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Most existing diagnostic models are developed to detect whether students have mas-
tered a set of skills of interest, but few have focused on identifying what scientific
misconceptions students possess. This article developed a general dual-purpose
model for simultaneously estimating students’ overall ability and the presence and
absence of misconceptions. The expectation-maximization algorithm was developed
to estimate the model parameters. A simulation study was conducted to evaluate to
what extent the parameters can be accurately recovered under varied conditions. A
set of real data in science education was also analyzed to examine the viability of
the proposed model in practice.

Misconceptions, also known as alternative conceptions, refer to the naïve ideas or
intuitive knowledge that learners develop when explaining or predicting phenomena
(Confrey, 1990). Specifically, misconceptions are commonly discovered in mathe-
matics and science education research, where students were found to hold preexist-
ing inconsistent ideas and then generate incorrect understandings, concepts, or skills
when explaining phenomena (Vosniadou, 2020). In addition, misconceptions hinder
the acquisition of new expertise and the conceptualization of advanced knowledge
(Thompson & Logue, 2006). Hence, the goal of science or mathematics learning for
all children can be partially achieved by investigating the conceptual basis of mis-
conceptions and facilitating students’ learning progression (Li & Li, 2008; Zhai &
Li, 2021).

Previous researchers have documented a variety of psychometrics approaches for
identifying misconceptions (Bradshaw & Templin, 2014; DiBello et al., 2015; Kuo
et al., 2018; Kuo et al., 2016; Ozaki et al., 2020) to assist teachers and other educators
in implementing practical curriculum constructions as well as classroom instructions.
For example, the rule space method (Tatsuoka, 2009) represents early work in psy-
chometrics for dealing with misconceptions (e.g., Gao et al., 2020). Along this line,
several diagnostic models have been recently developed and they can be grouped
into two categories: models for multiple-choice (MC) items with some distractors
associated with misconceptions and models for dichotomous data. Examples of cog-
nitive diagnosis models (CDMs) in the former category include the scaling individu-
als and classifying misconceptions (SICM) model (Bradshaw & Templin, 2014), the
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generalized diagnostic classification model (GDCM; DiBello et al., 2015), and the
MC-M-DINO models (Ozaki et al., 2020). The MC-M-DINO models only consider
misconceptions when defining item response functions, but the SICM and GDCM
also take students’ overall ability or misconceptions into account. As they currently
stand, all three models involve complex formulations, and their parameters can only
be estimated using the Markov chain Monte-Carlo (MCMC) method, which tends
to be time-consuming. Examples of CDMs in the second category include the BUG
deterministic inputs, noisy “or” gate (Bug-DINO; Kuo et al., 2016) model, and the
model for simultaneously identifying skills and misconceptions (SISM; Kuo et al.,
2018). Both models were developed to analyze dichotomous data, which may be ob-
tained from MC items without coded distractors. Because of the simplicity of their
formulations, their parameters can be estimated using the expectation-maximization
(EM) algorithm, which is usually more efficient than the MCMC method.

Despite their usefulness, existing models for misconceptions are not without lim-
itations. First, some models are designed for MC items with coded options but de-
veloping items of this type tends to be time-consuming and error prone. In addition,
MC items may not always be the best item format, and researchers and practitioners
may prefer questions of other types, such as fill-in-the-blank or constructed response
items. In these cases, no distractors are explicitly identified. Second, other models,
such as the Bug-DINO and the models by Ozaki et al. (2020), assume that miscon-
ceptions are the only person-related factor affecting item responses and ignore the
impact of students’ abilities or skills. This assumption seems to be very restrictive in
most practical settings.

To overcome the limitations of existing approaches, we develop a novel psycho-
metric model—a general dual-purpose model (GDPM) for binary data (i.e., correct
vs. incorrect)—to estimate students’ overall abilities and misconceptions at the same
time. Compared with existing methods, the proposed GDPM has three salient fea-
tures. First, we consider the interaction of persons’ overall ability and misconcep-
tions when defining the item response function, and the resulting GDPM is very gen-
eral, and subsumes some existing models like Bug-DINO and SICM for binary data.1
Second, the GDPM estimates both students’ ability and misconceptions simultane-
ously, enabling the ranking of students based on their overall ability and providing di-
agnostic information for targeted remediation. Third, the GDPM offers flexibility by
relaxing the orthogonal assumption between ability and misconceptions, a constraint
in some existing models like SICM, and thus can accommodate a broader range of
relationships among latent variables. Last, we develop the expectation-maximization
algorithm for estimating the parameters of the GDPM, which is much faster than
the MCMC algorithm adopted by some of the existing models, like the SICM and
GDCM.

The Model Formulation

Let J be the number of items, K the number of misconceptions, and N the number
of students in a random sample taking the test. Also, let Xi be the response vector of
student i to J items, with Xij being the jth element. Student i’s ability was denoted by
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Dual-Purpose Model

θi, which was assumed to be a discrete latent variable with H + 1 ordinal levels (i.e.,
θi∈{0,…,H}) as in Woodruff and Hanson (1996). The profile of misconceptions, or
bugs, associated with student i is denoted by αi = (αi1,…,αiK), where αik = 1 if
student i has the kth misconception and 0 otherwise. The probability that student i
responds to item j correctly, denoted by P(Xij = 1|θi,αi), is assumed to be a function
of the student’s ability, misconception profile, and some key features of the item
characterized by item parameters. To simplify the notation, let us assume item j is
related to the first Kj misconceptions. The general dual-purpose model (GDPM) for
estimating students’ abilities and misconceptions is defined as

log

[
P

(
Xi j = 1|θi,αi

)
P

(
Xi j = 0|θi,αi

)]
= δ j0 + δ j1θig (αi ) + h (αi ) , (1)

where the term g(αi) is a function of misconception profiles for controlling whether
the overall ability affects item success probability for students under each miscon-
ception profile. The term h(αi) defines how misconceptions affect an item’s success
probabilities and can take various forms.

This study focuses on two special cases of the GDPM, each with a unique assump-
tion about the relationship between overall ability, misconception profiles, and item
performance.

We first consider a disjunctive rule for misconceptions such that possessing any
misconception involved in item j leads to a low chance of success, regardless of the
overall ability. The resulting model is referred to as the disjunctive-misconception
GDPM, or DM-GDPM, which, for item j, is defined with

h (αi ) = φ j

⎡⎣1 −
Kj∏
k=1

(1 − αik )

⎤⎦ (2)

and

g (αi ) =
Kj∏
k=1

(1 − αik ). (3)

As a result, the item response function (IRF) of the DM-GDPM can be written by

log

[
P

(
Xij = 1|θi,αi

)
P

(
Xij = 0|θi,αi

)]
=

{
δ j0 + δ j1θi if αi = 0,
δ j0 + φ j otherwise. (4)

The DM-GDPM has three parameters for each item: parameter δj0 is the log odds
of success for students who possess none of the measured misconceptions and θ =
0, and δj1 is the increase in log odds of success for every one score increase in θ

for those students who possess none of the measured misconceptions. For those who
possess any of the measured misconceptions, δj0 + φj is the log odds of success to
item j.

Although the assumption of DM-GDPM that the possession of any misconception
degrades item performance to the lowest level is plausible, it is equally, if not more,
likely that the possession of each misconception has a unique and distinct impact on
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item performance. Therefore, we also define an additive-misconception GDPM, or
AM-GDPM, with g(αi) = 1 and

h (αi ) =
Kj∑
k=1

φ jkαik . (5)

The IRF of the AM-GDPM can then be written by

log

[
P

(
Xi j = 1|θi,αi

)
P

(
Xi j = 0|θi,αi

)]
= δ j0 + δ j1θi +

Kj∑
k=1

φ jkαik . (6)

The AM-GDPM assumes each misconception affects the item performance inde-
pendently and separately. The AM-GDPM has Kj + 2 parameters, and φjk, which is
assumed to be negative, is the impact of misconception k on item j.

For illustration, Figure 1 shows the IRFs of AM- and DM-GDPMs for an item
involving two misconceptions with hypothetical parameters (for AM-GDPM, δ0 =
−3, δ1 = 1, φ1 = −1, and φ2 = −5; for DM-GDPM, δ0 = −3, δ1 = 1, and φ1 = −1).
It can be observed that the DM-GDPM divides all students into two groups: (1) those
who exhibit at least one misconception measured by the item are in a homogenous
group with the same probability of success regardless of their ability levels and (2)
those who do not exhibit any measured misconceptions are in a heterogeneous group
with the probability of success only depending on students’ ability levels. In contrast,
the AM-GDPM divides students into four groups, each with a unique misconception
profile. It can also be observed that students without any misconceptions outperform
students with some misconceptions in general, and students with two misconceptions
have the lowest success probabilities. The impacts of the two misconceptions differ,
as evidenced by the separate trace lines for 01 and 10 misconception profiles.

Model Estimation

The GDPM involves two types of parameters: structural and incidental parame-
ters, where the number of incidental parameters increases in conjunction with sam-
ple size, but the number of structural parameters does not. The structural param-
eters of the GDPM, denoted by γ, can be estimated using the marginal maximum
likelihood estimation via the expectation-maximization algorithm (Bock & Aitkin,
1981). In particular, the EM algorithm consists of two steps: the expectation (E) step
and the maximization (M) step. In the E-step, we calculate the so-called Q-function
(Dempster et al., 1977), which is the expected log-likelihood of the complete data
conditional on the observed data and current parameter estimates. With independent
individuals, the Q-function takes the following form:

Q ( γ|γ′) =
J∑
j=1

H∑
θ=0

2K∑
c=1

[
r jθc logP (Xj = 1|θ, αc ) + ( nθc − r jθc ) log [ 1 − P (Xj = 1|θ, αc )]

]
+

H∑
θ=0

2K∑
c=1

nθc log ( πθc ),
(7)

where nθc is the expected number of students with ability θ and misconception
profile αc and rjθc is the expected number of students with ability θ and mis-
conception profile αc who answer item j correctly. In addition, K is the number
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of misconceptions, and πθc is the proportion of students with ability θ, and mis-
conception profile αc in the population. In the M-step, the Q-function is max-
imized with respect to parameter γ, which includes item parameters and A ×
(2K −1) parameters for the joint distribution of ability and misconceptions. The
E- and M-steps are repeated until some convergence criteria are met. Although many
approaches can be used to model the relationship between students’ abilities and
misconceptions, such as the higher-order method (e.g., de la Torre & Douglas, 2004;
Ma, 2022), this paper adopts the multinomial model that estimates the proportion
of each ability and misconception profile because of its flexibility and generality.
The covariances between ability and misconceptions are not modeled as parameters
but can still be obtained from the estimates of students’ profiles. Students’ ability
and misconception profiles are estimated afterward by treating the estimated struc-
tural parameters as true, using the marginal modal assignment (Ma, 2022), which is
equivalent to the expected a posteriori (EAP) method for binary latent variables when
.5 is used as the cutoff. Specifically, for person i, we have α̂ik = argmaxP

αk∈{0,1}
(αk|X i ) and

θ̂i = argmaxP
θ∈{0,1,...,H}

(θ|Xi ), where

P (αk |Xi ) = ∑H
θ=0

∑1
α1=0 · · ·∑1

αk−1=0
∑1

αk+1=0 · · ·∑1
αK=0 P (θ, α1, . . . , αk, . . . , αK |Xi )

= ∑H
θ=0

∑1
α1=0 · · ·∑1

αk−1=0
∑1

αk+1=0 · · ·∑1
aK=0

P(Xi |θ,α1,...,αk ,...,αK )
P(Xi ) p (θ, α1, . . . , αk, . . . , αK )

(8)

and P(θ|Xi ) =
2K∑
c=1

P(θ,αc|Xi ) = ∑2K
c=1

P(Xi|θ,αc )
P(Xi ) p(θ,αc).

Simulation Study

A simulation study was conducted to evaluate the performance of the EM algo-
rithm in estimating model parameters of the two special cases proposed for the gen-
eral dual-purpose model (AM- and DM-GDPMs) under varied conditions.

Method

Factors. Three factors were manipulated: sample size, attribute correlation, and
generating model. Levels of the factors were chosen to reflect realistic scenarios
based on the existing literature and the empirical applications.

Sample size (N). This study considers four levels of sample sizes: N = 500,
1,000, 2,000, and 4,000. These levels were chosen according to Sessoms and Henson
(2018), where the mean and median of sample sizes of 36 CDM applications were
1,788 and 1,255, respectively, and 30% of them involved samples of 2,000 or more.

Attribute correlation (R). Previous studies showed that attributes could have var-
ied levels of associations. For example, Ma et al. (2020) showed that the correla-
tions between attributes measured in a diagnostic test ranged from .07 to .95. The
strengths of associations between misconceptions, however, remain unclear. The re-
sults from the real data analysis in the next section showed that the absolute values of
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Table 1
Q-Matrix for Simulation Study

Item M1 M2 M3 M4 Item M1 M2 M3 M4

7 1 0 0 0 19 1 1 0 0
8 0 1 0 0 20 1 0 1 0
9 0 0 1 0 21 1 0 0 1
10 0 0 0 1 22 0 1 1 0
11 1 0 0 0 23 0 1 0 1
12 0 1 0 0 24 0 0 1 1
13 0 0 1 0 25 1 1 0 0
14 0 0 0 1 26 1 0 1 0
15 1 0 0 0 27 1 0 0 1
16 0 1 0 0 28 0 1 1 0
17 0 0 1 0 29 0 1 0 1
18 0 0 0 1 30 0 0 1 1

Note: Items 1 to 6 were omitted because they do not measure any misconceptions. M1–M4: four
misconceptions.

correlations between misconceptions ranged from .1 to .7. As a result, we considered
three levels of correlations in this study: R = .3, .5, .8, representing low, moderate,
and high correlations, respectively. Note that we assume misconceptions are pos-
itively correlated but have negative correlations with the overall ability. This is a
plausible assumption and is also in line with the findings from the real data analysis
in the next section.

Generating models (M). In this study, we considered two generating models—
the AM—and DM-GDPMs for data generation. The same models were used to fit
the data.

In addition to the manipulated factors above, we fixed the following factors to
make the simulations manageable. In particular, the number of misconceptions was
fixed at K = 4, the same as the real data analysis in the next section. Test length was
fixed at 30, which has been considered in previous simulation studies (Ma & Jiang,
2021; Nájera et al., 2020) and is also in line with the diagnostic test reported by
Ma et al. (2020) The Q-matrix is given in Table 1. This Q-matrix contains six items
measuring none of the misconceptions, 12 measuring a single misconception, and 12
measuring two misconceptions. Each misconception is measured by nine items.

Data generation. The item parameters were informed by the results from the real
data analysis in the next section. In particular, the success probability for students
with the lowest level of proficiency without possessing misconceptions is denoted
by P(Xj = 1|θ = 0, α = 0) and drawn from a truncated N(.2, .1) with values between
[.05, .35]. This is a plausible setting, given that all items are MC questions. Also,
similar to the real data analysis in the next section, where the probability of success
for those who had the highest level of ability yet without any misconceptions had a
mean of .96 and a standard deviation of .04, we drew P(Xj = 1|θ = 0, α = 0) from
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Figure 2. Mean bias errors of item parameter estimates according to sample size and
attribute correlations. [Color figure can be viewed at wileyonlinelibrary.com]

truncated N(.95, .252) with values between [.9, 1]. In addition, we set P(Xj = 1|θ, α =
1) ∼ U[0, P(Xj = 1|θ = 0, α = 0)]. Based on the above settings, all item parameters
were calculated directly.

Examinees’ person parameters were drawn from a multivariate normal distribution
N(0, �), where � has diagonal elements of unity. The absolute values of off-diagonal
elements of � are equal to R. The off-diagonal elements are negative when they rep-
resent the covariances between the overall ability and misconceptions but positive
when they represent the covariances between two misconceptions. The discrete abil-
ity and binary misconceptions were obtained by categorizing the multivariates from
the distribution. We generated Rep = 200 data sets under each condition to reduce
Monte-Carlo sampling errors. The AM- and DM-GDPM were fitted to the simulated
data. The estimation code was written in R software (R Core Team, 2021), with var-
ious functions from the GDINA R package (Ma & de la Torre, 2020b), and can be
requested from the corresponding author. The estimation is terminated if the maxi-
mum absolute difference in structural parameters between two successive iterations
is less than .001 or the number of iterations reaches 2,000.

Dependent variables. To assess the item parameter recovery, we calculated bias
and root mean square error (RMSE) for item parameter estimates. To evaluate person
parameter recovery, we explored the correlation between the generating ability θ and
the estimated ability θ̂ (rθθ̂) and the proportions of correctly classified misconception
vectors (PCV), defined as PCV = 1

N×Rep
∑Rep

r=1
∑N

n=1I (αi = α̂i ), where α̂i and αi are
the estimated and true misconception profiles for examinee i, respectively.

Results

Figure 2 shows the mean biases of item parameter estimates under varied condi-
tions. It can be observed that as sample size increased, mean biases for both AM- and
DM-GDPM decreased. In particular, the mean biases were –.41, –.26, –.19, and –.16
for samples of size 500, 1,000, 2,000, and 4,000, respectively, using AM-GDPM;
and –.11, –.07, −04, and –.03 for samples of size 500, 1,000, 2,000, and 4,000,
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Figure 3. Root mean square errors of item parameter estimates according to model,
sample size, and attribute correlations. [Color figure can be viewed at
wileyonlinelibrary.com]

respectively, using DM-GDPM. In addition, as attribute correlation increased, both
models produced larger biases. In particular, the mean biases were –.22, –.23, and
–.32 for attribute correlation of .3, .5, and .8, respectively, using AM-GDPM; and
–.06, –.06, and –.08 for attribute correlation of .3, .5, and .8, respectively, using
DM-GDPM. Overall, the DM-GDPM had lower mean biases than AM-GDPM (i.e.,
mean bias = –.26 for AM-GDPM and –.06 for DM-GDPM).

Figure 3 shows the RMSEs of item parameter estimates under varied conditions.
Several findings can be observed. First, as sample size increased, the RMSEs for
both AM- and DM-GDPM decreased. In particular, the average RMSEs were 1.08,
.68, .47, and .36 for samples of size 500, 1,000, 2,000, and 4,000, respectively, using
AM-GDPM; and .97, .71, .52, and .36 for samples of size 500, 1,000, 2,000, and
4,000, respectively, using DM-GDPM. Second, as attribute correlation increased,
the RMSEs increased for both models. In particular, the average RMSEs were .53,
.58, and .83 for attribute correlation of .3, .5, and .8, respectively, using AM-GDPM;
and .59, .61, and .72 for attribute correlation of .3, .5, and .8, respectively, using
DM-GDPM. Last, the AM-GDPM and DM-GDPM had similar RMSEs in general
(i.e., average RMSE = .65 for AM-GDPM and .64 for DM-GDPM).

Figure 4 gives the PCVs of both models under varied simulated conditions. It can
be observed that the classification accuracy increased as the sample size increased. In
particular, the mean PCVs were .83, .85, .86, and .86 for samples of size 500, 1,000,
2,000, and 4,000, respectively, using AM-GDPM; .80, .82, .83, and .84 for sam-
ples of size 500, 1,000, 2,000, and 4,000, respectively, using DM-GDPM. In addi-
tion, as attribute correlation increased, classifications became more accurate. Specif-
ically, mean PCVs were .81, .84, and .90 for attribute correlation of low, medium,
and high, respectively, using AM-GDPM; and .79, .81, and .87 for attribute cor-
relation of low, medium, and high, respectively, using DM-GDPM. Overall, AM-
GDPM and DM-GDPM had similar classification accuracy, with AM-GDPM hav-
ing slightly higher PCVs (i.e., mean PCV = .85 and .82 for AM- and DM-GDPM,
respectively).
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Figure 4. Proportions of correctly classified misconception vectors according to
model, sample size, and attribute correlations. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 5. Pearson’s correlation for overall ability recovery according to model, sample
size, and attribute correlations. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5 displays the averaged correlations between the estimated and true over-
all ability. Several findings can be observed. First, the correlation became stronger
as the sample size and the strength of attribute correlation increased. In particular,
mean correlations were .76, .78, .79, and .81 for samples of size 500, 1,000, 2,000,
and 4,000, respectively, using AM-GDPM; and .75, .76, .77, and .78 for samples of
size 500, 1,000, 2,000, and 4,000, respectively, using DM-GDPM. In addition, mean
correlations were .75, .78, and .83 for attribute correlation of low, medium, and high,
respectively, using AM-GDPM; .73, .76, and .81 for attribute correlation of low,
medium, and high, respectively, using DM-GDPM. Overall, AM-GDPM and DM-
GDPM had similar correlations between the estimated and true overall ability, with
AM-GDPM having slightly stronger correlations (i.e., mean correlation = .79 and
.77 for AM- and DM-GDPM, respectively).

The results of the simulation study showed that the parameters of both AM-GDPM
and DM-GDPM can be recovered reasonably well, especially when sample size was

10
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Table 2
Q-Matrix for Real Data

Item α1 α2 α3 α4

1 1 0 0 0
2 1 0 0 0
5 1 0 0 0
7 1 1 0 1
10 0 0 0 1
12 0 1 0 1
13 1 0 0 0
14 0 0 1 0
16 0 0 1 0
17 0 0 1 0
20 0 1 0 0

Note: Items were omitted if they do not measure any misconceptions.

large. Stronger attribute correlation produced less accurately estimated item param-
eters, but the associations among attributes provide additional information for esti-
mating person attribute profiles and thus lead to more accurate person classifications.
Under all simulated conditions, the EM algorithm converged with the set criteria. The
average computational time used for parameter estimation was 18.7 seconds with the
maximum being 59.9 seconds.

Real Data Analysis

Data

The data comprise item responses of 614 11th-grade Chinese students to 20 MC
items in a thermal concept evaluation test in science (Yeo & Zadnik, 2001). Among
the 614 students, 329 were male and 285 were female. At the time of testing, students
had completed the learning of thermal concepts. Domain experts identified miscon-
ceptions involved in each item, within which four misconceptions were considered
in this study because they were measured more than three times: (α1) Objects of
different temperatures that are in contact with each other or in contact with air at
a different temperature, do not necessarily move toward the same temperature; (α2)
Temperature is a property of a particular material or object; (α3) Perceptions of hot
and cold are unrelated to energy transfer; (α4) Material has the ability to attract, hold,
intensify, or absorb heat and cold. The Q-matrix is given in Table 2, where items that
do not measure any misconceptions were omitted.

Analysis

Both AM- and DM-GDPMs were fitted to the data. The absolute model-data fit
was evaluated using rjj ′ , which is the absolute difference between the observed and
model-implied Fisher-transformed correlations between items j and j’, and ljj ′ , the
absolute difference between the observed and model-implied log odds ratio between
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Table 3
Absolute Fit Statistics

rjj ′ ljj ′

Model Max rjj ′ z Adj p Value Max ljj ′ z Adj p Value

AM-GDPM .14 3.34 .16 .87 3.15 .31
DM-GDPM .13 3.17 .29 .82 2.96 .58

Table 4
Relative Fit Statistics

Number of
Parameters AIC BIC SABIC CAIC

AM-GDPM 389 12,286 13,909 12,675 14,298
DM-GDPM 386 12,354 13,965 12,740 14,351

Note: Smaller values were presented in boldface.

items j and j’. Based on the approximate standard errors of those statistics, z statis-
tics can be obtained for assessing whether the residuals differ significantly from zero.
Note that one can calculate rjj ′ and ljj ′ for each pair of items, and thus there are J(J –
1)/2 rjj ′ and ljj ′ statistics to examine, where J = 20. Like Chen et al. (2013), we fo-
cused on the maximum z-scores of these statistics to assess whether the worst-fitting
item pair could fit the data well or not. Because this analysis implicitly involved mul-
tiple tests, the Holm-Bonferroni procedure was used to control family-wise Type I
errors. The relative fit of AM- and DM-GDPMs to the data were compared using
various information criteria.

Results

During the model fit analysis of the thermal concept evaluation questions us-
ing the GPDMs, we observed that both AM-GDPM and DM-GDPM fit data ade-
quately. Specifically, Table 3 includes the absolute fit statistics from both models,
including the absolute difference between the observed and model-implied Fisher-
transformed correlations (rjj ′), and the absolute difference between the observed and
model-implied log odds ratio between the item pair of j and j’ (ljj ′). The maximum
values of rjj ′ and ljj ′ quantified the goodness-of-fit of the worst-fitting item pairs. It
can be observed that both models fit the data adequately, so we chose the model that
fits the data better according to relative fit statistics. Based on AIC, BIC, SABIC,
and CAIC indices, as shown in Table 4, the AM-GDPM was preferred. The follow-
ing analyses were conducted under the AM-GDPM.

Figure 6 shows the item characteristic curves (ICCs) of the AM-GDPM for four
items as an example. The plots were constructed based on the estimated item pa-
rameters. The x-axis shows students’ ability on a 0 to 20 scale, and the y-axis shows
the probability of students correctly answering a specific item. Item 3 does not in-
volve any of the misconceptions, and thus, there is a single curve. Item 10 involves
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Table 5
Correlations between Estimated Person Parameters and Total Scores

α1 α2 α3 α4

Correlation
with Sum

Score

θ –.31 –.45 –.25 –.30 .88
α1 1 .19 .28 .20 –.38
α2 1 .36 .28 –.54
α3 1 .26 –.40
α4 1 –.41
Prevalence 34.6% 23.0% 22.7% 12.0%

one misconception, so there are two curves plotted: one for students who possess
the measured misconception and one for other students. It can be observed that
students having the measured misconception had relatively low probabilities of suc-
cess regardless of their overall ability. In contrast, Item 14 also measures a single
misconception, but students with the misconception can have quite a high chance of
answering it correctly when their overall abilities are high.

The ICCs can be used to assess the utility of the items. First, the separability be-
tween curves reflects the diagnostic power of misconceptions. For example, the two
curves of Item 14 were quite separable, suggesting that students with the miscon-
ception performed quite differently from those without the misconception. However,
for Item 12, the curves for misconception profiles 00 and 01, and 10 and 11 overlap,
suggesting a poor diagnostic power for α4 and a potential Q-matrix misspecification.
Second, the slope of the curve reflects the discrimination of the item for a certain
group of students. Take Item 10 as an example; it has relatively high discrimination
power for students who do not possess the misconception (i.e., when overall ability
increases from low to high, probability of success increases substantially too), but
relatively low discrimination power for those who has the misconception (i.e., when
overall ability increases from low to high, probability of success does not change
substantially).

To evaluate the reliability of person parameter estimation, we use a Monte-Carlo
approach. In particular, a sample with one million students with ability and miscon-
ception profiles drawn from the posterior distribution of the above fitted AM-GDPM
was obtained. Their responses were simulated using AM-GDPM based on the esti-
mated item parameters and refit with fixed item parameters. The classification accu-
racy for a misconception can be defined as the proportion students who are correctly
classified for that misconception. Results showed that the classification accuracy for
four misconceptions was .78, .99, .92, and .91, suggesting a reasonably high reli-
ability of misconception classifications, especially for misconceptions 2, 3, and 4.
Pearson’s correlation between estimated and true overall abilities was .82, suggest-
ing a good reliability for ability estimation.

Details about the correlations between estimated ability, misconceptions, and total
scores of the test are given in Table 5. It can be observed that students’ estimated
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Dual-Purpose Model

ability regarding thermal concepts was negatively correlated with the possession
of misconceptions (from −.25 with α3 to −.45 with α2). In addition, the students’
estimated ability was positively correlated with their total scores (.88), and the cor-
relation among the misconception parameters ranged from .19 (between α1 and α2)
to .36 (between α2 and α3), indicating that misconceptions tend to cooccur. Also,
misconception 1 is the most prevalent, being found in 34.6% of students, while
misconception 4 is the least prevalent, observed in 12.0% of students. The percent-
ages of students who were found to have misconceptions 2 and 3 were estimated at
23.0% and 22.7%, respectively.

Summary and Discussion

Diagnosing misconceptions allows teachers to gain deeper insights into students’
understanding, whereas scaling students on a continuum scale allows teachers to
know students’ overall proficiency. To simultaneously estimate students’ overall abil-
ity and misconceptions based on dichotomously scored items, this article proposed
the general dual-purpose model (GDPM) for binary data. The EM algorithm was
developed to estimate its item parameters. Two special cases of the GDPM with sub-
stantive interpretations were carefully studied via both simulated and real data—one
assumes that misconceptions work in a disjunctive way, whereas the other assumes
misconceptions function additively and independently. The simulation study showed
that the item parameters of the proposed models could be accurately estimated, espe-
cially when the sample size was large. The estimation accuracy of students’ overall
ability and misconception profiles was primarily affected by sample size and attribute
correlations. An interesting observation is that although item parameters tend to be
less accurately estimated as attribute correlation increases (i.e., larger biases and
RMSEs), the overall ability and misconception profiles tend to be estimated more
accurately. This may be caused by the fact that information can be borrowed from
other dimensions when they are highly correlated.

The real data analysis shows that the additive version of the GDPM fits data better
than the disjunctive version of the GDPM, though both could fit data adequately in an
absolute sense probably because many items do not involve any misconceptions, and
thus two models are equivalent for them. The analysis of real data also shows that
the misconceptions were negatively associated with overall ability, suggesting that
students of lower proficiency were prone to some misconceptions. Also, the positive
correlation between misconceptions implies that misconceptions tend to cooccur.

This paper defines the overall ability as a categorical variable for several reasons.
First, a continuous ability is often assumed to be normally distributed, but this as-
sumption is not needed for categorical variables. Second, as the number of levels
increases for the categorical variable, the categorical variable can provide detailed
information that is similar to the continuous variable. Third, the categorical vari-
able is easier to understand for practitioners than the continuous variable, which
usually has a mean of 0 and standard deviation of 1 for identifiability purpose.
Last but not least, the joint distribution of ability and misconception can be pa-
rameterized as a multinomial distribution when the ability is categorical, and hence,
the estimation is simplified. In this paper, the number of categories for the overall
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ability, for both simulation study and real data analysis, was set at the number
of items plus one to mimic the total score. It turns out that as long as the num-
ber of categories is large enough, it has little impact on model-data fit and person
classifications.

This study shows that the GDPM is a promising tool for scaling students and iden-
tifying their misconceptions, but additional research is needed to fulfill its potential.
First, it is equally important, if not more, to have a well-designed test and care-
fully developed Q-matrix to support the inferences from the GDPM. Issues related
to test development for cognitive diagnosis (de la Torre & Minchen, 2014; Leighton
& Gierl, 2007) and Q-matrix completeness (Chiu et al., 2009; Köhn & Chiu, 2017)
have been extensively discussed in the literature. The importance of the Q-matrix
cannot be overstated for CDM, and the validity of the person classifications from
the GDPM also relies on the correctly specified Q-matrix. Although many methods
have been developed for estimating or refining Q-matrix (e.g., Ma & de la Torre,
2020a; Tu et al., 2023), they may not be used for the GDPM. Future research should
investigate how to detect and correct the misspecifications in the Q-matrix when us-
ing the GDPM. Second, the number of misconceptions is often large, and thus, how
to measure them stably remains challenging. The test may need to be long enough
to measure each misconception a sufficient number of times and at the same time,
the estimation algorithm also needs to be able to handle a large number of latent
variables. The naïve EM algorithm may need to be modified for this purpose, and
recently many more advanced algorithms have been proposed. Also, in the simu-
lation study, a multivariate normal distribution was assumed to govern the relation
between latent variables, but this assumption can be relaxed, and data can be simu-
lated from a multinomial distribution directly. Future research may explore how to
achieve this while maintaining control for correlations among latent variables, as in
Ma et al. (2023). In addition, the proposed model is for cross-sectional data. To better
support learning, it is important to extend the model to handle longitudinal data or
to embed the model in an adaptive testing framework. Last, the proposed model was
only applied to dichotomously scored items, but in practice, polytomously scored
items are also widely used. Future research may explore how to extend the model to
accommodate polytomous data.
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Note
1Note that the SICM can handle polytomous data, but the GDPM cannot; however,

when dealing with binary data, SICM can be viewed as a special case of the GDPM.
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