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Abstract

Recent developments in machine learning interatomic potentials (MLIPs) have empowered even
non-experts in machine learning to train MLIPs for accelerating materials simulations. However,
the current literature lacks clear standards for documenting the use of MLIPs, which hinders the
reproducibility and independent evaluation of the presented results. In this perspective, we aim to
provide guidance on best practices for documenting MLIP use while walking the reader through

the development and deployment of MLIPs including hardware and software requirements,
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generating training data, training models, validating predictions, and MLIP inference. We also
suggest useful plotting practices and analyses to validate and boost confidence in the deployed
models. Finally, we provide a step-by-step checklist for practitioners to use directly before
publication to standardize the information to be reported. Overall, we hope that our work will
encourage reliable and reproducible use of these MLIPs, which will accelerate their ability to make

a positive impact in various disciplines including materials science, chemistry, and biology, among

others.
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1. Introduction

Computational analysis is an indispensable tool for understanding the behavior of materials.
Such analysis has led to crucial insight in various fields such as catalysis!, bio-*, nano-*%, and
soft” 1% materials among others, even enabling the computation-led design of materials in some
cases. First-principles methods based on density functional theory (DFT) have been adopted by
most communities to gain insights into materials properties due to a good balance between
accuracy and computational cost. However, due to computational constraints, DFT is typically
limited to simulating systems up to hundreds of atoms'! 1> and time scales of up to hundreds of

picoseconds!3: 14,



Recently, machine learning interatomic potentials (MLIPs) that are trained on DFT data have
emerged as a promising method to expand the time and length scale of atomistic simulations while
potentially maintaining DFT-like accuracy'> '®. Many ready-to-use software packages'”?® are now
available for prospective practitioners to download, install, and use within hours. The relative ease
of using such packages has generated considerable interest, resulting in a rapid increase in

22, 29, 30

scientific applications such as accelerating molecular dynamics , probing chemical

31-33

reactivity®!3, and investigating long-time- and length-scale phase transitions®**°. Some MLIPs

may now be extended to provide estimates on other properties as well such as dipole moments®>,

38, 39 40, 41

charge distribution®’, the density of states , magnetic moments of atoms , and the local
electron density around an atom*?,

Due to this rapid growth in the field of MLIPs, standards for documenting the use of MLIPs
have yet to be developed by the community, leading to inconsistencies in reporting on the
developed MLIPs. Specifically, the materials modeling community has not reached a consensus
on how to ensure reproducible accurate® use of MLIPs similar to what has been achieved for DFT-
based simulations** . As a result, widely different standards of reporting can be found in the
literature ranging from merely mentioning the use of MLIPs to open-sourcing all data and scripts*®.
As MLIPs are still new and evolving, such differences are understandable. Nevertheless, their
reliability can vary widely depending on MLIP construction and training procedures. Reproducing
results from literature may be difficult even for experienced researchers. For example, simple
physical interactions such as nuclear repulsion are not always included in models and atoms may
collapse together unphysically. Improper training procedures may also overfit certain properties

such as energy at the cost of forces, which may lead to unphysical dynamics. Thus, considering

that current MLIPs are typically not robust constructions, there is a thin line between useful and



misleading results. There is an urgent need for community to document the usage and validation
of MLIPs with greater care to avoid misleading studies and over-interpreting results when there
might be considerable uncertainty.

In this perspective, we aim to provide the community with guidelines for documenting the
development, validation, and application of MLIPs (Figure 1) similar to previous works that
establish guidelines for experimental and computational subfields*’**°. Specifically, we highlight
different aspects of MLIPs that should be reported: hardware and software requirements,
generation of training data, training of models, validation of predictions, and inference of MLIPs.
We discuss the validation and inference of MLIPs with a focus on predicting energy, force, and
stress as these are currently the most common prediction types in literature. In addition, we provide
a detailed checklist that MLIP users can apply to self-review manuscripts before submission.
Proper documentation of such information will foster greater trust in computational analyses and
increase reproducibility. Promoting direct data availability will also accelerate the standardized
development of MLIPs. Ultimately, developing better standards for detailing MLIP usage will help

increase the adoption of MLIPs and allow the community to reap its full benefits.
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Figure 1. General workflow of data generation, training, validating, and deploying MLIPs for use in
scientific research. Reporting is included as a final stage which is often overlooked in works utilizing MLIPs
and is the focus of this perspective.



2. Best Practices for Reporting
2.1. Reporting Checklist

Based on the guidelines that will be discussed in this perspective, we have provided a convenient
and comprehensive checklist of the process of documenting various aspects of MLIP usage,
including the choice of software and hardware, training data generation, training, validation, and
inference as seen in Figure 1. This checklist is provided in the Supporting Information (SI) for
practitioners to go through before publication to help ensure reproducible research. The checklist
also guides reviewers on what types of data should be present in submitted manuscripts, or at
minimum aids in looking out for potentially missing information. An up-to-date version of the

checklist may be found in the GitLab repository at https://gitlab.com/szilvasi-group/mlip-

reporting-checklist. We encourage the community to make suggestions in the future as the

development of MLIPs continues and new MLIP types become commonplace . The checklist may
also be found in different formats if groups wish to improve the general checklist. We envision the
checklist as a living document that will be maintained by the community to follow the standards
of the field and the needs of researchers. We encourage MLIP developers to make pull requests
for code-specific checklists if they wish to establish a more detailed standard for their own codes.
2.2. Software and Hardware

A range of software and hardware may be utilized by researchers. For software, we suggest
reporting all aspects of the environment in which MLIPs are trained and used, such as the versions
of the MLIP software package, Python, PyTorch/TensorFlow, CUDA, and the specifications of
the used CPU/GPU. If an environment manager such as Conda or Python’s venv is used, a
versioned list of all packages installed may help track down potentially conflicting packages and

allow others to reproduce the same environment.
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It is also useful to note the type of hardware used as GPUs tend to be limited by memory
requirements imposed by the size of the model. For example, an HI00 GPU may have 80 or 188
GB while an A100 GPU may have 40 or 80 GB of memory. We suggest reporting detailed
information regarding the GPU, CPU, memory, and parallelization to ensure that readers
understand the viability of running the model.

2.3. Training Data

Training data for MLIPs may be generated and/or selected by a diverse range of methods. In this
section, we detail various data generation strategies and their critical parameters to report. Training
data typically consists of atomic configurations calculated with DFT, although any ground truth
may be considered as well. The used atomistic data should be reported by providing the data
source, version number, and access date that may be obtained from public repositories designed
for MLIP development such as RevMD17°%, TonSolvR*>°, and the Open Catalyst Project>’ >2. Such
repositories provide either the raw calculation files or the configurations in a compact format (xyz,
npy, traj) including atomic positions, energy, forces, and stresses. If only a portion of the
configurations were used, the subset of data used should be stated.

Existing molecular dynamics (MD) runs from the literature that were not originally intended for
machine learning can also be possible sources of training data. The reuse of literature data can help
may accelerate research projects in their initial stages, highlighting how the increased data
availability may have positive effects beyond reproducibility. However, when no appropriate
dataset is available for the specific use case, researchers are required to generate their training data
since current MLIPs cannot typically generalize from one system to another unless there is a match
in composition and conditions such as temperature and pressure. If this is so, the exact methods

for generating new datasets should be rigorously documented.



This is especially so as new methods for data generation can advance the field and their value
should not be underestimated by the researchers generating the training data and MLIPs>®. While
it is understandable that groups may have in-house tools that are not suitable for public sharing,
the general methodology must be reported and is not restricted to the suggestions that follow in
this section. Instead, we provide guidance on common methods and highlight critical parameters
needed to reproduce the method. It is important to note that methods of generating training data
should be viewed with equal value and disclosed as their reproducibility is not guaranteed by
reporting the raw data.

When generating training data, it is helpful to start with simple and efficient methods, which
usually involve enumerating different configurations of the system and evaluating them with
single-point calculations. Yet, such methods can be surprisingly difficult to reproduce as critical

details are often omitted. Three common methods for generating suitable atomic configurations

54,55 56-58 59-64

involve random displacements’™ >, phonon-like displacements*~°, or combinatorial methods
Random displacements, or structure rattling, perturb atomic positions to provide higher
energy/force/stress structures from an optimized structure. Displaced structures provide a
definition to the local PES but must be performed carefully and filtered to avoid generating
unphysical configurations. Phonon displacements are similar to random displacements but are
more physically motivated as they represent movements that may occur in MD simulations without
directly performing them. Rattling structures or using phonons tends to be effective at exploring
the local PES and it is helpful to provide the original structures before the displacement®®¢>¢7_ For

these displacement techniques, the type and magnitude of displacements, starting structures, unit

cell, and phonon modes, should be provided.



Combinatorial methods involve the use of an algorithm to generate structures that ideally cover
the entire configuration space required. The exact algorithm and method should be reported to
identify possible biases, and a representative script should be provided. For example, unoptimized

168

structures of liquids may be generated using a code such as Packmol®® and thus an input file for

Packmol®®

would be ideal to report. In contrast, crystalline materials such as high entropy alloys
would require an entirely different algorithm with knowledge of a lattice structure to randomly
place elements and distort the cell to reasonable lattice constants.®” The SI should contain an
example script or pseudocode that illustrates the logical flow and allows the reader to implement
it in their choice of programming language. If the cost of generating additional structures is low,
there may also be value in generating a supplementary dataset without calculated properties that
can be used in the future to augment the main dataset.

In contrast to single-point methods, dynamical simulations can explore the potential energy
surface directly and therefore give physically meaningful configurations for a given temperature,
pressure, and composition. Reporting the MD ensemble (NVE, NVT, NPT), timestep, and
thermostat/barostat settings is critical as these MD parameters directly affect the system’s

dynamics. Directly providing the input files required for the simulation is a bonus as it resolves

any doubts about what has been done. Additionally, MD-based methods such as simulated

70,71 73-78

annealing’® 7!, contour exploration’?, or minima/basin hopping may be effective for exploring
a wide variety of configurations. If such methods are used, their parameters must be reported
consistent with literature studies utilizing them for molecular dynamics.

It may also be helpful to point out when simulations can be performed in parallel and when

equilibration is not reached. When training MLIPs, it may not be necessary to perform MD runs

that are suitable for analysis since the goal of the MLIP is typically to avoid performing long MD



runs. Non-equilibrium MD should thus not be an issue when used as training data, especially as it
is likely to improve the stability and robustness of the MLIP potential (stability itself is discussed
in the Inference section) and biasing potentials that move the system away from equilibrium are
helpful to use and report. If the bias is not directly implemented in the code being used, it is best
to provide a small example of how to perform the biased MD”.

Constraints in dynamical simulations can influence training data by intentionally biasing the
system towards a given state and as such must be reported. Simple constraints such as the
relationship between cell vectors or fixing atoms can be reported in the text and may be obvious
in the trajectories supplied. However, it is crucial to provide unconstrained training data with all
atoms having original forces restored, as calculated by the method used, even though some
packages, such as ASE, zero the forces of fixed atoms by default. This is because some MLIP
codes are not designed to read atomic constraints and the constrained atoms are included in the
loss function with the constrained forces rather than the true forces. While some codes can mask
atoms in the loss function to account for constraints, it is easier to simply store and use
unconstrained data, which also ensures that the total energy and the forces in the system are fully
consistent. More sophisticated constraint schemes (e.g., enhanced sampling®’®?) must be reported
as well and it is up to the author to properly describe them and/or provide an example script in the
SI. For example, collective variables may be defined that control a bond distance as a function of
some other property of the system to allow for a rare event to be performed that would be unlikely
to occur naturally in an MD simulation.?*-%

After generating the initial training data, it is also important to consider how relevant training
points are selected. For example, using all frames of an MD simulation will result in highly

correlated data. As such it is necessary to have a procedure for data selection, such as including



only every X' atomic configuration. Alternatively, sampling configurations that cover a range of
MD properties such as energy, force, pressure, or volume may avoid correlated structures.”
While more data is assumed to be helpful in improving an MLIP, our experience with modern
codes suggests that smaller curated datasets tend to require fewer resources to train to high
accuracy. If active learning is used, it will be necessary to note down the criteria for selection of
sampled configurations®®*’. For example, if an uncertainty metric is utilized, the method for
determining uncertainty must be described well and thresholds for data selection reported. It is
common for uncertainty metrics to be used with active/iterative learning schemes, but
standardization of reporting these learning schemes is non-trivial. Algorithms for active learning
may also differ widely. Our suggestion is to report the detailed learning scheme and make the code
public that is used if possible. Reporting the selection method and the unfiltered dataset allows for
other selection methods to be tried later as they are discovered.
2.4 Training MLIPs

As model parameters may vary from package to package, detailed documentation of the model
architecture, hyperparameters, and training methods is especially important for reproducibility.
Although modern MLIP parameters might be confusing to those unfamiliar with specific packages,
they can still be documented in a way that is generally useful and does not necessitate expert
knowledge. For example, reporting of radial cutoft(s) allows for fundamental limits of the MLIP’s
knowledge of long-range order to be evaluated in a way that is completely agnostic to the code
being used. We note, however, that while the radial cutoff determines the direct range of the MLIP,
message-passing or non-local MLIPs may include contributions beyond this radial cutoff !>
Similarly, a model’s complexity can be estimated by its degrees of freedom with the caveat that

not all degrees of freedom are equal within an MLIP or between different MLIPs. Most other MLIP
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parameters, however, may be crucial but difficult for non-expert readers to understand. We suggest
including only the crucial parameters in the main document, especially those that have been
explicitly tuned, while tabulating the rest in the SI. Another simple and efficient method for
reporting is to disclose the full input file. We encourage MLIP developers to output files during
training that can be directly used as input files. Such files should explicitly define all defaults to
enable easy reporting in a way that is more agnostic to the specific version being used or if defaults
are changed on installed package.

If changes are made to the publicly available version of the code and licensing permits, patches
that are critical to training, together with their purpose, should be provided in the SI. Software
improvements and implementation of alternative approaches should be viewed positively when
they improve training; their value should not be underestimated even if they are simple.

While software packages may differ greatly, generic rules can be constructed for common
models such as neural network (NN) potentials'®2!-23-25.27.28 'The architecture and descriptors of
a NN potential must be fully described with its layers, widths, and model features. The architecture
of the model limits its accuracy given a fixed set of descriptors and as such determines the final
quality of the model. Learning rates and loss functions may also influence the model strongly and
any changes during training (multi-phase training, learning rate schedulers, etc.) should be
detailed. Recently, the introduction of equivariance to MLIPs has also been seen to improve
models' °* % For such codes, one should report related parameters such as the symmetries
allowed or the maximum tensor ranks. Other general ML parameters such as activation function
may not appear to be important but should be reported regardless as they may have unintended
impact. If GPUs are used, it is important to report what numerical precision is used within the

model as the usage of FP32, FP64, and TF32° may influence results depending on system size
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and normalization of data. If CPUs are used, FP64 should always be used (or higher precision) as
most modern CPUs do not perform better on FP32 and precision will be lost unnecessarily.
Precision in the model is unlikely to matter except when sub-meV/atom errors are reached’’. The
precision dependence can be evaluated by retraining or by reducing the model from FP64 to FP32
or TF32 in the inference stage.

Gaussian process potentials have also become common in the field especially for on-the-fly
training 2> °* % due to their predictable deterministic training time and inherent uncertainty
quantification'®. If calculated as part of the training process, the method of optimizing Gaussian
process hyperparameters as well as the optimized hyperparameters for the model kernels and noise
should also be reported to provide a good starting point for training similar models. It should be
disclosed directly if hyperparameters are determined non-systematically. A non-systematic search
of hyperparameters may produce good models but indicate that better hyperparameters might be
possible to identify in future studies.

As an example of the importance of detailed reporting of the kernel parameters, Gaussian process
models can be developed using 2-body, 3-body, or n-body multi-element kernels** ** 1!, The 2-,
3-, and n-body terms may have differing radial cutoff definitions between atoms; these radial
cutoffs should be reported as a table such that particular interactions (e.g., C-H pairs) can be easily
identified and compared with radial distribution functions. These models may also be precalculated
in terms of its decomposed n-body interactions and approximated by mapping the n-body terms
directly to a tabulated form to be looked up during simulation, known as a mapped Gaussian
process (MGP). The model is approximated by mapping the n-body terms directly to a tabulated
form to be looked up during simulation, known as a mapped Gaussian process (MGP).!*> MGPs

provide much faster predictions but may be less accurate if not determined on a fine enough grid.
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It is therefore critical to report the exact form of the approximation (e.g., grid spacing between
tabulated points, linear vs. spline interpolation, error prediction, etc.). Plotting the 2 or 3 body
terms may be helpful to identify issues at extreme distances. We also note that training data for
Gaussian processes come from typical DFT calculations but may be added on a per-atom basis
rather than the entire configuration in some codes supporting active learning. The per-atom DFT
data must be accounted for in the reporting. Training data may be better provided in the form of a
list of configurations and atoms or by modifying the training dataset to include tags for atoms that
are trained on if utilized. A standardized format for sparse atomic data which is supported across
codes would be a useful development for the reproduction and cross-validation of codes. Any
format can be used that supports tagging of atoms (extxyz, traj, npz) with an extra parameter that
indicates to train on those atoms.

Hyperparameter optimization is commonly performed to search for the best models.!*® In such
cases, it would be useful to note down the search space and the tabulate the tested parameters,
which may save time and effort for prospective users looking to study similar systems. If online
tools such as Weights & Biases are used for hyperparameter scans, the tools should also be
mentioned together with the specific algorithms applied for hyperparameter optimizations!®-1%,

It is also helpful to think of MLIPs as being either feature-based or deep-learning-based. Feature-
based MLIPs, such as BPNNs!'% 197 and GAP'®, usually involve a transformation of the input
structures into suitable features/descriptors for subsequent regression to map these features to the
computed energies and forces. These features have properties such as being invariant to
translations and rotations that make them conducive for training. On the other hand, deep-learning
based MLIPs, learn the features on-the-fly during training. Examples of these MLIPs include

NequlP?° and MACE '°, which use graphs to represent the input structures. Message passing neural
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networks!®” (MPNNs) then operate on these graphs, where a series of interaction blocks can
generate higher order features on-the-fly.

We note that depending on the type of MLIP trained, different analyses of the training data can
be performed. For example, in feature-based MLIPs, it is simple to obtain the feature vectors and
so it can be helpful to plot the distribution of the features to visualize the training space. On the
other hand, for deep-learning-based MLIPs, obtaining the features can be difficult. We therefore
suggest that for deep-learning-based models, the model itself—including the network architecture
and weights—can be shared to ensure reproducibility and facilitate follow-up studies.

2.5. Validating MLIPs

Evaluating the accuracy of an MLIP is commonly performed by assessing errors in uncorrelated
structure predictions and in statistical/thermodynamic properties relevant to physical insights that
will be drawn from the MLIP. The MLIP should predict energies, forces, and stresses accurately
or any predictions will be a result of coincidence or error cancellation which may harm
transferability or robustness*> !°. For proper evaluation of the model performance, the “test set”,
used for evaluating inference errors, must include carefully sampled data that is representative of
the configurations the MLIP will need to predict although computational limitations may limit the
system size. If that is the case, authors should report known limitations to inform the readers. A
common error in creating test sets is to include atomic configurations from intermediate MD steps
between those used as training images, which will give artificially low errors. Instead, we
recommend building test sets from MD runs independent of those used for training so that the
model’s performance is evaluated on data that is not directly correlated with the training set. In
addition, validation must not be performed using “validation set”, used for selecting models during

training, as reported by MLIP codes as these errors are simply a metric to select an ideal model.
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The validation set leaks knowledge of its data into the model indirectly and influences the training
process. In addition, the test set and validation set meaning should be well-defined in the methods
section of the paper as the literature is not consistent in their definitions.

Error metrics, such as the mean absolute error (MAE), mean signed error (MSE), mean
percentage error (MPE), or root mean square errors (RMSE), allow for easy quantification of the
quality of the MLIP model and can highlight where systematic errors exist for improvement. Errors
must be reported for all predicted properties such as energy, force, and stress. Force error can also
be reported in terms of angle and magnitude, which are more meaningful and are rotationally
invariant quantities. Force errors should also be computed based on the unmodified ground truth
without constraints such as fixed atoms. Contributions from fixed atoms may be removed on a per-
image basis instead but removing such contributions is not directly supported by all codes. Stress
errors must also be reported carefully with the ideal gas contribution of velocities to stress removed
before analysis as ideal gas contributions come from velocity in the MD simulation. The stress
error should also be partitioned into the normal and shear components separately before analysis
as it is common for shear stresses to not be considered during NPT simulations and the normal

stress solely controls the pressure dependence.
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Figure 2. Improving the presentation of energy errors and force magnitude errors. Plots (a) and (d) are
intended as examples of parity plots that show very little useful information, while plots (b) and (e) are the
corresponding error distribution plots generated with KDE coloring highlight residual errors more
effectively. The angle error of force is presented in plot (c). Plot (f) is the histogram analog of plot (e),
showing the KDE plots are superior to a histogram due to distortion of data in the histogram. Data is
generated as mock data from NumPy to highlight how to best plot MLIP errors and is not intended to be
interpreted as a result of any simulation or training. A script to generate a similar plot is provided in the
Supplementary Information. All plots are colored according to the default matplotlib color mapping
(viridis), except for the hexbin plot (plasma) due to the change to a log scale.

Validation of MLIP potentials is often presented graphically as a function of system properties.
For simple statistics such as energy or force errors, parity plots (Figures 2a and 2d) are typically
the go-to choice as they allow the reader to easily compare predictions with benchmarks and
determine if systematic errors are present. However, when parity plots are calculated over a wide
range of values, the resolution of points is reduced, which may hide important discrepancies. In
such cases, plotting the error distribution can help highlight specific patterns that cannot be seen
on parity plots and indicate issues of the model (Figures 2b and 2¢). For example, in Figure 2b
there is a systematic deviation that is hidden in the parity plot of the same data. In Figure 2e, two

distributions appear to be present, which may be due to atoms in different chemical environments
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or accidental mixing of training sets with different ground truths. Errors may also be correlated to
other properties to highlight how predictions change as a function of the ground truth or predicted
properties. For example, Figure 2c demonstrates a clear relationship between the force angle error
and the magnitude of the force, with low magnitudes having larger angle errors in general. We
suggest also plotting errors against properties such as pressure, atomic composition, and system
size to check for correlations that might indicate simulation regions of concern and possible ways
to improve the model. If the MLIP provides a direct prediction of additional properties (e.g.,
magnetic moment, local electron density, density of states) these may also be validated at this
stage.

To improve visual clarity when there is significant data overlap, the distribution of points can be
colored via a kernel density estimation (KDE). This is visually clearer in comparison to a
histogram, which more explicitly puts the data into bins to calculate a distribution but distorts the
appearance as seen in Figure 2f. Note that the choice of bandwidth and kernel function can greatly
affect the KDE, and as such these parameters should be reported as well. However, a histogram
may be helpful if the data needs to be digitalized as discrete points may not be present when using
a KDE in a region of high density. We also stress the importance of choosing a good color scheme
when using color to encode data and suggest providing color bars and/or mentioning the color map
if it has a common name. We provide an example script capable of producing both parity and error

distribution plots in the SI.
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Figure 3. Example plots of (a) equation of state,'!! (b) two-body potential energy curves,!'? (c) vibrational
density of states,'" (d) density,'' (e) radial distribution function,'"® (f) isothermal compressibility,''* (g)
coverage dependent adsorption energy,''® and (h) phonon band structure'® using MLIPs in literature
studies. These highlighted plots demonstrate a wide variety of styles found in the literature for reporting
MLIP predicted properties; we suggest the reader view them in the context of the original publication. (a)
Adapted with permission'!!. Copyright 2022 Elsevier. (b) Adapted with permission''?. Copyright 2022 IOP
Publishing Ltd. (c) Adapted with permission''®. Copyright 2022 Elsevier. (d, f) Adapted with permission'!'“,
Copyright 2021 AIP Publishing. (¢) Adapted with permission!!’>. Copyright 2021 American Chemical
Society. (g) Adapted with permission''®. Copyright 2023 American Physical Society. (h) Adapted with
permission'®!. Copyright 2021 Springer Nature.

A particularly meaningful way to validate MLIPs is to check if the predictions in MD simulations
match with the ground truth they are based upon. Such practice is especially useful when the
validated property is directly related to the physical insights the MLIP study is intended to provide.
Examples of MD-derived properties are the vibrational density of states, density, radial distribution
function (RDF), and isothermal compressibility as seen in Figures 3¢, 3d, 3e, and 3f, respectively.

Evaluation of MD properties may be limited by equilibration time in DFT, so it may not be possible
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to directly validate with MD properties. Instead, it may be possible to equilibrate using the MLIP
and report if a DFT simulation started from the final MLIP configuration starts to deviate in any
thermodynamic properties over a short time, which may indicate a disagreement with the MLIP
prediction. Tabulating all calculated properties in the SI will also facilitate direct comparison in
the future when new methods or more comprehensive DFT simulations become available. We also
suggest presenting differences of properties when the MLIP and DFT results appear to be well
converged, since the resolution of data in plots may make it difficult to see where agreement is
better or worse. For example, in Figure 3e the radial distribution function (RDF) appears to be
very similar for the MLIP and MD runs. However, the agreement is not perfect, and a difference
plot of RDFs would be informative. We note that the MLIP results should not be compared with
experiments: this is a common mistake during validation of the MLIP and is addressed further in
the inference section of the perspective.

Relevant thermodynamic quantities related to the studied research questions, such as n-body
interactions, thermal expansion coefficients, binding energies, and phonons/vibrations, should also

be evaluated and reported from analyses such as many-body decomposition!!4 17- 118

or analyses
of static systems!'!> 1?° to ensure the MLIP provides meaningful physical insights. In many-body
decomposition, DFT is used to calculate various configurations of 2-body, 3-body, or n-body
isomers, enabling the precise determination of their decomposed interaction energies. Differences
between MLIP and DFT interaction energies reveal the presence of systematic errors or instances
of unphysical error cancellation. Two-body interactions may also be presented as a dissociation
curve as seen in Figure 3b. Optimizing structures using DFT and MLIPs and reporting the residual

mean square displacements (RMSD) can provide additional information about the low-energy

structures predicted by the MLIP. Properties based solely on system energy, such as the formation
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energy of nanoparticles, cohesive energies of bulk structures, and binding energies of adsorbates,
can be validated without running a full MD simulation at the DFT level. Other examples are an
equation of state'?!, the binding energy of adsorbates on a surface,'?? or the phonon band structure

of a system® 12°

as seen in Figures 3a, 3g, and 3h, respectively. We also suggest reporting
validation of thermodynamic properties both statistically (for quick comparison) and graphically
(for identification of trends) when possible.

Modern MLIPs are commonly strictly local potentials with their interactions confined to their
radius of interaction, which guarantees that the models are size-consistent and size-extensive.
However, in large unit cells, the long-range order that forms may be longer than the MLIP radius
of interaction. On the other hand, in small unit cells, there can be artificial short-range order. The
orders that form can thus bias the training set towards interactions that arise in specific system
sizes and the MLIP may not generalize well as a result. It is logical to validate the system as a
function of system size as well when the system size is changing. However, validating the model
on large systems may present unique challenges, as MLIPs are typically used when the ground
truth for larger systems is too expensive to compute. Therefore, when applying MLIPs trained on
small systems to larger ones, it's advisable to invest in a limited set of single-point calculations to
assess the MLIP's transferability to these larger systems. Potential errors may be verified and
reported by checking for discontinuous or unphysical dissociation curves of atoms or by evaluating
MD properties as a function of the number of atoms.

We also suggest reporting the test results of MLIPs beyond their training set conditions as
extreme conditions, such as elevated temperatures, can help identify problems with stability and

help us understand how the potential will extrapolate to unknown configurations'?* 23, This test

is particularly useful since the test accuracy of a model is not necessarily a good proxy of its
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extrapolative ability'?* 26, Deliberately creating non-physical interactions in simulations may help
identify when and why the MLIP fails during longer MD runs. For example, the O-H bond of water
might break during MD runs, forming OH. If OH is not present in the training dataset, it would be
good to include it to analyze how an unknown interaction will be handled in MD simulations if it
occurs by chance. Similarly, performing a topology analysis in the water system would ensure that
the simulation is still in a stable state given knowledge of the training dataset.
2.6 Inferring MLIPs

The most common use for MLIPs is to perform accelerated MD simulations in suitably modified
classical MD software such as LAMMPS!?”, GROMACS'?8, or OpenMM'%. Suggestions on how
to perform and report MD simulations is beyond the scope of this perspective, as they should be
performed identically to similar classical simulations. We do, however, suggest providing direct
input files for reproduction. It can additionally be helpful for practitioners to know the MLIP
evaluation speed, preferably reported in “atoms/second”, as this is agnostic to system size and time
step and may be related to the hardware reported. We also suggest reporting actual memory usage
as the hardware provides a hard constraint on memory and requirements for inference may be
significantly higher or lower than that for training depending on system size. Determining memory
usage as a function of system size and providing this information in the SI will assist readers in
understanding scaling of codes that they may be unfamiliar with.

MLIP inference is often challenging as major, hidden problems can arise due to stability

issues!3?

. While some guidelines for MLIP stability exist, addressing this complex issue is difficult
as failures may occur differently on a code-to-code basis. MLIPs can sometimes predict unrealistic

behavior even if the test dataset shows low errors as ML models typically do not follow physical

constraints. For example, the MLIP might incorrectly predict bonding at unphysical distances or
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bonds may break unexpectedly. Such stability issues should be reported even if a solution may be
out of reach. To improve stability, augmenting the MLIP with physically motivated terms such as

nuclear repulsion, dispersive forces, and force constraints can help.”!> 131133

If augmentations are
applied, their exact form must be reported. It is also important to report any known limitations
with regard to the temperature, pressure, or material phase they intended to operate in as it is
common for stability issues to arise whenever the potential is extrapolating beyond its original
training set. The limitations may be discussed in a “Limitations” section of the manuscript (or
added to SI if there are space constraints) so that readers can find all known inference issues with
MLIPs. A limitations section may also be utilized to discuss strategies to keep potentials stable
within known instabilities by use of adaptive timesteps or schemes to restart MD runs from slightly
different random seeds.

Validation of trained MLIPs by experimental comparison is a misguided practice as the
underlying training data is not necessarily correlated with experiments and may result in false
confidence in the quality of the MLIP. Errors arising from the computational method or model
approximations will cause deviations from experiments, which must be reproduced in the MLIP.
As a result, experimental comparisons should not be used to validate the quality of MLIPs, but
instead treated as emergent results to serve as predictions of the DFT simulation. As such, if the
MLIP is expected to reproduce the DFT method well, any agreement with experiments likely
indicates the underlying method would agree in absence of the use of MLIPs. Experimental
comparisons are therefore useful for gaining physical insights into the underlying method used in

data generation. However, they must be reported with caution to avoid grand claims that cannot

be supported by the work when direct verification is not possible. Here, we stress to the reader that
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“validation” of the MLIP by experimental results is not validation but is instead computing results
from the inference stage.
2.7 Data Availability / FAIR

Data lies at the heart of machine learning. To promote software development and verify the
results resulting from MLIPs, proper archival of data should be required. Data requests to authors
may initially work but will be less effective as the publication and authors age. Adhering to the

FAIR data principles!'3*!%

—making data findable, accessible, interoperable, and reusable—is
most painless at the publication stage and must be advocated for by journals hosting MLIP
publications. Public, unaltered datasets necessary for reproducing the results should be provided
for publication. This should be provided in standard formats compatible with common software

t137, pymatgen'®®, etc.) to facilitate interoperability between

(Atomic Simulation Environmen
codes. It is important to keep useful information when possible, such as magnetic moments, even
if this is not used by the MLIP developer in their current work. This extra information may be used
in future MLIPs if the dataset is reused or verify that future data generation is consistent with the
old dataset if it is extended. While the SI can serve as a backup of training inputs, large datasets
are better hosted on research repositories like Zenodo'** or NOMAD!*’. These repositories also
provide DOIs for easy referencing of specific versions (which may be updated after publication)
and retrieval of specific files from the dataset if properly formatted. We advise against using
software-focused Git-based repositories such as GitHub and GitLab, since they may be modified
less transparently, and bandwidth and size limitations may force authors to reduce the amount of
data available. However, even research repositories may have limited file sizes. In that case, we

suggest uploading a representative portion of the data. All training data should be reported, and it

should be disclosed if it is not
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Sharing trained models can also be very useful. As models are difficult to generally deploy
across different computational systems without modification, we suggest providing all tools
required for retraining. In some cases, the MLIP training code is not publicly available, making
direct reproduction impossible. The models should still be reported as they will be useful for
comparison with other MLIP training codes available at or after publication, encouraging healthy
competition between development groups. Additional effort should be applied towards sharing
trained models when training times are large due to the size of the dataset and retraining the model
invokes an excessive cost on future practitioners preventing reproduction. An open interface online
which is provided for a pre-trained model, such as that of the Open Catalyst project demo on the
OC20 dataset’" ' 12 can be a helpful alternative when sharing the model is not possible.
However, there must be still caution with the suggested practices as there is no way to guarantee
that third-party services hosted by individual researchers will be available long term. If it is
possible, providing the repository containing everything required to self-host the service helps
ensure it is not lost if the original service provider is no longer functional.

3. Conclusions

Establishing clear and comprehensive reporting standards for MLIPs is critical for ensuring the
reliability, reproducibility, and advancement of MLIP-accelerated simulations. This perspective
highlights various aspects that may not currently be rigorously documented but are critical for
increasing the usefulness and reproducibility of publications. We encourage the adoption of
standardized reporting practices that are enforced at the personal, group, and journal levels before
publication. A more standardized approach will also assist in peer review by ensuring that
reviewers have all pertinent information on their first viewing, accelerating the publication process

by reducing the need for lengthy revisions. The challenges with MLIP reporting arise largely from
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the diverse reporting requirements of newer software available and the lack of long-term, field-
specific standards. To tackle this, we provide a checklist in the Supporting Information
encompassing the suggestions of this perspective. The dynamic and evolving nature of MLIPs and
their applications requires an adaptable standard that lays the groundwork for all MLIPs to be
reported similarly. We hope that the establishment of such standards may also accelerate the
adoption of MLIPs in the common workflows of DFT practitioners.

Supporting Information.

The following files are available free of charge.

Checklist of parameters to report for authors to reference prior to publication and a script to serve
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