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Abstract—In this work, we developed a mathematical model
and a simulation platform for a fish-inspired robotic template,
namely Magnetic, Modular, Undulatory Robot (uBot).
Through this platform, we systematically explored the effects of
robot design and fluid parameters on swimming performance
via reinforcement learning. The mathematical model was
composed of two interacting subsystems, the robotic dynamic
model and the hydrodynamic model. The hydrodynamic model
consisted of the reactive components (added-mass force and
pressure forces) and the resistive components (drag and
friction forces). These components were nondimensionalized
for deriving key “control parameters” of the robot-fluid
interaction. The pBots were actuated via magnetic actuators
controlled with harmonic voltage signals, which were optimized
via EM-based Policy Hyper Parameter Exploration (EPHE) to
maximize forward swimming speed. By varying the control
parameters, a total of 36 cases with different robot template
variations (Number of Actuators (NoA) and stiffness) and
hydrodynamic parameters were simulated and optimized via
EPHE. Results showed that the wavelength of the optimized
gaits (i.e., backward traveling wave along the body) was
independent of template variations and hydrodynamic
parameters. Higher NoA yielded higher speed but lower speed
per body length, suggesting a diminishing gain from added
actuators. Body and caudal-fin dynamics were dominated by
the interaction among fluid added-mass, spring, and actuation
torque, with negligible contribution from fluid resistive drag.
In contrast, thrust was dominated by the pressure force acting
on the caudal fin, as steady swimming resulted from a balance
between resistive force and pressure force, with minor
contributions from added-mass force and body drag forces.
Therefore, added-mass force only indirectly affected the thrust
generation and forward swimming speed via the caudal fin
dynamics.

I.  INTRODUCTION

Fish species have evolved with astonishing success in
diversification and locomotion capabilities in various
underwater environments [1]-[5]. Fish swimming relies
primarily on undulatory motions in body and fins and has
provided novel templates for underwater vehicles for higher
efficiency and maneuverability than those using conventional
propellers [6]-[9].

The diversification of fish species renders complex forms
and functions of swimming, from which it is challenging to
extract general design templates and principles for robotic
emulation. Fish swimming, by its propulsion mechanism, can
be categorized into two types: Body and/or Caudal Fin (BCF)
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Fig. 1. Overview of this work. We explored the effect of control
parameters in Number of Actuators, body stiffness, and hydrodynamic
parameters (C,, C,, Cy, Cq).

propulsion and Median and/or Paired Fin (MPF) propulsion
[10]. While BCF forms achieve higher speed and efficiency
in cruising, MPF forms offer better maneuverability [11]. As
85% of fish families are estimated to use BCF propulsion [3],
it is unsurprising that BCF has served as the major design
template in fish-inspired robots. This template of fish
swimming is primarily composed of a smooth, elongated
body with caudal fin attached posteriorly, while fins along
the body such as pectoral fins and dorsal fins can be
considered as secondary features. Even within this
parsimonious design template, there exist substantial
variations such as caudal fin shape and stiffness, body
slenderness, stiffness, mass distribution, and the number of
actuation (or effective links). When coupled with various
fluid mechanisms for hydrodynamic force generation via
large possible swimming gaits, these design variations render
the robot-fluid interaction problem challenging to solve or be
included in the design process.

Fish or fish-inspired swimming are often studied using
both experiments with biological [12], [13] or robotic fish
[14], [15], or using computational simulations [16]-[18].
Experiments with robotic fish can directly reveal the
swimming performance with the actual physics of robot-fluid
interaction. However, these experimental setups are costly in
prototyping with significant and frequent changes in
mechanical design for systematic exploration in the design
space. Computational Fluid Dynamic (CFD) simulation can
solve Navier-Stokes equations based on known swimming
kinematics and sometimes the entire fluid-structure
interaction in simplified form. However, despite its high
accuracy, CFD is computationally costly for systematic
exploration of design space as well. Therefore, to
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systematically investigate how the variations within the fish-
inspired design template affects the swimming gaits and
performance, building an accurate and computationally
efficient mathematical model for swimming is the most
feasible approach.

The most widely used method for modeling fish
swimming is based on the large amplitude elongated body
theory (LAEBT) [19] developed by Lighthill. In the LAEBT,
3D problem is simplified as a 2D problem with potential flow,
and reactive force is calculated based on the fluid in a control
volume attached to the fish. Compared to the CFD solution,
LAEBT predictions often have acceptable accuracy with
significantly lower computational cost. In recent decades,
there are also several attempts to improve the Lighthill fish
swimming model and adapt it to a mobile multilink system
[20].

In this work, we aimed to systematically explore the
relationship among robot design properties, fluid dynamics,
swimming gaits, and swimming performance in fish-inspired
swimming. We first developed models and a simulation
platform of a Magnetic, Modular, Undulatory Robot platform
(uBot) [21], which represents a robot template for fish-
inspired swimming. We created a total of 36 simulation cases
with distinct model parameters, namely number of actuators
(NoA), body stiffness, and hydrodynamic parameters. We
optimized the swimming gaits to maximize the swimming
speed and analyzed the thrust generation mechanism. The
rest of this paper is organized as follows. In section II, the
design, mathematical modeling, simulation, and method of
gait optimization of puBot are described. Section III presents
the results from simulations. Discussions and future work are
presented in section IV.

II. MATERIALS AND METHODS

In this section, the design, mathematical modeling,
simulation setup, and method of gait optimizations of pBot
are described. In addition, the control parameters that
determine the physics of swimming are derived.

A. Robot design and actuator model

The design of pBot was described in our previous work
[21], and the details relevant to modeling and simulation are
provided here. The pBot is composed of a head segment,
multiple body segments, a peduncle segment, and a caudal
fin (Fig. 2a). A body segment has an elliptical transverse
plane with a nominal depth of 13.7 mm and width of 7 mm,
and a rectangular sagittal plane with nominal aspect ratio of 2
(i.e., a nominal length of 27.4 mm). The caudal fin is
mounted on the peduncle segment via a torsion spring and
modeled as a rigid plate with the same body depth and a
thickness of 0.97mm. pBot is assumed to have a uniform
density of 1.0kg/m? with neutral buoyancy in the simulation.
Except for the last joint (peduncle-caudal fin), all other joints
are actuated by a magnetic actuator with a parallel torsion
spring.

Each magnetic actuator (Fig. 2b) has a coil mounted on a
rotating arm (coil clamp) around a pivot joint, while the coil
is placed in between two permanent magnets pointed closely
to each other with identical polarity (therefore opposing each
other). With voltage applied, the coil generates lateral forces,
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Fig. 2. Design and modeling of uBot. (a) Top view of pBot with 4
actuators. The interior actuator design of the 3™ segment (actuator) is
shown. (b) Details of actuator design showing the permanent magnets
and coil. (c) Added-Mass Volume (AMV) and reactive forces of one
segment. x and y are segmental normal and longitudinal unit vectors.
(d) Scheme for the external forces and torques applied along the uBot
(e) Examples of external forces and torques vectors with notations.

which in turn creates actuation torque via the rotating arm
that rotates the subsequent segment and reversing the voltage
simply reverses the torque.

To simulate torque from the actuator, a mathematical
model was developed by calculating the magnetic field of the
permanent magnets [23] and the coil. This model was
calibrated by the torque measured experimentally at zero
rotation. The model showed that both the actuator torque
constant (k1) and back EMF constant (kgyp) remained nearly
constant across the usable range of coil rotation. Therefore,
the actuator was modeled simply as,

T = E—kEM];' Yjoint kr, €))

where T is torque generated by the actuator, E is the applied
voltage, wjoin; is joint’s angular velocity, R is the resistivity
of coil, torque constant is chosen as 1.26 Nmm/A, and back
EMF constant is chosen as 1.26 mV - s.

B. Modeling of hydrodynamic forces

To simulate the swimming of pBot, a model of
hydrodynamic force was developed based on the reactive
theory [19] and the resistive theory [22], following the
approach used by Mathieu et al. [20] with minor revisions.
Since uBot was neutrally buoyant, only horizontal planar
motion and relevant forces and torques were considered.

We attached a mobile frame (Oj,x]-, y]-,zj) to the segment
J- The unit vector x; is along segment longitudinal direction,
y; is along segment lateral direction, and z; is along the
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vertical direction. For any physical variable modeled as
vectors, the lower index presents the body index (to which it
is related). Tensor related to a body is always expressed in
the mobile frame of this body.

B1. Reactive force model

Applying Lighthill’s theory with potential flow
assumption, we first defined a control volume attached to
each segment, termed as added-mass volume (AMV). Each
AMV has two boundaries [, and II;, which are infinite
planes fixed at the anterior and posterior side of each segment,
respectively (Fig. 2¢). The total segmental reactive force was
modeled with two components: 1) added-mass force (fqq)
due to the rate of change of fluid momentum within AMV,
and 2) the pressure force -f5,¢. fre acting on the boundaries
of AMV. For a given robot segment j (Fig. 2c), the total
reactive wrench F.qq j, exerted by the fluid within AMV,
can be written as

— (T T T
F‘react,j - (f‘react,j' Creact,j) ' (2)

Here Freqct,j in R®is wrench and includes both force (f:eact' i)
and torque (cfeact' ;) components (about each joint) and is

expressed in the mobile frame of j" segment. Applying
Newton’s laws and Euler’s theory to the fluids in AMV, it
can be shown that,

d rli _
freact,j = Efoj Pj(X)dxj + fpre - f;re:

d rl;
— —— [Ty, .
creact,j - dt fo z:] dx] ’

3)
4

where P;(X) and X;(X) are fluid’s linear momentum and
angular momentum of fluid contained in slice I1;(X). In
Lighthill’s original theory, fluid outside AMV was assumed
to have no velocity, so that f,. j can be calculated simply
with the velocity of fluid within boundaries (I1;(0), IT; (;))
via unsteady Bernoulli’s principle. However, this
assumption was biased as fluid outside boundaries still has
velocity, and pressure force was over-estimated. In this work,
we introduced the correction coefficient C, for pressure
force. Thus, the pressure forces take the form:

forej = Cp " KE;(X)x;, 5)

where KE;(X) denotes the kinetic energy of fluid in I1;(X).
Evaluating (3) to (5), segmental reactive force becomes,

[~ 1=92, 2 1= (2 12\
~mylwy; + S Ml wf + G, Sy (vf —v'5)
— 1_ 2.
-mjlja; —-myliw;
Freact,j = 0 ’ (6)
0
0
1_ lz( ) 1_ l3 . Tl ’
| — [3Mh g —wuy) +omylio; +mylugy )

where m; is cross-sectional added mass, [; is the segment
length, w; is the angular velocity, u;,v; are the linear
velocity of II;(0) projected onto x;,y; , a; is linear
acceleration of I1;(0) projected onto y;, and v'; is linear
velocity of boundary I'Ij(l]-) projected on y;. According to

Lighthill [24], m is defined as

_ 1
m; = C, -Znhjzpf, (7

where h; is the segment depth, pf is the fluid density, and C,
is the coefficient of added mass.

B2. Resistive force model

Based on Taylor’s theory [22], resistive force Fiesis
takes the form of lateral drag force and longitudinal friction
force,

Cre Py 1y |uj|u/'
L
Cqh; fo |vx,j|vx,jdxf
1 0

— 3P 0 ’

0
l
[Cahy [, |V |V, - x|

€)

Fresis,j =

where P; is segment perimeter, Cf, C; are friction and drag
coefficients that are Reynolds-number dependent, u; is
segment’s longitudinal velocity and v, ; is the lateral velocity
of the slice of fluid at longitudinal coordinate x.

C. Dimensionless parameters (control parameters) of
swimming and robot-fluid interaction

Fish swimming involves complex interactions between
the fish’s body and the surrounding fluids, posing an inherent
fluid-structure interaction (FSI) problem. Here, we derive
several dimensionless parameters that effectively “control”
the nature of this interaction in addition to the gait parameters
(which are optimized). Dimensionless variables (unit X, time
t, longitudinal velocity i, lateral velocity ¥, angular velocity
@, and angular acceleration ) were defined as,
~ w A w
6=2B=% (©
where f,U, A denote the undulatory frequency, the average
cruising speed and segment’s average lateral displacement,

and all three parameters are updated during the optimization.
The dimensionless model of hydrodynamic force is,

v

x ~ ~ u ~
y tEfb A=y vEg

X =7
]

rA . 1 A~ 1 5\7
—ov+ -0+ C, (—va)——wz)
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where V = D +
ratio.

Xw and AR = % is body segmental aspect
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TABLE L SETTING OF CONTROL PARAMETERS
Control Values of Control Parameters
Parameters
Number of
actuators 2 4 6
NoA
Normalized High Medium Low
Stiffness E, 1.00 0.75 0.50
(Nmm/rad) 16 16 16
. HM-1 HM-2 HM-3 HM-4
Hydrodynamic C,=0 C,=1 C,=1 C,=1
Model ¢,=0 | ¢=0 | ¢=05| C=1

From the dimensionless model, we identified two types of
dimensionless parameters: 1) those that need to be defined a
priori before starting simulation and optimization, such as
AR, Cy, Cp, G5, Cy, which are the ‘control parameters’ of the
swimming physics, and 2) those that will be obtained after

iU
s

To investigate the effects of hydrodynamic parameters,
which change with the Reynolds number, we created four
hydrodynamic models (Hydro Model or HM) with different
combinations of C, and C, (Table 1). Hydro Model-1
represents a model in which uBot only experiences resistive
force from fluid due to boundary layer effects (or circulatory-
based frictional and drag forces). Hydro Model-2 represents a
model containing resistive force and part of the reactive force
with C,, = 0. In this model, we assume there is no difference
in fluid velocity between both sides of boundaries of AMV.
Therefore, pressure force f,.. and f;re are zero. Hydro
Model-3 denotes a model containing all resistive force and
reactive force components with C, = 0.5. Hydro Model-4
denotes a classical hydro-dynamic model containing all
resistive force and reactive force components with C, = 1.
From Hydro Model-2 to Hydro Model-4, we gradually
increase the coefficient of pressure force to explore how it
affects robot swimming.

gait optimization, such as

The effects of two body design parameters were
investigated: 1) the number of actuators (NoA) or the number
of body segments, as the uBot is a multilink robot, and 2)
torsion spring stiffness (K;). For an N-segment uBot model,
K; can be written as,

={AR‘*-1? i=12,..,N-2
AR* - 5K i=N-1
where K; is the stiffness for torsional spring in i joint and K
is the normalized spring stiffness. With a normalized spring
stiffness K, the effects of spring and AR can be isolated. The
caudal fin joint stiffness is 5 times of the rest joint stiffness to
match the actual robot design.

In total, AR, (C;,Cy), HM,K and NoA are five key
dimensionless parameters, or Control Parameters (CPs). In
this study, we investigated the effects these CPs (except the

K) by creating a total of 36 simulations cases according to
Table 1.
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| Reward | Hydrodynamic
EPHE Sl
' . Hydrodynamic
Update Gait force and
torque
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Polit.:y ?arameter gl Reward Rigid Body
Distribution Service Dynamics
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5 |l Pt ;
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Fig. 3. Schematics of the simulation platform.

D. Gait Optimization

With the determined set of CPs, we optimized the puBot’s
actuator voltage signals to identify the swimming gaits that
maximize the forward swimming speed for each simulation
case. In this work, we generated the voltage signal E;(t) sent
to j™ actuator according to,

e; sin(2mfint),
~ |gsin (2n(fiut +9))), j=2...NoA’

j=1

E;(¢) (13)

where e; is voltage amplitude, ¥; is the initial phase of
voltage, and f;, is the frequency of input signal. Given this
definition, the optimization parameter vector y , which
governs voltage signal, can be constructed as,

Y = [e1, W2, €5 . Phoas €noas finl- (14)

In this work, a policy gradient-based reinforcement
learning (RL) method, i.e., EM-based Policy Hyper
Parameter Exploration (EPHE) [25], was used to optimize
the swimming gaits of swimming. In EPHE, policy
parameters Y is sampled from probability distribution
p(yIn,6%), where m, 0 are the hyperparameter vectors
composed of mean value and standard deviation of the
probability distribution. To obtain a good sampling
performance, only the policy parameters from the best N
rollouts (trajectories with highest N rewards) in total M
rollouts are taken for updates. Hyperparameters are updated
as,

_ 2L [RGY Y

=TI kG (15)

a_szmmwﬂ
- S RGY)

(16)

where R(y") is the reward of the i rollout.

Empirically, uBot took less than 2 seconds for acceleration
and got into a steady swimming phase. Therefore, we set
pnBot to swimming for 6 seconds and used the average speed
within the last 2 seconds as the reward of learning.
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E. Robot Simulation Setup

Next, the above hydrodynamic models and EPHE
algorithm were used to create a simulation platform, which
was composed of three parts: Gazebo and Open Dynamic
Engine (ODE), training script, and Robot Operating System
(ROS).

In this paper, the combination of Gazebo and ODE was
used as a robot simulator while a hydrodynamic plugin and
an actuator plugin were implemented in it. At a given
timestep tx, ODE calculated hydrodynamic force (Freqct,
Fresis) based on kinematic variables from ti.;, generated
excitation torque based on Ej(t)), and handled motion of
equation for pBot by simulating rigid body dynamics. The
training script contained learning algorithm and generated
voltage signals for actuators. To integrate the training script
into the Gazebo and ODE simulator, we used ROS for action
controlling and data passing. During the simulation, training
script used EPHE to sample policy parameters, generated
voltage signals, and sent signals to Gazebo via ROS nodes
and services. Then, Gazebo calculated robot dynamics and
recorded robot gait information. Once one simulation rollout
was done, Gazebo sent the reward to training scrip via ROS
nodes and services (Fig. 3).

III. RESULTS

In the current work, we investigated the effects of NoA,
hydrodynamic coefficients of reactive force (four
combinations of C, and C,,), and stiffness K. The remaining
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Fig. 5. Wavelength of optimized gaits remained approximately constant
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with scales on the left. (b) shows the wave per segment of optimized gait
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Fig. 6. Average hydrodynamic thrust over an undulatory period and
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(a)(b)(c) shows total thrust generated from different type of force with 2
actuators, 4 actuators and 6 actuators. (d)(e)(f) shows torque applied tail
with 2 actuators, 4 actuators and 6 actuators. (g) scheme of primary
source of thrust and friction during steady state swimming.

control parameters were fixed as AR=2, (; =0.06, and
C4=2.25. To optimize the forward swimming, we performed
50 rollouts in each episode and picked the 25 best performing
rollouts to update the actuation policy. In each training
session, we have updated the policy 40 times. For each
simulation case, we repeated the training sessions 3 times
with random initial conditions. The repeated training sessions
gave similar final reward values (forward speeds) with
negligible differences. In each simulation case, with the
optimized voltage signal, an undulatory gait in the form of a
backward traveling wave emerges from the fluid-structure
interaction.

A.  Effects of number of actuators (NoA)

With a higher NoA, the optimized forward speed
increases with NoA (Fig. 4a), however, the forward speed per
body-length decreases, suggesting the gain of forward speed
from adding more actuators or body segments diminishes.
This trend is independent of the hydrodynamic models (with
different combinations (Cq, C,)) or spring stiffness of K.

Fig. 5 shows the dependence of optimized gait
wavelength on NoA. The wavelengths remain approximately
constant at 12 cm regardless of the robot length and the
averages of wave per body segment remain approximately
0.25, i.e, a full wave spans 4 body segments. Unlike
observations in biological fish, which show a positive
correlation between wavelength and body length [26], our
results indicate that the wavelength of optimized swimming
in pBots is only weakly correlated to the selected control
parameters, NoA, hydrodynamic parameters, and body
stiffness.
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from top to bottom show thrust distribution with high stiffness, medium
stiffness and low stiffness. In each plot, x axis denotes different
segments, while ‘H’, ‘B’, ‘P’ and ‘T’ denote head segment, body
segment, peduncle segment and tail segment, respectively.

B. Effects of hydrodynamic parameters

Fig. 6 shows the average hydrodynamic thrusts over an
undulatory period (summing across all segments) and torques
applied on the caudal fin in all cases. From Fig. 6a to Fig. 6c¢,
resistive friction force is the dominant force resisting the
motion along the swimming direction. In steady state
swimming, the resistive friction force is balanced by resistive
drag force in HM-1, by resistive drag force (primary) and
added-mass force (secondary) in HM-2, and by caudal-fin
pressure forces (primary), resistive drag and added-mass
forces (both secondary) in HM-3 and HM-4. Note that the
pressure force, being the dominant mechanism for thrust
generation, is mainly from the caudal fin, indicating the
importance of caudal-fin design and dynamics in thrust
generation and swimming speed [27].

Fig.7a to Fig.7i further shows the distribution of thrust
from resistive drag force along the body segments of uBots.
Unlike the pressure force, the drag force from body segments
contribute to the thrust generation and has a minor difference
under different Hydro Model, while the caudal-fin drag force
has dramatically difference under different Hydro Model and
has negligible contribution to thrust in all cases except for the
case with HM-1 (shown in Fig 7 with red boxes and arrows).

While added-mass forces do not contribute significantly to
thrust generation, the added-mass torque, on the other hand,
dominates the caudal fin dynamics (Fig. 6d to Fig. 6f). It can
be seen that added-mass torque has a similar magnitude to
spring torque, indicating a balance in a near resonant state
(except the low spring stiffness cases). Results show that
uBot, under hydrodynamic model with added-mass forces
(HM-2, HM-3, HM-4) and without added-mass forces (HM-
1), has categorically different caudal-fin kinematics, which
lead to different thrust generation mechanisms. Therefore,
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Fig. 8. Distribution of torque due to different hydrodynamic mechanisms
along body. From (a) to (1), columns from left to right denotes torque
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to bottom shows torque distribution under different hydrodynamic
models. (m) Schemes that shows torques applied at each segment.

added-mass force indirectly affects the thrust generation and
swimming speed via the caudal fin dynamics.

In addition, Fig. 8a to Fig.81 show that the actuation torque,
fluid added-mass torque, and spring torque have comparable
magnitudes at the robot body. In contrast, the contributions
from the resistive drag force are again negligible. The results
indicate that the robot gait, including both body and caudal-
fin gaits, are dominated by the interaction between the robot
dynamics and the reactive hydrodynamic forces.

IV. DISCUSSIONS AND FUTURE WORK

In summary, our results show that increasing NoA (i.e.,
increasing robot length and the number of actuators)
increases the optimized forward swimming speed, however,
with a diminishing gain, as the forward speed per body length
decreases. Note that among all the 36 cases, the pBot with
NoA = 6, Hydro Model-4 model, and highest stiffness has the
fastest forward speed of 13.3cm/s or 0.60BL/s, and the uBot
with NoA = 2, Hydro Model-2 model, and high stiffness has
the lowest forward speed of 4.32cm/s or 0.37BL/s.

Interestingly, via examining the contributions of different
hydrodynamic mechanisms, we found fundamentally
different roles of fluid added-mass towards thrust generation
and gait generation: the added-mass force had a negligible
contribution to the thrust generation, while added-mass
torque dominates the gait generation in both caudal-fin and
body segments, together with spring torque and actuator
torque. The resistive drag force, on the other hand, has
negligible contribution towards the gait generation, however,
it contributes to the thrust mainly from the body segments.
These understandings will be crucial for understanding the
experimental data of uBot, including performing [21] robot
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system  identification and  possible = model-based [17]
reinforcement learning in the future.
Finally, note that the current analysis does not fully [18]
explore the specific effects of body and caudal fin stiffness
K, because only three sample values were used. Although
the optimized swimming speed seems to only depend [19]
weakly on the stiffness, the swimming gait and efficiency
could have greater dependence. In future work, we plan to  [20]
perform a more comprehensive study on the effects of body
and caudal-fin spring stiffness. Furthermore, in this work,
we only examined the effects of three control parameters out
of the five derived (see in II.C). In future work, we will (21]
continue to explore the effects of these control parameters
and investigate the relationship among body morphologies,  [22]
fluid dynamics, swimming gaits, and swimming
performance in fish-inspired swimming. In addition, we also
plan to perform system identifications (e.g., identifying the  [23]
hydrodynamic parameters) using experimental data of puBots.
[24]
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