

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JANUARY 10 2024

Ideal conductor/dielectric model (ICDM): A generalized
technique to correct for finite-size effects in molecular
simulations of hindered ion transport 
Brian A. Shoemaker  ; Amir Haji-Akbari  

J. Chem. Phys. 160, 024116 (2024)
https://doi.org/10.1063/5.0180029

 10 January 2024 13:59:48

https://pubs.aip.org/aip/jcp/article/160/2/024116/2932955/Ideal-conductor-dielectric-model-ICDM-A
https://pubs.aip.org/aip/jcp/article/160/2/024116/2932955/Ideal-conductor-dielectric-model-ICDM-A?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/160/2/024116/2932955/Ideal-conductor-dielectric-model-ICDM-A?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0009-0006-3629-9587
javascript:;
https://orcid.org/0000-0002-2228-6957
javascript:;
https://doi.org/10.1063/5.0180029
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2219938&setID=592934&channelID=0&CID=814978&banID=521401185&PID=0&textadID=0&tc=1&scheduleID=2141444&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3Ajcp%22%5D&mt=1704895188212416&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0180029%2F18293443%2F024116_1_5.0180029.pdf&hc=258db34adfeca10fcd1ea7fbc84f993fc0832909&location=


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Ideal conductor/dielectric model (ICDM):
A generalized technique to correct for finite-size
effects in molecular simulations of hindered
ion transport

Cite as: J. Chem. Phys. 160, 024116 (2024); doi: 10.1063/5.0180029
Submitted: 6 October 2023 • Accepted: 18 December 2023 •
Published Online: 10 January 2024

Brian A. Shoemaker and Amir Haji-Akbaria)

AFFILIATIONS
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA

a)Author to whom correspondence should be addressed: amir.hajiakbaribalou@yale.edu

ABSTRACT
Molecular simulations serve as indispensable tools for investigating the kinetics and elucidating the mechanism of hindered ion transport
across nanoporous membranes. In particular, recent advancements in advanced sampling techniques have made it possible to access translo-
cation timescales spanning several orders of magnitude. In our prior study [Shoemaker et al., J. Chem. Theory Comput. 18, 7142 (2022)], we
identified significant finite size artifacts in simulations of pressure-driven hindered ion transport through nanoporous graphitic membranes.
We introduced the ideal conductor model, which effectively corrects for such artifacts by assuming the feed to be an ideal conductor. In
the present work, we introduce the ideal conductor dielectric model (ICDM), a generalization of our earlier model, which accounts for the
dielectric properties of both the membrane and the filtrate. Using the ICDMmodel substantially enhances the agreement among corrected free
energy profiles obtained from systems of varying sizes, with notable improvements observed in regions proximate to the pore exit. Moreover,
the model has the capability to consider secondary ion passage events, including the transport of a co-ion subsequent to the traversal of a
counter-ion, a feature that is absent in our original model. We also investigate the sensitivity of the new model to various implementation
details. The ICDMmodel offers a universally applicable framework for addressing finite size artifacts in molecular simulations of ion transport.
It stands as a significant advancement in our quest to use molecular simulations to comprehensively understand andmanipulate ion transport
processes through nanoporous membranes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0180029

I. INTRODUCTION

Hindered ion transport through nanopores is a ubiquitous
phenomenon and occurs in a wide variety of systems, including
channel proteins in biological membranes,1,2 ion separation mem-
branes in batteries3,4 and fuel cells,5 and polymeric membranes in
reverse osmosis water desalination.6 In all these cases, the ability
of constituent nanopores to modulate ion transport is key to their
respective function, and understanding the relationship between
nanopore structure and ion transport kinetics and mechanism is
key to engineering such systems. Unfortunately, it is extremely
challenging to characterize structure-selectivity relationships using
experiments due to the limited spatiotemporal resolution of the
existing experimental techniques. As such, molecular simulations

have emerged as attractive tools for conducting systematic studies
in which the effect of hypothesis-driven perturbations on nanopore
chemistry and geometry is investigated on the transport of different
ions.7

A prime example of this is water desalination. Water sus-
tainability is one of the grand challenges of our era, as almost
40% of the world’s population lack adequate access to sources of
clean freshwater,8 and this is only going to exacerbate considering
current trends in population growth,9 urbanization,10 and climate
change.11 In recent decades, water desalination has emerged as a
core technology in this quest, and it produces 95 × 106 m3/day
of purified water.12 In particular, reverse osmosis, which is based
on using nanoporous water-permeable membranes to reject ions
and small molecules, constitutes a particularly efficient means of
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carrying out desalination.13 Despite its promise, there are still sig-
nificant technological barriers to widespread adoption of reverse
osmosis desalination, such as high energy requirements,13 environ-
mental concerns with the disposal of high-concentration brine,14
and capital costs due to membrane fouling and degradation.15
Improving the efficacy of reverse osmosis desalination therefore
requires developing novel membranes with enhanced properties,
most notably high permeability to water and strong rejection of
small ions and molecules. In an effort to solve this complicated
optimization problem, molecular simulations have proven indis-
pensable, providing valuable insights about nanoporous membranes
based on graphene,16–21 metal-organic frameworks (MOFs),22 and
polymers.23,24

A second example is biological channel proteins, which mod-
ulate the transport of ions through cellular and organellar mem-
branes. They generally possess extraordinary levels of ion–water
and ion–ion selectivity, yet there are significant gaps in our under-
standing of the molecular origins of such selectivity. Similar to
water desalination, various techniques in molecular simulations
have been used to investigate different aspects of water and ion
transport through channel proteins,25 such as aquaporins26–28 and
the potassium channel.29,30

Despite their potential, the accuracy of molecular simula-
tions depends on a multitude of implementation details. One
such detail is the need to conduct molecular simulations within
nanoscale simulation boxes and to employ periodic boundary con-
ditions to avoid interfacial artifacts. In particular, typical systems
considered in atomistic simulations are comprised of ∼104 − 105

atoms. They therefore always exhibit deviations from what would
be expected in the thermodynamic limit (assuming the valid-
ity of the employed force-field and the fidelity of other imple-
mentation details). Such deviations are referred to as finite size
effects and have been documented for a variety of properties,
such as diffusivity,31,32 radial distribution function and structure
factor,33 relaxation times in glassy systems,34 thermal conduc-
tivity,35 piezoelectric response,36 and crystal nucleation rates.37,38

Finite size effects can be particularly atrocious for rare events,
i.e., collective phenomena that involve crossing large free energy
barriers.

A notable—and unfortunate—example is hindered ion trans-
port through membranes. In our earlier work,20 we demonstrated
that the kinetics and mechanism of pressure-driven chloride trans-
port through nanoporous graphitic membranes is strongly impacted
by the size of the simulation box. In particular, we observed ionic
fluxes to change by almost 6 orders of magnitude within the range
of system sizes considered therein. By assuming that the electrolytic
feed compartment is an ideal conductor, we analytically derived
and numerically validated a model to correct for finite size artifacts.
This work seeks to improve and generalize the model of Ref. 20 by
incorporating additional physics pertaining to induced charges in
dielectric regions, such as the membrane and the filtrate. The new
model, which we call the ideal conductor/dielectric model (ICDM),
systematically considers the impact of dielectric–dielectric interfaces
on the free energy correction. One of the important practical advan-
tages of the ICDM model is its ability to properly handle secondary
ion transport processes wherein one or more ions have previously
traversed the membrane prior to the translocation of the ion of
interest. We find it necessary to emphasize that the ICDM model

does not in any way alter the molecular dynamics (MD) integra-
tion scheme nor does it modify the Hamiltonian of the system.
Instead, it serves as a post-processing tool to extract transloca-
tion free energetics and kinetics in the thermodynamic limit from
molecular dynamics (MD) trajectories obtained in the finite system.
It can therefore be directly applied to trajectories generated using
conventional classical force-fields featuring pairwise Coulombic
interactions.

This paper is organized as follows. The theoretical framework
for constructing the ICDM correction is laid out in Sec. II, with
Secs. II A and II B devoted to the method of images and the con-
struction of the free energy correction, respectively. Details of system
setup, MD simulations, and rate calculations are outlined in Sec. III.
Section IV details our numerical validation of the ICDM model, par-
ticularly its extension to secondary ion translocation events. We
present our concluding remarks in Sec. V.

II. THE IDEAL CONDUCTOR/DIELECTRIC MODEL
(ICDM)

The original ideal conductor model (presented in Ref. 20) and
the forthcoming ideal conductor/dielectric model are both designed
to rectify finite size effects in molecular simulations of ion trans-
port through membranes when periodic boundary conditions are
employed. Therefore, they are both utilized as a post-processing
step wherein free energy profiles determined directly from molec-
ular simulations can be corrected to estimate the free energy profile
in the thermodynamic limit. The ideal conductor model treats the
feed compartment as an ideal conductor and the membrane region
as a region with dielectric constant ϵr = 1. Therefore, when an ion
leaves the feed (e.g., as a result of a hydrostatic or osmotic pressure
gradient), it induces a charge surplus (or deficit) within the con-
ductor, which then accumulates at its surface. In the simple case
of semi-infinite conducting and dielectric slabs, the surface density
of the induced charge can be readily estimated from the method of
images. Due to periodic boundary conditions, the periodic replicates
of the leading ion will also induce their respective charge densities at
the surface of the conductor, which will then exert an unphysical
restraining force on the leading ion. The contribution of these peri-
odic replicates to free energy is estimated by computing the change
in the electrostatic potential of a fictitious ion moving from pore
entrance to the position of the leading ion under the influence of the
charge arrangement induced by periodic replicates. The correction
to free energy is given by

ΔF corr(z) =
e2

2ϵ0LxLy

⎧⎪⎪
⎨
⎪⎪⎩

z − z0 −
LxLy
2π
[

1
z0 + z

−
1
2z0
]

− 2 ∑
α∈{x,y}

∞

∑
kα=1

e−2qαz − e−qα(z+z0)

qα

− 4
∞

∑
kx ,ky=1

e−2∣q∣z − e−∣q∣(z+z0)

∣q∣

⎫⎪⎪
⎬
⎪⎪⎭

. (1)

Here, ϵ0 is the vacuum permittivity, and Lx and Ly are the dimen-
sions of the membrane. q = 2π(kx/Lx, ky/Ly) is the wavevector asso-
ciated with (kx, ky) ∈ Z2. z and z0 correspond to the position of
the leading ion and the point at which the correction starts being

J. Chem. Phys. 160, 024116 (2024); doi: 10.1063/5.0180029 160, 024116-2

Published under an exclusive license by AIP Publishing

 10 January 2024 13:59:48

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

applied, respectively. They are both measured with respect to the
surface of the conductor. The translocation free energy profile in the
thermodynamic limit, F∞(z), is then estimated as

F∞(z) = Ff (z) − ΔF corr(z), (2)

wherein Ff (z) is the free energy profile obtained from a finite
simulation (with box dimensions Lx and Ly). We demonstrate in
Ref. 20 that the corrected free energy profiles obtained using (1)
exhibit remarkable consistency across different system sizes, lead-
ing to translocation barriers that vary by less than one kBT. The
agreement, however, worsens beyond the locus of the translocation
barrier, and toward the pore exit. The focus of this work is to rectify
these minor (but statistically significant) discrepancies by deriving a
generalized model that accounts for dielectric heterogeneities within
the system. Doing so requires solving the Poisson’s equation within a
simulation domain with dielectric heterogeneity and using that solu-
tion to account for the spurious impact of periodic replicates on the
translocation free energy profile. Below, we outline both these steps
in detail.

A. Solving Poisson’s equation using the method
of images

In order to account for dielectric heterogeneities, we assume
that a typical membrane separation system comprises a conducting
slab (containing the feed electrolyte) adjacent to a series of dielectric
slabs (representing the membrane interior and the filtrate) separated
by sharp boundaries. Depending on the progress of translocation,
the ion of interest will be in one of these dielectric regions. At an
interface separating two domains with dielectric constants ϵ1 ≠ ϵ2,
the electrostatic potential φ(r) will be a continuous function of r.
Its first normal derivative, however, will be discontinuous and will
satisfy the following boundary condition:

ϵ2
∂φ2

∂n
∣
i
− ϵ1

φ1

∂n
∣
i
= σf ,i. (3)

Here, ∂φ/∂n = n ⋅ ∇φ is the normal derivative of φ (i.e., along the
unit vector n perpendicular to the interface and pointing towards
region 2). The subscript i refers to the fact that both derivatives
are evaluated at respective sides of the interface. σ f ,i is the free
charge density at the interface, which is usually zero in membrane
separation systems. Note that (3) implies the continuity of the dis-
placement vector (D = ϵE = −ϵ∇φ) across interfaces that lack free
charges. For an arbitrary arrangement of regions, Poisson’s equa-
tion can be solved numerically to obtain φ(r) throughout the entire
simulation domain. In situations wherein the system can be par-
titioned into dielectric domains separated by parallel flat infinitely
large interfaces, the task of solving the Poisson’s equation can be
simplified considerably by using the method of images. The method
seeks to identify a proper collection of surrogate charges outside the
region of interest in a manner that yields a solution that satisfies all
relevant boundary conditions. The uniqueness property of Poisson’s
equation will then guarantee that the electrostatic potential of the
surrogate system within the appropriate domain is identical to that
of the original system.

1. Two dielectric region
The simplest case involves an interface that separates two semi-

infinite dielectric media with dielectric constants ϵ1 ≠ ϵ2 [Fig. 1(a)].
If a point charge q is located within the second region and at a dis-
tance h from the interface, the method of images can be readily
applied as follows. For region 1, φ(r) can be determined by consider-
ing a system with a charge q′ ≠ q at the location of the original point
charge q [Fig. 1(b)]. Similarly, the potential within region 2 can be
determined from a system consisting of the original charge q and an
image charge qL, which is reflected across the interface [Fig. 1(c)].
Such surrogate arrangements will yield the following solution for
φ(r):

φ(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
4πϵ0ϵ1

q′

∣r − (zI + h)ez ∣
z < zI ,

1
4πϵ0ϵ2

[
q

∣r − (zI + h)ez ∣
+

qL
∣r − (zI − h)ez ∣

] z ≥ zI. (4)

By enforcing the continuity of φ(⋅) as well as the boundary condition
given by Eq. (3), one can demonstrate that q′ and qL will be given by

q′ =
2ϵ1q
ϵ1 + ϵ2

, (5)

qL = −
q(ϵ1 − ϵ2)
ϵ1 + ϵ2

. (6)

While these simulated image charges effectively reproduce the cor-
rect electrostatic potential within both regions, it is crucial to recog-
nize that they do not represent real charges present in the system.
Instead, they happen to produce an identical potential to the one
generated by the actual charges induced at the dielectric interface.
By applying Gauss’s law at the interface, using the potential given by

FIG. 1. Schematic representation of the application of the method of images to
two adjacent dielectric regions with dielectric constants ϵ1 and ϵ2. To accurately
represent the actual charge distribution depicted in (a), where a point charge exists
in region 2, surrogate charge configurations are devised for regions 1 (b) and 2
(c). In each panel, the solution of the Poisson equation within the white region is
determined by the real charge(s) within that region along with the image charge(s)
situated within the dashed region.
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Eq. (4), we can deduce that the net charge induced at the interface is
given by

qb = −
q
ϵ2
(
ϵ1 − ϵ2
ϵ1 + ϵ2

). (7)

It is important to note that the ideal conductor model described
in Ref. 20 can be seen as a special case of this approach when
ϵ1 →∞ and ϵ2 = 1. In a broader context, if the first region is
considered an ideal conductor, the total induced charge at the
surface would be −q/ϵ2, which is smaller in magnitude than the
charge of the leading ion due to electrostatic screening by region
2. However, given that the feed possesses either a surplus or deficit
of charge depending on the sign of q, one must distribute the
charge −q[1 − ϵ−12 ] uniformly across the surfaces of the conducting
slab.

2. Three dielectric regions
The two-region model is expected to provide a reasonably

accurate representation for scenarios in which the transition state
is significantly distant from the pore exit. A more rigorous treat-
ment will, however, require considering a minimum of three regions
with dielectric constants ϵ1, ϵ2, and ϵ3 for the feed, membrane, and
filtrate, respectively. (Note that a feed occupied by a sufficiently
concentrated electrolytic solution can still be considered an ideal
conductor with ϵ1 →∞.) While this three-region configuration has
been previously studied for conducting39,40 and dielectric41 slabs, no
simple analytical solution exists for such a tripartite arrangement.
The application of the method of images involves a recursive process
in which a series of image charges are introduced in an appropriate
manner in order to construct a series solution for the Poisson’s equa-
tion. Assuming that a point charge q is located with region 2 (of finite
thickness w) and at a distance h < w from the interface with region
1 (Fig. 2), one can recursively introduce a sequence of image charges
for each region as follows. First, the point charge q is reflected

FIG. 2. Illustration of the application of the method of images to a system with three
dielectric regions with dielectric constants ϵ1, ϵ2, and ϵ3. A point charge q is located
within the central region and is reflected across both boundaries, resulting in the
creation of four image charges: two for region 2 and one for each of regions 1
and 3. The two image charges generated within region 2 are further reflected
across its second boundary, yielding four additional image charges (two in region
2 and one in each of regions 1 and 3). This recursive process is continued
indefinitely, generating a series of image charges as elaborated in the text.

across the boundaries, yielding the image charges qL,1 = −γ12q and
qR,1 = −γ32q in regions 1 and 3, respectively, with γij given by

γij =
ϵi − ϵj
ϵi + ϵj

. (8)

Simultaneously, image charges q′ = λ12q and q′′ = λ32q appear in
region 2 at the same location as the original charge q with λij given
by

λij =
2ϵi

ϵi + ϵj
. (9)

Note that both qL,1 and qR,1 are image charges associated with region
2 while q′ and q′′ belong to regions 1 and 3, respectively. While each
reflection aims to balance its respective interface, it creates imbal-
ance at the other interface. Consequently, an additional round of
reflections of qR,1 and qL,1 is required across the 1/2 and 2/3 inter-
faces, respectively, resulting in the creation of qL,2 = −qR,1γ12 and
qR,2 = −qL,1γ32. Furthermore, extra image charges q′R,1 = λ12qR,1 and
q′′L,1 = λ32qL,1 are introduced at the same positions as qR,1 and qL,1.
This process can be continued indefinitely to place image charges
qL,j and qR,j (alongside their screened counterparts q′′L, j and q′R, j) at
the following positions:

zL,j = (−1)jh + [
1 − (−1)j

2
− j]w, (10a)

zR,j = (−1)jh + [
1 − (−1)j

2
+ j]w, (10b)

and magnitudes,

qL,j = −γ12qR,j−1, (11a)

qR,j = −γ32qL,j−1, (11b)

q′R, j = λ12qR,j−1, (11c)

q′′L, j = λ32qL,j−1. (11d)

Note that qR,0 = qL,0 = q. With these image charges at hand, the
solution of Poisson’s equation within each region will be given by

φ1(r) =
1

4πϵ0ϵ1

∞

∑
j=1

q′R, j
∣r − zR,j−1ez ∣

, (12a)

φ2(r) =
1

4πϵ0ϵ2

⎧⎪⎪
⎨
⎪⎪⎩

q
∣r − hez ∣

+
+∞

∑
j=1
[

qL,j
∣r − zL,jez ∣

+
qR,j

∣r − zR,jez ∣
]

⎫⎪⎪
⎬
⎪⎪⎭

,

(12b)

φ3(r) =
1

4πϵ0ϵ3

∞

∑
j=1

q′′L, j
∣r − zL,j−1ez ∣

. (12c)

An interesting special case corresponds to when both regions 1 and
3 are ideal conductors. In such a scenario, γ12 = γ32 = 1, which will
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imply that all image charges associated with region 2 will be equal in
magnitude to q but will have alternating signs. This could potentially
impact the convergence of the method adversely. As such, a larger
number of image charges might be needed for satisfactory conver-
gence. The electrostatic potential within the dielectric domain will
be given by

φ2(r) =
q

4πϵ0ϵ2
{

1
∣r − hez ∣

+
+∞

∑
k=1
[

1
∣r − (h − 2kw)ez ∣

+
1

∣r − (h + 2kw)ez ∣
−

1
∣r + [h + 2(k − 1)w]ez ∣

−
1

∣r + [h − 2kw]ez ∣
]}, (13)

which can be readily differentiated to obtain the electric field. Yet, it
can be easily demonstrated that the rate of convergence of (13) will
be comparable to that of∑∞k=1 k

−2 (Appendix).

3. Arbitrary number of dielectric regions
In certain scenarios, the inclusion of more than three dielectric

regions might become necessary, particularly when the membrane
exhibits considerable spatial heterogeneity along the direction of ion
transport. While it is not easy to enumerate the sequence of image
charges needed for such a scenario, a recursive algorithm (similar to
the approach described above) can be formulated to systematically
determine the required image charges associated with all regions.
Consider a system comprised of m dielectric slabs with dielectric
constants ϵ1, ϵ2, . . . , ϵm, and a point charge q located within region
i0. Our proposed algorithm (Algorithm 1) serves as a robust tool to
manage Li, which contains both real and image charges associated
with each region i for 1 ≤ i ≤ m. Each charge within this ensemble is
defined not only by its magnitude and position but also by a binary
reflectivity vector b = (bl, br). These reflectivity values, denoted by
bl and br , dictate whether a charge will subsequently undergo reflec-
tion across the left or right boundary of the region with which it is
associated.

At the beginning, Li’s are all empty except for
Li0 = {(q, zq,bq)} wherein bq is given by

bq =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(F,T) i0 = 1,
(T,T) 1 < i0 < m,

(T,F) i0 = m.

(14)

In each iterative step, a comprehensive scan of all regions is per-
formed to identify charges with at least one true reflectivity flag.
For every true flag, the corresponding charge (associated with
region i) is reflected across the respective boundary, generating
two image charges. The first charge (with magnitude −γi±1,iqorig)
is the reflection of the original charge across the respective bound-
ary and is associated with the original region, i. The second charge
(with a magnitude λi±1,1qorig) is located at the position of the
original charge, but is associated with region i ± 1. Once all reflec-
tions are completed, all reflectivity flags for the original charges
are set to false. When it comes to the newly generated image
charges, their reflectivity flags are set to true except for the bound-
ary across which they were created. It is worth noting that for

charges associated with the first and last regions, the first and
second flags remain invariably false, respectively. For instance,
if an image charge associated with region 1 < i < m is reflected
across its left boundary, the reflectivity flag of the two new charges
(associated with regions i and i − 1) will be (F,T) and (T,F),
respectively.

After each iteration, the newly generated image charges are
used to update the estimates of the electrostatic potential and
its first derivative at every interface. The iterative process con-
cludes when the relative discrepancy between φ and ϵ∂φ/∂n (esti-
mated at two sides of every interface) falls below a pre-specified
threshold.

B. Constructing the ICDM finite size corrections
The next step is to use the image charges specified in Sec. II A

to derive finite size corrections to free energy. For simplicity,
we present the ICDM model within the context of three distinct
regions, including an ideal conductor and two dielectric regions. It
is, however, important to note that this model can be seamlessly
extended to accommodate systems featuring a larger number of
dielectric regions, or when both the feed and the filtrate are ideal
conductors.

Suppose that an ion with charge q is traversing the membrane
and is located at zl within a region of permittivity ϵ = ϵ0ϵr wherein
ϵr is the dielectric constant of that region. Let {(qi, zi)}∞i=1 corre-
spond to the magnitudes and positions of all its image charges. What
underlies polarization-induced finite size artifacts is the unphysical
excess electric field stemming from all periodic replicates of these
image charges, which is given by

Eex
pt,z(zl) =

∞

∑
i=1
∑
m∈Z2
m≠0

qi(zl − zi)

4πϵ[m2
xL2x +m2

yL2y + (zl − zi)2]
3
2
. (15)

Here, m = (mx,my) ∈ Z2 is a pair of integers corresponding to the
mxth and myth periodic replicate of each charge along the x and
y dimensions, respectively. The subscript “pt” denotes that this
excess field originates from the periodic images of a point charge.
Equation (15) can be readily re-expressed in the Fourier space as
follows:

Eex
pt,z(zl) =

1
2ϵLxLy

∞

∑
i=1
∑
m∈Z2

qie
−2π(zl−zi)

¿

Á
ÁÀ m2

x
L2x
+

m2
y

L2y −
1
4πϵ

∞

∑
i=1

qi
(zl − zi)2

.

(16)

Note that the inclusion of the last term is to ensure that only the
contributions of the periodic replicates of the image charges are
included.

A similar procedure can be employed to account for the effect
of other ions in the membrane on the traversing ion. More precisely,
let N be the number of such ions and let q′j and z′j be the charge and
the position of the jth such ion. Also, denote the magnitudes and
positions of its image charges with (q′j,i, z

′

j,i). The excess electric field
due to periodic replicates of q′j , as well as those of its image charges,
will be given by

J. Chem. Phys. 160, 024116 (2024); doi: 10.1063/5.0180029 160, 024116-5

Published under an exclusive license by AIP Publishing

 10 January 2024 13:59:48

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

ALGORITHM 1. Create image charges for m dielectric regions.

1: Procedure CreateImageCharges ({ϵi}mi=1,{zi}
m−1
i=1 , q, zq)

2: Inputs:
1. {ϵi}mi=1, dielectric constants of consecutive regions.
2. {zi}m−1i=1 , positions of interfaces separating regions i and i + 1 with z1 < z2 < ⋅ ⋅ ⋅ < zm−1.
3. q, magnitude of the point charge.
4. zq, position of the point charge.

3: Output: {(qi, j , zi, j)}nij=1, the list of magnitudes and positions of all image charges within all regions (1 ≤ i ≤ m). ni is the total number of
charges associated with region i

4: Denote the region that q belongs to as i0.
5: for i = 1, 2, . . . ,m do
6: if i ≠ i0 then
7: Li ∶= {}.
8: else
9: Li ∶= {(q, zq,bq)}. ⊳ Assign bq using Eq. (14).
10: end if
11: end for
12: threshold = true.
13: while threshold do
14: Let Ri ∶= {} for 1 ≤ i ≤ m. ⊳ List of reflectable charges in region i.
15: for i = 1, . . . ,m do
16: for j = 1, . . . ,ni do
17: if bi,j has any true flag, append qi,j to Ri.
18: end for
19: end for
20: for i = 1, 2, . . . ,m do
21: for q′ ∈ Ri do
22: if bl,q′ then
23: Reflect q′ across region i’s left boundary, and append the arising charge q̃ = −γi−1,iq′ to Li.
24: Set the reflectivity of q̃ to (F,T) and (F,F) for i < m and i = m, respectively.
25: Append q = λi,i+1q′ located at the position of q′ to Li−1.
26: Set the reflectivity of q to (T,F) and (F,F) for i ≠ 2 and i = 2, respectively.
27: ni ∶= ni + 1.
28: ni−1 ∶= ni−1 + 1.
29: end if
30: if br,q′ then
31: Reflect q′ across region i’s right boundary, and append the arising charge q̃ = −γi+1,iq′ to Li.
32: Set the reflectivity of q̃ to (T,F) and (F,F) for i > 1 and i = 1, respectively.
33: Append q = λi+1,iq′ located at the position of q′ to Li+1
34: Set the reflectivity of q to (F,T) and (F,F) for i ≠ m − 1 and i = m − 1, respectively.
35: ni ∶= ni + 1.
36: ni+1 ∶= ni+1 + 1.
37: end if
38: bq′ ∶= (F,F). ⊳ This charge can no longer be reflected.
39: end for
40: end for
41: Set threshold ∶= false if all boundary conditions (for φ and ∂φ/∂z) are satisfied at all interfaces.
42: end while

Eex
pt,z(zl∣q

′

j) =
1
4πϵ ∑m∈Z2

m≠0

⎡
⎢
⎢
⎢
⎢
⎣

q′j(zl − z
′

j)

[m2
xL2x +m2

yL2y + (zl − z′j)
2
]

3
2

+
∞

∑
i=1

q′j,i(zl − z
′

j,i)

[m2
xL2x +m2

yL2y + (zl − z′j,i)
2
]

3
2

⎤
⎥
⎥
⎥
⎥
⎦

. (17)

Note that the only difference between (15) and (17) is the inclu-
sion of the periodic images of q′j , as it constitutes a charge distinct
from q.

The presence of all point charges (whether the traversing ion
or all other ions in the membrane) will induce bound charges at the
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surfaces of the conducting domains. Assuming the conductor lies in
region 1, the cumulative bound charge induced at its surface can be
expressed as

qb = −
1
ϵ2

∞

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

qi +
N

∑
j=1

q′j,i
⎤
⎥
⎥
⎥
⎥
⎦

. (18)

Note that Eq. (18) is a generalization of Eq. (7) by acknowledging
that γ12 → 1 if ϵ1 →∞. If the conducting domain possesses a net
charge qnet, an excess charge not accounted for by qb will uniformly
distribute across the surface(s) of the conductor, with its magnitude
given by

qe = qnet − qb. (19)

In a typical membrane separation system, the conducting domain
will possess two surfaces located at zc,b and zc,m. Each surface can
be effectively represented as a uniform charge slab with a surface
charge density σ = qe/2LxLy. The excess electric field resulting from
a uniform charge slab with a charge density σp and located at zp is
given by

Eex
s,z(z∣σp, zp) =

σp
4πϵ

⎡
⎢
⎢
⎢
⎢
⎣

2π −∫
Lx
2

−
Lx
2

∫

Ly
2

−
Ly
2

(z − zp) dx dy

[x2 + y2 + (z − zp)2]
3
2

⎤
⎥
⎥
⎥
⎥
⎦

. (20)

In Eq. (20), the subscript s denotes that this field is induced by a
uniform charge slab, and the second integral accounts for the contri-
bution of the portion of the slab that is located inside the simulation
box. The overall free energy correction profile can then be estimated
from

ΔF corr(z) = −q∫
z

z0

⎡
⎢
⎢
⎢
⎢
⎣

Eex
pt,z(z) +

N

∑
j=1

Eex
pt,z(z∣q

′

j) + Eex
s,z(z∣

qe
2LxLy

, zc,b)

+ Eex
s,z(z∣

qe
2LxLy

, zc,m)] dz. (21)

Here, the first two terms represent the unphysical contributions to
the electric field arising from the periodic replicates of the transiting
ion and other ions within the membrane, respectively. The subse-
quent two terms illustrate the unphysical contributions stemming
from the periodic images of the uniformly distributed surplus charge
existing at the two surfaces of the conductor—namely, the mem-
brane surface zc.m and the piston zc,b. It is necessary to underscore
that the positions of image charges for the traversing ion (as well
as all other ions present within the membrane) will depend on zl.
Thus, it is more convenient to evaluate Eq. (21) through numerical
methods.

As will be discussed in Sec. IV, the ICDM model can be read-
ily extended to consider more complicated scenarios, but in all such
cases, the extension can be constructed by considering the combined
effect of point charges and slabs of uniformly distributed charges.

III. METHODS
This section outlines the methodological details of molecular

simulations and rate calculations that are conducted with the aim of
assessing the performance of the ICDM model.

A. System preparation and molecular dynamics
simulations

In this study, we focus on model graphitic membranes featur-
ing sub-nanometer pores passivated with hydrogen atoms (Fig. 3).
Themembrane, which consists of three layers of graphene extending
from z = 0 Å to z = 6.7 Å, separates a feed compartment comprised
of an aqueous sodium chloride solution from a filtrate initially com-
prised of pure water. Two pristine graphene sheets are employed as
pistons that apply a hydrostatic pressure gradient between the two
compartments. We consider systems with varying membrane cross-
sectional surface areas, all while keeping constant the salt concentra-
tion, pore chemistry, and geometry, as well as the thickness of the
feed and the filtrate along the z direction. For each system size, we
prepare 100 independent configurations, employing the PACKMOL42

tool to randomize the positions of water molecules and salt ions.
Water molecules are described using the TIP3P force-field,43 while
the behavior of salt ions is modeled using the Joung–Cheatham
potential.44 Interactions between membrane atoms are described
using the parameters developed by Beu45 and Müller-Plathe.46
Further details about system setup can be found in our earlier
publications.19,20

In all systems considered here, ion transport occurs in the pres-
ence of pressure and chemical potential gradients. Pressure gradient
is applied using nonequilibrium molecular dynamics (NEMD)48
wherein a net force is applied on the pistons. All NEMD simulations
are conducted in Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS)49 wherein Newton’s equations of motion
are integrated using the velocity Verlet algorithm and tempera-
ture is controlled using the Nosé–Hoover thermostat50,51 with a
damping constant of 0.1 ps. Periodic boundary conditions are
only applied along the x and y dimensions, and long-range elec-
trostatic interactions are handled using the slab particle–particle
particle–mesh (PPPM) method to avoid known artifacts due to
interactions between the system and its periodic images along the
z direction.52

The 100 configurations prepared for each system are initially
equilibrated with the piston held in place for a duration of 0.1 ns
using a time step of 0.5 fs. The pistons are then allowed to move as
rigid bodies to generate a pressure gradient of 194 atm. The time

FIG. 3. A representative configuration of the system setup. A three-layer graphitic
membrane separates a feed consisting of water, sodium, and chloride from a pure
water filtrate. The system is enclosed in the z-direction by graphene pistons upon
which a force can be exerted to generate a pressure gradient. The graphics have
been prepared using injavis.47
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step is then increased to 1 fs, and trajectories are extended for an
additional 2 ns to complete equilibration.

B. Calculation of ion transport timescales
Due to the rare nature of ion translocation in the systems

considered here, we estimate transport timescales using the jumpy
forward-flux sampling (JFFS)53 algorithm, which allows us to access
arbitrarily long translocation timescales with remarkable computa-
tional efficiency. One distinct advantage of forward flux sampling is
its compatibility with irreversible integrators, which makes it suit-
able for studying driven processes such as pressure-driven ion trans-
port.54 The translocation processes considered here can be generally
denoted by Fp,q → Fp±1,q±1 wherein Fp,q refers to a collection of con-
figurations in which p sodiums and q chlorides are present within
the filtrate. In particular, we examine the F0,0 → F0,1 and F0,1 → F1,1
transitions corresponding to the initial passage of a chloride (which
is the counter-ion in this case) and the subsequent passage of a
sodium (the co-ion). In both cases, we use the curved directed dis-
tance of the respective leading ion as the JFFS order parameter with
details given in Ref. 19. For the F0,0 → F0,1 transitions, we use the
structures arising from the equilibration procedure described above
as starting configurations for basin exploration. For the F0,1 → F1,1
transition, starting configurations are randomly selected from the
crossing events obtained at the last JFFS milestone of the F0,0 → F0,1
transition.

In the new ICDM model proposed here, we still treat the
feed compartment as an ideal conductor (i.e., with ϵ→∞). It is
therefore important to identify a proper value for zc, the loca-
tion of the conducting surface at which net or induced charge will
accumulate, and zb, the position of the conductor–piston inter-
face. This is done using the approach outlined in Ref. 20, which
involves computing the background charge density in the feed
within the F0,0 basin, and subtracting it from charge densities
obtained at different values of the order parameter. We find that
the induced charge occupies the first two layers of water at the
membrane surface. As such, zc is chosen as the average position
of the first two layers weighted by the amount of induced charge
within each liquid layer. For zb, we use the average position of
the first layer of the liquid next to the piston. We, however, wish
to note that the ICDM model is not very sensitive to the location
of zc and zb.

Since this work aims to incorporate dielectric effects into finite
size corrections, it is necessary to compute dielectric constants in
different regions of the system. To that end, we use the technique
described by Neumann,55 which utilizes fluctuations in the total
dipole moment of the region (M). The dielectric constant is then
given as

ϵ = 1 +
⟨∣M∣2⟩ − ∣⟨M⟩∣2

3ϵ0kbT⟨V⟩
, (22)

where ϵ0 is the vacuum permittivity, kb is the Boltzmann constant, T
is the temperature, and ⟨V⟩ is the volume of the region under con-
sideration. Care must be taken in applying this approach to regions
that can be partially occupied by a molecule. The dipole moment
of an electrically neutral molecules is invariant with respect to the
choice of coordinate system. As it moves further away from the ref-
erence point, the increased contribution of the positively charged

sub-components will be exactly compensated by an increased con-
tribution of the negatively charged sub-components in the opposite
direction. However, if the molecule straddles the boundary of a
region, this can lead to an unphysical spike in the dipole moment
due to the unbalanced charge, which may be far from the reference
point. In order to avoid this, if the oxygen atom of a water molecule
falls within the region of interest, the entire molecule is included
in the calculation of the dipole moment for that region. Such a
molecule is then excluded from the region that does not contain its
oxygen.

IV. RESULTS
A. Comparison with the ideal conductor model

We first compare the performance of the ICDM model with
that of the ideal conductor model proposed in our earlier work.20
Consistent with Ref. 20, we consider the F0,0 → F0,1 transition, i.e.,
the translocation of the first chloride through a hydrogen-passivated
three-layer graphitic membrane. As depicted in Fig. 4(a), the uncor-
rected free energy profiles exhibit a pronounced sensitivity to system
size. Not only do we observe a variation in the magnitude of the
translocation barrier by as much as 13kBT, but the precise location
of the barrier also shifts with changes in system size (from 0.9 nm
is smaller systems to 0.4 nm in larger systems). Remarkably, the
application of the original ideal conductor model yields a reasonable
level of agreement among the corrected free energy profiles, partic-
ularly within the first half of the pore, as shown in Fig. 4(b). This is
further underscored by the relatively consistent estimates of translo-
cation barriers, varying by less than one kBT, as depicted in Fig. 4(d)
and given in Table I. Nonetheless, the corrected profiles diverge to a
small—but statistically significant—extent within the second half of
the pore.

In order to assess the importance of the dielectric effects
incorporated into the ICDM model and whether they can rectify
the discrepancies in corrected free energy profiles, we partition the
non-feed region of our simulation box into two distinct dielectric
domains, representing the membrane and the filtrate. The dielec-
tric constants for these two regions are computed using Eq. (22)
and given in Table II. (Other model parameters are given in
Table III.) Due to the large error bars in the estimated dielec-
tric constants within the filtrate, we use ϵ3 = 71.38, i.e., the mean
dielectric constant (across all system sizes) for all the corrections,
as we have no reason to believe that the dielectric constant of
the filtrate would change considerably across systems of differ-
ent sizes. We estimate the correction profile given by Eq. (21),
and since there are no other ions inside the pore during the
translocation process, the second term within the integrand will
vanish. As depicted in Fig. 4(c), the application of the ICDM
model yields substantial enhancements in agreement and consis-
tency across the corrected profiles. Most notably, it effectively
resolves the divergence observed among the corrected profiles
within the latter half of the pore, i.e., in close proximity to the pore
exit.

The translocation barriers predicted by the ICDM model tend
to be marginally smaller than those estimated from the ideal con-
ductor model, suggesting that the latter modestly underestimates the
magnitude of the free energy correction. They, however, exhibit a
remarkable degree of consistency, with variations of only ≲ 0.5kBT.

J. Chem. Phys. 160, 024116 (2024); doi: 10.1063/5.0180029 160, 024116-8

Published under an exclusive license by AIP Publishing

 10 January 2024 13:59:48

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 4. (a) Original (uncorrected) free energy profiles for the F0,0 → F0,1 transition in the three-layer graphitic membrane considered in Ref. 20. (b) and (c) Corrected free
energy profiles obtained from (b) the original ideal conductor model, and (c) the ICDM model using the dielectric constants given in Table II and parameters given in Table III.
In application of the ICDM model, nim = 1000 image charges and nprd = 200 periodic replicates are employed. (See Sec. IV B for details.) (d) The corrected translocation
barriers predicted using the two models.

TABLE I. Estimates of the ideal conductor model and the ICDM model for the translocation barrier and the passage time in the
thermodynamic limit. Note that using the ICDM model improves the consistency among the estimated barriers and passage
times across system sizes.

S (nm2
)

Finite Ideal conductor ICDM

τc, f (ns) βΔF c, f βΔF c,∞ τc,∞ (ns) βΔF c,∞ τc,∞ (ns)

12.53 (8.29 ± 0.53) × 107 19.40 ± 0.10 6.11 ± 0.12 140 ± 48 5.76 ± 0.10 99 ± 24
26.33 (1.36 ± 0.17) × 104 10.79 ± 0.06 7.05 ± 0.14 322 ± 117 5.99 ± 0.04 112 ± 22
32.60 (3.38 ± 0.17) × 103 9.41 ± 0.04 7.20 ± 0.14 372 ± 79 6.23 ± 0.11 141 ± 27
50.15 (4.69 ± 0.58) × 102 7.58 ± 0.08 6.86 ± 0.10 228 ± 68 5.90 ± 0.03 96 ± 17
100.28 (1.12 ± 0.16) × 102 6.63 ± 0.22 6.37 ± 0.22 86 ± 64 5.80 ± 0.24 49 ± 22

This stands in stark contrast to the ideal conductor model, which
exhibits variability on the order of ∼ kBT. A more rigorous measure
of variability among barriers estimated from different system sizes is
the coefficient of variation (CoV), which is the ratio of the standard
deviation of different observations, divided by their mean. The CoV
of translocation barriers is 0.068 and 0.028 for the ideal conductor
and the ICDM models, respectively.

All these findings underscore the heightened accuracy of the
ICDM model relative to the original ideal conductor model. How-
ever, it is noteworthy that this superior accuracy is particularly
consequential within segments of the free energy profile situ-
ated in close proximity to the filtrate. Conversely, for scenarios
in which the transition state maintains a considerable distance
from the membrane–filtrate interface, both models exhibit com-
parable performance. This is indeed the case for the F0,0 → F0,1

TABLE II. Dielectric constants for the membrane (ϵ2) and filtrate (ϵ3) regions
computed using Eq. (22).

S (nm2
) ϵ2 ϵ3

12.53 1.339 ± 0.008 70.81 ± 1.31
26.33 1.183 ± 0.001 70.48 ± 1.89
32.6 1.144 ± 0.001 70.08 ± 3.54
50.15 1.095 ± 0.001 70.19 ± 2.49
100.28 1.050 ± 0.001 76.38 ± 5.68

transition, where the transition state is positioned at approximately
z∗ ≈ 0.38 nm. Notably, this location is situated ≈ 0.5 nm away
from the membrane–filtrate interface, reaffirming the two models’
comparable performance for the F0,0 → F0,1 transition.

B. Sensitivity to implementation details
In this section, we assess the sensitivity of ICDM model predic-

tions to implementation details. The first question that we address
is the rate of convergence, as applying the ICDM model requires

TABLE III. Parameters utilized in the numerical implementation of the ICDM model.
Uncertainties are negligible for parameters without error bars. z0 is the location at
which the finite size correction is first applied. zc,m and zc,b correspond to the locations
of the conducting surface and the piston in the feed reservoir, respectively. zm and zM
are the locations of the membrane–filtrate dielectric interface, and the filtrate–piston,
respectively. nm and n f correspond to the number of spatial bins within the mem-
brane and the filtrate, respectively. Note that zM , nm, and n f are only relevant to the
correction discussed in Sec. IV C.

S
(nm2)

z0
(nm)

zc,m
(nm)

zc,b
(nm)

zm
(nm)

zM
(nm) nm n f

12.53 0 −0.504 ± 0.007 −4.225 0.87 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

26.33 0 −0.470 ± 0.027 −4.225 0.87 3.55 2 6
32.6 0 −0.483 ± 0.022 −4.225 0.87 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

50.15 0 −0.461 ± 0.023 −4.075 0.87 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

100.28 0 −0.452 ± 0.021 −4.325 0.87 3.48 2 6
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evaluating two nested infinite series: the summation over all image
charges and the consideration of periodic replicates of each image
charge. In practice, however, this is achieved by truncating the
infinite sums, necessitating the determination of the appropriate
number of terms to ensure satisfactory convergence. It is worth
noting that the number of image charges affects both Eqs. (15)
and (20), while the number of periodic replicates only impacts
Eq. (15).

To assess the convergence characteristics of the ICDM correc-
tion concerning the number of image charges and periodic repli-
cates, we compute the following finite sums for systems of varying
sizes:

Eex
pt,z(zl;nim,nprd) =

nim
∑
i=1

nprd

∑
mx ,my=−nprd

m≠0

qi(zl − zi)

4πϵ[m2
xL2x +m2

yL2y + (zl − zi)2]
3
2
,

(23)

qb(nim) = −
1
ϵ2

nim
∑
i=1

q′i. (24)

We then investigate the impact of varying nim and nprd on the pre-
dicted corrected profiles and estimated translocation barriers for
each system, as illustrated in Figs. 5 and 6. When it comes to
image charges, we observe that satisfactory convergence is achieved
with approximately nim ≈ 100 image charges. Including more image

charges does not significantly alter the corrected free energy pro-
files [Figs. 5(a)–5(e)] or the estimated translocation barrier in the
thermodynamic limit [Fig. 5(f)]. While this threshold might initially
seem high, it is important to note that the need to include periodic
replicates of image charges in the finite size correction can amplify
otherwise minor truncation errors.

In contrast to the number of image charges, the number of
periodic replicates required for satisfactory convergence varies with
system size, as depicted in Fig. 6, and is larger for small systems.
This observation is consistent with our expectation, as the contri-
bution of a particular periodic replicate to free energy correction
is expected to diminish as the size of the simulation box increases.
Across the range of system sizes investigated here, we find that
satisfactory convergence is attained with approximately nprd ≈ 50,
equivalent to 100 replicates in each direction. However, it is worth
noting that smaller systems may require more terms for conver-
gence due to the stronger impact of periodic replicates in such
cases.

Based on these observations, it is advisable to employ finite
size corrections using nim ≥ 100 and nprd ≥ 50. The values that we
employ in this study, namely, nim = 1000 and nprd = 200, are con-
siderably larger than these empirical thresholds. This choice is
motivated by the relatively small computational cost of the finite
size correction, which is applied after the FFS calculation has
been conducted and not on-the-fly. It must be noted that optimal

FIG. 5. The sensitivity of the ICDM correction to the number of image charges. Panels (a)–(e) illustrate the corrected profiles for systems with cross-sectional surface areas
of (a) 12.53 nm2, (b) 26.33 nm2, (c) 32.60 nm2, (d) 50.15 nm2, and (e) 100.28 nm2, when different numbers of image charges are utilized. (f) The calculated translocation
barriers for various systems as a function of nim, indicating satisfactory consistency when more than 100 image charges are included. These calculations employ nprd = 200
periodic replicates, equivalent to 400 replicates in each direction.
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FIG. 6. The sensitivity of the ICDM correction to the number of periodic replicates. Panels (a)–(e) demonstrate corrected profiles for systems with cross-sectional surface
areas of (a) 12.53 nm2, (b) 26.33 nm2, (c) 32.60 nm2, (d) 50.15 nm2, and (e) 100.28 nm2 with different number of periodic replicates. (f) The calculated translocation barriers
for various systems as a function of nprd, indicating satisfactory consistency for nprd ≥ 50. These calculations employ nim = 1000 image charges.

thresholds for nim and nprd may vary depending on several fac-
tors, such as system size, dielectric properties of the membrane
and solvent, transition state location, and the influx of other ions
into the membrane. Consequently, determining satisfactory val-
ues for nim and nprd for different systems necessitates conducting
sensitivity analyses to ascertain the convergence of the correction.
Fortunately, despite the computational complexity of the correc-
tion being O(nimn2prd), the runtime required for computing the
correction is orders of magnitude lower than that of the rate calcula-
tion in the finite system. This efficiency enables the straightforward
execution of sensitivity analyses.

As discussed in Sec. II B, Eq. (15) can be alternatively expressed
as an infinite sum in the Fourier space, given by Eq. (16). One
might intuitively expect Eq. (16) to converge faster than Eq. (15)
considering the fact it is comprised of exponentials instead of ratio-
nal functions. However, our numerical tests reveal an interesting
pattern. Equation (16) indeed converges faster than Eq. (15) only
for very small system sizes and at zl’s sufficiently distant from
dielectric–conductor and dielectric–dielectric interfaces. In partic-
ular, Eq. (16) becomes notoriously difficult to converge at close
proximity of an interface, where ∣zl − zi∣ becomes extremely small.
Consequently, while more complex hybrid methods, akin to those
employed in Ewald summation, can be devised, it is more reli-
able to calculate the correction in real space rather than Fourier
space.

Another crucial parameter influencing the predictions of the
ICDM model is z0 in Eq. (21), which represents the initiation point
for the application of the correction. Empirically, we select z0 as
the point at which uncorrected free energy profiles for various
system sizes begin to diverge. As discussed in our earlier work,20
this coincides with the approximate point at which the leading ion
(along with its first hydration shell) fully departs from the feed
region.

As depicted in Fig. 7, corrected profiles exhibit the highest
degree of consistency across different system sizes when z0 ≈ 0,
the value that we had identified in Ref. 20 based on our physical
intuition. However, it is noteworthy that the translocation barrier’s
magnitude and the coefficient of variation (CoV) among barriers
obtained from different system sizes do not exhibit extreme sensitiv-
ity to the choice of z0. For instance, employing z0 = 0.05 nm yields
nearly identical barrier values [Fig. 7(e)] and a comparable level of
overall coefficient of variation [Fig. 7(f)].

C. Application of the ICDM model to secondary ion
transport processes

Thus far, our main focus has been to utilize the ICDM model to
probe the transport of the leading ion from a conducting compart-
ment to a dielectric compartment with no ions. It must, however,
be emphasized that the ICDM model can be readily extended to
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FIG. 7. Dependence of the corrected free energy profiles on z0. (a)–(d) Corrected free energy profiles across different system sizes using (a) z0 = −0.2 nm, (b) z0 = −0.1 nm,
(c) z0 = 0.0 nm, and (d) z0 = 0.1 nm. (e) Estimated translocation barriers in the thermodynamic limit as a function of z0. (f) Coefficient of variation (CoV) of the estimated
barrier across different system sizes vs z0.

consider secondary ion transport scenarios, i.e., situations in which
ions are already present on both sides of the membrane during
the translocation process. As discussed earlier, extending the the-
ory is straightforward when both reservoirs are concentrated enough
to be considered ideal conductors. In such cases, the three-region
description we have discussed here corresponds to a dielectric region
positioned between two conductors, where ϵ1 = ϵ3 ∼∞, with the
electrostatic potential within the intermediate dielectric given by
Eq. (13). It is, however, far more complex to extend the ICDM
model to situations in which the filtrate contains too few ions to be
considered an ideal conductor.

A good test case for the latter scenario is the F0,1 → F1,1 tran-
sition in the three-layer graphitic membrane considered in Ref. 20.
The sub-nm pores considered therein are passivated by hydrogen
atoms with partial positive charges, and, as such, prefer chloride ions
over sodium. After the passage of the first chloride, however, a trans-
membrane electrostatic potential is established that favors sodium
transport. Similar to the F0,0 → F0,1 transition, the periodic replicates
of the image charges of the traversing sodium within the conduct-
ing feed and dielectric filtrate will give rise to finite size artifacts
[Fig. 8(c)], and these effects can be readily captured using the ICDM
model presented above. There are, however, additional finite size
artifacts that arise from interactions between the leading sodium and
the periodic replicates of the leading chloride that is already in the fil-
trate. More precisely, such replicates will exert unphysical forces on
the leading sodium, which will pull it into the filtrate, thus artificially

lowering the free energy barrier. Furthermore, the leading chloride
will also generate induced charge within neighboring regions, and
the periodic replicates of those will also generate unphysical forces
on the leading sodium.

In order to characterize the influence of the leading chloride
ion on the passage of the leading sodium, it is essential to examine
the spatial distribution of the former within both the membrane and
the filtrate. Figure 8(a) illustrates the charge density variation with
respect to the z coordinate before the leading sodium enters the pore.
Note that any deviations from zero within the membrane and filtrate
regions will arise due to the presence of the chloride ion. The lead-
ing chloride is primarily located within the filtrate, but occasional
instances occur where it is drawn back into the pore due to favorable
electrostatic interactions.

To account for induced charges within the conducting and
dielectric regions, these two scenarios must be treated differently.
When the leading chloride resides within the membrane [Fig. 8(d)],
it can be treated as a point charge positioned along the central axis
of the pore. The magnitude of this point charge is equivalent to the
average total charge within the corresponding spatial bin. This treat-
ment yields a series of point charges Cm = {(qm, j , zm, j)}

nm
j=1, where

nm corresponds to the number of spatial bins within the pore. The
image charges associated with each point charge in Cm are then
determined using the procedure outlined in Sec. II A, and their
contributions to the free energy correction are enumerated using
Eq. (17).
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FIG. 8. (a) Net charge density as a function of distance from the pore mouth in the F0,1 basin. (b) Schematic representation of the separation system, comprised of the
conducting feed, the membrane (which can include extra point charges) and the dielectric filtrate (that contains the leading chloride). (c) and (d) Image charges induced by (c)
the leading sodium and (d) the leading chloride that reenters the pore within the conducting feed and the dielectric filtrate. (e) Slabs of uniformly distributed chlorides inside
the filtrate and the image charges they induce within the feed.

When it comes to the chloride within the filtrate, we can eval-
uate a charge density function ρ f (x, y, z) and identify a sequence of
image functions [ρ f ,i(x, y, z), zi(z)]+∞i=1 . The excess electric field can
then be estimated as follows:

Eex
f ,z(zl) = ∫

Lx
2

−
Lx
2

∫

Ly
2

−
Ly
2

∫

zM

zm
dx dy dz

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+∞

∑
i=1
∑
m∈Z2
m≠0

×
ρ f ,i(x, y, z)[zl − zi(z)]

4πϵ0ϵ2[(x +mxLx)2 + (y +myLy)2 + [zl − zi(z)]
2
]

3
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(25)
Here, zm and zM represent the boundaries of the membrane region.
Notably, the sodium inside the pore does not directly experience
the impact of ρ f (x, y, z), as the original charge profile is screened
by the induced charges at dielectric interfaces. Consequently, the
correction profile is given by

F corr(z) = −qs∫
z

z0

⎡
⎢
⎢
⎢
⎢
⎣

Eex
pt,z(z) +

nm
∑
j=1

Eex
pt,z(z∣ j) + E

ex
f ,z(z)

+ Eex
e,z(z∣

qe
2LxLy

, zc,p) + Eex
e,z(z∣

qe
2LxLy

, zc,m)
⎤
⎥
⎥
⎥
⎥
⎦

dz. (26)

Here, qs corresponds to the charge of the leading sodium. While
this framework is theoretically rigorous, its practical implementation
is challenging due to difficulties in accurately estimating ρ f (x, y, z)
with necessary resolution. Thus, we adopt a simplified approach in
which the filtrate is divided into slabs, and chloride concentration
within each slab is assumed constant. This assumption is based on
the observation that, at any given z, chloride concentration depends
weakly on x and y. This simplified model yields n f charge slabs
with positions and surface charge densities denoted as z f ,i and σ f ,i,
respectively [Fig. 8(e)]. The corresponding simplified correction will
then be given by

F slab
corr(z) = − qs∫

z

z0

⎡
⎢
⎢
⎢
⎢
⎣

Eex
pt,z(z) +

nm
∑
j=1

Eex
pt,z(z∣ j)

+

n f

∑
j=1

Eex
e,z(z∣σf ,i, z f ,i) + E

ex
e,z(z∣

qe
2LxLy

, zc,p)

+ Eex
e,z(z∣

qe
2LxLy

, zc,m)
⎤
⎥
⎥
⎥
⎥
⎦

dz. (27)

Here, the superscript “slab” refers to the fact that the correction
given by Eq. (27) is obtained by making the slab approximation. By
analyzing the configurations collected at each FFS milestone, we can
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estimate qm,j and σ f ,j for the corresponding order parameter values.
For intermediate z values, the charge densities from the nearest FFS
milestone can be employed.

Figure 9(a) illustrates uncorrected free energy profiles for
sodium transport after a chloride has already traversed the pore, with
the uncorrected passage times and barriers given in Table IV. Simi-
lar to chloride transport, substantial finite size effects are evident in
sodium transport as well. However, these finite size effects manifest
in the opposite direction, causing smaller systems to exhibit arti-
ficially lower translocation barriers. Upon applying the simplified
correction scheme described by Eq. (27), the corrected free energy
profiles, showcased in Fig. 9(b), exhibit remarkable agreement across
system sizes. These findings not only demonstrate the efficacy of the
ICDM model but also indicate that the largest system studied in this
context is sufficiently large to exhibit acceptable convergence to the
thermodynamic limit.

We wish to note that the reversal in the direction of finite
size effects in secondary ion translocation processes implies that
the strategy of simulating a sufficiently large system that is devoid
of noticeable finite size effects might be prohibitively expensive
computationally. For instance, in the case of the system with
100.28 nm2 cross-sectional surface area, the cumulative length of
trial MD trajectories conducted as part of JFFS reaches a whopping
62 μs. In contrast, the smaller system with 26.33 nm2 surface
area requires a comparatively shorter 8.7 μs of trial MD trajec-
tories to finish the same calculation. Assuming a linear scaling
between system size and computational cost, the rate calculation
in the larger system will be 27 times more expensive compu-
tationally. In light of these computational challenges, having an
accurate and rigorous procedure for correcting finite size artifacts
becomes essential. Such corrections not only ensure accuracy but
also enable more efficient translocation rate calculations, allowing
researchers to tackle complex systems with increased computational
efficiency.

D. The advantage of the three-region ICDM model
In all calculations considered here, we employ the version of

the ICDM model with three regions (one conductor, and two dielec-
tric domains). In principle, the accuracy of the ICDM model can be
improved by partitioning the simulation box into more than three
regions. There are, however, two major impediments to the success
of such a strategy. The first problem is the scaling of the number of

TABLE IV. The translocation timescales and free energy barriers for the F0,1 →

F1,1 transition obtained from JFFS, alongside the corrected values computed upon
applying the ICDM model.

S (nm2
) τs, f (s) βΔF s, f βΔF s,∞ τs,∞ (s)

26.33 6.70 ± 0.35 19.96 ± 0.10 22.91 ± 0.25 172 ± 43
100.28 576.14 ± 98.4 23.07 ± 0.08 23.70 ± 0.14 1077 ± 366

image charges with the number of regions. For a system with three
regions, the scaling is linear as four image charges are added to the
system per iteration. When m > 3, however, such a scaling is expo-
nential [Fig. 10(a)]. Since the convergence of the method of images
depends on the number of iterations, such exponential scaling will
increase the memory and computational costs of convergence. This
will not, however, be an issue when all domains possess modest
dielectric constants. As can be seen in Fig. 10(b), while more image
charges are necessary for convergence in 4- and 5-region domains,
convergence is still achieved after around 35 iterations. The sit-
uation is, however, different when one of the regions is an ideal
conductor [Figs. 10(c)–10(e)]. Among all boundary conditions, the
convergence of the electrostatic potential at a conductor’s interface
is extremely difficult and is never achieved when m ≥ 4 [Figs. 10(d)
and 10(e)].

This slow convergence can be explained by the fact that the
image charges generated across a conductor–dielectric interface will
bear the same magnitude of the original charge albeit with the oppo-
site sign, which will inadvertently slow down the rate of convergence.
The problem might be remedied by solving the Poisson’s equa-
tion numerically (for different positions of the leading ion) and use
that solution to estimate the correction. One might also be able to
develop more efficient algorithms based on the method of images
in which image charges are selectively added to regions for which
the boundary conditions are the slowest to converge. In order to
avoid such complexities, however, it is easier to use a three-region
description unless it is absolutely necessary to include more regions
otherwise.

The second challenge is the difficulty in computing profiles of
dielectric constant in confined systems.56 More precisely, Eq. (22)
can only provide an accurate estimate of the local dielectric constant
when the corresponding domain is large enough to be devoid of
considerable spatial correlations in dipole fluctuations. Developing

FIG. 9. (a) Uncorrected and (b) corrected free energy profiles for the F0,1 → F1,1 transition. The correction has been applied using Eq. (27).

J. Chem. Phys. 160, 024116 (2024); doi: 10.1063/5.0180029 160, 024116-14

Published under an exclusive license by AIP Publishing

 10 January 2024 13:59:48

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 10. (a) The total number of image charges as a function of the number of iterations in systems with m = 3, 4, and 5 dielectric domains. (b) The convergence of Algorithm 1
when all regions have modest dielectric constants, namely, (ϵ1, ϵ2, ϵ3) = (20, 1, 20), (ϵ1, ϵ2, ϵ3, ϵ4) = (20, 1, 10, 20), and (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5) = (20, 1, 10, 15, 20) for
m = 3, 4, and 5, respectively. As can be noted, a reasonably small relative error is obtained for all boundary conditions after 35 iterations. (c)–(e) The convergence of
the algorithm when ϵ1 = 2 × 109. The other dielectric constants are given by: (c) (ϵ2, ϵ3) = (1.16, 70.5) for m = 3, (d) (ϵ2, ϵ3, ϵ4) = (1.16, 82, 70.5) for m = 4, and (e)
(ϵ2, ϵ3, ϵ4, ϵ5) = (1.16, 88.3, 82, 70.5) for m = 5. Except for (c), the convergence at the conductor surface is not achieved even after including millions of image charges.

more efficient algorithms for computing profiles of dielectric ten-
sors in confined geometries is key to successful execution of such a
correction strategy.

V. CONCLUSIONS
In this work, we focus on the issue of polarization-induced

finite size artifacts in molecular simulations of ion transport. To
mitigate these effects, we introduce the ideal conductor dielectric
model, an extension of our earlier ideal conductor model that takes
into account dielectric effects arising from charge induction due to
dielectric heterogeneities within the membrane system. Our numer-
ical tests demonstrate the significant improvements achieved by
the ICDM model in enhancing the agreement among corrected free
energy profiles computed for different system sizes, particularly in
regions adjacent to the dielectric filtrate. A comparative analysis
reveals that our original model slightly overestimates the corrected
translocation barriers. Notably, the ICDM model showcases its ver-
satility by accommodating secondary ion transport events, including
the passage of co-ions through charge-selective nanopores, a feature
that is absent in our initial model.

The ability to precisely address finite size effects in secondary
ion translocation events is imperative for a comprehensive under-
standing of membrane selectivity in separation applications. Indeed,
the transport of ionic solute across membranes proceeds through
a series of sequential translocation events, commencing with the

leading ion (accounted for by our original ideal conductor model),
and followed by successive ion translocations from a conductor to
a dielectric medium. In particular, it is typically the translocation of
co-ions that consistently represents the rate-limiting step in solute
transport. Accurate characterization of co-ion transport is therefore
pivotal for predicting crucial properties such as salt rejection rates in
desalination membranes.

There are multiple perils to not properly correcting the strong
finite size effects discussed here and in our earlier work.20 In addi-
tion to resulting in unrealistic predictions about the performance of
ion separation membranes, they could also lead to qualitatively inac-
curate conclusions about how different membrane features impact
selectivity. This is because the magnitude of finite size effects does
not depend on lateral box dimensions only, and are impacted by the
thickness and the dielectric properties of the membrane, the intru-
sion of additional ions, the ionic distribution in the feed and the
filtrate, and the location of the transition state within the membrane.
Consequently, membranes with identical cross sectional surface
areas but with different pore chemistries and geometries will likely
differ in the extent to which they will be impacted by finite size arti-
facts. This warrants caution in interpreting the findings of molecular
simulations of nanoscale transport, particularly those in which dif-
ferent membranes are rank-ordered in terms of their selectivity. It
also underscores the importance of finite size corrections in molec-
ular simulations aimed at designing membranes with superior ion
separation properties.
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The success of the ICDM model in correcting for finite size arti-
facts implies that classical electrostatic theories based on continuum
approximations perform remarkably well in systems of charged par-
ticles. This is in contrast to other continuum theories (such as fluid
mechanics) that tend to be violated at the nanoscale. As to whether
the success of electrostatic theories point to granular agreement at
the microscopic level (i.e., the density and distribution of induced
charges at dielectric interfaces) or is a consequence of fortuitous can-
cellation of errors is an interesting fundamental question that can be
the subject of future studies.

While the ICDM model employs the method of images to
calculate the response of conducting and dielectric regions to
the presence of nearby charges, other techniques for solving
Poisson’s equation57–60 are expected to yield similar results pro-
vided they properly account for the impact of periodic charge
distributions.59,61–63 Such alternative methodologies might offer
increased computational efficiency, particularly when handling sys-
tems with numerous distinct dielectric regions—a scenario where
convergence issues arise for the method of images, as elaborated in
Sec. IV D.

By treating the electrolytic feed as an ideal conductor while
characterizing other regions as homogeneous linear dielectrics, the
ICDM model approximates a material comprised of discrete atoms
as a collection of a small number of homogeneous domains that
can be described using classical continuum electrostatic theories.
This methodology has precedence in computational materials sci-
ence literature. A notable example is the constant potential MD
approach64–66 in which charge accumulation on solid-state con-
ductors, such as metallic electrodes, is successfully predicted using
continuum theories, despite the presence of non-classical charge
density oscillations at sub-nanometer scales.67,68 Similar to the ICDM
model, all such approaches need to account for periodic replicates of
image charges in order to obtain an accurate description of systems
under investigation.66,69

Upon employing the continuum classical approximation, mul-
tiple methods exist for solving the Poisson’s equation to determine
the potential created by conducting or dielectric mediums amidst
one or more source charges. Approaches such as the core–shell
model,57 the method of images,62 induced charge computation
(ICC),58,70 and Green functions60 have been applied for that pur-
pose. In most cases, however, extending these methods to peri-
odic systems demands meticulous attention, and techniques such
as Ewald summation,61 electrostatic layer correction with image
charges (ELCIC) method,62 and the charged sheet method59,63

have been specifically devised to accurately and efficiently handle
periodicity within computational frameworks.

In principle, it must be possible to avoid finite size arti-
facts by simulating systems that are sufficiently large. Considering
the long-range nature of electrostatic interactions, however, the
finite size effects identified here tend to vanish slowly with sys-
tem size and are thus present (albeit to a smaller extent) even in
very large systems. For instance, the translocation barrier in the
100.28 nm2 system (comprised of over 22 000 water molecules) is
≈0.8kBT larger than the predicted barrier in the thermodynamic
limit. However, the precise determination of finite size corrections
for larger systems remains elusive without simulating them. This
challenge arises from the potential variation of parameters, such as
zc,m and the position of the transition state, as system size changes.

By assuming that such parameters become independent of sys-
tem size for sufficiently large systems, one can predict the crit-
ical size at which the magnitude of the correction falls below
an acceptable threshold. For instance, by extrapolating from the
parameters employed in the 100.28 nm2 system, we project that
diminishing the magnitude of the correction to ∼0.2 kBT would
necessitate a system exceeding 400 nm2 in cross-sectional surface
area. Therefore, avoiding polarization-induced finite size effects
by simulating larger systems can be computationally burden-
some. This is particularly problematic in co-ion transport wherein
the translocation timescale increases as the system size becomes
larger. As discussed earlier, it is 27 times more computationally
costly to compute the F0,1 → F1,1 timescale in the 100.28 nm2 sys-
tem than in the 26.33 nm2 system. The main advantage of our
ICDM model is that it allows one to infer reasonably accurate
information about the behavior of the pore in the thermody-
namic limit by conducting less expensive simulations of smaller
systems.
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APPENDIX: THE CONVERGENCE PROPERTIES OF
EQ. (13)

For simplicity, we analyze the convergence of Eq. (13) at r = zez ,
but the approach employed here can be readily extended to other
positions. The electrostatic potential will thus be given by

φ2(z) =
q

4πϵ0ϵ2
[

1
∣z − h∣

+
∞

∑
k=1

ak(z)] (A1)

with ak(z) given by

ak(z) =
1

∣z − h + 2kw∣
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1
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.

For sufficiently large k, all the fractions inside absolute values will
be small. One can therefore use Taylor expansion ∣1 + x∣−1 ∼ 1 − x to
conclude that

ak(z) ≈ −
h +w
2k2w2 , (A2)

which implies that the convergence rate of Eq. (13) is as fast as
∑
∞

k=1 k
−2.
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