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Fish locomotion emerges from diverse interactions among deformable
structures, surrounding fluids and neuromuscular activations, i.e. fluid—
structure interactions (FSI) controlled by fish’s motor systems. Previous
studies suggested that such motor-controlled FSI may possess embodied
traits. However, their implications in motor learning, neuromuscular control,
gait generation, and swimming performance remain to be uncovered. Using
robot models, we studied the embodied traits in fish-inspired swimming. We
developed modular robots with various designs and used central pattern
generators (CPGs) to control the torque acting on robot body. We used
reinforcement learning to learn CPG parameters for maximizing the swim-
ming speed. The results showed that motor frequency converged faster
than other parameters, and the emergent swimming gaits were
robust against disruptions applied to motor control. For all robots and
frequencies tested, swimming speed was proportional to the mean undula-
tion velocity of body and caudal-fin combined, yielding an invariant,
undulation-based Strouhal number. The Strouhal number also revealed
two fundamental classes of undulatory swimming in both biological and
robotic fishes. The robot actuators were also demonstrated to function as
motors, virtual springs and virtual masses. These results provide novel
insights in understanding fish-inspired locomotion.

1. Introduction

The diversification of fish locomotion rests on 530 million years of evolution
that successfully explored various forms of fluid—structure interaction (FSI)
for underwater locomotion [1,2]. The most common forms of fish locomotion,
i.e. body and/or caudal-fin (BCF) swimming [3], include active structures
such as fins and elongated bodies; they are deformed by an array of distributed
muscle forces, leading to interactions with surrounding fluids and their passive
deformation by hydrodynamic forces, forming a FSI loop (figure 1ai) [4]. Undu-
latory swimming gaits emerge from such FSI under rhythmic motor control,
which includes central and peripheral neural systems that combine feedforward
control (from motor signal to swimming gaits) with peripheral sensory feed-
back (pressure force due to the interaction between body and water) [5]. This
combination offers high robustness of rhythmogenesis and gait coordination
against neural disruptions, as evidenced by a recent study using a robot to
emulate lamprey neuromechanics [6].

The interplay between fish’s motor system and physics of FSI is complex,
especially considering the diversity in fishes’ morphologies and swimming
behaviours [7]. However, previous studies have hinted that such motor-
controlled FSI may possess embodied traits, which are properties of swimming
behaviours that are independent of body size, morphologies and neuromuscu-
lar control. For example, most BCF fish species exhibit similar midline
kinematics during steady swimming and share major kinematic features,
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Figure 1. Overview of puBot motor learning experiment and pBot design. (a) Framework of pBot motor learning experiments for swimming, which includes (i) the
fluid—structure interaction (FSI) between the robot and fluid system; (i) the emergence of swimming gaits and performance; and (iii) the experimental set-up for
robot learning, where the FSI is motor-controlled according to a motor program (central pattern generator, CPG) which was optimized via policy-gradient reinforce-
ment learning (RL) method. (b) Design of pBots (uBot-6 used as an example) with a cross-section view of the body segment. (c) pBot motor program designed as a
(PG with its parameters labelled (pBot-2 used as an example). Dashed box represents a (PG module corresponding to a single actuator, which includes two neurons
inhibiting each other. Parameters labelled with colours were learned experimentally, while those in black were fixed a priori.

suggesting existence of unifying locomotor hydrodynamic mechanisms across various morphologies [8]. Studies have shown that
swimming speed of multiple fish species (e.g. dace [9], green jack [10] and odontocete cetaceans [11]) is sensitive and proportional
to caudal-fin undulation frequency, suggesting simplicity in speed control. The Strouhal number, which characterizes wake pat-
terns and hydrodynamics of undulatory swimmers [12], is typically in a narrow band for a single species at various speeds
[13], presumably due to relatively small variations in caudal-fin beating amplitude and proportionality between speed and undu-
lation frequency [9]. Furthermore, fishes actively modulate their body stiffness at various undulation frequencies, enabling them to
match their body’s natural frequency with the undulation frequency of caudal-fin and therefore minimizes the mechanical cost of
bending [14]. These embodied traits govern fish or fish-inspired locomotion and may offer simplicity and high predictability for
gait generation and swimming performance.

However, current understandings of FSI-embodied traits are mainly based on scattered observations [15]. The implications of
these traits in motor learning, neuromuscular control, gait generation and swimming performance have not been thoroughly
examined [16], and many questions remain to be addressed. For example, is the observed proportionality between speed and
caudal-fin frequency a result of robustness in gait generation and swimming speed? Does it translate to simplicity in motor learn-
ing? i.e. fast convergence of frequency? Can we also establish a trackable, quantitative mapping between motor control, swimming
gaits, and speed? Additionally, whether and how do the muscle functions vary with motor control frequency or speed? Answering
the above questions has critical importance for advancing the biomechanics of fish swimming and their informed mimicry in
bioinspired robotics.

Robot models (sometimes referred to as robophysical models) offer a unique opportunity to provide quantitative results to
address the above questions that are difficult to obtain in biological fish [17]. Using robot models, not only can we generate vari-
ations in morphology, but we also have full motor control and the ability to monitor internal variables and swimming gaits. This
allows for systematic testing and validation of embodied properties and their implications. Moreover, the discoveries made in
robotics can inform the study of living organisms, leading to new hypotheses and insights (i.e. robotics-inspired biology [18]).

In this work, we aimed to systematically study the FSI-embodied traits in fish-inspired BCF swimming. Instead of directly
measuring the physical properties and states of FSI, we considered the relationship among the inputs (i.e. the motor control)
and outputs of the FSI (i.e. swimming gaits and speed, figure 1a). We designed and assembled modular robots for BCF swimming,
named pBot (figure 1b). The robots were directly torque-controlled by electromagnetic motors receiving voltage inputs generated

9£007,70T LT ppa3uy 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol H



Downloaded from https://royalsocietypublishing.org/ on 27 March 2024

by central pattern generators (CPGs) (figure 1c) so that the motor control of uBot followed a feedforward control pattern. We gen- [ 3 |

erated variations in the robot designs. For each robot, we first used reinforcement learning (RL) to optimize the CPG parameters
for maximizing the swimming performance (forward or backward swimming speed, figure 1aiii). Note that, rather than being
optimized directly, the swimming gaits emerged from the motor-controlled FSI (figure 1ai and aii). Next, we measured the fre-
quency response of the robots, and analysed the changes in swimming gaits, speed, actuator work loops and cost of transport
(CoT). Finally, we applied disruptions to the robot motor control and evaluated the robustness in the gait generation by performing
sensitivity analysis on the emergent swimming gaits and speed.

2. Material and methods
2.1. pBot design and experimental set-up

pBots were developed as modular, robophysical models for BCF swimming [19-21]. Compared with existing swimming robots (e.g.
[22-27]), a distinctive aspect of pBots is the modular design which enabled rapid prototyping with different design configurations
(such as body length, shape and stiffness). Another feature is that the swimming gaits are not prescribed; instead, they emerge from
FSI via motor control. In this work, we assembled and tested pBots with various body actuators or degrees-of-freedom (nBot-d.f.,
d.f.=2, 4, 6) as the number of body segments is one of the most important parameters that determine the body kinematics [28].
A fully assembled pBot was 2.5 cm in width and 3.5 cm in depth, while its length and weight depended on the number of body segments
or d.f. (uBot-2: 117 mm, 39 g; pBot-4: 170 mm, 59 g; pBot-6: 224 mm, 78 g). A pBot-4 with the caudal-fin removed was also experimentally
studied. Details are found in electronic supplementary material.

The experimental platform also included a water tank (58 cm W x 56 cm H x 305 cm L), a monochrome camera (acA2000-165umNIR,
Basler AG Inc, Ahrensburg, Germany) with a 760 nm filter, IR light sources and a motor controller (figure 1aiii). The laptop was used to
send motor signals to the robot through the motor controller and capture robot motion through the camera. The serial communication for
robot control and motion capturing was achieved with Matlab 2020a (MathWorks, Natick, MA, USA), operating at a 50 Hz frequency.
Details are provided in electronic supplementary material.

2.2. pBot motor control and experimental learning
The robot motor control signals were generated by a CPG [29]. The CPG network for pBot-2 is illustrated in figure 1c. Each actuator was
controlled by a CPG module, while more modules were added for pBot-4 and pBot-6. The equations of each neuron were represented as

U + Uiy =Ei — BiVij — ayis_j + wyi 1

Vij + Vij =Vij
yij =max (0,U;;) 21)
Yiout =VYi1 — Yi2

i=12,...,mj=12

where U and V are the states; n is CPG module number; 7 is the time constant; E; represents external stimulus for ith module; ; is adaption
coefficient of ith module; & is mutual inhibition weight;  is the inter-module connection weight of the neuron; y; o, is the output of the ith
CPG module [19].

The rhythmic motor signals generated by the CPG can be characterized by their frequency, amplitudes and intersegmental phases. In
the CPG, r determines the frequency of the output, f; sets the intersegmental phases, and E; controls the amplitudes. To simplify the learn-
ing process, all the other parameters were fixed (electronic supplementary material, table S1). The parameter vector to be learned was
V= [T, ﬁz, veey ﬁn/ E], ,En].

In our previous work, we used parameter-exploring policy gradient (PGPE) method for motor learning [19]. Although PGPE showed
good convergence, it required empirical tuning of the heuristic learning rate. To reduce the number of empirically tuned hyper-
parameters, here we used EM-based policy hyper-parameter exploration (EPHE) algorithm [30]. In EPHE, the policy parameter v is
sampled from normal distribution N (v | k), where h=[u o]" is the hyper-parameter vector. u and o are the mean and standard deviation
of normal distribution of v. At each episode, M policy parameters vectors v were sampled from N (v | k). Then K best parameters were
selected from the sorted reward R(v™) and h was updated as

Y [R@H0H]

2.2
>t R@H) 22
and
K k(o k )2
o ZH[RIEII Y@* — p)7] (23)
21 R@H)

where v* is k" sampled policy parameters and R(v¥) denotes the reward for o*. In the experiments, the reward was set as the average
swimming speed over a 1s interval during steady swimming. Extending the time interval to 3 s showed only negligible fluctuations
(less than 2%). A learning experiment was stopped when the following convergence criterion was reached: changes of the average swim-
ming speed were within 2 mm ™" for three successive episodes. This criterion was applied primarily because of limit in the speed
measurement error (i.e. approximately 1.5 mm s™") so that we chose a value slightly higher than that. Note that other performance
measures, such as CoT, propulsive efficiency and power, can also be potentially used as the reward; however, they require considerable
change in both the experimental set-up and learning methods (also see electronic supplementary material for relevant discussion). These
will be studied in our future work.
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Number of sampled roll-outs in one episode (M) and number of selected best samples (K) were hyper-parameters that needed to be n

empirically tuned for different pBots (electronic supplementary material, table S2). With the above setting, the experimental learning
usually converged within 20 episodes.

3. Results
3.1. Experimental motor learning

Here we performed motor learning experiments to obtain the optimal motor programs for fastest swimming. For each robot,
experiments were conducted for maximizing forward and backward swimming speed (electronic supplementary material,
movie S1). Each learning experiment was repeated three times with varying initial values of CPG parameters. The repeated experi-
ments always converged to nearly identical speed (electronic supplementary material, figure S1) and swimming gaits (electronic
supplementary material, figure S2) (the only exception was pBot-4 without the caudal-fin, electronic supplementary material,
figure S1d for speed and S2d for gaits). For forward swimming, the optimized swimming speed increased as the d.f. increased,
while the swimming speed in body length per second (BLs™') decreased from 1.3 BLs™' (uBot-2) to 1.0 BLs™" (uBot-4), and
to 0.8 BLs™' (uBot-6) (electronic supplementary material, figure S3). Removing the caudal-fin decreased forward speed
from 1BLs™! (173 mms™) to 0.37 BLs™! (52 mm s™!). For backward swimming, pBot-2 was unable to swim backwards, while
pBot-4 and pBot-6 reached maximal backward speed at 0.16 BL s (27 mms™') and 0.25 BLs™" (55 mm s™'), respectively (elec-
tronic supplementary material, figure S3 and movie S2). Both forward swimming without caudal-fin and backward swimming
underscored the importance of caudal-fin (or the asymmetric design between the head and caudal-fin) in improving the
swimming speed.

For each learning task, the parameter determining the motor control frequency converged faster than the parameters determin-
ing intersegmental phases and amplitudes (electronic supplementary material, figures S4 and S5). In terms of the learned
motor inputs, the optimized frequencies in the three experiments were almost identical, while the intersegmental phases and
amplitudes had large variations among the experiments (electronic supplementary material, figure S6). These results indicated
that FSI-embodiment promoted fast convergence of motor control frequency, which may lead to simplicity in motor learning.

3.2. Frequency response—swimming gaits and speed

We performed frequency response experiments in forward swimming to examine the frequency modulation of swimming
gaits (electronic supplementary material, movie S3). This was done by changing frequency (adjusting 7) of the optimized
CPGs (1-11 Hz). The caudal-fin tip velocity showed strong correlation to motor frequency (figure 22) and peaked nearly at
optimized frequencies for highest swimming speed (uBot-2: 7.3 Hz, pBot-4: 8.2 Hz, pBot-6: 8.8 Hz, figure 2b). Caudal-fin
tip velocity and swimming speed also exhibited similar trends with an approximately linear relationship in the high-frequency
(or speed) region (5.5-11 Hz, grey shadow, figure 2c), and a nonlinear relationship in the low-frequency region (1-5.5 Hz,
green shadow).

It was further found that the above two regions were associated with two modes of swimming gaits (electronic supplementary
material, movie S4). At high frequency, the swimming gaits of all three pBots resembled standing waves (figure 2d), i.e. lateral
displacements along the body long axis alternated between large amplitude (oscillatory points) and small amplitude (nodal
points). Note that the nodal points did not necessarily coincide with the body mechanical joints (figure 2e). The head and
caudal-fin tips were end oscillatory points that consistently exhibited large displacements. Intuitively, a nodal point can be con-
sidered as a virtual fulcrum point, and together with its two adjacent oscillatory points, composes a virtual lever. Therefore,
the entire robot behaved as a chain of oscillating levers; each lever rotated around a virtual fulcrum, and together they drove
and overcame the hydrodynamic load on the distal caudal-fin.

Since these gaits emerged within the high-frequency region including the resonant frequencies which are known to produce
standing waves [31], we named these gaits standing wave ‘resonant’ gaits (SW ‘Res’ Gaits). With SW ‘Res’” Gaits, swimming speed
was proportional to caudal-fin tip velocity (figure 2c), and such linear predictability may underscore dominance of the caudal-fin
and negligible contribution from the pBot body in thrust generation (see electronic supplementary material for details).

At low frequency, pBots exhibited backward travelling waves along their bodies (figure 2f), which resembled those commonly
observed in fishes [1]. Therefore, we named these gaits travelling wave ‘fish-like” gaits (TW ‘FL” Gaits). With TW ‘FL’ Gaits, the swim-
ming speed was no longer proportional to the caudal-fin tip velocity (figure 2c). However, as will be shown below, the linear
predictability which existed for SW ‘Res’ Gaits can be re-established by including the body undulatory velocity, suggesting the
non-eligible contribution to thrust generation from the pBot body that exhibited backward travelling waves.

Taken together, these results indicated that optimal swimming can be achieved by frequency modulation, and FSI-embodiment
promoted the emergence of two distinct swimming gaits.

3.3. Invariant body and/or caudal-fin Strouhal number

Here we explored whether there are invariant hydrodynamic properties that are independent of morphological design, motor con-
trol and swimming gaits in uBots’ swimming. We found that the averaged lateral undulatory velocity of all body segments and
caudal-fin combined (BCF lateral undulatory velocity, electronic supplementary material), instead of caudal-fin tip velocity alone,
proportionally predicted the swimming speed for all pBots and all tested frequencies (figure 3a). This led to an invariant BCF
Strouhal number (Stgcr=0.182, linear regression with coefficient of determination R?=0.941), defined based on the undulation

9£007,70T LT ppa3uy 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol



Downloaded from https://royalsocietypublishing.org/ on 27 March 2024

—
Q
=
—~
S
—~
—~
2}
~

~ 225 200 200
! = o
= ) )
g E 150 E 150
2z 150 hd =1
g 8 8
T>> 2 100 | & 100
& g g
= 75 g ‘g
£ £ s £ 5ol
e 2 2 ¢
8 o 0 ;
1 3 5 7 9 11 1 3 5 7 9 11 0 75 150 225
frequency (Hz) frequency (Hz) caudal-fin tip velocity (mms™)

(d) )

------ nodal points
————— oscillatory points

Figure 2. (a) Dependency of caudal-fin tip velocity on motor frequency. (b) Dependency of swimming speed on motor frequency. (c) Relationship between swim-
ming speed and caudal-fin tip velocity. At the high-frequency region (grey shadow, 5.5—11 Hz), there was a linear relationship between the swimming speed and
the caudal-fin tip velocity, as illustrated by the linear regression (green line) and the 95% prediction intervals (pink lines). However, at the low-frequency region
(green shadow, 1-5.5 Hz), the linear relationship did not hold. The two regions also corresponded to the two modes of swimming gaits presented in (d) and (f).
(d) Midline kinematics of high frequency standing-wave ‘resonant’ gaits (SW ‘Res’ Gaits) at optimized frequency (7.3, 8.2, 8.8 Hz for pBot-2, uBot-4, and pBot-6,
respectively). (e) Illustration of SW ‘Res’ Gaits. The robot joints are marked as filled colour dots, and the gait nodal points and oscillatory points are illustrated as
dotted lines and dashed lines, respectively. The oscillatory points consistently coincided with the robot joints, which was not the case for nodal points. (f) Midline
kinematics of travelling-wave ‘fish-like” gaits (TW ‘FL" Gaits) at low frequency (3.1, 2.1, 2.7 Hz for pBot-2, pBot-4 and pBot-6, respectively). The lateral displacements
of all the midline kinematics are scaled up two times for clearer illustrations. Kinematic snapshots in (d) and (f) show the displacement of the body midline at 10
equally spaced time intervals during a single tail beat cycle.

of body and caudal-fin combined (electronic supplementary material). Note that R* = 0.875 if the caudal-fin tip velocity was used
for the linear regression.

We then calculated Stgcr for a collection of biological and bioinspired robotic swimmers in the literature (figure 3b and
electronic supplementary material, table S3). Distribution of the Stgcr is presented in figure 3c, where two clusters were clearly
seen. Using regression clustering method [32] (electronic supplementary material), we identified two regression lines in
figure 3b, corresponding to two classes of undulatory swimming (with Stgcp=0.186 and Stgcr=0.066) among all biological and
robotic swimmers examined here (with clustering loss L.=0.08, electronic supplementary material). The line with Stgcp=0.186
closely matched the linear regression of pBots’ data which gave Stgcp=0.182. Then we measured the silhouette score for the clus-
tering (electronic supplementary material). The average score (AS) of all data points was 0.669. Note that the clustering became
weakened if Strouhal number with merely caudal-fin tip velocity was used (electronic supplementary material, figure S7,
which gives L,=0.249 and AS =0.612). We referred to the class of Stgcp=0.186 as slow speed-to-undulation (swimming speed
to BCF lateral undulation) swimmers and the class of Stgcr=0.066 as fast speed-to-undulation swimmers. In general, the examined
biological thunniform and carangiform swimmers [10,33-36] belonged to the fast speed-to-undulation swimmers (dark blue,
figure 3b), and the examined anguilliform biological swimmers [37—43] belonged to the slow speed-to-undulation swimmers
(light blue) except needlefish [44], a fast anguilliform swimmer with lunate caudal-fin (similar to those of typical carangiform
or thunniform swimmers), capable of swimming at 2 BL s™'. Surprisingly, all the examined bioinspired robotic swimmers, includ-
ing pBots, belonged to the class of slow speed-to-undulation swimmers (grey), regardless of their body d.f. and morphological
designs (e.g. anguilliform [45], carangiform [46—49] or thunniform [27,50]). Since Strouhal number is a dimensionless number
that characterizes the hydrodynamics of undulatory swimmers [12], our results showed that the FSI in pBots” swimming possessed
invariant hydrodynamic properties that could be independent of morphological design, motor control and swimming gaits. These
properties might also be applied to other fish or robots that share the same Stpcp.

9£007,70T LT ppa3uy 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol H



Downloaded from https://royalsocietypublishing.org/ on 27 March 2024

<00 )

i

robots
bio-Anguilliform 15f

® bio-Carangiform and Thunniform

~
Q
~

—— Sty =0.182
10}

BCF lateral velocity (BLs™)

A o

0 0.5 1.0 1.5 0 2 4 6
swimming speed (BLs™) swimming speed (BLs™)

BCF lateral velocity (BLs™)

~
3
~

0.15 ~

—— St = 0.186
St = 0.066

0.10

density

0.05

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
StBCF
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solid lines were acquired from the regression clustering method, the slope of which corresponds to twice the values of Stgcr. The sketches illustrate the body
shapes of some fishes and robots as examples (not to scale). (c) Histogram of the distribution of Stpc; with each column representing the density of the data
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3.4. Robustness of gaits to motor control disruptions

Next, we tested whether the emergent gaits were robust against internal disruptions applied to motor control. This was done by
applying disruptions (figure 4a) to the motor control (figure 4b), measuring the corresponding changes in the swimming speed
and gaits (figure 4c), and quantifying their sensitivities (figure 4d) to the disruptions (see electronic supplementary material
for details). Examples are illustrated in electronic supplementary material, movie S5.

The results for SW ‘Res” Gaits are shown in figure 4e,f. For all pBots, the sensitivities of swimming speed to motor frequency
were the highest (brown lines were steeper, figure 4¢), while those to other parameters were generally low (the lines were flatter).
The only exception was for the amplitude of the second actuator of nBot-2, which had mild effects on swimming speed (in2, green
line with mild slope, figure 4ei). The sensitivities of all gait parameters to motor frequency were also the highest (purple boxes,
figure 4f; more darker red squares), while those (except the head) to other motor control parameters were generally low (cyan
boxes; less darker red squares). Note that the head motion (including m1 and ipl in figure 4c) was sensitive to both frequency
and other motor control parameters (figure 4f), although it had no significant effects on the swimming speed.

The results for TW ‘FL’ Gaits are shown in figure 4g,h. Compared with the results for SW ‘Res” Gaits, the swimming speed
now became more sensitive to amplitudes and intersegmental phases, although the frequency still played a dominating
role. The swimming gaits remained sensitive to frequency in most cases, but with several exceptions (e.g. gait sensitivity to increas-
ing frequency was low for pBot-6, f+, figure 4hiii). The gaits also became more sensitive to the motor intersegmental phases and
amplitudes in general (e.g. more darker red squares in the cyan boxes were observed in figure 4h).

Taken together, these results showed that the gait generation in uBots via motor-controlled FSI was robust against
non-frequency disruptions in motor control, while the robustness was probably enhanced by the resonance effects in the SW
‘Res” Gaits.

3.5. Frequency response—muscle power characteristics

We further examined the robot power characteristics in the frequency response by calculating actuators” work loops and CoT. The
work loop is commonly used to evaluate the muscle physiology in terms of its mechanical work and power, and can be obtained
by plotting the time course of the muscle force and length [51]. Here, we applied this method to pBots’ actuators (see electronic
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phases between the neighbouring joint angles. m1 to m6 represent the amplitude of joint angles. spd and cv are abbreviations for swimming speed and caudal-fin tip
velodity, respectively. (d) Examples for presenting the result of sensitivity analysis and legends for the following plots. Sensitivity was quantified as the absolute value of
the slope derived from a linear regression analysis, which correlates the per cent change in measured gait parameters with the per cent disruptions. Details and examples
are provided in electronic supplementary material and electronic supplementary material, figure S9. The sensitivity magnitudes are indicated by the colour bar. Note that
the magnitudes above 1.5 are all considered maximum sensitivity. (e and f) Sensitivity of swimming speed (e) and gaits () to various disruptions applied to the motor
control of SW ‘Res’ Gaits for pBot-2, pBot-4, pBot-6, respectively. (g and h) Sensitivity of swimming speed (g) and gaits (h) to various disruptions applied to the motor
control for TW ‘FL" Gaits for pBot-2, pBot-4, pBot-6, respectively. Error bars indicate the standard deviation in (e) and (g).

supplementary material). The work loops of pBots” actuators showed strong frequency dependency (figure 5a), as their shapes
evolved substantially over the frequencies (figure 5b for examples), which is in agreement with biological measurements [52]
and modelling [53]. At low frequencies (highlighted in green), all the actuators behaved as motors (large enclosed area for
power output) combined with virtual masses (rightward inclined work loop for overcoming extrinsic elastic effects). At high fre-
quencies (highlighted in yellow), the posterior actuators of pBot-4 (last two) and pBot-6 (last four) behaved as virtual springs
(leftward inclined work loop) with low power output (small enclosed area); together with the rubber suit elasticity, they effectively
stiffened the posterior body of the robots. For all three piBots, while the head actuators did not have a consistent function, the actua-
tors behind the head exhibited the highest power output at high frequencies. These functions are also observed in biological
muscles, where different types of muscle fibres or sarcomeres are activated at different frequencies [54].

The total power output of a pBot exhibited an inverted U-shaped dependency on the frequency (figure 5¢). The optimized
swimming speed occurred at frequencies higher than those for the maximum power output. We calculated two types of CoT:
(i) CoThet, defined as the ratio of power output of a pBot’s actuators to the swimming speed, and (ii) CoT\y_pnet, defined as CoTpet
divided by the weight of the pBot (which was analogous to the net metabolic CoT of fishes). The CoTpet and CoTy pet
curves also demonstrated inverted U-shapes (figure 5d,e). CoTye: at the maximum speed for all pBots were similar (around
0.09 Jm™). However, the CoTynet at the maximum speed decreased substantially as the d.f. increased, with pBot-6
demonstrating the lowest CoTyypet (1.3 ] m! kg_l). The CoTyynet of pBots is comparable to those reported for fishes with
similar size (2.5 ] m™' kg™ for bluegill sunfish [55]; 1.9 Jm™' kg™" for mackerel and kawakawa [56]). For all the robots, there
existed a trade-off between the optimized swimming speed and efficiency, which is in agreement with a recent anguilliform
robot work [22].

The above results suggested that the capability to transport mass was enhanced by adding body segments and d.f. Although
the current study is only limited to pBot with six body segments, it will be interesting to see if the CoT,,pnet at the maximum speed
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Figure 5. (a) Changes in work loop shapes according to motor control frequency. The work loops of SW ‘Res’ Gaits and TW ‘FL" Gaits are highlighted in yellow and
green, respectively. (b) lllustration of work loops corresponding to mechanical springs, virtual springs and virtual masses. (c), (d) and (e) Dependencies of total
actuator power output, CoT,e, and CoT,,..e; ON motor frequency, respectively. The frequencies for optimized speed are marked with stars.

can be further reduced by adding more body segments, analogous to the improved fuel efficiency in a long rail freight train with
large number of freight cars.

It is also worth noting that the CoT for backward swimming was higher than that for forward swimming. For uBot-6, when the
swimming speeds were the same (55 mm s71), the CoT,y-net for forward swimming was 1.61 ] m! kg_l, and the CoT,,._ne for back-
ward swimming was 2.53 J m~' kg™". For uBot-4, as we did not have the data for two modes with the same speed, we compared
them at the same undulating frequency (4.65Hz). The CoT, . was 1.48 Jm 'kg™'

for forward swimming and
3.54 Jm™' kg™' for backward swimming.

4. Discussion

Our robophysical models (uBots) provided an opportunity to quantitatively study fish-inspired swimming problems. The results
confirmed a number of embodied traits. First, the FSI-embodiment promotes fast convergence of motor control frequency, and
optimal swimming can be achieved by frequency modulation. Second, the swimming gaits are robust against internal disruptions
that are applied to the intersegmental phases and amplitudes of motor signals. Therefore, motor-controlled FSI adds another layer
of robustness to gait generation in addition to those in the rhythmogenesis provided by combination of feedforward control and
peripheral sensory feedback [6]. The study in [6] also underscores the importance of rhythm and rhythmogenesis in gait gener-
ation, consistent with our results. However, the motor control disruptions of our work were not as radical as those in [6]. For
example, our results showed that the intersegmental phases cannot be completely reversed (otherwise the robot swims backward).
Third, swimming speeds of all pBots with varied d.f. and at all motor frequencies can be captured by a newly defined Strouhal
number (Stpcp), indicating that pBots” swimming possesses invariant hydrodynamic properties that could be independent of mor-
phological design, motor control and swimming gaits. Fourth, the homogeneous actuators of pBots and the associated work loops
demonstrate different functions in terms of power output, virtual stiffness and mass. Although these traits were explored with
three pBots, it would be interesting to see if they can be applicable to a broader context, which is a direction of our future work.

4.1. (entral pattern generators prioritize frequency modulation over intersegmental phases and amplitudes

In the experiments, we noticed that there are optimal frequencies for maximizing the swimming speed (uBot-2: 7.3 Hz, pBot-4:
8.2 Hz, uBot-6: 8.8 Hz). These frequencies falls into the range of biological swimmers with comparable sizes [54]. It is also observed
that adjusting motor control frequency, rather than intersegmental phases or amplitudes, is the primary method for altering swim-
ming speed. This mirrors potential similarities with biological fish, where frequency modulation is a key mechanism in regulating
swimming speed. Notably, studies on dogfish CPGs have shown a direct correlation between swimming speed and frequency
changes, while the intersegmental phases remain consistent [57]. Additionally, research suggests that muscle forces in fish, analo-
gous to the torques produced by uBot actuators and thus comparable to motor control amplitudes, do not vary significantly across
different speeds and frequencies of undulation [52,58,59]. These parallels indicate that in both robotic and biological systems, CPGs
probably prioritize frequency modulation over intersegmental phases and amplitudes.
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4.2. Embodiment yields simplicity for control and high efferent predictability

Collectively, the embodied traits suggest simplicity in both gaits and speed control, as well as high predictability of motor efference
(i.e. predicting movement [57]). Interestingly, the simplicity and predictability reside in a motor-controlled FSI system that has
highly complex dynamics, which is difficult to be fully understood and accurately modelled [60]. Although a complex system
is usually associated with unpredictability [61], our results suggest that there potentially exist simple properties embodied
within the complex FSI underlying fish-inspired swimming. More importantly, these properties are easily ‘discoverable’ by an
external agent (e.g. via reinforcement learning), from which a simple predictive model from motor control to swimming perform-
ance can be established [62], although substantive work will be needed to extend the work to more robots design and animals data.

4.3. Fluid—structure interaction resonance in pBots probably enhances the embodied properties

The aforementioned robustness and predictability in fish-inspired swimming are also probably enhanced by resonant effects [63],
which are clearly visible in the pBot caudal-fin—there are clear peaks of caudal-fin tip velocity at optimized frequencies
(figure 2). In addition, the SW ‘Res’ Gaits are standing waves, which are commonly produced by resonant effects [31]. Notably, simi-
lar gaits of the standing-wave type have been reported previously in a simulation work modelling fish swimming [64] and
experimental studies with soft robots [65,66]. As the resonance came from the interaction between the robot and fluids (FSI), we
defined it as FSI resonance.

In sensitivity analysis (figure 4), it is evident that SW ‘Res’ Gaits show a higher degree of robustness and stronger frequency
modulation than those of TW ‘FL’ Gaits. Since it is apparent that the former has stronger resonant effects than the latter, one can
conclude that resonant effect enhances the robustness and frequency-modulation in the pBot gait generation.

The work loops of pBots (figure 5a) indicate that the resonance effects probably occur at their posterior body parts which show
increasingly higher amount of virtual elastic storage with SW ‘Res’” Gaits. Specifically, with SW ‘Res’ Gaits, the actuators at the
anterior parts behave as motors, while those at the posterior parts behave approximately as virtual torsional springs. Note that
unlike muscle fibres or sarcomeres that can store energy [67], an actuator cannot physically store elastic energy, which instead
will be dissipated as heat. For pBot-2, the posterior actuator does not show spring effect since the elastic caudal-fin probably
functions as the main source of elastic energy storage.

In addition, the FSI resonance is probably determined primarily by effective body mass (including both robot physical mass
and fluid added-mass) and effective body stiffness (including rubber suit physical stiffness and actuator virtual stiffness). For
example, our previous simulation showed that the fluid added-mass torque and effective spring torque can balance each other
in pBots” swimming [68]. In a separate study [69], it was shown, using analytical modelling and simulation, that resonance can
still occur even when the entire physical body mass and stiffness were removed, and the resonant frequency was probably deter-
mined by actuator virtual stiffness and fluid added-mass. Nevertheless, the mechanisms that enable FSI resonance and
corresponding hydrodynamic phenomena may demand more examinations, which are beyond the scope of this work.

4.4. Body and/or caudal-fin Strouhal number and two fundamental classes of undulatory swimming

In this study, we show that the forward swimming of pBots can be characterized by a constant Stgcr. The Stpcr also enables us to
categorize many biological and robotic swimmers into only two classes of undulatory swimming (figure 3). These results suggest
that body undulation may also contribute to propulsion, in addition to caudal-fin. Note that Lighthill concluded, based on math-
ematical modelling, that thrust is only related to caudal-fin movement [70,71]. In addition, we also experimentally demonstrated
that body undulation alone can generate thrust, for example, in the backwards swimming and swimming without caudal-fin.

The two classes of undulatory swimming revealed by Stgcr are slow speed-to-undulation and fast speed-to-undulation
(figure 3). One common morphological trait that separates the two classes in biological fishes is the shape of the caudal-fins;
the fast speed-to-undulation fishes have lunate-shaped caudal-fins, while slow speed-to-undulation fishes have pointed or rounded
caudal-fins. However, all robotic swimmers examined in this study, regardless of the caudal-fin shape, fall into the slow speed-to-
undulation class. This discrepancy suggests that there exist other design factors that influence the BCF undulatory propulsion in
biological fishes that the existing robotic designs are unable to replicate.

So, what are these factors? Although our work does not provide direct evidence, we can reject the following possibilities. First,
within a species, varying swimming kinematics or speed does not affect the class that the species belongs to. Second, the number
of body segments of pBots does not affect its class. Third, since fishes in both classes have dorsal/pectoral fins, their presence is
also unlikely to affect the classes. Therefore, the most likely factor for robots to achieve fast speed-to-undulation class, as we specu-
late, could be tuning of spatial stiffness distribution along the body. It is known that swimming performance is highly correlated to
body stiffness [72]. Compared with our previous work [19], the swimming performance of pBots can be improved substantially via
body stiffness tuning. A carefully designed body and caudal-fin stiffness might also produce swimming gaits that can exploit the
vorticity mechanisms [1]. Nevertheless, future studies are required to fully address this question.
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