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Fig. 1. Overview of this work. We explored the effect of control 
parameters in Number of Actuators, body stiffness, and hydrodynamic 
parameters (Ca, Cp, Cf, Cd).   

 
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Abstract—In this work, we developed a mathematical model 
and a simulation platform for a fish-inspired robotic template, 
namely Magnetic, Modular, Undulatory Robot (Bot). 
Through this platform, we systematically explored the effects of 
robot design and fluid parameters on swimming performance 
via reinforcement learning. The mathematical model was 
composed of two interacting subsystems, the robotic dynamic 
model and the hydrodynamic model. The hydrodynamic model 
consisted of the reactive components (added-mass force and 
pressure forces) and the resistive components (drag and 
friction forces). These components were nondimensionalized 
for deriving key “control parameters” of the robot-fluid 
interaction. The Bots were actuated via magnetic actuators 
controlled with harmonic voltage signals, which were optimized 
via EM-based Policy Hyper Parameter Exploration (EPHE) to 
maximize forward swimming speed. By varying the control 
parameters, a total of 36 cases with different robot template 
variations (Number of Actuators (NoA) and stiffness) and 
hydrodynamic parameters were simulated and optimized via 
EPHE. Results showed that the wavelength of the optimized 
gaits (i.e., backward traveling wave along the body) was 
independent of template variations and hydrodynamic 
parameters. Higher NoA yielded higher speed but lower speed 
per body length, suggesting a diminishing gain from added 
actuators. Body and caudal-fin dynamics were dominated by 
the interaction among fluid added-mass, spring, and actuation 
torque, with negligible contribution from fluid resistive drag. 
In contrast, thrust was dominated by the pressure force acting 
on the caudal fin, as steady swimming resulted from a balance 
between resistive force and pressure force, with minor 
contributions from added-mass force and body drag forces. 
Therefore, added-mass force only indirectly affected the thrust 
generation and forward swimming speed via the caudal fin 
dynamics. 

I. INTRODUCTION 

Fish species have evolved with astonishing success in 
diversification and locomotion capabilities in various 
underwater environments [1]-[5]. Fish swimming relies 
primarily on undulatory motions in body and fins and has 
provided novel templates for underwater vehicles for higher 
efficiency and maneuverability than those using conventional 
propellers [6]-[9].  

The diversification of fish species renders complex forms 
and functions of swimming, from which it is challenging to 
extract general design templates and principles for robotic 
emulation. Fish swimming, by its propulsion mechanism, can 
be categorized into two types: Body and/or Caudal Fin (BCF) 

propulsion and Median and/or Paired Fin (MPF) propulsion 
[10]. While BCF forms achieve higher speed and efficiency 
in cruising, MPF forms offer better maneuverability [11]. As 
85% of fish families are estimated to use BCF propulsion [3], 
it is unsurprising that BCF has served as the major design 
template in fish-inspired robots. This template of fish 
swimming is primarily composed of a smooth, elongated 
body with caudal fin attached posteriorly, while fins along 
the body such as pectoral fins and dorsal fins can be 
considered as secondary features. Even within this 
parsimonious design template, there exist substantial 
variations such as caudal fin shape and stiffness, body 
slenderness, stiffness, mass distribution, and the number of 
actuation (or effective links). When coupled with various 
fluid mechanisms for hydrodynamic force generation via 
large possible swimming gaits, these design variations render 
the robot-fluid interaction problem challenging to solve or be 
included in the design process.  

Fish or fish-inspired swimming are often studied using 
both experiments with biological [12], [13] or robotic fish 
[14], [15], or using computational simulations [16]-[18]. 
Experiments with robotic fish can directly reveal the 
swimming performance with the actual physics of robot-fluid 
interaction. However, these experimental setups are costly in 
prototyping with significant and frequent changes in 
mechanical design for systematic exploration in the design 
space. Computational Fluid Dynamic (CFD) simulation can 
solve Navier-Stokes equations based on known swimming 
kinematics and sometimes the entire fluid-structure 
interaction in simplified form. However, despite its high 
accuracy, CFD is computationally costly for systematic 
exploration of design space as well. Therefore, to 
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Fig. 2. Design and modeling of μBot. (a) Top view of μBot with 4 
actuators. The interior actuator design of the 3rd segment (actuator) is 
shown. (b) Details of actuator design showing the permanent magnets 
and coil. (c) Added-Mass Volume (AMV) and reactive forces of one 
segment. x and y are segmental normal and longitudinal unit vectors. 
(d) Scheme for the external forces and torques applied along the Bot  
(e) Examples of external forces and torques vectors with notations.  

systematically investigate how the variations within the fish-
inspired design template affects the swimming gaits and 
performance, building an accurate and computationally 
efficient mathematical model for swimming is the most 
feasible approach.  

The most widely used method for modeling fish 
swimming is based on the large amplitude elongated body 
theory (LAEBT) [19] developed by Lighthill. In the LAEBT, 
3D problem is simplified as a 2D problem with potential flow, 
and reactive force is calculated based on the fluid in a control 
volume attached to the fish. Compared to the CFD solution, 
LAEBT predictions often have acceptable accuracy with 
significantly lower computational cost. In recent decades, 
there are also several attempts to improve the Lighthill fish 
swimming model and adapt it to a mobile multilink system 
[20].  

In this work, we aimed to systematically explore the 
relationship among robot design properties, fluid dynamics, 
swimming gaits, and swimming performance in fish-inspired 
swimming. We first developed models and a simulation 
platform of a Magnetic, Modular, Undulatory Robot platform 
(μBot) [21], which represents a robot template for fish-
inspired swimming. We created a total of 36 simulation cases 
with distinct model parameters, namely number of actuators 
(NoA), body stiffness, and hydrodynamic parameters. We 
optimized the swimming gaits to maximize the swimming 
speed and analyzed the thrust generation mechanism. The 
rest of this paper is organized as follows. In section II, the 
design, mathematical modeling, simulation, and method of 
gait optimization of µBot are described. Section III presents 
the results from simulations. Discussions and future work are 
presented in section IV. 

II. MATERIALS AND METHODS 

In this section, the design, mathematical modeling, 
simulation setup, and method of gait optimizations of µBot 
are described. In addition, the control parameters that 
determine the physics of swimming are derived.  

A. Robot design and actuator model 

The design of µBot was described in our previous work 
[21], and the details relevant to modeling and simulation are 
provided here. The µBot is composed of a head segment, 
multiple body segments, a peduncle segment, and a caudal 
fin (Fig. 2a). A body segment has an elliptical transverse 
plane with a nominal depth of 13.7 mm and width of 7 mm, 
and a rectangular sagittal plane with nominal aspect ratio of 2 
(i.e., a nominal length of 27.4 mm). The caudal fin is 
mounted on the peduncle segment via a torsion spring and 
modeled as a rigid plate with the same body depth and a 
thickness of 0.97mm. µBot is assumed to have a uniform 
density of 1.0kg/m3 with neutral buoyancy in the simulation. 
Except for the last joint (peduncle-caudal fin), all other joints 
are actuated by a magnetic actuator with a parallel torsion 
spring. 

Each magnetic actuator (Fig. 2b) has a coil mounted on a 
rotating arm (coil clamp) around a pivot joint, while the coil 
is placed in between two permanent magnets pointed closely 
to each other with identical polarity (therefore opposing each 
other). With voltage applied, the coil generates lateral forces, 

which in turn creates actuation torque via the rotating arm 
that rotates the subsequent segment and reversing the voltage 
simply reverses the torque.  

To simulate torque from the actuator, a mathematical 
model was developed by calculating the magnetic field of the 
permanent magnets [23] and the coil. This model was 
calibrated by the torque measured experimentally at zero 
rotation. The model showed that both the actuator torque 
constant (𝑘୘) and back EMF constant (𝑘୉୑୊) remained nearly 
constant across the usable range of coil rotation. Therefore, 
the actuator was modeled simply as,  


𝑇 =

ாି௞ు౉ూ ∙ ఠౠ౥౟౤౪

ோ
∙ 𝑘୘, (1)

where T is torque generated by the actuator, E is the applied 
voltage, 𝜔௝௢௜௡௧ is joint’s angular velocity, R is the resistivity 
of coil, torque constant is chosen as 1.26 Nmm/A, and back 
EMF constant is chosen as 1.26 mV ∙ s.  

B. Modeling of hydrodynamic forces  

To simulate the swimming of µBot, a model of 
hydrodynamic force was developed based on the reactive 
theory [19] and the resistive theory [22], following the 
approach used by Mathieu et al. [20] with minor revisions. 
Since µBot was neutrally buoyant, only horizontal planar 
motion and relevant forces and torques were considered.  

We attached a mobile frame (𝑂௝ , 𝑥௝ , 𝑦௝ , 𝑧௝) to the segment 
j. The unit vector 𝑥௝ is along segment longitudinal direction, 
𝑦௝  is along segment lateral direction, and 𝑧௝  is along the 
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vertical direction. For any physical variable modeled as 
vectors, the lower index presents the body index (to which it 
is related). Tensor related to a body is always expressed in 
the mobile frame of this body.  

B1. Reactive force model 
Applying Lighthill’s theory with potential flow 

assumption, we first defined a control volume attached to 
each segment, termed as added-mass volume (AMV). Each 
AMV has two boundaries 𝛱଴ and 𝛱௟ , which are infinite 
planes fixed at the anterior and posterior side of each segment, 
respectively (Fig. 2c). The total segmental reactive force was 
modeled with two components: 1) added-mass force (𝒇௔ௗௗ) 
due to the rate of change of fluid momentum within AMV, 
and 2) the pressure force -𝒇௣௥௘

ି
, 𝒇௣௥௘

ା  acting on the boundaries 
of AMV. For a given robot segment j (Fig. 2c), the total 
reactive wrench 𝑭௥௘௔௖௧,௝ , exerted by the fluid within AMV, 
can be written as  

𝑭௥௘௔௖௧,௝ = ൫𝒇௥௘௔௖௧,௝
் , 𝒄௥௘௔௖௧,௝

் ൯
்

. (2)

Here𝑭௥௘௔௖௧,௝ in 𝑅଺is wrench and includes both force (𝒇୰ୣୟୡ୲,௝
் ) 

and torque (𝒄୰ୣୟୡ୲,௝
் ) components (about each joint) and is 

expressed in the mobile frame of jth segment. Applying 
Newton’s laws and Euler’s theory to the fluids in AMV, it 
can be shown that,  

𝒇୰ୣୟୡ୲,௝ =
ௗ

ௗ௧
∫ 𝑷௝(𝑋)𝑑𝑥௝

௟ೕ

଴
+ 𝒇௣௥௘

ି − 𝒇௣௥௘
ା , (3)

𝒄୰ୣୟୡ୲,௝ = −
ௗ

ௗ௧
∫ 𝚺௝𝑑𝑥௝

௟ೕ

଴
, (4)

where 𝑷௝(𝑋)  and 𝜮𝒋(X) are fluid’s linear momentum and 
angular momentum of fluid contained in slice Π௝(𝑋) . In 
Lighthill’s original theory, fluid outside AMV was assumed 
to have no velocity, so that 𝒇୮୰ୣ,௝ can be calculated simply 
with the velocity of fluid within boundaries (Π௝(0), Π௝(𝑙௝)) 
via unsteady Bernoulli’s principle. However, this 
assumption was biased as fluid outside boundaries still has 
velocity, and pressure force was over-estimated. In this work, 
we introduced the correction coefficient 𝐶௣  for pressure 
force. Thus, the pressure forces take the form:  

𝒇୮୰ୣ,௝ = 𝐶௣ ∙ 𝐾𝐸௝(𝑋)𝑥௝ , (5)

where 𝐾𝐸௝(𝑋) denotes the kinetic energy of fluid in Π௝(𝑋). 
Evaluating (3) to (5), segmental reactive force becomes,  

𝑭react,௝ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑚ഥ 𝑗𝑙𝑗𝜔𝑗𝑣௝ +

ଵ

ଶ
𝑚ഥ 𝑗𝑙𝑗

ଶ𝜔𝑗
ଶ + 𝐶௣ ∙

ଵ

ଶ
𝑚ഥ 𝑗൫𝑣௝

ଶ − 𝑣ᇱ
௝
ଶ

൯

−𝑚ഥ 𝑗𝑙𝑗𝑎௝ −
1

2
𝑚ഥ 𝑗𝑙𝑗

2𝜔̇𝑗

0
0

0

− ቂ
1

2
𝑚ഥ 𝑗𝑙𝑗

2 ൫𝑎௝ − 𝜔𝑗𝑢𝑗൯ +
1

3
𝑚ഥ 𝑗𝑙𝑗

3𝜔̇𝑗 + 𝑚ഥ 𝑗𝑙𝑗𝑢𝑗𝑣
′
௝ቃ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (6)

where 𝑚ഥ௝  is cross-sectional added mass, 𝑙௝  is the segment 
length, 𝜔௝  is the angular velocity, 𝑢௝ , 𝑣௝  are the linear 
velocity of Π௝(0)  projected onto 𝑥௝ , 𝑦௝ ,  𝑎௝  is linear 
acceleration of Π௝(0)  projected onto  𝑦௝ , and 𝑣′௝  is linear 
velocity of boundary 𝛱௝൫𝑙௝൯ projected on 𝑦௝ . According to 
Lighthill [24], 𝑚ഥ  is defined as  

𝑚ഥ 𝑗 = 𝐶௔ ∙
ଵ

ସ
𝜋ℎ𝑗

ଶ𝜌௙ , (7)

where ℎ௝ is the segment depth, 𝜌௙ is the fluid density, and 𝐶௔ 
is the coefficient of added mass. 

B2. Resistive force model 
Based on Taylor’s theory [22], resistive force 𝑭୰ୣୱ୧ୱ 

takes the form of lateral drag force and longitudinal friction 
force, 

𝑭୰ୣୱ୧ୱ,௝  = −
ଵ

ଶ
𝜌௙

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐶௙ ∙ 𝑃𝑗 ∙ 𝑙𝑗 ∙ ห𝑢𝑗ห𝑢𝑗

𝐶ௗℎ𝑗 ∫ ห𝑣௫,௝ห𝑣௫,௝𝑑𝑥𝑗
௟𝑗

଴

0
0
0

𝐶ௗℎ𝑗 ∫ ห𝑣௫,௝ห𝑣௫,௝ ∙ 𝑥𝑑𝑥𝑗
௟

଴ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (8)

where 𝑃௝  is segment perimeter, 𝐶௙ , 𝐶ௗ  are friction and drag 
coefficients that are Reynolds-number dependent, 𝑢௝  is 
segment’s longitudinal velocity and 𝑣௫,௝ is the lateral velocity 
of the slice of fluid at longitudinal coordinate x.  

C. Dimensionless parameters (control parameters) of 
swimming and robot-fluid interaction  

Fish swimming involves complex interactions between 
the fish’s body and the surrounding fluids, posing an inherent 
fluid-structure interaction (FSI) problem. Here, we derive 
several dimensionless parameters that effectively “control” 
the nature of this interaction in addition to the gait parameters 
(which are optimized). Dimensionless variables (unit 𝑥ො, time 
𝑡̂, longitudinal velocity 𝑢ො , lateral velocity 𝑣ො, angular velocity 
𝜔ෝ, and angular acceleration 𝛽መ) were defined as,  

𝑥ො𝑗 =
𝑥

௟𝑗

,   𝑡̂ = 𝑓𝑡, 𝑢ො =
௨

௎
, 𝑣ො =

௩

௙஺̅
, 𝜔ෝ =

ఠ

௙ 
, 𝛽መ =

ఠ̇

௙మ , (9)

where 𝑓, 𝑈, 𝐴̅ denote the undulatory frequency, the average 
cruising speed and segment’s average lateral displacement, 
and all three parameters are updated during the optimization. 
The dimensionless model of hydrodynamic force is,  

⎣
⎢
⎢
⎢
⎡ 𝒇౨౛౗ౙ౪

ഏ
ర

ഐ೑೗మ೓మ೑మ
        

𝒄౨౛౗ౙ౪
ഏ
ర

ഐ೑೗య೓మ೑మ⎦
⎥
⎥
⎥
⎤

= 𝐶௔ ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

஺̅

௟
𝜔ෝ𝑣ො +

ଵ

ଶ
𝜔ෝଶ + 𝐶௣ ቀ

஺̅

௟
𝑣ො𝜔ෝ −

ଵ

ଶ
𝜔ෝଶቁ 

−
஺̅

௟
𝑎ො −

ଵ

ଶ
𝛽መ

0
0
0

ଵ

ଶ

஺̅

௟
𝑎ො −

ଵ

ଶ

௎

௟௙
𝑢ො𝜔ෝ +

ଵ

ଷ
𝛽መ +

௎

௟௙

஺̅

௟
𝑢ො𝑣ො ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (10) 

⎣
⎢
⎢
⎢
⎢
⎡ 𝒇౨౛౩౟౩

ഏ
ర

ഐ೑೗మ೓మ೑మ
        

𝒄౨౛౩౟౩
ഏ
ర

ഐ೑೗య೓మ೑మ⎦
⎥
⎥
⎥
⎥
⎤

= −
ଶ

గ
∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶௙ ∙ 𝐴𝑅 ∙ ቀ

௎

௟௙
ቁ

ଶ
|𝑢ො|𝑢ො 

𝐶ௗ ∙ 𝐴𝑅 ∙ ቀ
஺̅

௟
ቁ

ଶ

∫ ห𝑉෠ห𝑉෠𝑑𝑥ො
ଵ

଴
 

0
0
0

𝐶ௗ ∙ 𝐴𝑅 ∙ ቀ
஺̅

௟
ቁ

ଶ

∫ ห𝑉෠ห𝑉෠𝑥ො𝑑𝑥ො
ଵ

଴ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (11) 

where 𝑉෠ = 𝑣ො +
௟

஺̅
𝑥ො𝜔ෝ  and 𝐴𝑅 =

௟

௛
 is body segmental aspect 

ratio. 
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TABLE I.  SETTING OF CONTROL PARAMETERS 

Control 
Parameters 

Values of Control Parameters 

Number of 
actuators 

NoA 
2 4 6 

Normalized 
Stiffness 𝐾෡, 
(Nmm/rad) 

High 
1.00

16
 

Medium 
0.75

16
 

Low 
0.50

16
 

Hydrodynamic 
Model 

HM-1 
𝐶௔ = 0 
𝐶௣ = 0  

HM-2 
𝐶௔ = 1 
𝐶௣ = 0  

HM-3 
𝐶௔ = 1 

𝐶௣ = 0.5 

HM-4 
𝐶௔ = 1 
𝐶௣ = 1  

 

 
Fig. 3. Schematics of the simulation platform.  

From the dimensionless model, we identified two types of 
dimensionless parameters: 1) those that need to be defined a 
priori before starting simulation and optimization, such as 
𝐴𝑅, 𝐶௔, 𝐶௣, 𝐶௙ , 𝐶ௗ, which are the ‘control parameters’ of the 
swimming physics, and 2) those that will be obtained after 

gait optimization, such as 
஺̅

௟
,

௎

௟௙
.  

 To investigate the effects of hydrodynamic parameters, 
which change with the Reynolds number, we created four 
hydrodynamic models (Hydro Model or HM) with different 
combinations of 𝐶௣  and 𝐶௔  (Table 1). Hydro Model-1 
represents a model in which Bot only experiences resistive 
force from fluid due to boundary layer effects (or circulatory-
based frictional and drag forces). Hydro Model-2 represents a 
model containing resistive force and part of the reactive force 
with 𝐶௣ = 0. In this model, we assume there is no difference 
in fluid velocity between both sides of boundaries of AMV. 
Therefore, pressure force 𝒇௣௥௘

ି
 and 𝒇௣௥௘

ା  are zero. Hydro 
Model-3 denotes a model containing all resistive force and 
reactive force components with 𝐶௣ = 0.5 . Hydro Model-4 
denotes a classical hydro-dynamic model containing all 
resistive force and reactive force components with 𝐶௣ = 1. 
From Hydro Model-2 to Hydro Model-4, we gradually 
increase the coefficient of pressure force to explore how it 
affects robot swimming. 

The effects of two body design parameters were 
investigated: 1) the number of actuators (NoA) or the number 
of body segments, as the Bot is a multilink robot, and 2) 
torsion spring stiffness (𝐾௜). For an N-segment Bot model, 
𝐾௝ can be written as,  

𝐾௝  = ൜
𝐴𝑅ସ ∙ 𝐾෡                        𝑖 = 1,2, . . , 𝑁 − 2

𝐴𝑅ସ ∙ 5𝐾෡                      𝑖 = 𝑁 − 1             
, (12)

where 𝐾௜ is the stiffness for torsional spring in ith joint and 𝐾෡ 
is the normalized spring stiffness. With a normalized spring 
stiffness 𝐾෡, the effects of spring and AR can be isolated. The 
caudal fin joint stiffness is 5 times of the rest joint stiffness to 
match the actual robot design.  

In total, 𝐴𝑅, ൫𝐶௙ , 𝐶ௗ൯, 𝐻𝑀, 𝐾෡  and NoA are five key 
dimensionless parameters, or Control Parameters (CPs). In 
this study, we investigated the effects these CPs (except the 
𝐾෡) by creating a total of 36 simulations cases according to 
Table 1.  

D. Gait Optimization 

With the determined set of CPs, we optimized the Bot’s 
actuator voltage signals to identify the swimming gaits that 
maximize the forward swimming speed for each simulation 
case. In this work, we generated the voltage signal 𝐸௝(𝑡) sent 
to jth actuator according to, 

𝐸௝(𝑡) = ൝
𝑒௝ sin(2𝜋𝑓௜௡𝑡),            𝑗 = 1

𝑒௝ sin ቀ2𝜋൫𝑓௜௡𝑡 + 𝛹௝൯ቁ , 𝑗 = 2 … 𝑁𝑜𝐴
 , (13)

where 𝑒௝  is voltage amplitude, 𝛹௝  is the initial phase of 
voltage, and 𝑓௜௡ is the frequency of input signal. Given this 
definition, the optimization parameter vector 𝜸 , which 
governs voltage signal, can be constructed as, 

𝜸 = [𝑒ଵ, Ψଶ, 𝑒ଶ … Ψே௢஺, 𝑒ே௢஺, 𝑓௜௡]. (14) 

In this work, a policy gradient-based reinforcement 
learning (RL) method, i.e., EM-based Policy Hyper 
Parameter Exploration (EPHE) [25], was used to optimize 
the swimming gaits of swimming. In EPHE, policy 
parameters 𝜸  is sampled from probability distribution 
𝑝(𝜸|𝜼, 𝝈ଶ) , where 𝜼, 𝝈  are the hyperparameter vectors 
composed of mean value and standard deviation of the 
probability distribution. To obtain a good sampling 
performance, only the policy parameters from the best N 
rollouts (trajectories with highest N rewards) in total M 
rollouts are taken for updates. Hyperparameters are updated 
as, 

𝜼 =
∑ ൣ𝑹൫𝜸೔൯ 𝜸೔൧ಿ

೔సభ

∑ 𝑹൫𝜸೔൯ಿ
೔సభ

, (15) 

𝝈 = ඨ
∑ ቂ𝑹൫𝜸೔൯ ൫𝜸೔ି𝜼൯

మ
ቃಿ

೔సభ

∑ 𝑹൫𝜸೔൯ಿ
೔సభ

, (16)

where 𝑹(𝜸௜) is the reward of the ith rollout.  

Empirically, Bot took less than 2 seconds for acceleration 
and got into a steady swimming phase. Therefore, we set 
Bot to swimming for 6 seconds and used the average speed 
within the last 2 seconds as the reward of learning. 
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Fig. 5. Wavelength of optimized gaits remained approximately constant 
in 36 cases. (a) shows the wavelengths of optimized gait for all 36 cases 
with scales on the left. (b) shows the wave per segment of optimized gait 
for all 36 cases with scales on the right. 

 
Fig. 6. Average hydrodynamic thrust over an undulatory period and 
torques applied at tail in all cases. On x axis, ‘1’, ‘2’, ‘3’, ‘4’ denote 
Hydro Model-1, Hydro Model-2, Hydro Model-3, Hydro Model-4 and 
‘H’, ‘M’, ‘L’ denotes high stiffness, medium stiffness, and low stiffness. 
(a)(b)(c) shows total thrust generated from different type of force with 2 
actuators, 4 actuators and 6 actuators. (d)(e)(f) shows torque applied tail 
with 2 actuators, 4 actuators and 6 actuators. (g) scheme of primary 
source of thrust and friction during steady state swimming. 

 
Fig. 4. Optimized forward speed of all 36 cases. ‘H’, ‘M’ and ‘L’ denote 
high stiffness, medium stiffness, and low stiffness. (a) shows the 
absolute optimized forward speed for all 36 cases. (b) shows the 
optimized forward speed in body-length per second (BL/s). 

E. Robot Simulation Setup  

Next, the above hydrodynamic models and EPHE 
algorithm were used to create a simulation platform, which 
was composed of three parts: Gazebo and Open Dynamic 
Engine (ODE), training script, and Robot Operating System 
(ROS).  

In this paper, the combination of Gazebo and ODE was 
used as a robot simulator while a hydrodynamic plugin and 
an actuator plugin were implemented in it. At a given 
timestep tk, ODE calculated hydrodynamic force ( 𝐹௥௘௔௖௧ , 
𝐹௥௘௦௜௦ ) based on kinematic variables from tk-1, generated 
excitation torque based on 𝐸௝(𝑡௞), and handled motion of 
equation for ot by simulating rigid body dynamics. The 
training script contained learning algorithm and generated 
voltage signals for actuators. To integrate the training script 
into the Gazebo and ODE simulator, we used ROS for action 
controlling and data passing. During the simulation, training 
script used EPHE to sample policy parameters, generated 
voltage signals, and sent signals to Gazebo via ROS nodes 
and services. Then, Gazebo calculated robot dynamics and 
recorded robot gait information. Once one simulation rollout 
was done, Gazebo sent the reward to training scrip via ROS 
nodes and services (Fig. 3). 

III. RESULTS 

In the current work, we investigated the effects of NoA, 
hydrodynamic coefficients of reactive force (four 
combinations of 𝐶௔  and 𝐶௣), and stiffness 𝐾෡. The remaining 

control parameters were fixed as 𝐴𝑅=2, 𝐶௙ =0.06, and 
𝐶ௗ=2.25. To optimize the forward swimming, we performed 
50 rollouts in each episode and picked the 25 best performing 
rollouts to update the actuation policy. In each training 
session, we have updated the policy 40 times.  For each 
simulation case, we repeated the training sessions 3 times 
with random initial conditions. The repeated training sessions 
gave similar final reward values (forward speeds) with 
negligible differences. In each simulation case, with the 
optimized voltage signal, an undulatory gait in the form of a 
backward traveling wave emerges from the fluid-structure 
interaction.  

A. Effects of number of actuators (NoA)  

With a higher NoA, the optimized forward speed 
increases with NoA (Fig. 4a), however, the forward speed per 
body-length decreases, suggesting the gain of forward speed 
from adding more actuators or body segments diminishes. 
This trend is independent of the hydrodynamic models (with 
different combinations (𝐶௔, 𝐶௣)) or spring stiffness of 𝐾෡.  

Fig. 5 shows the dependence of optimized gait 
wavelength on NoA. The wavelengths remain approximately 
constant at 12 cm regardless of the robot length and the 
averages of wave per body segment remain approximately 
0.25, i.e., a full wave spans 4 body segments. Unlike 
observations in biological fish, which show a positive 
correlation between wavelength and body length [26], our 
results indicate that the wavelength of optimized swimming 
in μBots is only weakly correlated to the selected control 
parameters, NoA, hydrodynamic parameters, and body 
stiffness.  
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Fig. 7. Distribution of thrust from resistive drag force along Bots for all 
36 cases and red boxes and arrows shows big difference at tail among 
different Hydro Models. Four different hydrodynamic models are 
distinguished by shapes: triangles for Hydro Model-1 cases, squares for 
Hydro Model-2 cases, hollow circles for Hydro Model-3 cases and filled 
circles for Hydro Model-4 cases.  Columns from left to right denote 
thrust distribution with 6 actuators, 4 actuators, and 2 actuators. Rows 
from top to bottom show thrust distribution with high stiffness, medium 
stiffness and low stiffness. In each plot, x axis denotes different 
segments, while ‘H’, ‘B’, ‘P’ and ‘T’ denote head segment, body 
segment, peduncle segment and tail segment, respectively. 

 
Fig. 8. Distribution of torque due to different hydrodynamic mechanisms 
along body. From (a) to (l), columns from left to right denotes torque 
distribution with 6 actuators, 4 actuators, and 2 actuators. Rows from top 
to bottom shows torque distribution under different hydrodynamic 
models. (m) Schemes that shows torques applied at each segment. 

B. Effects of hydrodynamic parameters  

Fig. 6 shows the average hydrodynamic thrusts over an 
undulatory period (summing across all segments) and torques 
applied on the caudal fin in all cases. From Fig. 6a to Fig. 6c, 
resistive friction force is the dominant force resisting the 
motion along the swimming direction. In steady state 
swimming, the resistive friction force is balanced by resistive 
drag force in HM-1, by resistive drag force (primary) and 
added-mass force (secondary) in HM-2, and by caudal-fin 
pressure forces (primary), resistive drag and added-mass 
forces (both secondary) in HM-3 and HM-4. Note that the 
pressure force, being the dominant mechanism for thrust 
generation, is mainly from the caudal fin, indicating the 
importance of caudal-fin design and dynamics in thrust 
generation and swimming speed [27].  

Fig.7a to Fig.7i further shows the distribution of thrust 
from resistive drag force along the body segments of Bots. 
Unlike the pressure force, the drag force from body segments 
contribute to the thrust generation and has a minor difference 
under different Hydro Model, while the caudal-fin drag force 
has dramatically difference under different Hydro Model and 
has negligible contribution to thrust in all cases except for the 
case with HM-1 (shown in Fig 7 with red boxes and arrows). 

While added-mass forces do not contribute significantly to 
thrust generation, the added-mass torque, on the other hand, 
dominates the caudal fin dynamics (Fig. 6d to Fig. 6f). It can 
be seen that added-mass torque has a similar magnitude to 
spring torque, indicating a balance in a near resonant state 
(except the low spring stiffness cases). Results show that 
Bot, under hydrodynamic model with added-mass forces 
(HM-2, HM-3, HM-4) and without added-mass forces (HM-
1), has categorically different caudal-fin kinematics, which 
lead to different thrust generation mechanisms. Therefore, 

added-mass force indirectly affects the thrust generation and 
swimming speed via the caudal fin dynamics.  

In addition, Fig. 8a to Fig.8l show that the actuation torque, 
fluid added-mass torque, and spring torque have comparable 
magnitudes at the robot body.  In contrast, the contributions 
from the resistive drag force are again negligible. The results 
indicate that the robot gait, including both body and caudal-
fin gaits, are dominated by the interaction between the robot 
dynamics and the reactive hydrodynamic forces.  

IV. DISCUSSIONS AND FUTURE WORK 

In summary, our results show that increasing NoA (i.e., 
increasing robot length and the number of actuators) 
increases the optimized forward swimming speed, however, 
with a diminishing gain, as the forward speed per body length 
decreases. Note that among all the 36 cases, the Bot with 
NoA = 6, Hydro Model-4 model, and highest stiffness has the 
fastest forward speed of 13.3cm/s or 0.60BL/s, and the Bot 
with NoA = 2, Hydro Model-2 model, and high stiffness has 
the lowest forward speed of 4.32cm/s or 0.37BL/s. 

Interestingly, via examining the contributions of different 
hydrodynamic mechanisms, we found fundamentally 
different roles of fluid added-mass towards thrust generation 
and gait generation: the added-mass force had a negligible 
contribution to the thrust generation, while added-mass 
torque dominates the gait generation in both caudal-fin and 
body segments, together with spring torque and actuator 
torque. The resistive drag force, on the other hand, has 
negligible contribution towards the gait generation, however, 
it contributes to the thrust mainly from the body segments.   
These understandings will be crucial for understanding the 
experimental data of Bot, including performing [21] robot 
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system identification and possible model-based 
reinforcement learning in the future. 

Finally, note that the current analysis does not fully 
explore the specific effects of body and caudal fin stiffness 
𝐾෡, because only three sample values were used. Although 
the optimized swimming speed seems to only depend 
weakly on the stiffness, the swimming gait and efficiency 
could have greater dependence. In future work, we plan to 
perform a more comprehensive study on the effects of body 
and caudal-fin spring stiffness. Furthermore, in this work, 
we only examined the effects of three control parameters out 
of the five derived (see in II.C). In future work, we will 
continue to explore the effects of these control parameters 
and investigate the relationship among body morphologies, 
fluid dynamics, swimming gaits, and swimming 
performance in fish-inspired swimming. In addition, we also 
plan to perform system identifications (e.g., identifying the 
hydrodynamic parameters) using experimental data of Bots. 
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