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Abstract

The Boltzmann Transport Equation (BTE) for phonons is
often used to predict thermal transport at submicron scales
in semiconductors. The BTE is a seven-dimensional nonlin-
ear integro-differential equation, resulting in difficulty in
its solution even after linearization under the single relax-
ation time approximation. Furthermore, parallelization and
load balancing are challenging, given the high dimensional-
ity and variability of the linear systems’ conditioning. This
work presents a ‘synthetic’ scalable parallelization method
for solving the BTE on large-scale systems. The method in-
cludes cell-based parallelization, combined band+cell-based
parallelization, and batching technique. The essential com-
putational ingredient of cell-based parallelization is a sparse
matrix-vector product (SPMV) that can be integrated with an
existing linear algebra library like PETSc. The combined ap-
proach enhances the cell-based method by further paralleliz-
ing the band dimension to take advantage of low inter-band
communication costs. For the batched approach, we devel-
oped a batched SPMV that enables multiple linear systems
to be solved simultaneously, merging many MPI messages
to reduce communication costs, thus maintaining scalability
when the grain size becomes very small. We present nu-
merical experiments to demonstrate our method’s excellent
speedups and scalability up to 16384 cores for a problem
with 12.6 billion unknowns.
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1 Introduction

The study of thermal transport is critical to determining in-
tegrated circuits’ performance, cost, and reliability, as over-
heating is one of the most common causes of their failure.
Modeling of the underlying mechanisms of thermal transport
is essential in developing heat removal strategies. Modern
semiconductor devices range from a few tens of nanometers
to a few hundreds of nanometers. The mean free path of
energy carrying phonons in silicon at room temperature is
approximately 300 nm [33] which is comparable to the length
scale of the device. Heat conduction in such cases cannot
be accurately determined by continuum equations like the
Fourier law of heat conduction and warrants the use of the
Boltzmann Transport Equation (BTE) due to its validity for
non-equilibrium heat conduction over an extensive range of
length scales.

The BTE is a seven-dimensional nonlinear integro-differential

equation: three spatial coordinates, three wavevector coordi-
nates, and time. Its solution is quite challenging even after
linearizing under the single relaxation time approximation.
The Monte Carlo method has been used to solve the BTE as it
is amenable to including complex physics such as dispersion,
polarization, and boundary scattering, as demonstrated in
[21]. However, it is prohibitively expensive for practical ap-
plications. The unsteady solution of the gray and non-gray
BTE can be obtained using deterministic discretization-based
methods [5, 22]. The challenges associated with the solution
are both from a memory and a computational time stand-
point and remain an active research area [20].

Another approach for solving the linear BTE is using iter-
ative solvers within the discrete-ordinates transport sweep
method [1]. This method solves the transport equation in
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the spatial domain (for a particular direction and energy
group) by sweeping over the cells, starting from the cells
adjacent to boundaries as incident fluxes. Various paralleliza-
tion techniques for sweep transport have been developed
(6, 10, 11, 30, 35]. Optimized algorithms for parallelization
in semi-structured grids in Cartesian domains have been
recently developed in [3] (see also [2] for regular grids and
[4] for non-contiguous partitions). The Discrete Ordinates
Method (DOM), and its more accurate variant, the Finite An-
gle Method (FAM) [24] has been used extensively for solution
of the BTE for photons, or the so-called Radiation Transport
Equation (RTE), including its parallelization [13]. Photons
travel at the speed of light. Thus, for terrestrial applications,
photon transport may be assumed to be instantaneous and
it is not necessary to solve the transient RTE. In contrast,
phonons travel at the speed of sound and time-dependent
solution of the phonon BTE is often warranted in practical
applications to understand how fast heat dissipates. This
poses an additional challenge since computation of a time-
accurate solution is far more expensive than a steady-state
solution. Furthermore, the dependency of phonon velocity
on frequency (known as dispersion) makes the problem more
complex.

Challenges in parallelization and scalability: While the BTE
might look like yet another PDE system on the surface, it
presents unique challenges towards parallelization. Firstly,
the problem size grows rapidly due to the seven-dimensional
system, even for modest resolutions. Specifically, based on
previous experience [5, 16, 20, 23], a practical device would
require ~10° cells in spatial discretization, 400 directions (20
azimuthal and 20 polar angles), and 40 bands in the spectral
space (15 bands with two polarizations and 25 bands with
one polarization) to adequately resolve the length scales
and obtain a spatial and angular grid-independent solution.
This typical discretization results in 22k coupled PDEs in
space and time. For the nonlinear solution of the temperature
within a time step, it often takes 10 - 20 iterations (depending
on the time step size) to attain 3 - 4 orders of convergence.
Thus, a single time step would require solving ~440k linear
systems (each has 10° unknowns), and thousands of time
steps are generally needed to reach a steady state or enable
the extraction of time-dependent variables. Therefore, we
are bottle-necked by strong scalability, i.e., reducing the time-
to-solution. For this reason, most works are limited to 2D
geometries [29, 32, 36] and are limited to under 128 processes.
Secondly, choosing which dimension to partition across the
processes is not straightforward, as there are varying data
interactions in different stages of the overall solution. The
most common approach is partitioning across the wavevec-
tor coordinates [5, 22, 29, 32], as these dimensions do not
have any adaptivity, and the partition is straightforward.
This technique also results in process-local linearized sys-
tems, thereby avoiding the need for a distributed memory
linear solver. Within these, purely band-based parallelization
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is the easiest to implement, requiring only a global reduc-
tion for synchronization. However, band-based parallelism
limits the maximum level of parallelism to the total number
of bands, typically 40 - 80 bands [29]. The level of available
parallelism can be increased by employing direction-based
partitioning in addition to band-based partitioning. How-
ever, the directional BTEs can be coupled at the boundaries
(e.g., adiabatic boundary conditions, specular surfaces). This
would require communication and synchronization across
directions (data that will now reside on different processes).
Such coupling could be across all directions, resulting in
global MPI_Alltoall communication. At large scales, such
global communication can be challenging to scale. Addition-
ally, although the resulting linear systems are process-local,
they require different iterations to converge, leading to a load
imbalance across the processes. Ali et al. [5] pursued band
and direction-based parallelization strategies in 3D domains,
using up to 2000 processors, but their parallel efficiency dete-
riorated sharply beyond ~400 processors. As this is the most
extensive phonon BTE code we are aware of, all comparisons
in this work are against the band-based and direction-based
parallelism developed in [5]. In this work, we partition across
the spatial dimension, resulting in far greater levels of paral-
lelism than is possible with band-based partitioning, as typi-
cal geometries have ~10° cells. Such an approach requires a
distributed-memory linear solver and results in communi-
cation and synchronization for every iteration of the linear
solution. However, this can be achieved using purely local
point-to-point communications. This approach also requires
us to solve many linear systems in parallel, leading to many
messages being exchanged (albeit local). The main advantage
is that all directional and band information is process-local
and can be readily updated without additional communica-
tion. Also, we will not consider parallelism in time in this
work. Still, it is essential to note that long-time evolution
and the need to keep the overall time-to-solution practical
usually force us to operate at high levels of parallelism and
push the limits on strong scaling. This work primarily fo-
cuses on spatial partitioning for BTE problems and presents
algorithms and strategies for ensuring excellent strong and
weak scalability.
The main contributions of this work are:

e A new cell-based parallel phonon BTE solver (with
overlapped and local communications) is developed,
demonstrating excellent strong and weak scalability,
and significant maximum capability speedups com-
pared to the existing band and direction-based ap-
proaches. This is presented in section 3.1.

e A new approach combines band and cell-based paral-
lelism to improve the performance given a fixed num-
ber of cores. This approach, presented in section 3.2,
gives us greater flexibility in scheduling jobs across an
arbitrary configuration of nodes/cores.
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e A new batched cell-based approach (with grouping
multiple directions) maintains scalability even when
the partitions become very small. Batching does not
partition along the directions or bands but coalesces
communication to reduce overheads. This is presented
in section 3.3.

e We demonstrate maximum capability speedups of 106.2x
and 41.3x compared to the existing band and direction-
based approaches (see Fig.11 for a realistic problem
predicting the temperature transport in semiconduc-
tors).

We remark that while the primary purpose of this work
pertains to the BTE solution, our development and imple-
mentation are potentially and equally applicable to other
high-dimensional PDE systems. Also, our approach is appli-
cable to various applications, including radiative transport,
thermal and neutron radiation common in nuclear engineer-
ing and astrophysics. The paper is organized as follows. The
next section summarizes the mathematical model and the
discretized phonon BTE equations. We describe the critical
components of our methods to parallelize the phonon BTE
solution in Section 3. Section 4 presents the numerical experi-
ments demonstrating our developed methods’ scalability and
the comparisons with existing methods. Concluding remarks
are made in section 5.

2 Summary of the mathematical model

In modeling phonon transportation, the Boltzmann Trans-
port Equation (BTE) for the phonon intensity, I, is written
as [19, 33]

o 1ol (19) = = (I~ 1) (1)
where t denotes time, v, is the group velocity, $ is the di-
rection vector, 7 is the overall scattering time-scale of the
phonon due to all scattering processes in combination, and
Iy is the equilibrium spectral phonon intensity. The phonon
intensity is a function of seven variables, i.e.,I = I(t,r, §, ),
where r is the position vector with three components in
the Cartesian coordinate system, o denotes the angular fre-
quency, and the direction vector § has two components in
the polar coordinate system, namely the polar angle § and
the azimuthal angle ¢.

Equation (1) is often solved numerically using the finite
angle method (FAM) (8, 9, 24, 25, 31] and standard finite-
volume discretization. In this method, the frequency domain
is discretized into a finite number of spectral bins Npgnq,
and the solid angle of 47 is discretized into a finite number
of directions Ny;,. Then, equation (1) is specified for each
spectral bin b = 1, ..., Npgng and direction d = 1, ..., Ng;, as

aIbd

o @

R 1
+10glpV - (IpaSa) % (Ino = Ipa) -
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Equation (2) represents a set of Npg,q X Ny PDEs for the
phonon intensity 4, which is a function of time and spatial
position, i.e., Iy = Ipq(t,r). Applying the standard finite-
volume scheme in space, and integrating equation (2) over
the control volume V¢ and the control angle Qg (see details
in [20]), we have

Alpq .
Veq + loglsc Z Ipap(Sq - frp) Ap =
f

ot

1
— (Ipoc = Ipac) Ve Qa.
Tpe

®3)
b

In equation (3), the subscript C indicates that the correspond-
ing quantities are evaluated at the cell center (whose volume
is V), and the subscript f denotes the face f (whose area is
Ay and outward unit normal vector is 7i¢). The summation
is taken over the bounding faces of cell C. The face-center
intensity, Ipqf, is approximated in terms of the cell-center
intensity using the upwind cell’s intensity [8, 9, 25-28, 31],
ie.,

if 84 - flf >0
if §4 - fip <0

Ipac

Ipar = , 4
iy = | 1 @
where the sub-index N denotes the neighbor cell sharing
face f with cell C. Also, in equation (3), Sy is defined as

Sd=/ édde:/ / $4sin 0dOd¢.
AQy A Jao

Finally, using the implicit backward Euler scheme to approx-
imate the time derivative in (3), we end up with a completely
discretized equation to be solved for the phonon intensity at
the cell center as

®)

Tpac]® = Tpacl*

k+1
At (

VeQa + vglue Z Tpar]™" (Sa - fp) Ay
f

TbC

(6)

k+1 k+1
= — (Ioacl*" = Toac)™) Ve,
in which the notation ¥ indicates that the corresponding
quantity is evaluated at time index k, and At is the time
interval such that t = kAt. Equation (6) can be written in the
matrix form as

Ax =Db, (7)

where x = [Ipac,, Ipac,s - Ipac, ] is the vector of cell-center
intensity (at time k + 1) of cell Cy, Cs, ..., Cy,, respectively, and
n is the total number of cells. The coefficient matrix A and
right-hand-side (RHS) vector b depend on the intensity at
previous time k and other physical quantities. Given the
intensity at time k, there are Npgnq X Ny;y linear systems (7)
to be solved for the intensity at time k + 1.

Figure 1 schematically describes the overall process of tem-
perature determination in a typical time step. In each outer
iteration, there are loops on bands and directions to obtain
the intensity (i.e., the solution to (7)) of all bands and direc-
tions. An iterative solver, that requires ‘inner’ iterations, is
used for solving these linear systems. The inner iteration
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is the central part of our developed cell-based paralleliza-
tions (sections 3.1 and 3.3), and the coupled BTE and energy
equation parallelization is our development of the combined
band+cell-based method (section 3.2).

| Initialguessoftemperature |

Loop for b; = 1 - Npana
Loop ford; = 1, ..., Ng;r
BTE iterative solution
(inner iteration)
Solve for intensity corresponding to
band b; and direction d; of all cells

l

Energy Equation
Compute divergence of heat flux of all cells,
apply First Law, and update temperature

outer iteration

start a new time step

Figure 1. The overall solution process of temperature
determination for a typical time step. The BTE solution,
i.e,, equation (7), contains the dependency of spatial dimen-
sion. The energy equation contains the dependency of direc-
tion and band dimensions.

3 Methodology

This section presents the main components of the paralleliza-
tion methods that we developed for the BTE solution, which
provide scalability on large-scale systems.

3.1 Cell-based parallelization

The coefficient matrix A in (7) is sparse, i.e., there are max-
imum ny of non-zero off-diagonal components per row i,
where ny is the number of cell C;’s bounding faces. The lin-
ear system (7) is solved using an iterative solver, in which
a sparse matrix-vector product (SPMV) is the core compu-
tational kernel. For this reason, we developed a cell-based
parallelized SPMV with the critical components described
below.

3.1.1 Domain partition. In distributed-memory cell-based
parallelization, the computational domain Q is partitioned
into p non-overlapping subdomains, i.e., Q = {wi}le. Each
subdomain is discretized into a finite set of cells, i.e., w; =
{ck, }‘w’| As shown in equations (4) and (6), the discretized
equation corresponding to cell C has the contribution of
the cell-center intensities of the neighboring cells (i.e., Ipaf).
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Thus, each subdomain also consists of ghost/hallo cells along
the partition boundary. The cell indices can be local (i.e., well-
defined only for a specific partition and globally ill-defined)
or global (i.e., well-defined across all partitions). Figure 2 il-
lustrates a simple example of a 2D domain that is partitioned
into four subdomains. It is noted that, while Fig. 2 shows a
2D structured mesh for a mere purpose of illustration, our
method is applicable to general unstructured meshes of both
2D and 3D domains. The global mesh Q, e.g., see the left
part of Fig. 2, is composed of the following information !.

21 22 23 24 25
21 . - o
Pid s & 4 411 & 12 4 '3 7 9
b6 iz li8 o |0 9 o, n
B 2 0 7 5 8 2% 10 7 6 1p 3 1 4 P 8
i e M I R 6 z ., 8
# 1 5 6 & 16 ¥ 9 5 2 11
6 7 8 9 10 3 4 5
- > ===
P, 5 13 14 15 1 10
O o—00——
1 2 5 1 2

Globally-defined mesh Locally-defined mesh of P,

Figure 2. An example to illustrate the globally and locally-
defined meshes: the domain Q is partitioned into four sub-
domains owned by P;, i = {1, 2,3, 4}, respectively. The color
of a cell indicates its owner. Vertex indices are underscored.
Face indices are in red. Ghost cells of a locally-defined mesh
are in gray.

e Cell data: coordinates of cell center xc?, cell-to-face
connectivity Icf9, cell-to-vertex connectivity Ico®,
and cell-to-cell connectivity Icc9®

e Face data: coordinates of face center xfgb , face-to-
cell connectivity I fc9, and face-to-vertex connectivity
Ifod?

e Vertex data: coordinates of vertex xo9”

The original global cell indices are first mapped to a sorted
array for a more straightforward determination of the cor-
relation between globally-defined and locally-owned quan-
tities. Each process owns a contiguous range of global cell
indices, e.g., see the left part of Fig. 2. Next, the local mesh
w; of the process i is constructed based on the information
about the cell’s owner. The local mesh defines locally-owned
cells, faces, and vertices, e.g., see the right part of Fig. 2. Ad-
ditionally, ghost cells (i.e., the cells owned by neighboring
processes share some faces with w') are specified. Construc-
tion of the local mesh requires the following maps to be built
in advance.

ISuperscript ‘gh’ expresses globally-defined quantities, and the correspond-
ing non-scripted quantities constitute the local mesh that each process
owns.
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e Local-to-global maps: the maps from owned to global
cell index 0c2Gc, local to global face index Lf2Gf, and
local to global vertex index Lv2Gv are built using the
information about the cell’s owner, cell-to-face con-
nectivity, and cell-to-vertex connectivity. Additionally,
the total number of locally-owned cells N, faces
Nface, and vertices Nyersex are determined.

o Global-to-local maps: the inverse maps from global
to owned cell index Gc20c, global to local face in-
dex Gf2Lf, and global to local vertex index Gv2Lv are
straightforwardly constructed using the above local-
to-global maps and the locally-owned numbers of cells,
faces, and vertices.

Based on the maps built in the above steps, the local mesh is
constructed as shown in Algorithm 1. The final step in the
pre-processing is to identify ghost cells as described in Algo-
rithm 2. Once the ghost cells are identified, the map from lo-
cal cell index (i.e., either owned or ghost cell index) to global
cell index Lc2Gc is constructed, which is also presented in
Algorithm 2. Furthermore, the face-to-cell connectivity I fe
and cell-to-cell connectivity Icc are updated to include the
local indices of ghost cells.

Algorithm 1 Construction of local mesh

Require: Gc20c, Gf2Lf, Gv2Lv, 0c2Gc, Lf2Gf, Lv2Gy,
Neelr, Nface; Noertex
Ensure: xc,xf,xv,Icf, lcv,lcc,Ifc,1fv
1: for lc « 1to N, do
2: xe[lc] « xe9 [0c2Ge[lc]]
3 Ief[lc] « Gf2Lf [lcf9® [0c2Gc(lc]]]
4 leo[lc] « Gv2Lv [lcv?® [0c2Gc(lc]]]
5 lec[lc] « Ge20c [Iect® [0c2Ge[lc]]]

6: for If < 1to N4, do

7 xf[Lf] < xf9° [LF2GF[If]]

8 Ifc[lf] « Ge20c [Ifcd® [Lf2GF[If]]]
9. Ifo[lf] « GvaLv [Ifo?” [LF2Gf([Lf]]]
10: for [v «— 1 t0 Nyersex do

11: xv[lv] «— xv9° [Lv2Gv[lv]]

3.1.2 Cell-based parallelized SPMV. In an iterative solu-
tion of the linear system (7), the core computational kernel
is the SPMV (™) = Ay(™ where (m) denotes the m'"-
iteration before reaching convergence. This operation re-
quires the communication to neighboring processes if a cell
locates on the partition boundary. To perform inter-domain
communications, we implement two additional data struc-
tures [34]:

e Local cell scatter map (LCSM): given partition «w’, LCSM!
stores the information about the subset of the locally-
owned cells that need scattering to neighboring parti-
tions.
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Algorithm 2 Determination of ghost cells

Require: Ifc, Neej;
Ensure: Nypost, Niocal, GhostCells, Lc2Ge
1: ng <0
2: for If « 1to N4, do
3 if Ifc[lf] is not an owned cell then
4: ng « (ng+1)
5 GhostCells[ng] « global index of Ifc[lf]
: Sort-then-delete-redundants(GhostCells)
: Nghost < size of GhostCells
¢ Niocal < Neetr + Nghost
: for lc « 1to N, do
Lc2Ge[lc] « 0c2Ge[lc]
for lc < 1to Nyposr do
Lc2Gc[ Ny + Ic] « GhostCells|lc]

Update I fc, lcc to include local indices of ghost cells

o »® 3

11:
12:

13:

e Ghost cell gather map (GCGM): given partition w?, GCGM!
denotes the ghost cells that need receiving from neigh-
boring partitions.

The above maps are constructed once based on the num-
ber of owned cells N.;;, the number of ghost cells Ny,
and the local-to-global map Lc2Gc. Algorithm 3 presents the
SPMV for solving the linear system (7). In this algorithm, we
implemented the overlapping of communication and com-
putation. To perform the overlapping, two sets of cells are
defined: the independent cells I(w;) whose neighbors are not
ghost cells, and the dependent cells D(w;) whose neighbors
contain at least one ghost cell.

Algorithm 3 Cell-based parallelized SPMV; process i

Require: LCSM, GCGM, Icc, partitioned x,y vectors, parti-
tioned local matrix A
Ensure: y = (Ax)
Ly«0

2: local_cell_scatter_begin(x, LCSM)

3: ghost_cell gather_begin(x, GCGM)

4: for ¢ « 1to |I[(w;)| do > independent cells
5: Ye < Accxc

6: for f < 1 to number of ¢’s faces do

7: d « leclc, f] > ¢’s neighbor sharing face f
8: Yo — (Ye + Acaxa)

9: local_cell_scatter_end(x, LCSM)

10: ghost_cell gather_end(x, GCGM)

11: for ¢ « 1to |D(w;)| do > dependent cells
12: Yo < AccXe

13: for f « 1 to number of ¢’s faces do

14: d « Icclc, f] > ¢’s neighbor sharing face f
15: Ye — Yo+ AcaXa
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3.2 Combined band+cell-based parallelization

As mentioned, the disadvantage of the band-based approach
is the parallelism limitation to the relatively small number
of bands used in the BTE computations (e.g., 80 bands [29])
and the load imbalance due to the different convergence
rates of the intensity solution across the bands. However,
the prominent advantage of the band-based method is the
minimum amount of communication and ease of implemen-
tation. For single-frequency scattering time-scale expression
(which is commonly used [14, 15]), only the reduction of
heat flux is needed [5]. Inter-band communication exists for
dual-frequency time-scale expression, but it is inconsiderable
[29]. For this reason, we developed a combined band+cell-
based parallelization to benefit from the minimum inter-band
communication cost. Figure 3 schematically illustrates the
topology and algorithm of this combined approach. In the
2D Cartesian topology, one dimension is for the band-based
parallelism, and the other is for the cell-based parallelism.
Heat-flux reductions occur within the band communicators,
and ghost exchanges in the SPMV operations (of the inner it-
erations) are carried out within the cell communicators. The
figure uses three background colors (green, orange, gray) to
represent the band, cell, and world communicators, respec-
tively.

3.3 Batched cell-based parallelization

As shown in Fig. 1, Npgng X Ny, linear systems (7) are solved
within an outer iteration. As the speedup (in strong scala-
bility) reached the plateau, combining multiple linear sys-
tems into one ‘batched system’ coalesces many small MPI
messages to reduce the total number of messages that are
exchanged. Although the total data transfer in solving the
batched system is the same as in solving the original systems
separately, we send and receive fewer messages, thus reduc-
ing communication overhead. Figure 4 illustrates an example
of two independent linear systems that are combined into a
batched system. As the global domain Q is partitioned into
p subdomains w;, the number of ‘extended-owned’ cells of
the process i in the batched system is b, X |w;|, where b,
denotes the batch size (i.e., the independent system count).
For the batched system formation, the following maps are
built to transfer a cell index from an individual system to the
batched system.

e LcSid2BLc: map from the local cell index of an indi-
vidual system and the system index (i.e., the identifier
of independent linear system in the batch) to the local
cell index of the batched system

e 0cSid2BOc: map from the owned cell index of an indi-
vidual system and the system index to the owned cell
index of the batched system

e 0cSid2BGc: map from the owned cell index of an indi-
vidual system and the system index to the global cell
index of the batched system
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cell-based parallelism
cells 1-10 cells 11-20  cells 21-30  cells 31-40  cells 41-50

gl (o) (o) (o) Co) (o)
S e (0] () (o) () [P
:gbandleﬁo (P ] [(Pe ] [(Ps ] [ Pu ) [ Ps |
o e

world communicator

(a) An example showing the topology used in the combined method:
the discretization composes of 40 bands and 50 cells, parallelized using
20 processes P; — Py, with four partitions for the band dimension
and five partitions for the cell dimension. A particular process, e.g., P13
shown in the figure, has the heat-flux reduction carried out in the band
communicator, and ghost exchanges in the SPMV operations carried
out in the cell communicator.

Loop for b; over my bands
Loop ford; =1, ..., Ng;r
Inner iteration
solve for intensity corresponding to
band b; and direction d;

Compute heat flux

¥
| MPI_Gather heat flux to the root | s
¥ I
[o3
| [root of band communicator]: Computes temperature | =
: 3

[root of band communicator]: Checks temperature convergence
- Compute partial_residual of temperature
- MPI_Reduce (sum) partial_residual to obtain total_residual

- [root of cell communicator (and band communicator)]:
if total_residual < tolerance, then converged = true

- MPI_Broadcast converged
¥
MPI_Broadcast temperature

no

converged
yes

start a new time step

(b) The chart shows the nonlinear solution of temperature using the
combined band+cell-based parallelism within a typical time step.

Figure 3. The Cartesian topology and algorithm of the com-
bined band+cell-based parallelization. The different back-
ground colors represent the communicators where corre-
sponding communications occur.

The above first two maps are used in the batched SPMV, and
the third one is used to compute the batched RHS vector.
Next, the batched system’s local cell scatter map (BLCSM)
and ghost cell gather map (BGCGM) are built. Precisely, the
information about the subsets of local cells and ghost cells
that need to communicate with the neighboring partitions
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Figure 4. An example to illustrate the batched system: two
independent linear systems A”x* = b* and APxf = b
are grouped into one batched system. The computational
domain Q is partitioned into two subdomains: w; composes
of cells with global indices (i.e., row indices of the global
matrix) corresponding to the yellow part, and w, composes
of cells with global indices corresponding to the blue part.

of the individual system (i.e., LCSM and CGCM) are mapped to
the batched system using the maps mentioned above. With
all these maps built, the algorithm for the batched SPMV, as
shown in Algorithm 4, is implemented to solve the batched
system. Similarly to the case of no batching, the overlapping
of communication and computation is implemented based
on the sets of independent and dependent cells, as mentioned
earlier.

The batched system’s convergence test is based on the
convergence test of the individual systems in the batch. Con-
vergence is detected at iteration k if

lr7 | < max (RTOL x [ |I,ATOL) Vi € batch, (8)

where rl(ci) =p A<i)x§i) is the residual of the system i at
iteration k, RTOL and ATOL are the tolerances for relative
and absolute size of the residual norm, respectively.

4 Results

In this section, we present the numerical experiments demon-
strating the scalability of our developed methods and the
achieved speedups compared with previously existing meth-
ods.

4.1 Numerical experiment setup

The scalability experiments presented in this paper are per-
formed on the Frontera supercomputer. Frontera is an Intel
supercomputer at the Texas Advanced Computing Center
(TACC) with a total of 8,008 nodes, each consisting of a Xeon
Platinum 8280 (“Cascade Lake") processor with 56 cores per
node. Each node has 192 GB of memory. The interconnect
is based on Mellanox HDR technology with full HDR (200
Gb/s) connectivity between the switches and HDR100 (100
Gb/s) connectivity to the compute nodes. Our SPMV is incor-
porated with PETSc [7] via the MatShell interface. For the
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Algorithm 4 Batched SPMV; process i

Require: BLCSM, BGCGM, LcSid2BLc, 0cSid2BOc, Icc, parti-
tioned x, y vectors, partitioned local matrix A

Ensure: y = (Ax)
Ly«<0
2: local_cell_scatter_begin(x, BLCSM)
3: ghost_cell gather_begin(x,BGCGM)
4: for b < 1to b, do
5: for ¢ « 1to |I(w;)| do

> independent cells

6: m « LcSid2BLc(c, b]

7: n « 0cSid2BOc|c, b]

8: Ym < AnnXm

9: for f < 1 to number of ¢’s faces do

10: d < lcc[c, f] » c’s neighbor sharing face f
11: l « LcSid2BLc][d, b]

12: Ym < Ym + Anix;

13: local_cell_scatter_end(x, BLCSM)
14: ghost_cell gather_end(x,BGCGM)
15: for b « 1to b, do

16: for ¢ « 1to |D(w;)| do > dependent cells
17: m « LcSid2BLc[c, b]

18: n < 0cSid2B0c[c, b]

19: Ym — ApnXm

20: for f < 1 to number of ¢’s faces do

21: d « Icc[c, f] » ¢’s neighbor sharing face f
22: | « LcSid2BLc([d, b]

23: Ym < Ym + Anix;

iterative solution of the intensity in all experiments, we used
the generalized minimal residual method (GMRES) and the
symmetric successive over-relaxation (SOR) preconditioner
with a relaxation factor of 1.25. A relative tolerance of 107°
is used for both outer iteration and inner iteration, and an
absolute tolerance of 10715 is used for the inner iteration.
The baseline for comparison of our results is the code written
by [5], which can solve the BTE equations using either band-
based or direction-based parallelization. The solver used by
[5] is GMRES with the incomplete factorization (ILU) pre-
conditioner. We observed that the convergence rates using
SOR and ILU preconditioners for the BTE solution are com-
parable. For instance, for the problem shown in Fig. 6 used in
the scalability experiments, the average number of iterations
when solving 22000 linear systems of the first outer iteration
is 33.5 for SOR and 36.3 for ILU.

4.2 Correctness verification

We first examine the problems of simple 2D and 3D domains,
as shown in Fig. 5, to verify the implementation’s correctness.
In both problems, one face of the domain is a hot isothermal
wall (310 K), while other faces are at ambient temperature
(300 K). The spectral space is discretized into 40 bands (15
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bands with two polarizations and 25 bands with one polariza-
tion). The angular space is discretized into 25 directions (for
the 2D problem) and 400 directions (for the 3D problem). In
these verification tests, we used a relative tolerance of 10~°
for both outer and inner iterations. We tested with five dif-
ferent schemes: sequential, cell-based, combined band+cell-
based, batched cell-based, and combined band+batched-cell-
based parallelizations. The computed temperature after 10
time steps of every cell is compared with the reference [5].
The relative differences between our computed temperature
and the referenced temperature, |T — Tyof|/Trer (Where T is
our computed result, and T, f is the reference result), are less
than 107'* at every cell in all five schemes, which is below
the tolerance value.

|

-
I |
(a) 2D domain of 1 ymx 1 um, discretized into 5 X5 cells, 5 partitions

for the spatial domain and 4 partitions in the band dimension. A
batch size of 5 is used in the tests of batched approach.

P
*

|
(b) 3D domain of 1 ym X 1 pm X 1 um, discretized into 5 X 5 X 5
cells, 7 partitions for the spatial domain and 5 partitions in the
band dimension. A batch size of 10 is used in the tests of batched
approach.

Figure 5. Verification tests for simple 2D and 3D domains:
the spatial partition (distinguished by different colors) is on
the left, and the temperature after 10 time steps is on the
right. Five schemes are tested: sequential, cell-based, com-
bined band+cell-based, batched cell-based, and combined
band+batched-cell-based. The computed temperature is com-
pared with the reference [5] by computing the relative error
of the temperature, |T — T,.¢|/T;.r (Where T is our computed
result, and T, £ is the reference result). In all five schemes,
the relative error at every cell is less than 10™!*, which is
well below the tolerance.

Secondly, we verify the correctness with a more realistic
problem imitating a transistor, as shown in Fig. 6, which
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requires a much larger scale of computation. The overall
dimension of the device is 4 ym X4 um X 1 pum. A heat source
generates heat on one surface with a nominal temperature of
150 K. The rectangular cooling channel temperature is set to
100 K. An adiabatic condition (i.e., zero heat flux) is applied
to other boundary faces of the device. The discretization
composes of 40 bands (two polarizations for the bands 1—15
and one polarization for the remaining bands), 400 directions,
and 571k cells. For this test, we used 40 spatial partitions as
shown in the left part of Fig. 6. A relative tolerance of 107°
for both outer and inner iterations and an initial guess of 100
K for the temperature are used. We tested with four schemes:
cell-based (40 cell partitions), combined band+cell-based (5
band partitions, 40 cell partitions), batched cell-based (40
cell partitions, batch of 5), and combined band+batched-cell-
based (5 band partitions, 40 cell partitions, batch of 5), and
ran the test until the completion of first time, which required
43 outer iterations for the temperature convergence. The
right part of Fig. 6 shows the half-section view of the device
displaying the temperature distribution in the interior of the
device. We computed the relative error of the temperature,
|T = Trefl/Trer (Where T is our computed result, and T, r is
the reference result [5]), at all cells. In all tests, the maximum
error is less than 107%, which is the tolerance used in the
experiments.

Figure 6. Verification test for a device-like structure dis-
cretized into 571k cells: the spatial partition (40 partitions
for this test) is on the left, and the half-section view of tem-
perature distributed in the device’s interior after the first time
step is on the right. Four schemes are tested: cell-based, com-
bined band+cell-based, batched cell-based, and combined
band+batched-cell-based. The maximum relative error of
temperature compared with the reference [5] in every cell
is less than 107°, which is the tolerance value used for this
test.

4.3 Scalability of the cell-based parallelization

To demonstrate the scalability of our developed methods,
we examined the large-scale computation of the device-like
structure shown in Fig. 6. There are 12.6 billion unknowns
for this problem, which are the intensity at the cell centers
of all bands and directions. We used METIS library [17]
incorporated in Gmsh [12] to partition the domain.
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The overall BTE simulation generally requires thousands
of time steps. For illustrating the strong scalability, we mea-
sured the time to solution of the first time step, which is
sufficient to relatively compare the performance of our de-
veloped methods with the existing methods. Figure 7 shows
the strong scalability of the cell-based parallelization (or-
ange points) and the comparison with the results using the
code of [5] (gray points). With the same number of cores,
our cell-based method achieved a speedup of 2.3x compared
with the band-based method, and an average speed up of
4.1x compared with the direction-based method. In terms
of maximum achievable capability, our cell-based method
obtained a speedup of 19.3x compared with the band-based
method, and 7.5x compared with the direction-based method.
In addition to the time to solution, we computed the corre-
sponding parallel efficiency (normalized by the 40-core case),
as shown in Fig. 7b. Given the same number of cores, the
cell-based parallel efficiencies are higher than that of the
direction-based parallel [5].

Figure 8 presents the weak scalability experiments for the
same problem described above. In these experiments, we
measured the time of a single outer iteration of the first time
step, which is mainly the time to solve for the intensity of
all bands and directions (i.e., the solutions of 22000 linear
systems (7) within a single outer iteration) using the cell-
based parallel technique. The device is discretized into 1.9k,
3.8k, 8k, 17k, 39k, 169k, 571k, and 929k cells, respectively. We
experimented with three grain sizes of 475, 950, and 1900, re-
spectively. It is seen that the larger grain size has better weak
scalability than the smaller grain size, which is reasonable
due to the larger ratio of computation to communication in
the cell-based parallelization method. It should be noted that
the increasing computational times in these weak scaling
experiments also come from the increasing amount of work
when the meshes are refined, e.g., the averaged number of
linear iterations (of 22000 linear systems) is 9.6 for 1.9k mesh
and 41.1 for 929k mesh.

4.4 Scalability of the combined band+cell-based
approach

As mentioned in section 3.2, the combined band+cell-based
method benefits from the low cost of inter-band communi-
cations. To demonstrate, we re-examined the experiments
presented in section 4.3 for the cases closed to and after sat-
uration using the combined band+cell-based approach. Fig-
ure 9 shows the computational time of the first time step run-
ning with various combinations of band and cell partitions.
Compared with the pure cell-based method, the combined
method’s performance is improved from 1.1x (800 cores) to
3.7x (2560 cores). We also see the beneficial trend of having
more and more band partitions in the combined approach
only lasts for a while. This is due to the load imbalance result-
ing from different convergence rates (band to band) of the
linear solution of (7). This imbalance is more apparent when
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cell-based method
—&— combined band+cell-based method: 2 band partitions
—*— combined band+cell-based method: 10 band partitions
—&— combined band+cell-based method: 20 band partitions
—~A— direction-based method [5]

E‘] ™7 —5— band-based method [5]
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(a) Time to solution of the first time step in the temperature solution.
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(b) Parallel efficiency normalized by the 40-core run.

Figure 7. Strong scalability of the cell-based method (sec-
tion 4.3) and combined band+cell-based method (section 4.4)
for the problem shown in Fig. 6. With the same number of
cores, the cell-based parallelization achieved speedups of 2.3x
and 4.1x compared with the band-based and direction-based
methods [5], respectively. In terms of the maximum capabil-
ity, the cell-based method achieved speedups of 19.3x and
7.5x compared with the methods mentioned above, respec-
tively. For the combined band+cell-based method, heuristic
choices of the number of band partitions to obtain the maxi-
mum scalability are presented. In terms of maximum capa-
bility, the combined approach achieved a speedup of 61.7x
compared with the band-based method, and 24.0x compared
with the direction-based method [5].

the band-partition grain size becomes smaller [18], i.e., the
‘averaging effect’ of load imbalance when grouping. Thus,
the combined method’s performance improves only when
the benefit from reducing inter-domain communication is
higher than the load-imbalance suffering.

Figure 7 illustrates a heuristic choice for the number of
band partitions to obtain the maximum scalability. We present
these results of the combined band+cell-based method on the
same figure of the cell-based method (discussed in section 4.3)
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—6— 475 grain size
10—1.5 H —B— 950 grain size |
1900 grain size

time (h)

1072 [

|
10° 10! 10? 10°

number of cores

Figure 8. Weak scalability of cell-based parallelization for
the problem shown in Fig. 6. The domain discretization com-
poses of 1.9k to 929k cells. Three grain sizes are experi-
mented.

—&— 800 total cores —— 1280 total cores —&— 1600 total cores
1920 total cores —=— 2560 total cores [

100 [

time (h)

10—0.5 [

number of band partitions

Figure 9. Time to solution of the first time step when solv-
ing the problem shown Fig. 6, using various combinations
of band and cell partitions in the combined approach. The
combined method’s performance exhibits an improvement
from 1.1x (800 cores) up to 3.7x (2560 cores) compared with
the pure cell-based approach.

to illustrate the improvement of the combined method’s per-
formance. As shown in Fig. 7a, in terms of the maximum
capability, the combined approach achieved a speedup of
61.7x compared with the band-based approach, and 24.0x
compared with the direction-based approach. We addition-
ally computed the corresponding parallel efficiency (normal-
ized by the 40-core case), as shown in Fig. 7b, to demonstrate
the improvement of parallel efficiency using the combined
approach.

4.5 Scalability of the batched cell-based approach

We re-examined the experiments presented in section 4.3 for
the cases of 800 cores and more using the batched approach,
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as shown in Fig. 10. In general, a large batch size improves
performance, and larger batch sizes are needed for smaller
grain sizes to maintain scalability. However, increasing batch
size also adds unnecessary computations to the iterative
solution of a batched system. This is because, as shown in
equation (8), the iteration of a batched system depends on
the slowest one in the batch. The convergence rate of a
system is generally different from the others in the batch. The
larger the batch size, the more unnecessary computations
are generated because there is a higher chance of a more
significant difference in convergence rates. The convergence
rates of individual systems are not known beforehand. Thus,
a strategy for batching systems with similar convergence
rates is generally an ad hoc solution.

100 |- \

no batch —+— batch 5
—B— batch 10 —¢— batch 20

batch 50 —— batch 100
—— batch 200 —&— batch 400

M

time (h)

10—0,5

10° 10*
number of cores

Figure 10. Time to solution of the first time step when solv-
ing the problem shown in Fig. 6, using various batch sizes
in the cell-based approach. Larger batch sizes are required
to maintain scalability when the grain sizes become smaller.
The no-batch results are repeated for an easy comparison.

Figure 11 shows a heuristic choice for the batch size to
obtain the maximum scalability. It is observed that batch size
needs to increase approximately 2-3 times as the grain size
decreases by half. As shown in Fig. 11a, in terms of the maxi-
mum achievable capability, the batched approach achieved a
speedup of 106.2x compared with the band-based approach,
and 41.3x compared with the direction-based approach. We
also computed the corresponding parallel efficiencies (nor-
malized by the 40-core case), as shown in Fig. 11b, to demon-
strate the improvement of parallel efficiency when using
the batched approach. These results show that the batched
method reduces the communication overhead, particularly
when the grain sizes become very small in the cell-based
method.

Finally, the combination of band+cell-based with batching
can further improve the performance of batched method
when it starts losing scalability. Figure 12 illustrates an ex-
ample using this approach to solve the problem shown in
Fig. 6 but with a coarser mesh of 169k cells. The figure shows
the time to solution using a heuristic choice for the band
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no batch —8— batch 10 —&— batch 20
—%— batch 100 —s— batch 200 —A— direction-based [5] —H— band-based [5]
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(a) Time to solution of the first time step in the temperature solution.
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(b) Parallel efficiency normalized by the 40-core run.

Figure 11. Strong scalability of the batched cell-based paral-
lelization for the problem shown in Fig. 6: heuristic choice of
the batch sizes to obtain the maximum scalability. In terms
of maximum capability, the batched approach achieved a
speedup of 106.2x compared with the band-based method,
and 41.3x compared with the direction-based method. The
results of no-batch cell-based approach are repeated for an
easy comparison.

partitions and batch sizes as discussed above. It is seen that,
the batched method lost its scalability at 16384 cores, but
not the combined band+batched-cell-based method. At this
point, using 8 band partitions and batch size 50, we obtained
a speedup of 2.5x compared with the batched method using
a batch size 400.

5 Conclusion

This paper presents a synthetic approach, including cell-
based, combined band+cell-based, and batched cell-based
parallelizations for the phonon BTE solution to simulate heat
transfer in semiconductors. The cell-based approach employs
spatial domain partition, enabling the method to use many
more cores than the existing band-based and direction-based
approaches. The core computational kernel of our cell-based
method development is the SPMV incorporated with PETSc
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Figure 12. An example illustrates the combined
band+batched-cell-based method can maintain scala-
bility after batching reaches its limitation. The figure shows
the time to solution of the first time step when solving
the problem shown in Fig. 6 using a mesh of 169k cells.
The number of band partitions and batch sizes are chosen
heuristically to have maximum scalability. At 16384 cores,
the combined band+batched-cell-based approach obtained a
speedup of 2.5x compared with the batched method.

via the MatShell interface. Additionally, we developed a com-
bined band+cell-based parallelization employing both band-
based and cell-based parallelism to improve the performance,
given a fixed number of cores. This method benefits from
the inconsiderable inter-band communications. We further
developed a batched cell-based parallelization that groups
multiple linear systems to be solved simultaneously. The
batched approach merges many MPI messages exchanged,
thus reducing communication overhead and maintaining
scalability even when the grain sizes become very small.
Our developed methods achieved excellent scalability (up to
16384 cores for the problem with 12.6 billion unknowns) and
speedups (106.2x and 41.3x compared with existing band-
based and direction-based methods, respectively, using the
batched method). Based on the experiments’ results, the com-
bined band+batched-cell-based approach is preferred for a
significantly fine mesh and unlimited computing resources.
However, with limited computing resources (e.g., less than
1000 cores), the cell-based method is recommended for a
fine mesh, and the combined band+cell-based approach for
coarser meshes.
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