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Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-
resolution and high-precision materials characterization at multiple length scales, including the characteriza-
tion of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of
live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach
currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam
sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while
limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general
method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity.
The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then
demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be
used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while

retaining the fine features of 4D-STEM imaging, for crystalline samples.

1. Introduction

Scanning transmission electron microscopy (STEM) is a powerful
tool for materials characterization. By scanning a focused electron probe
across a sample region and collecting scattered electrons using a de-
tector, a real-space image is formed in various forms of contrast, from
atomic resolution Z-contrast to annular bright-field imaging of light
atoms to differential phase contrast [1,2]. However, only a part of the
scattered electrons is collected, and the electron momentum is not
resolved, or only partially resolved. Most of diffraction information
about the material is thus lost in STEM imaging. The emerging 4D-STEM
collects electron diffraction patterns at each probe position using a
pixelated detector. This technique combines the advantages of electron
diffraction with STEM imaging, which is becoming more and more
popular due to the advent of new detector technologies [3-6]. Studies
have shown that a number of materials structural properties can be
mapped by 4D-STEM, including but not limited to strain mapping [7-91,
orientation mapping [10-12], and atomic arrangements using atomic
resolution ptychography [13,14].

However, current 4D-STEM analysis is constrained by several fac-
tors. The first is the amount of beam dwell time to record a diffraction

pattern, which is milliseconds or more with the current generation of
direct electron detectors [3,4,6]. The dwell time could be even longer
using cameras with a large pixel format and a limited data readout rate.
Typically, the amount of electron dose on the sample in a 4D-STEM
experiment can be orders larger compared with conventional STEM.
Second, for a fixed pixel resolution, the size of 4D-STEM datasets is
proportional to the scan size, which determines the field of view, and
thus the areas that can be analyzed by 4D-STEM is practically limited by
the data size, in addition to long acquisition times. These limits must be
overcome to improve the throughput of 4D-STEM analysis and to extend
4D-STEM applications to a broad range of materials, especially, to
samples susceptible to beam damage.

The current implementation of 4D-STEM samples the real and
reciprocal space uniformly using the STEM raster scan and a pixelated
area detector. The amount of sampling follows the Nyquist sampling
theorem at a rate that is twice the Nyquist frequency or higher. This
sampling strategy ignores spatial correlations at different sample loca-
tions and spectral correlations among diffraction patterns. It creates
massive amounts of data that are only to be used partially for image
formation. This process is thus extremely inefficient and wasteful in the
use of microscopy and data-storage resources and the electron dose.
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Compressive sensing [15-26] offers an alternative sampling strategy
against the traditional Nyquist sampling. This strategy has attracted
large interest in the electron microscopy community for overcoming
electron dose limitations in the STEM spectroscopy analysis lately [16,
27,19,28]. The general idea is that signals obtained from samples are
often sparse and its representation as a high-dimensional vector could be
described by a small number of basis signal vectors (or endmembers).
When the measurements taken are spread out across different sparse
components of the signal, the sampling rate at much lower than the
Nyquist sampling limit can be sufficient for recovering the original
signal [22,29]. Applications have demonstrated that compressive
sensing could greatly reduce the amount of the electron dose and
acquisition time for STEM imaging and spectroscopy mapping. For
example, Andrew et al. developed a compressive sensing method based
on the beta-process factor-analysis and applied it on the beam sensitive
ZSM-5 zeolite sample [18]. Their results showed that with only 10 % of
sampling, most of the information regarding the atomic columns and
varying contrast in the ZSM-5 zeolite was retained in the reconstructed
STEM images. Compressive sensing has also been explored for STEM
tomography to reduce the number of sampling points and thus lowering
the tilt-series acquisition time. A strategy for acquiring and restoring the
sub-sampled STEM tomography datasets with large tilt steps and
partially scanned STEM images was demonstrated by Saghi et al. [26].
For electron spectroscopy, Monier et al. reconstructed randomly
sampled EELS maps by regularizing spatial smoothness and enforcing
spectral sparsity by hard-thresholded principal component analysis
[27]. An EELS spectra map of biological tissue was obtained with the
method. Recently, the combination of compressive sensing and
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4D-STEM has been explored, particularly in the context of ptychog-
raphy. Robinson et al. applied Beta Process Factor Analysis to a
4D-STEM dataset, automatically learning a dictionary in which virtual
images are sparse [30]. Moshtaghpour et al. utilized LO-regularization to
reduce the number of sampling points for ptychography reconstructions,
demonstrating that even with 4 % or lower subsampling, high-quality
object phase and amplitude images can be obtained [31].

An added bonus of compressive sensing is dataset compression,
which is naturally made. With fast detectors and opportunities for
acquiring datasets from large field of view, a 4D-STEM experiment en-
tails large volumes of data. The storage of these large datasets is prob-
lematic, especially when multiple analyzes are made. This emerging
data issue has been discussed under the context of direct electron de-
tectors and cryogenic electron microscopy [32], but has yet to be
addressed regarding 4D-STEM. In compressive sensing, data can be
decomposed into a small set of endmembers and their coefficients. The
sizes of these two matrices can be significantly smaller than the original
dataset, and thus greatly reduce the amount of stored data. To find the
base vectors and their coefficients, a decompression algorithm is
needed. This problem is the same as the reconstruction used in hyper-
spectral compressive imaging, for which different algorithms have been
proposed [33-37].

In this paper, we introduce a dual-space (real and reciprocal spaces)
compressive sensing (DSCS) scheme for 4D-STEM and demonstrate its
use in compressive sensing for data collection and data compression of
4D-STEM datasets. The data collected by 4D-STEM is similar to hyper-
spectral imaging in remote sensing, in the sense that both form a stack of
images using the spectral signals of specific wavelength as in
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Fig. 1. (a) 4D-STEM CS and reconstruction algorithm based on SSCR-SU. The number of endmembers p is first estimated from Ype. (the STEM images) stack using
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Fig. 2. STEM images created with virtual detectors. (a—e) virtual bright-field and dark-field images created from the original 4D-STEM dataset. The positions of
source/drain (S/D), nanowire channel (NW), and Si subfin (Si) is labeled in (a). (f-j) virtual dark field images created from the reconstructed 4D-STEM dataset. The
size of the detectors used for (a-j) corresponds to camera length of 4300 mm. (k, 1) SSIM and PSNR map between the original dataset and the reconstructed dataset.
The value of each point represents the similarity metrics value between the original (left) and reconstructed (right) diffraction pattern. (m,n) diffraction patterns
extracted from original and reconstructed datasets. The spatial positions of these diffraction patterns are marked as yellow and blue dot in (k,l), respectively. (o)
Change of average similarity metrics with respect to number of iterations of joint optimization.

hyperspectral images and of electron momentum in 4D-STEM. On the
terminology, we use spectral interchangeably for diffraction space in
line with the conventions in the signal processing community. The
spatial-spectral compressed reconstruction based on the spectral
unmixing (SSCR-SU) algorithm proposed by Wang et al. [33] for remote
sensing is adapted and developed for 4D-STEM. This algorithm uses
linear mixing model to decomposes hyperspectral images into the end-
member and abundance matrices, whose sizes are much smaller than
that of the original data and reconstruction from these can be done
efficiently. The hyperspectral images are sampled both spectrally and
spatially. The joint endmember extraction and abundance estimation
problem is solved iteratively to obtain a reconstructed hyperspectral
image. Applications to synthetic and real hyperspectral data have
demonstrated that the algorithm is effective in obtaining the endmem-
ber and abundance information, and the performance is superior to
other state-of-art algorithms in term of the accuracy of reconstructed
hyperspectral images, as well as the computational efficiency. The DSCS
method introduced here follows the concepts of SSCR-SU by taking
STEM images and diffraction patterns on the designed spectral and
spatial sampling or measurement matrices and uses them as inputs to
reconstruct the full 4D-STEM dataset.

For the measurement matrices, we explored two sampling schemes.
Real-space random scan based on Bernoulli sampling is used to obtain a
set of diffraction patterns in both schemes. In the spectral (diffraction)
space, one scheme uses images formed using segmented STEM detectors,
and the other scheme uses random detector pixels for imaging. The
diffraction patterns and images are collected separately. The use of
segmented STEM detectors simplifies the DSCS implementation since it
only requires a STEM capable of random scan. Once the DSCS datasets
are acquired, endmembers are extracted from the collected diffraction
patterns, while the abundance of each endmember is estimated from the
recorded STEM images. We then combine the endmembers and their

abundance to reconstruct the full 4D-STEM data. We compare the
reconstruction results using the structural similarity index (SSIM) and
peak signal to noise ratio (PSNR). The effectiveness of the DSCS and
SSCR-SU algorithms in the endmember and abundance estimations, and
the accuracy of reconstructed 4D-STEM datasets, are demonstrated
using strain mapping as an application test.

2. DSCS and reconstruction

A critical assumption for compressive sensing is that the data is
sparse. For a 4D-STEM experiment, sparsity means that each diffraction
pattern or virtual images can be separated into several “endmembers”,
each endmember has the same dimension as the original diffraction
patterns or virtual images [30]. Importantly, the number of endmembers
is much smaller than the number of pixels in a diffraction pattern. That
is, diffraction patterns can be described with only a handful of param-
eters and a set of endmembers. Also, we assume that diffraction patterns
are spatially correlated so that these endmembers are shared between
diffraction patterns within the field of view. Another assumption is that
diffraction patterns can be represented as linear combinations of end-
members. The coefficients of linear combinations can be mapped in
real-space and hereinafter referred as the abundance matrix S. The
4D-STEM dataset can be considered as the matrix multiplication of

X=5A (€8]

Where X € RV*L is the full 4D-STEM dataset, A € RP*" is the endmember
matrix and S € RV is the abundance matrix. N = Wepa -hepa is the
number of pixels in the field of view, L = Wyec-hgec is the number of
pixels per diffraction pattern and p is the number of endmembers.

We found the SSCR-SU algorithm developed by Wang et al. [33] can
be adapted for 4D-STEM. SSCR-SU combines spectral sampling with
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spatial sampling for compressive sensing. The concept of exploiting
spatial or spectral correlation for compressive sensing is well-established
in the remote sensing community [35,38,39]. The algorithm developed
by Wang et al. [33] incorporates both spectral and spatial sampling. Our
work demonstrates that this algorithm can be effectively extended to
4D-STEM with superior performances.

In our implementation of DSCS, spectral sampling is achieved by
STEM imaging where diffraction intensity serves as the spectral signal
using either STEM area detectors or randomly selected pixels in a 2D
pixelated detector, which we call STEM spectral sampling and random
spectral sampling respectively. The SSCR-SU reconstruction algorithm
(Fig. 1) retrieves information from spatial sampling (real space) and
spectral sampling (diffraction space). The rationale behind spectral
sampling is to furnish the algorithm with supplementary information for
efficiently estimating an initial reconstruction. Spectral sampling can
also be leveraged as constraints, providing comprehensive real-space
information. The reconstruction takes four inputs: 1) diffraction pat-
terns of each sampled position (Y, € R™<*L), 2) a stack of STEM images
acquired with different STEM detector configurations and different
camera lengths (Ygpe € RV*"™=), 3) the sampling positions
(Pgpq € R"2*N)and 4) the regions on the diffraction pattern which are
spectrally sampled (@, € R™»=*L) Here, Ngq and ng,. are the number
of samples in real space and spectral space. The 3D data stacks are all
vectorized into 2D data matrices as shown in Fig 1(b). The relationships
between these inputs are

Yoa = PypaX @
and
Yipee = XD, (€))

Where X is the full 4D-STEM dataset. ®,is an identity matrix of size
N for a raster scan when all pixels are probed. In DSCS, we randomly
select ng,, sampling points with ng,<N, through Bernoulli sampling,
which is equivalent to randomly select n,,, rows from the identity matrix
of size N to form ®g, The random sampling in principle can be
employed for spectral sampling as well, which works in the case of 4D-
STEM data compression. The experimental implementation of random
spectral sampling, however, requires the design of detectors capable of
random pixel readout, which can be developed in future. DSCS can also
be implemented using the available STEM detectors, for example, using
a bright-field and 4 segmented annular dark-field STEM detectors
(Fig. 2).

The reconstruction algorithm first estimates the number of end-
members (p) in the stack of STEM images using the HySime algorithm
[40], as shown in Fig. 1. HySime, which was developed by Bioucas-Dias
et al. is an algorithm designed for determining the number of end-
members in hyperspectral images. This is achieved by estimating the
signal and noise correlation matrices, which are used to define an error
function, comprised of the power of the signal projection error and the
power of the noise projected to the endmember subspace. The number of
endmembers is determined by identifying the minimum of this error
function, which balances the fidelity of subspace projection and the
noise introduced in the projection. The stack of input STEM images
contains information about the real-space distribution of the sampled
spectral signals. It can be considered as a spectrally compressed
4D-STEM dataset, and thus it serves as a surrogate for the full 4D-STEM
dataset. After obtaining p, we perform vertex component analysis [41]

-0
to estimate the initial endmember matrix A from the sampled diffrac-

~0
tion patterns. Next, a first estimation of the abundance matrix S is
obtained by multiplying the stack of STEM images with the pseudo in-
verse of the spectrally sampled endmember matrix.

§' = (A'er,) | (A'eL,) (3'0))'| ) “)
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with the initial estimation of the full 4D-STEM dataset given by

~0  ~0~0

X =S5A 5)

This estimation is further improved by updating S* and A* through
the optimization of

A" = argmin[ £ — ST+ 4 Yy - @87 ©)
and

Sk= arsgmin||)? o SAMS + Aol Yoo — SAk‘DZ,W ||§ )
where

X" = stak ®)

and k denotes the number of iterations and || - ||» denotes the Frobenius
norm of the matrix. S and A are optimized alternatively in an iterative
loop. 41 and A, are weighting parameters for the spatial and spectral
constraints. The above step is called “joint optimization”. The optimi-
zation ends when a certain value or the relative change is smaller than a
preset criterion. The relative change is defined as

~k ~k—1
X -x 1,

— ()]
X,

relative change =

For the reconstruction performance evaluation, we use Peak signal to
noise ratio [42] :

-~ max(7)

PSNR(I, 1) = —=20log,y | +——=— (10)
sl =11,

A higher PSNR value suggests the mean squared error is smaller,
relative to the max intensity in the true image. Another performance
index is the structural similarity index, which is defined by [43]

(245 + C1) (205 + C2)

SSIM(1,T) =
@D (ui +p3 + C)(of + 0] + C2)

a1

where y; is the average of i, o is the covariance of I and 1,¢, = (0.01L)°

and C, = (0.03L)?, L is the dynamic range of the pixel value. The range
of SSIM is -1 to 1, and higher SSIM means higher similarity between two
images. Detail discussion of these metrics can be found in references [42,
43]

The DSCS algorithm described here is implemented in Python. All
reconstructions and testing are done on a personal computer with an
Intel i7-12700 CPU and 32 GB of RAM.

3. Results and discussions
3.1. Creation of sub-sampled 4D-STEM dataset

We use a 4D-STEM dataset collected using raster scan from a nano-
wire transistor to test our DSCS framework. The TEM sample was lift-out
by focused-ion beam from a p-MOSFET device manufactured by Inter-
university Microelectronics Centre (IMEC). The sample is oriented near
the [110] zone axis with a thickness around 40-50 nm. The selected FOV
contains a nanowire FET, including two nanowire channels, the
epitaxial SiGe stressor and Si substrate body. The nanowire channel is
covered with gate materials. (Fig. 2).

The 4D-STEM dataset tested here was acquired with EMPAD [3] on a
Talos F200X S/TEM (Thermo-Fisher Scientific, USA, operated at 200
kV). We operated the microscope under the microprobe mode to form a
probe of 0.6 mrad semi-convergence angle and diameter 2.2 nm in
full-width half-maximum. The exposure time was 1 ms for each
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Fig. 3. Effects of spatial and spectral sampling on reconstruction performance. (a) influence of spatial sampling rate. Using (b) virtual STEM detector and (c) 10 %
randomly selected pixels for sampling in diffraction space and the influence of number of virtual images.

diffraction pattern. The diffraction patterns were taken near the [110]
zone axis, and the camera length was adjusted so only {002} and {111}
diffraction disks were included in the recorded diffraction patterns.

We synthesized a subset of the full 4D-STEM dataset (Xyy,) to test the
DSCS reconstruction algorithm. The full 4D-STEM dataset has 200 by
100 pixels in the FOV, and each diffraction pattern contains 124 by 124
pixels. The X, was sampled with a spatial sample rate of 5 %. Virtual
bright-field and dark-field images of the dataset were created by
mimicking the standard STEM detectors with one for bright-field and
four segmented annular dark-field detectors. Each virtual detector is
scaled to three different sizes, corresponding to the camera length of
2850, 3400 and 4300 mm, respectively. With these detector and camera
settings, different parts of the diffraction pattern are sampled, forming
15 virtual STEM images. Examples of virtual STEM images formed with
different detector configurations are shown in Fig. 2(a)-(e). The
diffraction contrast carried by virtual STEM images is encoded into the
reconstruction dataset.

3.2. Reconstruction of the sub-sampled 4D-STEM dataset

The SSCR-RU reconstruction was performed using the synthesized

dataset Xy, producing a reconstructed 4D-STEM dataset )A(syn. Joint
optimization was stopped when the relative change of Eq. 9 reached 1e-
7 with 4; and A, set to 1 throughout this paper. The virtual STEM images
formed using the reconstructed dataset as shown in Fig. 2(f)-(j) are
visually identical to the original virtual STEM images [Fig. 2(a)-(e)].
The SSIMs of the two sets of images are all close to one. The lower PSNR
and SSIM values for the pairs (b)(g) and (e)(j) result from the fact that
the virtual detectors for these pairs didn’t cover any Bragg peaks,
leading to a significantly lower signal-to-noise ratio. Virtual STEM im-
ages dominated by more noise would naturally exhibit lower PSNR
values since the reconstruction cannot accurately reproduce the noise.
Fig. 2(k) and (1) map out the SSIM and PSNR value for each diffraction

pattern in )A(syn, when compared with their counterpart in X, . The
quality of the reconstructed diffraction pattern is demonstrated using

two pairs of diffraction patterns from )A(Syn and X, respectively [Fig. 2
(m), (n)]. The diffraction patterns taken away from the interface show
very high similarity [Fig. 2(m)], with the intensity variations among the
diffraction disks reproduced in high fidelity. The reconstructed diffrac-
tion patterns also appear smoother because of the denoising effect
during the process of endmember extraction. In comparison, the
reconstructed diffraction patterns closer to the interface of Si and SiO,
[marked with a yellow dot in Fig. 2(k) and (1)], have obvious artifacts.
We also noticed dark contrast around the interfaces between crystalline
Si and amorphous SiO, and the black circular contrast in the crystalline
Si region. Those contrasts are almost invisible in the virtual STEM im-
ages [(Fig. 2(a)-(e)], but very evident in the metrics maps. These cir-
cular regions are where electron beam was temporarily parked and were
slightly contaminated. This introduces diffuse scattering in diffraction

patterns, which aren’t completely captured by the reconstruction
algorithm.

We note that stopping criterion for joint optimization can influence
the performance of the reconstruction algorithm. This dependence is
measured using the relative change (Eq. 9) average SSIM and average
PSNR for each iteration [Fig. 2(o0)]. The reconstruction converges
monotonically. The average SSIM and PSNR also increase, and they
converge at ~80 iterations. The relative change negatively correlated
with average SSIM and PSNR, indicating that relative change is a
reasonable index for monitoring the optimization process. The criterion
for stopping can be established as the point of convergence of relative
change. Since the process of joint optimization is deterministic, the point
of convergence can be determined by examining the relative change
curve of a longer run. Here, the stopping criterion was set at relative
change is equal to 1e-7, where both SSIM and PSNR are converged.

3.3. More than 1000-fold reduction in data size

The abundance matrix and endmember matrix are saved after
reconstruction. For the 4D-STEM data described in Section 3.1 with
Wgpq = 200 and hg, = 100 in real space and diffraction patterns of
124x124 pixels (Wgpee = hgec = 124), the dimension of abundance
matrix and endmember matrix are 20,000 by 6 and 6 by 15,376 (N = 20,
000, p =6 and L =15,376). Comparing with the full dataset, which is a
matrix of 20,000 by 15,376, there is a 1400-fold reduction in the volume
of data. This data reduction is very attractive as an efficient means for
storing and transferring 4D-STEM dataset.

3.4. Influence of the spatial sampling rate

To examine the sampling rate effect, we created additional 10 sub-
sampled datasets with increasing sampling rates. Fig. 3 plots the aver-
aged SSIM and PSNR between the reconstructed and original DPs in the
4D-STEM dataset. There is a large improvement in reconstruction at the
5 percent sampling rate. This minimum sampling rate is likely to be
dependent on the complexity of the sample. For the nanowire device
sample tested in this paper, the diffraction pattern stack is mainly
composed of Si (110) zone axis pattern, so they are relatively uniform
despite the presence of strain. For samples with multiple grains or
phases, higher spatial sampling rate may be required.

3.5. Influence of spectral sampling

A benchmark for spectral sampling configurations is shown in Fig. 3
(b). The virtual images, up to 50 of them, were created using different
STEM detector configurations and the camera lengths range from 2850
to 4300 mm. We evenly subdivided this range by the number of virtual
images. At each camera length, we create 5 different virtual images. The
improvements in the average SSIM and PSNR slow down after more than
15 virtual images.
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Fig. 4. strain analysis of datasets reconstructed with different spectral sampling method. (a) original dataset (c) STEM spectral sampling with 300 virtual images (e)
random spectral sampling with 300 virtual images. (b), (d), and (f) are the line-profiles indicated in (a), (c) and (e). Unit for the x-axis in the line-profiles is

in nanometer.

Alternatively, a very large number of virtual images can be created if
random detector pixels are selected for spectral sampling. Each detector
pixel creates a unique virtual image. We have also tested this spectral
sampling scheme using our 4D-STEM test dataset. The virtual detectors
are made of 10 percent of the total pixels in the diffraction pattern,
which are randomly selected. To create multiple virtual images, pixels in
diffraction pattern are randomly selected from the diffraction pattern
multiple times. Fig. 3(c) shows that after having 30 or more detector
configurations, random spectral sampling outperforms STEM spectral
sampling.

To further explore the effect of spectral sampling, we mapped the
strain along the (220) direction from the original and the reconstructed
4D-STEM datasets and compared the two spectral sampling methods
with 300 virtual images in both cases. Strain analysis with 4D-STEM
involves measuring the positions of Bragg diffraction disks from a
local crystal volume. By fitting the disk positions, we can determine the
reciprocal lattice vectors. Subsequently, strain can be calculated from
these reciprocal lattice vectors. We adopt the approach outlined by Yuan
et al. for performing the strain analysis [9]. Fig. 4 shows the results.
Since strain analysis using 4D-STEM relies on accurately measuring the
distances between diffraction disks, it provides a sensitive test of the
diffraction pattern quality.

Fig. 4 shows while the strain maps obtained from the reconstructions
using two different spectral sampling methods are similar and compa-
rable to the strain map obtained from original 4D-STEM dataset, how-
ever, it is evident that random spectral sampling gives better results. By
comparing the line profile of the strain map shown in Fig. 4(b), (d), and
(f), we reached the same conclusion that random spectral sampling can
reproduce the original result minus the difference that is comparable to
noise fluctuation in original result.

The outperformance with random sampling suggests that the sensing
basis created by random spectral sampling is more effective in covering

different spectral features in a 4D-STEM dataset. Additionally, with its
pixel-wise spectral resolution, compared to the use of STEM area de-
tectors with fixed shapes and reduced spectral resolution. The major
benefit of using STEM detectors is that it can be implemented within the
scheme of current hardware setups and detector designs.

Random spectral sampling can also be used for the compression of
4D-STEM datasets. For the example using 300 virtual images sampling
formed by randomly selected detector pixels, the reconstructed 4D-
STEM dataset was decomposed into two matrices S € RV® and A €
RP*L where N = 20,000, p = 83 and L = 15,376, giving rise to a 100-
fold smaller data volume. To implement such scheme, new detector
technology with fast random readout is required to provide the capa-
bility of randomly sampling in diffraction space with scanning speed
close to conventional STEM imaging.

The above performances were demonstrated for nanodiffraction with
a small beam convergence angle. For a highly converged beam, as used
in ptychography, the diffraction patterns contain complex features from
the interference of transmitted and diffracted beams that vary with
probe position. Nonetheless, common features and periodic repeats are
expected and thus the assumption of sparsity still applies. It is
conceivable that the DSCS algorithm would still be effective for pty-
chography. A potential benefit from using the proposed algorithm is to
reduce the noise using the spectrally-unmixed endmembers, which can
be integrated into ptychography reconstruction. The periodicity of the
sample may influence the performance of the proposed method. For
instance, samples with a large spatial period, such as twisted 2D mate-
rials, might not perform as well as single crystal samples.

3.6. DSCS implementation in a STEM

To explore experimental feasibility of DSCS, we implemented it on a
Themis Z S/TEM (Thermo Fisher Scientific, USA, probe corrected and
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Fig. 5. Dual space compressive sensing applied for data acquisition in A STEM and comparison with the full 4D-STEM data acquired using EMPAD. The DSCS dataset
was acquired using random scan and STEM images formed using segmented detectors. (a) shows an example diffraction pattern in the reconstructed 4D-STEM dataset
using DSCS. Virtual dark-field images created with the yellow (top) and red (bottom) virtual detectors from (b,d) full 4D-STEM dataset and (c,e) DSCS recon-

structed dataset.

operated at 300 kV) equipped with a Gatan Image Filter and an EMPAD
detector at University of Illinois. The microscope was operated in STEM
mode and the diffraction patterns were collected with the CCD mounted
behind the Gatan Image Filter. First, a region of interest is selected for
imaging, which is then scanned using the Bernoulli sampling discussed
in Section 2 by modifying the scanning electron nanodiffraction setup
described by Kim et al. [44]. A matrix, sized to match the region of in-
terest, is created before scanning, and it is randomly initialized with
values between 0 and 1. If a value is smaller than the sampling rate, the
corresponding pixel will be sampled. At each sampling point, the
diffraction pattern and the sampling coordinates are recorded and
saved. The control of beam movement and the synchronization of
camera and scanning was achieved by DigitalMicrograph scripting. A
dataset with 5 % random spatial sampling was acquired with the custom
script. Diffraction space sampling was done by taking STEM images
using segmented detectors with camera lengths of 910 mm and 1150
mm to sample different parts of the diffraction pattern. The sampled
diffraction patterns and STEM images were used to obtain a recon-
structed 4D-STEM dataset. At the same region of interest, we also ac-
quired a full 4D-STEM dataset using EMPAD for comparison.

Fig. 5 shows a set of virtual dark-field images generated from the
reconstructed dataset and the full 4D-STEM dataset. Promisingly, the
diffraction contrast is mostly reproduced. The small discrepancies in the
images likely due to the experimental factors, such as the difference in
the cameras’ readout speeds, and the sample drift during diffraction
pattern collection, which makes the spatial registration difficult. This
further influence the registration between diffraction patterns and STEM
images in DSCS. Additionally, the STEM detectors and CCD cameras
have different response to electrons, correlating intensities from these
two sources may also introduce noise and error. Lastly, when acquiring
STEM images, the position of the diffraction pattern on the plane of
STEM detectors was manually aligned so the spectral measurement
matrix is estimated rather than precisely determined as in the synthetic
compressive sensing dataset. Consequently, we are limited to providing
qualitative results at this stage. These difficulties can be overcome by
using the same detector for spatial and spectral sampling.

4. Conclusions

We have introduced an approach for 4D-STEM compressive sensing
and data compression based on sub-sampling in both real and diffraction
spaces [45]. The dual space compressive sensing scheme exploits the
sparsity of diffraction data. We show that a full 4D-STEM dataset can be
recreated from partially sampled 4D-STEM data. Using testing data
created from 4D-STEM dataset We show that a factor of 100 data

reduction can be achieved in 4D-STEM data compression with good
quality. The results also show that high-fidelity reconstruction is ach-
ieved with only 5 % of spatial sampling based on the measurement of the
structural similarity index and peak signal to noise ratio between the
original and reconstructed diffraction patterns. High fidelity of recon-
structed diffraction patterns is demonstrated with strain analysis, which
are sensitive small changes in diffracted beam positions. An initial
attempt to implement compressive sensing 4D-STEM experimentally
shows promising results. With developments in new detector and scan
technologies, the dual space compressive sensing scheme can be fully
implemented. The adaptation of compressive sensing in 4D-STEM will
reduce the number of scanning points significantly so that the electron
dose is greatly reduced. Applications previously hindered by the high
dose and long acquisition time, such as the analysis of beam sensitive
materials will become possible with the presented method.
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