
MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 1

Data Fusion and Pattern Classification in Dynamical
Systems via Symbolic Time Series Analysis

Xiangyi Chen and Asok Ray, Fellow ASME

Abstract—Symbolic time series analysis (STSA) plays an im-
portant role in the investigation of continuously evolving dynam-
ical systems, where the capability to interpret the joint effects of
multiple sensor signals is essential for adequate representation
of the embedded knowledge. This technical brief develops and
validates, by simulation, an STSA-based algorithm to make
timely decisions on dynamical systems for information fusion and
pattern classification from ensembles of multi-sensor time series
data. In this context, one of the most commonly used methods
has been neural networks (NN) in their various configurations;
however, these NN-based methods may require large-volume data
and prolonged computational time for training. An alternative
feasible method is the STSA-based probabilistic finite state
automata (PFSA), which has been shown in recent literature to
require significantly less training data and to be much faster than
NN for training and, to some extent, for testing. This technical
brief reports a modification of the current PFSA methods to
accommodate (possibly heterogeneous and not necessarily tightly
synchronized) multi-sensor data fusion and (supervised learning-
based) pattern classification in real time. Efficacy of the proposed
method is demonstrated by fusion of time series of position and
velocity sensor data, generated from a simulation model of the
forced Duffing equation.

Index Terms—Probabilistic Finite State Automata; Anomaly
& Fault Detection; Forced Duffing equation.

I. INTRODUCTION

Recently data-driven pattern classification by time series
analysis has been extensively reported in open literature, for
which several standard methods of machine learning (ML)
are available (e.g., see [1] and references therein). Neural
networks (NN) in their various configurations [2]–[4] have
apparently become one of the most popular methods for time-
series-based pattern classification. However, many of these
NN techniques may not be suitable for real-time detection
& classification in evolving dynamical systems, because the
training time could be too large for such applications, or
because the available training data might not be adequate.
In this context, Bhattacharya and Ray [5] have reported
the classification of different regimes in models of chaotic
dynamical systems as well as in real-life chaotic systems (e.g.,
combustion processes), based on time-series analysis of single-
sensor data. This classification tool needs to be extended for

Xiangyi Chen was with the Department of Nuclear Engineering, Pennsylva-
nia State University, University Park, PA 16802, USA and is currently with the
Department of Automation and Electrical Engineering, Zhejiang University of
Science and Technology, Hangzhou, China (e-mail: xchen909@outlook.com).

Asok Ray is with the Department of Mechanical Engineering and the
Department of Mathematics, Pennsylvania State University, University Park,
PA 16802, USA (e-mail: axr2@psu.edu).

the usage of multi-sensor data to (possibly) achieve better
classification performance; however, multiple (i.e., two or
more) sensors may require generation of joint probability
density functions, which is often computationally expensive
for real-time applications even if only two sensors are used.

Copula [6], [7] is one such method that is capable of
generating (multivariate) joint probability density functions by
combining the marginal densities of individual sensors with a
postulated kernel function. In this context, Iyengar et al. [8]
reported copula-based fusion of audio and video signals to
obtain the joint density for anomaly detection in a binary
classification problem. Another alternative feasible approach
to data fusion is mutual information-based [9] treatment of
multiple-sensor time series, which also requires computation
of joint probability density functions. To this end, Sarkar
et al. [10] reported anomaly detection in a swirl-stabilized
combustor by making use of the mutual information be-
tween pressure and temperature signals, where the concept
of symbolic time series (STSA) was applied for analyzing the
probabilistic finite state automata (PFSA) [11], [12].

This technical brief proposes a real-time analytical method
for sensor data fusion as well as the associated problem of (su-
pervised learning-based) pattern classification from ensembles
of (possibly heterogeneous and not necessarily tightly synchro-
nized) multi-sensor time series data. The proposed method,
which does not require the computation of joint probability
density functions, is an extension of the single-sensor STSA-
based PFSA algorithm of Bhattacharya and Ray [5] for real-
time execution. The underlying algorithm has been validated
by simulation on a model of the forced Duffing equation [13].

II. PROBABILISTIC FINITE STATE AUTOMATA

This section introduces the basic concepts of probabilistic
finite state automata (PFSA) [11], [12] in the setting of
symbolic time series analysis (STSA) [14], [15].

A. Background and Mathematical Theory
For PFSA-based signal analysis, the ensemble of observed

time-series data from a homogeneous (i.e., statistically sta-
tionary) Markov chain are partitioned into a finite number of
cells. Then, the time series is symbolized, where a symbol
represents the cell in which the signal data-point lies. This
process converts the (continuous-valued) time series into a
string of symbols, where each symbol in the string belongs
to a (finite-cardinality) alphabet1 [16], [17]. The final step

1The cardinality of a (necessarily finite) alphabet of symbols is equal to the
number of cells used for quantization of signal data points. In other words,
each cell in the partition uniquely represents a symbol.

MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 2

in this process is the construction of probabilistic finite state
automata (PFSA). The following definitions [5], [11], [12] are
introduced here for completeness of this technical brief.

Definition 1. A finite state automaton (FSA) G, having a
deterministic algebraic structure, is a triple (A, Q, δ) where:

• A is a (nonempty) finite alphabet, i.e., its cardinality |A|
is a positive integer.

• Q is a (nonempty) finite set of states, i.e., its cardinality
|Q| is a positive integer..

• δ : Q×A → Q is a deterministic state transition map.

Definition 2. A symbol block, also called a word, is a finite-
length string of symbols belonging to the alphabet A, where
the length of a word w ≜ s1s2 · · · sℓ with every si ∈ A is
|w| = ℓ, and the length of the empty word ϵ is |ϵ| = 0. The
parameters of an FSA are extended as:

• The set of all words, constructed from the symbols in A
and including the empty word ϵ, is denoted as A⋆.

• The set of all words, whose suffix (respectively, prefix) is
the word w, is denoted as A⋆w (respectively, wA⋆).

• The set of all words of (finite) length ℓ, where ℓ is a
positive integer, is denoted as Aℓ.

Definition 3. A probabilistic finite state automaton (PFSA) J
is a pair (G, π), where:

• The (deterministic) finite state automaton (FSA) G is
called the underlying FSA of the PFSA J.

• The probability map π : Q × A → [0, 1] is called
the morph function (also known as symbol genera-
tion probability function) that satisfies the condition:∑

s∈A π(q, s) = 1 for each q ∈ Q. The map π can
be represented by a |Q| × |A| stochastic matrix Π (i.e.,
each element of Π is non-negative and each row sum of
Π is unity [18], [19]). In that case, the PFSA can be
represented as a quadruple J = (A, Q, δ,Π).

• The state transition probability function τ : Q × Q →
[0, 1] is constructed by combining the map δ and the
matrix Π, which can be structured as a |Q| × |Q| state
transition probability matrix T . In that case, the PFSA
can also be described as the triple J = (A, Q, T).

• The sum-normalized left-eigenvector of such an ergodic2

matrix T , corresponding to the (unique) eigenvalue 1, is
the (positive) state probability vector, p, of the PFSA. This
is guaranteed by stochasticity and ergodicity [18] of T .

Prior to partitioning, the ensemble of time series for each
sensor is normalized to have zero mean and unity variance to
remove any bias from the signal and to ensure that a fixed set
of partition boundaries can be used across the complete range
of time-series data for training [5]. A fixed partitioning ensures
that there is no need to recompute the partitioning boundaries
at every step, which is important for real-time applications.
This procedure also allows different PFSAs to be compared,
which is essential for dynamically representing the evolving
physical process for real-time pattern classification.

2A homogeneous finite-state Markov chain is called ergodic if each state of
the chain can move to any state of the chain, including itself, in finitely many
transitions. In other words, its state transition probability matrix is ergodic if
and only if (qi → qj ⇔ qj → qi ∀i, j in finitely many transitions) [18].

B. D-Markov Machines

The PFSA structure of a D-Markov machine generates
symbol strings {s1s2 · · · sℓ : ℓ ∈ N and sj ∈ A} based on
the underlying homogeneous Markov chain. The construction
of a D-Markov machine assumes that generation of the next
symbol depends only on a finite history of the last D or less
consecutive symbols, i.e., the (most recent) symbol block of
length not exceeding D. A D-Markov machine is defined as:

Definition 4. A D-Markov machine [11], [12] is a PFSA
in the sense of Definition 3 and it generates symbols that
solely depend on the (most recent) history of at most D
consecutive symbols, where the positive integer D is called
the depth of the machine. Equivalently, a D-Markov machine
is a statistically stationary Markov chain S = · · · s−1s0s1 · · · ,
where the probability of occurrence of a new symbol depends
only on the last consecutive (at most) D symbols, i.e.,

P [sn | · · · sn−D · · · sn−1] = P [sn | sn−D · · · sn−1]

Consequently, for w ∈ AD (see Definition 2), the equivalence
class A⋆w of all (finite-length) words, whose suffix is w, is
qualified to be a D-Markov state that can be denoted as w.

A numerical procedure to generate the morph matrix Π from
a finite-length symbol string follows [11].

Given a fixed alphabet size |A| and depth D of a D-Markov
machine, the maximum possible number of states is |A|D. For
a (finite-length) symbol string S, the occurrence of each state
is sequentially counted and let Nij denote the number of times
the symbol sj ∈ A is emitted from the state qi ∈ Q. Thus,

Πij = π(qi, sj) ≜
1 +Nij

|A|+
∑

ℓ Niℓ
(1)

The rationale for initializing the count of each element to
1 in Eq. (1) is that if no event is generated at a state q ∈ Q,
then there should be no preference to any particular symbol
and it is logical to have π(q, s) = 1/|A| ∀s ∈ A, i.e., the
uniform distribution of event generation at the state q. The
above procedure guarantees that the PFSA, constructed from
a (finite-length) symbol string, must have a clearly defined
morph matrix Π and the associated state transition probability
matrix T ; both of these matrices must be (element-wise)
strictly positive. The ergodicity and stochasticity [18], [19]
of both Π and T are guaranteed by this construction.

Remark 5. If the depth of the D-Markov machine is unity
(i.e., D = 1), then the state set Q and symbol alphabet A
become equivalent (e.g,, |Q| = |A|); therefore, the morph
matrix Π and the state transition probability matrix T become
indistinguishable if D = 1.

III. DEVELOPMENT OF THE UNDERLYING ALGORITHMS

This section develops the algorithms of data fusion and
pattern classification from ensembles of time series data,
generated from multiple (possibly heterogeneous and not nec-
essarily tightly synchronized) sensors. Let there be m (≥ 2)
sensors that generate the above ensembles of time series of
vector data {xj

k}, where the superscript j ∈ {1, · · · ,m} points
to the specific sensor in the array, and the subscript k ∈ N

MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 3

indicates the (possibly slightly approximate) time instants at
which the data are collected.

The individual PFSAs are now constructed for each of the
m sensors from the respective (normalized) time series {xj

k}
with (possibly different) partitioning schemes for individual
sensors. In this technical brief, the maximum entropy parti-
tioning (MEP) (or possibly uniform partitioning (UP) [16])
has been used for symbolization of time series. Consequently,
since there are no iterative loops in the PFSA algorithms,
the execution of both training and classification (or testing)
algorithms should be reasonably fast for real-time applications.

Two constraints are imposed for the PFSA construction
from the time series of each of the m sensor data sets: (i)
identical alphabet size |A| > m and (ii) depth D = 1.
While the first constraint assures dimensional compatibility of
the matrices and vectors among different classes, the second
constraint reduces computational complexity of the underly-
ing algorithms for real-time applications. The following two
problems are presented below in the PFSA framework.

Problem 1: Fusion of the information extracted from the
data set of m (≥ 2) sensors, or a selected subset of this set,
without the need of computing their joint probability density
functions (e.g., from individual marginal density functions).

Problem 2: Real-time (supervised learning-based) pattern
classification of test data by using the knowledge base of train-
ing data, generated from the aforesaid m sensors, into exactly
one of the following C classes: c ∈ C ≜ {0, 1, · · · , (C − 1)},
where the class c = 0 is the nominal class, and any individual
anomaly is designated by a specific class, c > 0.

To address the above two problems, algorithms are built
upon the concept of orthogonal projection of the emerging
real-time information from the test data onto the null-space of
the matrix formed by stacking the (1× |A|) state probability
vectors generated from the ensemble of training data by using
all of the m sensor data. This action results in the construction
of an (m×|A|) matrix, for each of the C classes, i.e., for each
c ∈ C, in the training phase. It is noted that, in this technical
brief, these matrices have been obtained by simulation of
individual sensor time series for all c ∈ C classes. The key
idea is succinctly presented below as:

From the (training) time series of each pattern class,
a hyperplane is constructed in the feature space. The
feature vector, generated from the sensor time series
of test data to be classified, is projected onto each
hyperplane for thresholdless classification [20].

The above concept is elaborated below.

Training phase: In this technical brief, the training phase is
conducted based on the (simulated) sensor time series for each
class c ∈ C. The training algorithm is built upon an ensemble
of (normalized) time series from each of the C classes, based
on the user-specified parameters, such as alphabet size |A| >
m, and depth D = 1. The morph matrix for each class c ∈ C
is computed as Πtrn−c, for c = 0, · · · , (C−1); in this setting,
the individual projection matrix for each class is obtained from
the respective morph matrices as explained below.

From the PFSAs, belonging to each of the m sensors, the
m state probability vectors are constructed, each of which is

a (1× |A|) vector. These vectors are stacked together to form
an (m × |A|) matrix Htrn−c of rank m, corresponding to
each class c ∈ C, as explained later in Remark 6. Then, the
(|A| × |A|) orthogonal projection matrix onto the null space
of Htrn−c is constructed for each class c ∈ C as:

Ptrn−c ≜ I|A|×|A| −HT
trn−c

[
Htrn−cH

T
trn−c

]−1

Htrn−c (2)

Classification (or test) phase: In the classification phase, the
task is to identify, in real time, the unknown class c ∈ C
to which the vector time series under test is expected to
belong. The test time-series is symbolized by using the same
partitioning technique and the same parameters (e.g., the same
|A| > m and D = 1) as in the training phase. Accordingly, the
resulting morph matrix Πj

tst and the corresponding (m×|A|)
test matrix Htst, constructed from the m sum-normalized state
probability vectors pjtst, j = 1, · · · ,m, of the m sensors, are
generated by following the same procedure as in the training
phase. Now the (m×|A|) matrix Htst is projected onto the null
space of Htrn−c for each class c ∈ C resulting in C different
(m×|A|) projected matrices HtstPtrn−c (see Eq. (2)) for each
c ∈ {0, 1, · · · , (C − 1)}. A class c⋆ that yields the smallest
norm of the (m× |A|) matrix HtstPtrn−c⋆ is identified to be
the class to which the test data are expected to belong, i.e.,

Identified Class c⋆ = argmin
c∈{0,1,··· , (C−1)}

||HtstPtrn−c|| (3)

where the norm, used in Eq. (3) is the induced 2-norm (i.e.,
the norm ∥ X ∥≜ square root of the maximum singular value
of XTX): however, the type of the norm is not critical here
because of the norm equivalence in finite-dimensional vector
spaces. It is also noted that the above decision-making in
Eq. (3) is thresholdless [20].

Remark 6. The (1 × |A|) state probability vector, pjtrn−c, is
associated with the respective sensor j in each class c ∈ C.
Even if the maximum entropy partitioning (MEP) [16] is used
for all of the m sensor time series, the generated set of m
row vectors pjtrn−c’s in Htrn−c should be mutually linearly
independent (i.e., the (m × m) matrix Htrn−cH

T
trn−c being

invertible) for each c ∈ C, because of the following reasons:

• The partitioning is done with a modestly large ensemble
of training data belonging to all C different classes.

• The individual pjtrn−c’s are generated for each class c ∈
C from smaller segments of training data, which are also
contaminated with unavoidable sensor noise [15].

However, as a very rare event, if the above assertion is not
true (e.g., the inversion of the (m×m) matrix Htrn−cH

T
trn−c

causes a numerical problem), then either an alternative data
partitioning tool could be used to make the rank of Htrn−c =
m, or the classes should be redefined in the training phase.

IV. VALIDATION ON A CHAOTIC SIMULATION MODEL

The process model in this simulation task is developed
on a second-order forced Duffing equation [12], [13], which
represents the non-autonomous dynamics of a mass-spring-
damper system, equipped with a nonlinear spring having a

MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 4

cubic stiffness coefficient, under a harmonic excitation, with
initial conditions y(0) = 0 and ẏ(0) = 0, as described below:

ÿ(t) + β ẏ(t) + α1 y(t) + α3 (y(t))3 = A cos(Ωt) (4)

where the unit of time is second (abbreviated as ‘s’ in the
sequel), y is the position, ẏ is the velocity, ÿ is the acceleration,
and Ω is the angular frequency (in radians/s) of the input
excitation; and the parameters α1 = 1.0, α3 = 1.0, A = 22.0,
and Ω = 5.0 are held fixed for all simulation runs, and the
dissipation parameter β has different constant values in the
range of 0.10 to 0.35 at an increment of 0.05 for individual
simulation runs, similar to what was done in [12].

The second-order non-autonomous state-space model is
constructed with the phase variables xt

1 ≜ y(t) and xt
2 ≜ ẏ(t).

In the simulation runs, the fourth-order Runge-Kutta method
of numerical integration [21] has been used with a (fixed)
step size of 1 ms (i.e., 0.001 s). The measurement model
consists of two sensors that provide the measurements of
(noise-contaminated) time series data for y and ẏ, respectively.
In order to emulate a real-life physical environment, two kinds
of noise are injected into the dynamical system model [22] as
described below.

• Additive process noise: Stationary white Gaussian noise
wt ≜ ApN(0, 1), to emulate the effects of uncertainties
due to unmodeled dynamics, where N(0, 1) represents
zero-mean unit variance Gaussian noise, and the param-
eter Ap in the process noise model is kept constant for
individual simulation runs.

• Multiplicative sensor noise: Stationary white Gaussian
noise vt1 ≜ AmN(0, 1) and stationary white Gaussian
noise vt2 ≜ AmN(0, 1) have been generated from dif-
ferent seed numbers of a random number generator to
emulate the effects of (statistically independent) mea-
surement uncertainties in the position and velocity sen-
sors, respectively. Usually instrumentation manufacturers’
specifications guarantee not to exceed a specified fraction,
Am, of the average measured value within a given statis-
tical confidence. The parameter Am in both sensor noise
models is kept constant for individual simulation runs.

Process Model (injected with additive noise):

ẋt
1 = xt

2 (5)

ẋt
2 = −α1x

t
1 − α3(x

t
1)

3 − βxt
2 +A cos(Ωt) + wt (6)

Measurement Model (injected with multiplicative noise):

zt1 = xt
1(1 + vt1) = xt

1 + xt
1 vt1 (7)

zt2 = xt
2(1 + vt2) = xt

2 + xt
2 vt2 (8)

The injected process noise and sensor noise make the
model of system dynamics behave as a random process,
which is represented by the (stochastic) forced Duffing system
in Eqs. (5) to (8). Simulated time series plots of y have
been displayed in a previous publication [12] for the same
model parameters including different constant values of the
dissipation parameter β. Since these plots have similar trends
as the current simulation plots, they are not presented in this
technical brief. However, Figure 1 displays a family of phase
plots for the six different values of β in the absence and
presence of both process noise and sensor noise.

Fig. 1. Phase-space trajectories for the forced Duffing equation with β =
0.10, 0.15, 0.20, 0.25, 0.30, and 0.35;α1 = 1.0;α3 = 1.0;Ω = 5.0; and
A = 22.0. The smooth trajectories (in red) are without any noise (i.e., Ap = 0
and Am = 0); the wrinkled trajectories (in blue) are with additive process
noise wt ≜ ApN(0, 1), where Ap = 0.20, and multiplicative sensor noise
vt1 ≜ Amxt

1N(0, 1) and vt2 ≜ Amxt
2N(0, 1), where Am = 0.05.

V. RESULTS OF ALGORITHM VALIDATION BY SIMULATION

To validate the results of the data fusion and (supervised
learning-based) pattern classification algorithm, six pattern
classes (i.e., C = 6) are defined in the training phase cor-
responding to six different values of the dissipation parameter
β = 0.1, 0.15, 0.20, 0.25, 0.3, and 0.35 in the model of the
forced Duffing system in Eqs. (5) to (8). All simulated data
are down-sampled to have a fixed interval of 0.1 s in the time
series to be analyzed, where each sample of the time-series
data contains such 500 data points, implying that the time
window size is 50 s. Since the effects of window size selection
on classification accuracy have been reported in details earlier
(e.g., see [5], [11], [19]), such analysis is not repeated here.

The training set consists of 6,000 samples (of stationary
oscillations) of time sereis (i.e., data acquired after the initial
transients have died out), where each class contains 1,000 sam-
ples; similarly, each set of test data consists of 1,000 samples.
Simulations were also conducted with different numbers of
training data in each of the six classes as well as different
numbers of testing data points. Since these results were largely
similar, on the average, and no specific conclusions could be
drawn from these results, they are not reported here.

In each of the above simulation runs, maximum entropy
partitioning (MEP) [16] was used for symbol generation,
and the depth of the corresponding D-Markov machine (see
Definition 4 in Section II) was set as D = 1. The alphabet
size was selected to be |A| = 6, which would allow up to
5 sensors to be included in the measurement set. A larger
value of alphabet size (i.e., |A| > 6) was found to yield no
appreciable increase in the classification performance and may
require longer data strings, as explained in [11].

The classification performance is summarized in Table I.
These results suggest that the proposed data fusion may indeed
improve the classification performance, even in the presence
of process noise, provided that the amplitude of the sensor
noise is sufficiently low, which necessitates the usage of high-
quality sensors. The following observation is made from the
results presented in Table I,

As the quality of sensors degrades (e.g., the sensors
become more noisy), the classification performance

MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 5

TABLE I
CLASSIFICATION ACCURACY UNDER DIFFERENT SENSORS WITH ADDITIVE PROCESS NOISE AND MULTIPLICATIVE SENSOR NOISE

Multiplicative sensor noise
Additive process noise

Ap = 0.000 Ap = 0.100 Ap = 0.200
y ẏ y and ẏ y ẏ y and ẏ y ẏ y and ẏ

Am = 0.000 96.0% 87.3% 99.7% 91.7% 86.0% 97.5% 86.4% 83.1% 93.8%
Am = 0.005 94.5% 85.3% 98.6% 91.4% 83.5% 97.2% 86.1% 81.3% 92.9%
Am = 0.010 92.6% 81.4% 97.1% 90.4% 80.5% 95.3% 86.3% 78.5% 91.3%
Am = 0.020 90.2% 73.3% 92.8% 89.5% 71.9% 92.2% 85.3% 71.6% 89.4%
Am = 0.030 88.7% 65.9% 89.3% 87.2% 65.0% 88.8% 85.1% 64.7% 85.6%
Am = 0.040 86.0% 57.7% 83.5% 85.5% 57.7% 84.3% 83.8% 57.7% 83.0%
Am = 0.050 83.5% 50.4% 80.6% 84.1% 50.5% 79.7% 81.8% 49.7% 79.1%

may deteriorate, because the additional sensor may
bring in less useful (and possibly harmful) informa-
tion. In other words, data fusion and pattern clas-
sification with additional (inferior-quality) sensors
may actually degrade the performance. Therefore, a
decision to use the information from an additional
channel of sensor data should be carefully made for
data fusion, especially if these additional sensors
are not of very good quality. Hence, it is recom-
mended to avoid the usage of low-precision sensor
data, because the imprecise information added by
such sensors may actually poison the information
generated by the remaining good sensors, instead of
improving the classification performance.

Remark 7. The above observation of possible degradation
of the classification performance may not apparently agree
with the classical notion of mutual information that is always
non-negative [9]. This fact implies that the addition of a
low-quality sensor should not reduce the total information,
regardless of how noisy the sensor is. This apparent anomaly
is explained below from an information-theoretic point of view.

The mutual information I(s1, s2) is the relative entropy be-
tween the joint distribution, p(s1, s2) of time series of two sen-
sors (s1 & s2) and their product distribution p(s1)p(s2) [9].
This notion is conceptually different from that of pattern clas-
sification (e.g., see Problem 2 in Section III) that addresses
identification of the class to which test data belong. Therefore,
future research is recommended in Section VI on information-
theoretic aspects of both data fusion and pattern classification.

1) Computation Time: The simulation runs were conducted
on a personal computer running with Intel I9-1085K CPU in
the Python3.8 environment. In this setting, the computation
time for a typical training sample was ∼ 250 ms, while that
for classification of a typical single test sample was ∼ 9 ms.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This technical brief has developed a concept of real-time
data fusion and (supervised learning-based) pattern classifi-
cation from ensembles of (possibly heterogeneous and not
necessarily tightly synchronized) multi-sensor time series data,
where the usage of high-quality sensors is recommended. The
reported work is an extension of an earlier similar concept that
was validated for (real-life) combustion data of single-sensor
time series from an experimental apparatus [5].

The proposed concept of multi-sensor data fusion and
pattern classification has been validated in this technical brief

by simulation on a dynamic model of the forced Duffing
equation that may exhibit chaotic behavior and bifurcation as
a model parameter is perturbed. The underlying theory is built
upon symbolic time series analysis (STSA)-based probabilistic
finite state automata (PFSA) [11], [12]. Since the algorithm
does not require the construction of joint probability density
functions from the available multiple-sensor measurements,
the underlying algorithms are computationally efficient and are
ideally suited for real-time decision-making. Specifically, the
proposed method does not require a large ensemble of training
data and the training time is significantly smaller than that of
a typical neural network [2]–[4] to perform similar tasks [5].

While there are many areas of theoretical and experimental
research to improve the proposed method of (real-time) multi-
sensor data fusion and pattern classification, the following six
topics are suggested by the authors for future research:

1) Quantitative comparison (e.g., accuracy, robustness, and
computational complexity) of data fusion & classifica-
tion performance of the proposed method with those of
deep neural networks in their different configurations:
This research is necessary to demonstrate that the pro-
posed method is a competitive tool of machine learning.

2) Information-theoretic research for accommodation of
low-quality sensors: This research is necessary to en-
hance the proposed method as a tool of machine learning
that is compatible with a variety of inexpensive sensors
and quasi-reliable sources of information.

3) Handling mixed synchronous and asynchronous infor-
mation: This research is necessary to enhance the capa-
bility of the proposed data fusion & pattern classifica-
tion method by taking advantage of different available
sources of relevant mixed information (e.g., audio data,
video images, and text messages).

4) Learning dynamically changing data that are not re-
stricted to be statistically quasi-stationary [19]: This
research is necessary to improve the proposed data
fusion & classification under transient operations.

5) Augmentation of pattern classification to include unsu-
pervised learning: This research is necessary for situa-
tions, where the classes need to be defined autonomously
instead of prior class allocation by the user.

6) Experimentation for concept validation in various phys-
ical applications: This research is necessary for accep-
tance of the proposed method for (real-life) scientific &
industrial applications.

MANUSCRIPT ID: DS-22-1325R1 TO APPEAR IN JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL FOR REVIEW AS A TECHNICAL BRIEF 6

ACKNOWLEDGMENTS

The work reported in this technical brief has been sup-
ported in part by the U.S. Army Research Office (Grant
No. W911NF-20-1-0226) and by the U.S. National Science
Foundation (Grant no. CNS-1932130). Any opinions, findings,
and conclusions in this paper are those of the authors and do
not necessarily reflect the views of the sponsoring agencies.

REFERENCES

[1] K. Murphy, Machine Learning: A Probabilistic Perspective. The MIT
Press, Cambridge, MA, USA, 2012.

[2] S. R. Mohandes, X. Zhang, and A. Mahdiyar, “A comprehensive review
on the application of artificial neural networks in building energy
analysis,” Neurocomputing, vol. 340, pp. 55–75, 2019.

[3] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN)
and long short-term memory (lstm) network,” Physica D: Nonlinear
Phenomena, vol. 404, p. 132306, 2020.

[4] N. Boullé, V. Dallas, Y. Nakatsukasa, and D. Samaddar, “Classification
of chaotic time series with deep learning,” Physica D: Nonlinear
Phenomena, vol. 403, p. 132261, 2020.

[5] C. Bhattacharya and A. Ray, “Thresholdless classification of chaotic dy-
namics and combustion instability via probabilistic finite state automata,”
Mechanical Systems and Signal Processing, vol. 154, pp. 108213 (1–18),
March 2022.

[6] P. Trivedi and D. Zimmer, “Copula modeling: An introduction for
practitioners,” Foundations and Trends in Econometrics, vol. 1, no. 1,
pp. 1–111, 2005.

[7] R. Nelson, An introduction to Copulas, 2nd ed. Springer, New York,
NY, USA, 2006.

[8] S. Iyengar, P. Varshney, and T. Damarla, “A parametric copula-based
framework for hypothesis testing using heterogeneous data,” IEEE
Trans. Signal Processing, vol. 59, no. 5, pp. 2308 – 2319, 2011.

[9] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA, 2006.

[10] S. Sarkar, S. Chakravarthy, V. Ramanan, and A. Ray, “Dynamic data-
driven prediction of instability in a swirl-stabilized combustor,” Interna-
tional Journal of Spray and Combustion Dynamics, vol. 8, no. 4, pp. 235
– 253, 2016.

[11] K. Mukherjee and A. Ray, “State splitting and merging in probabilistic
finite state automata for signal representation and analysis,” Signal
Processing, vol. 104, pp. 105 – 119, 2014.

[12] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,” Signal Processing, vol. 84, no. 7, pp. 1115 – 1130, 2004.

[13] J. Thompson and H. Stewart, Nonlinear Dynamics and Chaos. Wiley,
Hoboken, NJ, USA, 2 ed., 2002.

[14] C. Daw, C. Fenney, and E. Tracy, “A review of symbolic analysis of
experimental data,” Review of Scientific Instruments, vol. 74, pp. 915–
930, February 2003.

[15] P. Beim Graben, “Estimating and improving the signal-to-noise ratio of
time series by symbolic dynamics,” Physical Review E, vol. 64, no. 5,
p. 051104, 2001.

[16] V. Rajagopalan and A. Ray, “Symbolic time series analysis via wavelet-
based partitioning,” Signal Processing, vol. 86, pp. 3309–3320, Novem-
ber 2006.

[17] A. Subbu and A. Ray, “Space partitioning via hilbert transform for sym-
bolic time series analysis,” Applied Physics Letters, vol. 92, p. 084107,
February 2008.

[18] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical
Sciences. SIAM Press, Philadelphia, PA, USA, 1994.

[19] N. F. Ghalyan and A. Ray, “Measure invariance of ergodic symbolic
systems for low-delay detection of anomalous events,” Mechanical
Systems and Signal Processing, vol. 159, pp. 107746 (1–19), April 2021.

[20] A. Ray and R. Luck, “An introduction to sensor signal validation
in redundant measurement systems,” IEEE Control System Magazine,
vol. 11, no. 2, pp. 44–49, 1991.

[21] R. Burden and J. Faires, Numerical Analysis. Cengage Learning, New
Delhi, India, 2010.

[22] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear
Approaches. Wiley, Hoboken, NJ, USA, 2006.

