2009, 45 (2), 247-256. 
12. Sheavly, J. K.;  Gold, J. I.;  Mavrikakis, M.; Van Lehn, R. C., Molecular simulations of 
analyte partitioning and diffusion in liquid crystal sensors. Molecular Systems Design & 
Engineering 2020, 5 (1), 304-316. 
13. Dawson, W.; Gygi, F., Equilibration and analysis of first-principles molecular dynamics 
simulations of water. The Journal of Chemical Physics 2018, 148 (12), 124501. 
14. Buesser, B.;  Gröhn, A. J.; Pratsinis, S. E., Sintering Rate and Mechanism of TiO2 
Nanoparticles by Molecular Dynamics. The Journal of Physical Chemistry C 2011, 115 (22), 
11030-11035. 
15. Yamijala, S. S. R. K. C.;  Ali, Z. A.; Wong, B. M., Acceleration vs Accuracy: Influence of 
Basis Set Quality on the Mechanism and Dynamics Predicted by Ab Initio Molecular Dynamics. 
The Journal of Physical Chemistry C 2019, 123 (41), 25113-25120. 
16. Sauceda, H. E.;  Chmiela, S.;  Poltavsky, I.;  Müller, K.-R.; Tkatchenko, A., Construction 
of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical 
Insights. In Machine Learning Meets Quantum Physics, Schütt, K. T.;  Chmiela, S.;  von 
Lilienfeld, O. A.;  Tkatchenko, A.;  Tsuda, K.; Müller, K.-R., Eds. Springer International 
Publishing: Cham, 2020; pp 277-307. 
17. Paszke, A.;  Gross, S.;  Massa, F.;  Lerer, A.;  Bradbury, J.;  Chanan, G.;  Killeen, T.;  Lin, 
Z.;  Gimelshein, N.; Antiga, L., Pytorch: An imperative style, high-performance deep learning 
library. Advances in neural information processing systems 2019, 32, 8026-8037. 
18. Wang, H.;  Zhang, L.;  Han, J.; E, W., DeePMD-kit: A deep learning package for many-
body potential energy representation and molecular dynamics. Computer Physics 
Communications 2018, 228, 178-184. 
19. Batatia, I.;  Kovacs, D. P.;  Simm, G.;  Ortner, C.; Csányi, G., MACE: Higher order 
equivariant message passing neural networks for fast and accurate force fields. Advances in 
Neural Information Processing Systems 2022, 35, 11423-11436. 
20. Batzner, S.;  Musaelian, A.;  Sun, L.;  Geiger, M.;  Mailoa, J. P.;  Kornbluth, M.;  
Molinari, N.;  Smidt, T. E.; Kozinsky, B., E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials. Nature Communications 2022, 13 (1), 2453. 
21. Gao, X.;  Ramezanghorbani, F.;  Isayev, O.;  Smith, J. S.; Roitberg, A. E., TorchANI: A 
Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural 
Network Potentials. Journal of Chemical Information and Modeling 2020, 60 (7), 3408-3415. 
22. Jinnouchi, R.;  Karsai, F.; Kresse, G., On-the-fly machine learning force field generation: 
Application to melting points. Physical Review B 2019, 100 (1), 014105. 
23. Khorshidi, A.; Peterson, A. A., Amp: A modular approach to machine learning in 
atomistic simulations. Computer Physics Communications 2016, 207, 310-324. 
24. Zeng, J.;  Zhang, D.;  Lu, D.;  Mo, P.;  Li, Z.;  Chen, Y.;  Rynik, M.;  Huang, L. a.;  Li, Z.;  
Shi, S.;  Wang, Y.;  Ye, H.;  Tuo, P.;  Yang, J.;  Ding, Y.;  Li, Y.;  Tisi, D.;  Zeng, Q.;  Bao, H.;  
Xia, Y.;  Huang, J.;  Muraoka, K.;  Wang, Y.;  Chang, J.;  Yuan, F.;  Bore, S. L.;  Cai, C.;  Lin, Y.;  
Wang, B.;  Xu, J.;  Zhu, J.-X.;  Luo, C.;  Zhang, Y.;  Goodall, R. E. A.;  Liang, W.;  Singh, A. K.;  
Yao, S.;  Zhang, J.;  Wentzcovitch, R.;  Han, J.;  Liu, J.;  Jia, W.;  York, D. M.;  E, W.;  Car, R.;  



 29 

Zhang, L.; Wang, H., DeePMD-kit v2: A software package for deep potential models. The 
Journal of Chemical Physics 2023, 159 (5), 054801. 
25. Unke, O. T.; Meuwly, M., PhysNet: A neural network for predicting energies, forces, 
dipole moments, and partial charges. Journal of chemical theory and computation 2019, 15 (6), 
3678-3693. 
26. Shapeev, A. V., Moment tensor potentials: A class of systematically improvable 
interatomic potentials. Multiscale Modeling & Simulation 2016, 14 (3), 1153-1173. 
27. Hu, L.;  Huang, B.; Liu, F., Atomistic Mechanism Underlying the Surface Reconstruction 
Revealed by Artificial Neural-Network Potential. Physical Review Letters 2021, 126 (17), 
176101. 
28. Sauceda, H. E.;  Gálvez-González, L. E.;  Chmiela, S.;  Paz-Borbón, L. O.;  Müller, K.-
R.; Tkatchenko, A., BIGDML—Towards accurate quantum machine learning force fields for 
materials. Nature Communications 2022, 13 (1), 3733. 
29. Behler, J.;  Martoňák, R.;  Donadio, D.; Parrinello, M., Metadynamics Simulations of the 
High-Pressure Phases of Silicon Employing a High-Dimensional Neural Network Potential. 
Physical Review Letters 2008, 100 (18), 185501. 
30. Chen, B. W. J.;  Zhang, X.; Zhang, J., Accelerating explicit solvent models of 
heterogeneous catalysts with machine learning interatomic potentials. Chemical Science 2023, 14 
(31), 8338-8354. 
31. Rice, P. S.;  Liu, Z.-P.; Hu, P., Hydrogen Coupling on Platinum Using Artificial Neural 
Network Potentials and DFT. The Journal of Physical Chemistry Letters 2021, 12 (43), 10637-
10645. 
32. Ang, S. J.;  Wang, W.;  Schwalbe-Koda, D.;  Axelrod, S.; Gómez-Bombarelli, R., Active 
learning accelerates <em>ab initio</em> molecular dynamics on reactive energy surfaces. Chem 
2021, 7 (3), 738-751. 
33. Manzhos, S.; Carrington, T., Jr., Neural Network Potential Energy Surfaces for Small 
Molecules and Reactions. Chemical Reviews 2021, 121 (16), 10187-10217. 
34. Deringer, V. L.;  Bernstein, N.;  Csányi, G.;  Ben Mahmoud, C.;  Ceriotti, M.;  Wilson, 
M.;  Drabold, D. A.; Elliott, S. R., Origins of structural and electronic transitions in disordered 
silicon. Nature 2021, 589 (7840), 59-64. 
35. Kapil, V.;  Schran, C.;  Zen, A.;  Chen, J.;  Pickard, C. J.; Michaelides, A., The first-
principles phase diagram of monolayer nanoconfined water. Nature 2022, 609 (7927), 512-516. 
36. Boes, J. R.; Kitchin, J. R., Modeling Segregation on AuPd(111) Surfaces with Density 
Functional Theory and Monte Carlo Simulations. The Journal of Physical Chemistry C 2017, 
121 (6), 3479-3487. 
37. Deng, B.;  Zhong, P.;  Jun, K.;  Riebesell, J.;  Han, K.;  Bartel, C. J.; Ceder, G., CHGNet 
as a pretrained universal neural network potential for charge-informed atomistic modelling. 
Nature Machine Intelligence 2023, 5 (9), 1031-1041. 
38. Fung, V.;  Ganesh, P.; Sumpter, B. G., Physically Informed Machine Learning Prediction 
of Electronic Density of States. Chemistry of Materials 2022, 34 (11), 4848-4855. 
39. Bang, K.;  Yeo, B. C.;  Kim, D.;  Han, S. S.; Lee, H. M., Accelerated mapping of 
electronic density of states patterns of metallic nanoparticles via machine-learning. Scientific 
Reports 2021, 11 (1), 11604. 
40. Novikov, I.;  Grabowski, B.;  Körmann, F.; Shapeev, A., Magnetic Moment Tensor 
Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. 
npj Computational Materials 2022, 8 (1), 13. 



 30 

41. Chapman, J. B. J.; Ma, P.-W., A machine-learned spin-lattice potential for dynamic 
simulations of defective magnetic iron. Scientific Reports 2022, 12 (1), 22451. 
42. Grisafi, A.;  Fabrizio, A.;  Meyer, B.;  Wilkins, D. M.;  Corminboeuf, C.; Ceriotti, M., 
Transferable Machine-Learning Model of the Electron Density. ACS Central Science 2019, 5 (1), 
57-64. 
43. Fu, X.;  Wu, Z.;  Wang, W.;  Xie, T.;  Keten, S.;  Gomez-Bombarelli, R.; Jaakkola, T., 
Forces are not enough: Benchmark and critical evaluation for machine learning force fields with 
molecular simulations. arXiv preprint arXiv:2210.07237 2022. 
44. Mattsson, A. E.;  Schultz, P. A.;  Desjarlais, M. P.;  Mattsson, T. R.; Leung, K., Designing 
meaningful density functional theory calculations in materials science—a primer. Modelling and 
Simulation in Materials Science and Engineering 2005, 13 (1), R1. 
45. Bonomi, M.;  Bussi, G.;  Camilloni, C.;  Tribello, G. A.;  Banáš, P.;  Barducci, A.;  
Bernetti, M.;  Bolhuis, P. G.;  Bottaro, S.;  Branduardi, D.;  Capelli, R.;  Carloni, P.;  Ceriotti, M.;  
Cesari, A.;  Chen, H.;  Chen, W.;  Colizzi, F.;  De, S.;  Pierre, M. d. L.;  Donadio, D.;  Drobot, V.;  
Ensing, B.;  Ferguson, A. L.;  Filizola, M.;  Fraser, J. S.;  Fu, H.;  Gasparotto, P.;  Gervasio, F. L.;  
Giberti, F.;  Gil-Ley, A.;  Giorgino, T.;  Heller, G. T.;  Hocky, G. M.;  Iannuzzi, M.;  Invernizzi, 
M.;  Jelfs, K. E.;  Jussupow, A.;  Kirilin, E.;  Laio, A.;  Limongelli, V.;  Lindorff-Larsen, K.;  
Löhr, T.;  Marinelli, F.;  Martin-Samos, L.;  Masetti, M.;  Meyer, R.;  Michaelides, A.;  Molteni, 
C.;  Morishita, T.;  Nava, M.;  Paissoni, C.;  Papaleo, E.;  Parrinello, M.;  Pfaendtner, J.;  Piaggi, 
P.;  Piccini, G.;  Pietropaolo, A.;  Pietrucci, F.;  Pipolo, S.;  Provasi, D.;  Quigley, D.;  Raiteri, P.;  
Raniolo, S.;  Rydzewski, J.;  Salvalaglio, M.;  Sosso, G. C.;  Spiwok, V.;  Šponer, J.;  Swenson, 
D. W. H.;  Tiwary, P.;  Valsson, O.;  Vendruscolo, M.;  Voth, G., A.;  White, A.; Consortium, T. P., 
Promoting transparency and reproducibility in enhanced molecular simulations. Nature Methods 
2019, 16 (8), 670-673. 
46. Zuo, Y.;  Chen, C.;  Li, X.;  Deng, Z.;  Chen, Y.;  Behler, J.;  Csányi, G.;  Shapeev, A. V.;  
Thompson, A. P.;  Wood, M. A.; Ong, S. P., Performance and Cost Assessment of Machine 
Learning Interatomic Potentials. The Journal of Physical Chemistry A 2020, 124 (4), 731-745. 
47. Bligaard, T.;  Bullock, R. M.;  Campbell, C. T.;  Chen, J. G.;  Gates, B. C.;  Gorte, R. J.;  
Jones, C. W.;  Jones, W. D.;  Kitchin, J. R.; Scott, S. L., Toward Benchmarking in Catalysis 
Science: Best Practices, Challenges, and Opportunities. ACS Catalysis 2016, 6 (4), 2590-2602. 
48. Artrith, N.;  Butler, K. T.;  Coudert, F.-X.;  Han, S.;  Isayev, O.;  Jain, A.; Walsh, A., Best 
practices in machine learning for chemistry. Nature Chemistry 2021, 13 (6), 505-508. 
49. Schweitzer, N.; Rioux, R. G. R., Addressing Rigor and Reproducibility in Thermal. 
Heterogeneous Catalysis 2023. 
50. Anderson, B.;  Hy, T. S.; Kondor, R., Cormorant: Covariant molecular neural networks. 
Advances in neural information processing systems 2019, 32, 14537–14546. 
51. Tran, R.;  Lan, J.;  Shuaibi, M.;  Wood, B. M.;  Goyal, S.;  Das, A.;  Heras-Domingo, J.;  
Kolluru, A.;  Rizvi, A.; Shoghi, N., The Open Catalyst 2022 (OC22) dataset and challenges for 
oxide electrocatalysts. ACS Catalysis 2023, 13 (5), 3066-3084. 
52. Chanussot, L.;  Das, A.;  Goyal, S.;  Lavril, T.;  Shuaibi, M.;  Riviere, M.;  Tran, K.;  
Heras-Domingo, J.;  Ho, C.; Hu, W., Open catalyst 2020 (OC20) dataset and community 
challenges. Acs Catalysis 2021, 11 (10), 6059-6072. 
53. Allen, C.; Bartók, A. P., Optimal data generation for machine learned interatomic 
potentials. Machine Learning: Science and Technology 2022, 3 (4), 045031. 
54. Ly, K. K.; Ceperley, D. M., Phonons of metallic hydrogen with quantum Monte Carlo. 
The Journal of Chemical Physics 2022, 156 (4), 044108-1. 



 31 

55. Ryczko, K.;  Krogel, J. T.; Tamblyn, I., Machine Learning Diffusion Monte Carlo 
Energies. Journal of Chemical Theory and Computation 2022, 18 (12), 7695-7701. 
56. Eriksson, F.;  Fransson, E.; Erhart, P., The Hiphive Package for the Extraction of High-
Order Force Constants by Machine Learning. Advanced Theory and Simulations 2019, 2 (5), 
1800184. 
57. Togo, A., First-principles phonon calculations with phonopy and phono3py. Journal of 
the Physical Society of Japan 2023, 92 (1), 012001. 
58. Mortazavi, B.;  Novikov, I. S.;  Podryabinkin, E. V.;  Roche, S.;  Rabczuk, T.;  Shapeev, 
A. V.; Zhuang, X., Exploring phononic properties of two-dimensional materials using machine 
learning interatomic potentials. Applied Materials Today 2020, 20, 100685. 
59. Vilhelmsen, L. B.; Hammer, B., A genetic algorithm for first principles global structure 
optimization of supported nano structures. The Journal of Chemical Physics 2014, 141 (4), 
044711. 
60. Kwon, Y.;  Kang, S.;  Choi, Y.-S.; Kim, I., Evolutionary design of molecules based on 
deep learning and a genetic algorithm. Scientific reports 2021, 11 (1), 17304. 
61. Higgins, E. J.;  Hasnip, P. J.; Probert, M. I., Simultaneous Prediction of the Magnetic and 
Crystal Structure of Materials Using a Genetic Algorithm. Crystals 2019, 9 (9), 439. 
62. Polishchuk, P., CReM: chemically reasonable mutations framework for structure 
generation. Journal of Cheminformatics 2020, 12 (1), 1-18. 
63. Oselladore, E.;  Ongaro, A.;  Zagotto, G.;  Memo, M.;  Ribaudo, G.; Gianoncelli, A., 
Combinatorial library generation, molecular docking and molecular dynamics simulations for 
enhancing the isoflavone scaffold in phosphodiesterase inhibition. New Journal of Chemistry 
2020, 44 (45), 19472-19488. 
64. Okhotnikov, K.;  Charpentier, T.; Cadars, S., Supercell program: a combinatorial 
structure-generation approach for the local-level modeling of atomic substitutions and partial 
occupancies in crystals. Journal of cheminformatics 2016, 8, 1-15. 
65. Bisbo, M. K.; Hammer, B., Global optimization of atomic structure enhanced by machine 
learning. Physical Review B 2022, 105 (24), 245404. 
66. Erhard, L. C.;  Rohrer, J.;  Albe, K.; Deringer, V. L., Modelling atomic and nanoscale 
structure in the silicon-oxygen system through active machine learning. arXiv preprint 
arXiv:2309.03587 2023. 
67. Poul, M.;  Huber, L.;  Bitzek, E.; Neugebauer, J., Systematic atomic structure datasets for 
machine learning potentials: Application to defects in magnesium. Physical Review B 2023, 107 
(10), 104103. 
68. Martínez, L.;  Andrade, R.;  Birgin, E. G.; Martínez, J. M., PACKMOL: A package for 
building initial configurations for molecular dynamics simulations. Journal of Computational 
Chemistry 2009, 30 (13), 2157-2164. 
69. van de Walle, A.;  Tiwary, P.;  de Jong, M.;  Olmsted, D. L.;  Asta, M.;  Dick, A.;  Shin, 
D.;  Wang, Y.;  Chen, L. Q.; Liu, Z. K., Efficient stochastic generation of special quasirandom 
structures. Calphad 2013, 42, 13-18. 
70. Chen, B. W. J.;  Wang, B.;  Sullivan, M. B.;  Borgna, A.; Zhang, J., Unraveling the 
Synergistic Effect of Re and Cs Promoters on Ethylene Epoxidation over Silver Catalysts with 
Machine Learning-Accelerated First-Principles Simulations. ACS Catalysis 2022, 12 (4), 2540-
2551. 
71. Lee, Y.;  Timmermann, J.;  Panosetti, C.;  Scheurer, C.; Reuter, K., Staged Training of 
Machine-Learning Potentials from Small to Large Surface Unit Cells: Efficient Global Structure 



 32 

Determination of the RuO2(100)-c(2 × 2) Reconstruction and (410) Vicinal. The Journal of 
Physical Chemistry C 2023, 127 (35), 17599-17608. 
72. Waters, M. J.; Rondinelli, J. M., Energy contour exploration with potentiostatic 
kinematics. Journal of Physics: Condensed Matter 2021, 33 (44), 445901. 
73. Sumaria, V.;  Nguyen, L.;  Tao, F. F.; Sautet, P., Atomic-Scale Mechanism of Platinum 
Catalyst Restructuring under a Pressure of Reactant Gas. Journal of the American Chemical 
Society 2023, 145 (1), 392-401. 
74. Khan, S. A.;  Caratzoulas, S.; Vlachos, D. G., Catalyst Cluster-Induced Support 
Restructuring. The Journal of Physical Chemistry C 2023, 127 (45), 22277-22286. 
75. Tkachenko, N. V.;  Tkachenko, A. A.;  Nebgen, B.;  Tretiak, S.; Boldyrev, A. I., Neural 
network atomistic potentials for global energy minima search in carbon clusters. Physical 
Chemistry Chemical Physics 2023, 25 (32), 21173-21182. 
76. Goedecker, S., Minima hopping: An efficient search method for the global minimum of 
the potential energy surface of complex molecular systems. The Journal of Chemical Physics 
2004, 120 (21), 9911-9917. 
77. Peterson, A. A., Global Optimization of Adsorbate–Surface Structures While Preserving 
Molecular Identity. Topics in Catalysis 2014, 57 (1), 40-53. 
78. Zhai, H.;  Sautet, P.; Alexandrova, A. N., Global Optimization of Adsorbate Covered 
Supported Cluster Catalysts: The Case of Pt7H10CH3 on α‐Al2O3. ChemCatChem 2020, 12 (3), 
762-770. 
79. Kang, P.-L.;  Shang, C.; Liu, Z.-P., Large-Scale Atomic Simulation via Machine Learning 
Potentials Constructed by Global Potential Energy Surface Exploration. Accounts of Chemical 
Research 2020, 53 (10), 2119-2129. 
80. Ciccotti, G.; Ferrario, M., Blue Moon Approach to Rare Events. Molecular Simulation 
2004, 30 (11-12), 787-793. 
81. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-
energy estimation: Umbrella sampling. Journal of Computational Physics 1977, 23 (2), 187-199. 
82. Yang, M.;  Bonati, L.;  Polino, D.; Parrinello, M., Using metadynamics to build neural 
network potentials for reactive events: the case of urea decomposition in water. Catalysis Today 
2022, 387, 143-149. 
83. Tiwary, P.; Parrinello, M., From Metadynamics to Dynamics. Physical Review Letters 
2013, 111 (23), 230602. 
84. Valsson, O.;  Tiwary, P.; Parrinello, M., Enhancing Important Fluctuations: Rare Events 
and Metadynamics from a Conceptual Viewpoint. Annual Review of Physical Chemistry 2016, 
67 (1), 159-184. 
85. Rico, P. F. Z.;  Schneider, L.;  Perez-Lemus, G.;  Alessandri, R.;  Dasetty, S.;  Menéndez, 
C. A.;  Wu, Y.;  Jin, Y.;  Nguyen, T.; Parker, J., PySAGES: Flexible, advanced sampling methods 
accelerated with GPUs. arXiv preprint arXiv:2301.04835 2023. 
86. Mendels, D.; de Pablo, J. J., Collective Variables for Free Energy Surface Tailoring: 
Understanding and Modifying Functionality in Systems Dominated by Rare Events. The Journal 
of Physical Chemistry Letters 2022, 13 (12), 2830-2837. 
87. Yang, H.;  Zhu, Y.;  Dong, E.;  Wu, Y.;  Yang, J.; Zhang, W., Dual adaptive sampling and 
machine learning interatomic potentials for modeling materials with chemical bond hierarchy. 
Physical Review B 2021, 104 (9), 094310. 
88. Podryabinkin, E. V.; Shapeev, A. V., Active learning of linearly parametrized interatomic 
potentials. Computational Materials Science 2017, 140, 171-180. 



 33 

89. Zhang, L.;  Lin, D.-Y.;  Wang, H.;  Car, R.; E, W., Active learning of uniformly accurate 
interatomic potentials for materials simulation. Physical Review Materials 2019, 3 (2), 023804. 
90. Musielewicz, J.;  Wang, X.;  Tian, T.; Ulissi, Z., FINETUNA: fine-tuning accelerated 
molecular simulations. Machine Learning: Science and Technology 2022, 3 (3), 03LT01. 
91. Anstine, D. M.; Isayev, O., Machine Learning Interatomic Potentials and Long-Range 
Physics. The Journal of Physical Chemistry A 2023, 127 (11), 2417-2431. 
92. Nigam, J.;  Pozdnyakov, S.;  Fraux, G.; Ceriotti, M., Unified theory of atom-centered 
representations and message-passing machine-learning schemes. The Journal of Chemical 
Physics 2022, 156 (20), 204115. 
93. Ko, T. W.;  Finkler, J. A.;  Goedecker, S.; Behler, J., General-Purpose Machine Learning 
Potentials Capturing Nonlocal Charge Transfer. Accounts of Chemical Research 2021, 54 (4), 
808-817. 
94. Batzner, S.;  Musaelian, A.; Kozinsky, B., Advancing molecular simulation with 
equivariant interatomic potentials. Nature Reviews Physics 2023, 5 (8), 437-438. 
95. Musaelian, A.;  Batzner, S.;  Johansson, A.;  Sun, L.;  Owen, C. J.;  Kornbluth, M.; 
Kozinsky, B., Learning local equivariant representations for large-scale atomistic dynamics. 
Nature Communications 2023, 14 (1), 579. 
96. Fasi, M.;  Higham, N. J.;  Mikaitis, M.; Pranesh, S., Numerical behavior of NVIDIA 
tensor cores. PeerJ Computer Science 2021, 7, e330. 
97. Musaelian, A.;  Johansson, A.;  Batzner, S.; Kozinsky, B., Scaling the leading accuracy of 
deep equivariant models to biomolecular simulations of realistic size. arXiv preprint 
arXiv:2304.10061 2023. 
98. Xie, Y.;  Vandermause, J.;  Ramakers, S.;  Protik, N. H.;  Johansson, A.; Kozinsky, B., 
Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations 
and thermal transport in SiC. npj Computational Materials 2023, 9 (1), 36. 
99. Vandermause, J.;  Torrisi, S. B.;  Batzner, S.;  Xie, Y.;  Sun, L.;  Kolpak, A. M.; Kozinsky, 
B., On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj 
Computational Materials 2020, 6 (1), 20. 
100. Thomas-Mitchell, A.;  Hawe, G. I.; Popelier, P., Calibration of uncertainty in the active 
learning of machine learning force fields. Machine Learning: Science and Technology 2023. 
101. Verdi, C.;  Karsai, F.;  Liu, P.;  Jinnouchi, R.; Kresse, G., Thermal transport and phase 
transitions of zirconia by on-the-fly machine-learned interatomic potentials. npj Computational 
Materials 2021, 7 (1), 156. 
102. Flam-Shepherd, D.;  Requeima, J.; Duvenaud, D. In Mapping Gaussian process priors to 
Bayesian neural networks, NIPS Bayesian deep learning workshop, Curran Associates Inc: 2017. 
103. Yang, L.; Shami, A., On hyperparameter optimization of machine learning algorithms: 
Theory and practice. Neurocomputing 2020, 415, 295-316. 
104. Bergstra, J.;  Yamins, D.; Cox, D. In Making a science of model search: Hyperparameter 
optimization in hundreds of dimensions for vision architectures, International conference on 
machine learning, PMLR: 2013; pp 115-123. 
105. Biewald, L. Experiment Tracking with Weights and Biases. https://www.wandb.com/ 
(accessed 2/19/2024). 
106. Boes, J. R.;  Groenenboom, M. C.;  Keith, J. A.; Kitchin, J. R., Neural network and 
ReaxFF comparison for Au properties. International Journal of Quantum Chemistry 2016, 116 
(13), 979-987. 

https://www.wandb.com/


 34 

107. Liu, M.; Kitchin, J. R., SingleNN: modified behler–Parrinello neural network with shared 
weights for atomistic simulations with transferability. The Journal of Physical Chemistry C 2020, 
124 (32), 17811-17818. 
108. Deringer, V. L.; Csányi, G., Machine learning based interatomic potential for amorphous 
carbon. Physical Review B 2017, 95 (9), 094203. 
109. Gilmer, J.;  Schoenholz, S. S.;  Riley, P. F.;  Vinyals, O.; Dahl, G. E., Neural Message 
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on 
Machine Learning, Doina, P.; Yee Whye, T., Eds. PMLR: Proceedings of Machine Learning 
Research, 2017; Vol. 70, pp 1263--1272. 
110. Unke, O. T.;  Chmiela, S.;  Sauceda, H. E.;  Gastegger, M.;  Poltavsky, I.;  Schütt, K. T.;  
Tkatchenko, A.; Müller, K.-R., Machine Learning Force Fields. Chemical Reviews 2021, 121 
(16), 10142-10186. 
111. Nitol, M. S.;  Dickel, D. E.; Barrett, C. D., Machine learning models for predictive 
materials science from fundamental physics: An application to titanium and zirconium. Acta 
Materialia 2022, 224, 117347. 
112. Waters, M. J.; Rondinelli, J. M., Benchmarking structural evolution methods for training 
of machine learned interatomic potentials. Journal of Physics: Condensed Matter 2022, 34 (38), 
385901. 
113. Kobayashi, K.;  Yamaguchi, A.; Okumura, M., Machine learning potentials of kaolinite 
based on the potential energy surfaces of GGA and meta-GGA density functional theory. Applied 
Clay Science 2022, 228, 106596. 
114. Zhai, Y.;  Caruso, A.;  Bore, S. L.;  Luo, Z.; Paesani, F., A “short blanket” dilemma for a 
state-of-the-art neural network potential for water: Reproducing experimental properties or the 
physics of the underlying many-body interactions? The Journal of Chemical Physics 2023, 158 
(8), 084111. 
115. Rosenberger, D.;  Smith, J. S.; Garcia, A. E., Modeling of Peptides with Classical and 
Novel Machine Learning Force Fields: A Comparison. The Journal of Physical Chemistry B 
2021, 125 (14), 3598-3612. 
116. Liu, P.;  Wang, J.;  Avargues, N.;  Verdi, C.;  Singraber, A.;  Karsai, F.;  Chen, X.-Q.; 
Kresse, G., Combining Machine Learning and Many-Body Calculations: Coverage-Dependent 
Adsorption of CO on Rh (111). Physical Review Letters 2023, 130 (7), 078001. 
117. Zhai, Y.;  Caruso, A.;  Bore, S. L.;  Luo, Z.; Paesani, F., A “short blanket” dilemma for a 
state-of-the-art neural network potential for water: Reproducing experimental properties or the 
physics of the underlying many-body interactions? The Journal of Chemical Physics 2023, 158 
(8). 
118. Bull-Vulpe, E. F.;  Riera, M.;  Bore, S. L.; Paesani, F., Data-driven many-body potential 
energy functions for generic molecules: Linear alkanes as a proof-of-concept application. 
Journal of Chemical Theory and Computation 2022, 4494–4509. 
119. Zhang, Y.;  Lunghi, A.; Sanvito, S., Pushing the limits of atomistic simulations towards 
ultra-high temperature: A machine-learning force field for ZrB2. Acta Materialia 2020, 186, 467-
474. 
120. Chan, H.;  Narayanan, B.;  Cherukara, M. J.;  Sen, F. G.;  Sasikumar, K.;  Gray, S. K.;  
Chan, M. K. Y.; Sankaranarayanan, S. K. R. S., Machine Learning Classical Interatomic 
Potentials for Molecular Dynamics from First-Principles Training Data. The Journal of Physical 
Chemistry C 2019, 123 (12), 6941-6957. 



 35 

121. Veit, M.;  Jain, S. K.;  Bonakala, S.;  Rudra, I.;  Hohl, D.; Csányi, G., Equation of State of 
Fluid Methane from First Principles with Machine Learning Potentials. Journal of Chemical 
Theory and Computation 2019, 15 (4), 2574-2586. 
122. Broderick, K.;  Lopato, E.;  Wander, B.;  Bernhard, S.;  Kitchin, J.; Ulissi, Z., Identifying 
limitations in screening high-throughput photocatalytic bimetallic nanoparticles with machine-
learned hydrogen adsorptions. Applied Catalysis B: Environmental 2023, 320, 121959. 
123. Mortazavi, B.;  Podryabinkin, E. V.;  Novikov, I. S.;  Rabczuk, T.;  Zhuang, X.; Shapeev, 
A. V., Accelerating first-principles estimation of thermal conductivity by machine-learning 
interatomic potentials: A MTP/ShengBTE solution. Computer Physics Communications 2021, 
258, 107583. 
124. Vita, J. A.; Schwalbe-Koda, D., Data efficiency and extrapolation trends in neural 
network interatomic potentials. Machine Learning: Science and Technology 2023, 4 (3), 035031. 
125. Montes de Oca Zapiain, D.;  Wood, M. A.;  Lubbers, N.;  Pereyra, C. Z.;  Thompson, A. 
P.; Perez, D., Training data selection for accuracy and transferability of interatomic potentials. 
npj Computational Materials 2022, 8 (1), 189. 
126. Schwalbe-Koda, D.;  Tan, A. R.; Gómez-Bombarelli, R., Differentiable sampling of 
molecular geometries with uncertainty-based adversarial attacks. Nature Communications 2021, 
12 (1), 5104. 
127. Thompson, A. P.;  Aktulga, H. M.;  Berger, R.;  Bolintineanu, D. S.;  Brown, W. M.;  
Crozier, P. S.;  in 't Veld, P. J.;  Kohlmeyer, A.;  Moore, S. G.;  Nguyen, T. D.;  Shan, R.;  
Stevens, M. J.;  Tranchida, J.;  Trott, C.; Plimpton, S. J., LAMMPS - a flexible simulation tool 
for particle-based materials modeling at the atomic, meso, and continuum scales. Computer 
Physics Communications 2022, 271, 108171. 
128. Abraham, M. J.;  Murtola, T.;  Schulz, R.;  Páll, S.;  Smith, J. C.;  Hess, B.; Lindahl, E., 
GROMACS: High performance molecular simulations through multi-level parallelism from 
laptops to supercomputers. SoftwareX 2015, 1-2, 19-25. 
129. Eastman, P.;  Swails, J.;  Chodera, J. D.;  McGibbon, R. T.;  Zhao, Y.;  Beauchamp, K. A.;  
Wang, L.-P.;  Simmonett, A. C.;  Harrigan, M. P.; Stern, C. D., OpenMM 7: Rapid development 
of high performance algorithms for molecular dynamics. PLoS computational biology 2017, 13 
(7), e1005659. 
130. Fu, X.;  Wu, Z.;  Wang, W.;  Xie, T.;  Keten, S.;  Gomez-Bombarelli, R.; Jaakkola, T., 
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields 
with Molecular Simulations. arXiv e-prints 2022, arXiv:2210.07237. 
131. Wen, M.;  Afshar, Y.;  Elliott, R. S.; Tadmor, E. B., KLIFF: A framework to develop 
physics-based and machine learning interatomic potentials. Computer Physics Communications 
2022, 272, 108218. 
132. Biersack, J. P.; Ziegler, J. F. In The Stopping and Range of Ions in Solids, Ion 
Implantation Techniques, Berlin, Heidelberg, 1982//; Ryssel, H.; Glawischnig, H., Eds. Springer 
Berlin Heidelberg: Berlin, Heidelberg, 1982; pp 122-156. 
133. Chatterjee, P.;  Sengul, M. Y.;  Kumar, A.; MacKerell, A. D., Jr., Harnessing Deep 
Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude 
Oscillator Force Field. Journal of Chemical Theory and Computation 2022, 18 (4), 2388-2407. 
134. Wilkinson, M. D.;  Dumontier, M.;  Aalbersberg, I. J.;  Appleton, G.;  Axton, M.;  Baak, 
A.;  Blomberg, N.;  Boiten, J.-W.;  da Silva Santos, L. B.; Bourne, P. E., The FAIR Guiding 
Principles for scientific data management and stewardship. Scientific data 2016, 3 (1), 1-9. 



 36 

135. Stall, S.;  Yarmey, L.;  Cutcher-Gershenfeld, J.;  Hanson, B.;  Lehnert, K.;  Nosek, B.;  
Parsons, M.;  Robinson, E.; Wyborn, L., Make scientific data FAIR. Nature 2019, 570 (7759), 
27-29. 
136. Scheffler, M.;  Aeschlimann, M.;  Albrecht, M.;  Bereau, T.;  Bungartz, H.-J.;  Felser, C.;  
Greiner, M.;  Groß, A.;  Koch, C. T.; Kremer, K., FAIR data enabling new horizons for materials 
research. Nature 2022, 604 (7907), 635-642. 
137. Hjorth Larsen, A.;  Jørgen Mortensen, J.;  Blomqvist, J.;  Castelli, I. E.;  Christensen, R.;  
Dułak, M.;  Friis, J.;  Groves, M. N.;  Hammer, B.;  Hargus, C.;  Hermes, E. D.;  Jennings, P. C.;  
Bjerre Jensen, P.;  Kermode, J.;  Kitchin, J. R.;  Leonhard Kolsbjerg, E.;  Kubal, J.;  Kaasbjerg, 
K.;  Lysgaard, S.;  Bergmann Maronsson, J.;  Maxson, T.;  Olsen, T.;  Pastewka, L.;  Peterson, A.;  
Rostgaard, C.;  Schiøtz, J.;  Schütt, O.;  Strange, M.;  Thygesen, K. S.;  Vegge, T.;  Vilhelmsen, 
L.;  Walter, M.;  Zeng, Z.; Jacobsen, K. W., The atomic simulation environment—a Python 
library for working with atoms. Journal of Physics: Condensed Matter 2017, 29 (27), 273002. 
138. Ong, S. P.;  Richards, W. D.;  Jain, A.;  Hautier, G.;  Kocher, M.;  Cholia, S.;  Gunter, D.;  
Chevrier, V. L.;  Persson, K. A.; Ceder, G., Python Materials Genomics (pymatgen): A robust, 
open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314-319. 
139. Peters, I.;  Kraker, P.;  Lex, E.;  Gumpenberger, C.; Gorraiz, J. I., Zenodo in the spotlight 
of traditional and new metrics. Frontiers in research metrics and analytics 2017, 2, 13. 
140. Draxl, C.; Scheffler, M., The NOMAD laboratory: from data sharing to artificial 
intelligence. Journal of Physics: Materials 2019, 2 (3), 036001. 
141. Open Catalyst demo. https://open-catalyst.metademolab.com/. 
142. Lan, J.;  Palizhati, A.;  Shuaibi, M.;  Wood, B. M.;  Wander, B.;  Das, A.;  Uyttendaele, 
M.;  Zitnick, C. L.; Ulissi, Z. W., Adsorbml: Accelerating adsorption energy calculations with 
machine learning. arXiv preprint arXiv:2211.16486 2022. 

 

  

https://open-catalyst.metademolab.com/


 37 

Author Biographies 

Tristan Maxson 
Tristan Maxson is a Ph.D. student of chemical engineering at The University 
of Alabama in the Szilvási group and an active DOE Computational Science 
Graduate Fellow. His studies primarily concern catalysis, machine learning 
interatomic potentials, and code development for tools to perform atomistic 
simulations. 
 

Ademola Soyemi 
Ademola Soyemi earned his BEng in Chemical Engineering from Covenant 
University, Nigeria, in 2018 and is currently pursuing his PhD at The University 
of Alabama in the Szilvási group. His research has focused on the computational 
design of solvents, understanding catalytic reaction mechanisms, and 
developing machine learning interatomic potentials. 
 
Benjamin Wei Jie Chen 
Benjamin Chen is a senior research scientist at A*STAR’s Institute of High 
Performance Computing. His research focuses on developing novel high-
throughput computing methods and coupling them with machine learning to 
enable modelling of catalytic materials and reactions with high realism and 
fidelity. By doing so, he aims to increase the predictive power of computations, 
enhance their value and synergy with experiments, and accelerate the rational 
design of novel catalysts. 
 
Tibor Szilvási 

Tibor Szilvási is an assistant professor of chemical engineering at The 
University of Alabama. His research interests lie in computational catalysis and 
material design with current emphasis on understanding phenomena occurring 
at nanoparticle surfaces and solid-liquid interfaces. His group aims at 
developing robust computational workflows including machine learning 
interatomic potentials to gain new physical and chemical insights. 
 
 

 


