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Abstract. Tile-based DNA self-assembly is a cost-effective fabrication method for
large-scale nanopatterns. Herein, we report a protocol to directly assemble DNA 2D
arrays on silicon wafers and then use the DNA nanostructures as molds to fabricate
corresponding nanostructures on the silicon wafers by HF etching. Similar HF etching
has been used with robust large DNA origami structures as templates. This work

demonstrates that DNA nanostructures assembled from small tiles are sufficiently stable



for this process. The resulting feature size (~ 8.6 nm) approaches the sizes of e-beam
lithography. While the reported method is parallel and inexpensive, e-beam lithography is
a serial method and is expensive. We expect that this method will be very useful for

prepare fine nanopatterns in large areas.

1. Introduction

DNA self-assembly is a promising approach for constructing nanoscale materials
with excellent shape control.!® In past decades, a large variety of DNA nanostructures
has been achieved. The DNA nanostructure could be designed into complex structures
and atomic accuracy, facilitating the application in nanofabrication and manufacturing.’!!

Recently, DNA nanotechnology has been applied in arranging nanoparticles,'?!'¢ direct
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metallization or mineralization on DNA nanostructures, and electronic devices.
Particularly, DNA nanostructure could serve as an etchant-blocking or volatile
precursor-protecting mask in surface engineering, transferring the patterns with the same
shapes and dimensions as the DNA templates to surfaces.”>! In past decades, scientist
could prepare DNA 2D crystals directly on the silicon wafer surfaces,3 2,33 deposit individual DNA
nanostructures on silicon wafer surfaces and permanently transferred the pattern onto the inorganic

materials.26273%3% To expand DNA templates to the massively modification of the entire surface, the

DNA pattern should be ordered, position-specific and porous for further masking. Here



we report a general protocol to prepare porous DNA 2D crystals with pre-designed
patterns assembled from small DNA tiles on silicon wafers. Then, the DNA crystals could
act as the masks in hydrogen fluoride (HF) vapor etching, fabricating the wafers by

transferring the periodic 2D patterns to silica surfaces in large areas.

2. Results and Discussion
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Figure 1. Scheme of the entire protocol. (a) Assembly of DNA 2D array on silicon wafer
(containing a native silica layer on top) and DNA-templated nanofabrication. (b) A side

view of DNA-masked positive etching of silica by HF gas.

Tile-based DNA self-assembly is a great way for nanofabrication and molecular
lithography. Under optimized surface-dependent conditions, DNA tiles can assemble into
large, porous, 2D crystalline patterns with different geometries on various substrates. The

feature sizes of the DNA tiles are as small as 2-4 nm, which are generally much smaller



than those of DNA origami structures and those from photolithography.*®3” Moreover, the
tile-based DNA self-assembly allows large-scale surface masking with tunable design and
low cost. Figure 1 illustrates the overall process. (1) Small piece of silicon wafer was
firstly washed with solvent and Piranha solution (PNI solution) to remove dust and
organic residues on the surface. (2) After washing, the surface was cleaned by oxygen
plasma to generate active hydroxy groups and to introduce hydrophilicity to the
surface.’®3? (3) The top layer of the wafer is a thin layer of SiO2 (silica). The silicon
wafer pieces were incubated with DNA solution, allowing the DNA tiles to assemble into
the 2D periodic arrays on the silicon wafer. (4) The surface was dried and desalted, which
reserved the 2D arrays alone on the surface. (5) The DNA-masked silicon wafer was
etched with hydrogen fluoride (HF) gas and transfer the patterns of DNA arrays as a
positive etching (Figure 1b). HF would preferably adsorb near the DNA structures, which
are locally condensed moistures in the air. Due to the porous features of the DNA 2D
arrays, the chemical vapor etching would differentiate the DNA helixes and cavities. The

morphology of nanopatterns were dictated by the assembled DNA nanostructures.

The 2D DNA arrays were assembled on the silicon wafer and observed by AFM
according to the reported method.'**" In this study, three different 2D arrays were
prepared on the silica surface by incubating with three different DNA motifs. To prepare
the DNA motif solutions, individual DNA strands were mixed in the TAE/Mg** buffer at

designated concentrations and ratios. The DNA motifs formed upon thermally annealing



from 95 to 22 °C (see the Supporting Information for details). Next, surface-assisted
self-assembly was performed on the silicon wafer with assembled DNA motifs and
designed metal cation concentrations. Briefly, the annealed DNA motif solution was
deposited on the freshly plasma-cleaned silicon wafer and isothermally incubated at
22 °C for 24 hours. After the incubation, the solution was removed, and the wafer was
rapidly washed with a solution containing 10 mM Mg*" and 4 mM Ni** to remove those
unbound DNA motifs and salt while maintaining the integrity of the DNA 2D arrays. The
dehydrated DNA arrays not only maintained their original structures and provided high
spatial resolution during AFM imaging, but also benefited the following vapor-based

nanofabrication.

By tuning the concentration of bivalent cation (Mg>*) and monovalent cation (Na*),
the surface coverage and homogeneity of DNA 2D arrays could be optimized, leading to
the assembly of large single-crystalline arrays. As a bivalent cation, Mg*" could bridge
the DNA and surface and increase the binding interaction between DNA backbones and
the surface. Generally, low [Mg?'] would weaken the surface-DNA interaction, which
decreased the surface coverage and integrity. On opposite, high [Mg?"] endowed high
surface deposition rates for DNA and strong binding between DNA motifs and surface,
hindering the dynamic 2D array growth and resulting in small polycrystalline domains.
Na' is regarded as a completive cation with Mg?" by occupying the DNA backbones,

which could weaken and finely tune the DNA-surface interaction strength.'* Compare



with a recent study using large DNA origami and optimized temperature,* the DNA tiles
used in this study has relatively small molecular size and weak blunt end inter-motif
interaction, which could form single crystal by long-time isothermal incubation, rather

than high temperature and avoid multi-layer structures.
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Figure 2. Preparation of tetragonal nanostructures on Silicon wafer. (a) Schematic of
b4PS DNA motifs forming tetragonal array and its repeating distance. (b) AFM image of
square DNA array on silicon wafer and FFT spots (upper right). (c) Section analysis of (b)

(red line). (d) The AFM image of etched b4PS pattern and FFT spots (upper right) (e)



Section analysis of (d) (blue line).

We started our study with the tetragonal arrays assembled from the bridged
four-point star DNA motif, b4PS (Figure 2). The rigid b4PS could form large,
single-crystalline, tetragonal array on mica surface under the optimized condition, [Mg?']:
10 mM and [Na']: 500 mM (Figure 2b). Due to the lower hydroxy group density and

hydrophilicity of the silica surfaces,*!

a higher cationic strength was applied on the
silicon wafer. At 60 mM Mg**, the b4PS could cover the surface with relatively large
crystal domains (Figure S1b); while at 50 or 70 mM Mg?" the silica surface was either
unsaturated or had polycrystals with small domains, respectively (Figure Sla, c). Further
addition of 200 mM Na" facilitated growth of the large single-crystalline 2D arrays
(Figure S1d). After assembling the single crystalline tetragonal arrays on silica surface,

we measured the repeating distance and DNA height by section analysis (Figure 2c, S2a)

which were 27.3 nm and 1.3 nm, respectively. These values matched with designs well.

Robust DNA origami nanostructures were applied in molecular lithography as masks
for vapor etching or chemical vapor deposition (CVD).?”** Herein, we transferred the
relatively fragile, DNA 2D arrays onto silicon wafer surface by wet HF vapor etching
(Figure 1b). In principle, the HF vapor could react with silica and remove silica solid by

generating SiF4 gas as the following formula.



Si02 (solid) + 4 HF (gas) = SiF4 (gas) + 2 H20 (gas)

However, Although the reaction is thermodynamically favored, water was commonly
added as a catalyst by generating the bifluoride anion (HF2") on the surface to kinetically

facilitate the reaction.>®*°

6 HF (gas) + 3 H20 (gas) = 3 HF2 (abs) + 3 H3O" (abs)

3 HF2 (abs) + 3 H3O" (abs) + SiO2 (solid) = 2 HF (gas) + SiF4 (gas) + 5 H20 (gas)

During the etching, DNA is highly hydrophilic and can absorb water vapor and
accumulate HF>™ around helixes, which results in the positive etching. We carried the
lithography process with the evaporation etching equipment. To be specific, a plastic jar
was saturated by 48% HF and the humidity was tuned to 21% by saturated potassium
acetate solution. Then, DNA 2D array-coated, dehydrated silicon wafers were heated to
40 °C and hung on the open jar and etched for the designated time (Figure S3). After
etching, the silicon wafer was thoroughly washed with TAE buffer and then with water to
remove HF, salt, and unbound DNAs (Figure S4). The tetragonal array was transferred
onto the silicon wafer with the DNA 2D arrays as masks (Figure 2d, S5a). After etching
and washing, the morphology of tetragonal DNA 2D array was preserved on the silicon
wafer as a positive etching, which removed the silica under the DNAs and formed
trenches lower than the surface. Section profiles were plotted along the continuous

parallel trenches of tetragonal arrays to determine the repeating distance between two



adjacent trenches, which resulted in an average of 32.5 nm (Fig. 2e, S2b), agreeing well
with the theoretical value (31.8 nm). Moreover, the average widths of trenches and
islands are 9.1 £ 1.7 nm and 23.2 + 3.2 nm, respectively (Figure S2b, S4b). The measured
trench is wider than the DNA mask width (4 nm, as double duplexes), indicating the HF
vapor adsorption is highly guided and fused around the bridge structure in DNA motif
design. The etching depth was measured by section analysis of the height difference
between the trench bottom and island top, resulting in 2.9 + 0.3 nm. This narrow
distribution of etching depth demonstrates that the DNA-masked, HF vapor etching is

uniform and mild.

2 min etched

Figure 3. Preparation of nanostructures on Silicon wafer directed by DNA arrays

assembled from non-bridged DNA motifs. (a) Scheme of an elongated, three-point-star



motif (e3PS). AFM images of (b) hexagonal arrays assembled from e3PS and (c) the
corresponding Si structures. (d) Scheme of a elongated, four-point-star motif (e4PS).
AFM images of (e) tetragonal arrays assembled from e4PS and (f) the corresponding Si
structures. Each AFM image is accompanied with an corresponding FFT pattern at its

upper right corner.

With different DNA motif designs, the honeycomb and rhombus patterns were
transferred onto the silicon wafer by HF vapor etching (Figure 3). Correspondingly, the
elongated, three-points-star (e3PS) DNA motif (Figure 3a, S6, S7) and elongated,
four-points-star (e4PS) DNA motif (Figure 3d, S8, S9) were incubated on the surface
with optimal conditions to prepare honeycomb and rhombus patterns, respectively. After
surface incubation, the silicon wafer was desalted and dried in the same was as for the
tetragonal 2D arrays from the b4PS motif (Figure 3b, 3e). Then, the HF vapor etching
process was applied to these two 2D arrays, resulting in the corresponding etched patterns
on Si wafer (Figure 3c, 3f). We measured the DNA 2D arrays and the etching patterns by
section analysis (Figure S10- S13). The unit repeating distances were well-matched
between DNA 2D nanostructures and the nanostructures of silicon wafers. For hexagon
patterns, the unit repeating distance was measured as 52.8 nm, agreeing well with the
theoretical value 54.3 nm. The depth and trench width for hexagon patterns were 1.3 +

0.2 nm and 8.6 + 1.3 nm, respectively; these two values were 1.4 + 0.2 nm and 6.5 + 1.0



nm (Figure S14) in rhombus patterns. Presumably, the bridged structure provides higher
DNA surface density and stronger structure identity, which results in a more intensive HF

condensing and etching rate.
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Figure 4. Impact of poly-lysine coating on DNA arrays. (a) Schematic presentation (b)
The AFM image of poly-lysine coated DNA b4PS array. The AFM images of 10 min HF

etching (c) with naked DNA b4PS arrays and with (d) poly-lysine-coated b4PS arrays.

To improve the structure integrity for dehydrated DNA arrays for the long-time

etching, we in situ coated the DNA 2D arrays with poly-lysine (pLys) to prepare the



enhanced etching masks. Due to the highly positive charged property, the pLys could
wrap on the DNA helixes and thus preserve the original porous 2D array structure under
high temperature during vapor etching process (Figure 4a). The DNA array-masked
silicon wafer was directly incubated with pLys solution in the presence of Ni**, then
washed to remove excess pLys, and finally desalted as previously mentioned. After pLys
treatment, the overall morphology and periodicity of DNA 2D crystals were maintained
(Figure 4b, S15) while the dimension of DNA double duplex arms slightly increased
(Figure S16), demonstrating the successful coating and dehydration of DNA array. After
etching, the pLys-coated DNA arrays could not be completely washed away by TAE
buffer and water. So, additional Oz plasma cleaning was added to ensure that all DNA

residues could be removed (Figure S17).

The naked or pLys-coated wafers with DNA tetragonal array were etched under
previous protocol with different reaction times for comparison. When the etching time
was 2 min, the etching on naked DNA arrays transferred the 2D pattern from DNA arrays
to silica surface, while the pLys-coated wafer did not show etching activities. Elongating
the time to 5 or 10 min, the etching on naked wafers generated defects and the pattern
gradually lose the integrity (Figure 4c, S18a, S18e.). However, the coated wafer could be
etched with long reaction time and remained the tetragonal morphology (Figure 4d, S18b,
S18f.). We performed the section analysis to evaluate the etching control by the pLys

coating (Figure S19, S20). The etching depth for 10 min reaction was increased to 10.9



nm on naked wafer, while the depth could keep at 3.5 nm on pLys coated wafer (Figure
S21). The pLys coating significantly enhanced the array stability during etching and
lower the etching rate. We reasoned that the pLys coating could have two benefits. First,
the coating will decrease the hydrophilicity on the surface by neutralizing charges,
condensing less active HF species on the surface and slowing down the etching rate.
Second, the entanglement of pLys could mechanically hold DNA strands together and
keep the integrity under drying, wet-etching and heating. Although the pLys coating
significantly decrease the etching rate, the coating method demonstrated that the DNA
mask could be stabilized under harsh vapor etching conditions. Conceivably, artificial
nucleic acids, such as PNA or backbone-modified DNA, could assemble to 2D array and
guide the etching by the hydrophilicity, but accommodate to more harsh or special

conditions.

3. Conclusions

In conclusion, we demonstrated the assembly of porous and periodic 2D crystals with
small DNA tiles on silica surfaces by bottom-up strategy. With simple HF vapor etching,
the nanostructure of DNA arrays could be reliably transferred into silicon wafers.
Compared with previously reported similar studies, this protocol has several attractive

features: (i) The DNA nanostructures are in situ assembled on silicon wafers and thus



post-assembly transfer is not needed, thus, avoiding the problem of breaking large,
single-layer, DNA 2D arrays and rendering the possibility to reach unregular surface of
devices. (ii)) The DNA nanostructures are assembled from a very small number of
unique-sequenced DNA strands in common buffers, instead of hundreds of strands. Thus,
this method is cost-effective and can be readily scaled up. (iii) Each edge contains only
two duplexes and is only ~ 4 nm wide. Along with the atomic resolution of the
self-assembly, that leads to fine features in the final nanostructures in silicon wafer,
comparable to those feature sizes from e-beam lithography. (iv) The protocol is friendly
to chemists/ biologists as it can be conducted in any chemistry/biology lab and does not
require any special facility; thus, provides a simple way for chemists/biologists to
fabricate inorganic nanostructures to investigate chemical/biological
processes/phenomena at the nanometer scales. In general, our approach provides a mass
production method for silicon wafer treatment and surface processing or benefits the

microfluid devices design.

4. Experimental Section

4.1. Materials: Silicon wafer with 300 nm oxide layer (Product number: 1432) was
purchased by University Wafer. 48% Hydrofluoric Acid is purchased from Mallinckrodt

Chemicals. Poly-L-lysine (pLys) (1g/L) is purchased from Ted-Pella. All other chemicals



used in buffer preparation are purchased from Sigma-Aldrich.

Oligonucleotides. DNA sequences have been designed by a computer program
“SEQUIN”.! All oligonucleotides were purchased from IDT Inc., purified by 6% - 20%
denaturing PAGE, and their concentrations were quantified by UV-Visible spectroscopy
at 260 nm. The DNA sequences and molar ratio of DNA motifs are listed below. The

motif b4PS is prepared with literature report.

DNA Strands:

L3: AGGCACCATCGTAGGTTTCTTGCCAGGCACCATCGTAGGTTTCTTGCCAGG

CACCATCGTAGGTTTCTTGCC

L4: AGGCACCATCGTAGGTTTTCTTGCCAGGCACCATCGTAGGTTTTCTTGCCAG

GCACCATCGTAGGTTTTCTTGCCAGGCACCATCGTAGGTTTTCTTGCC

M3: GACTATGCAACCTGATACCCTTAGTATGTAGCCTGCCTGGCAAGCCTACGA

TGGACAATCTATTATGCGATTCGGACACGGTAACGC

M4: GCAACCTGATACCCTTAGTATGTAGCCTGCCTGGCAAGCCTACGATGGACA

ATCTATTATGCGATTCGGACACGG

JI1: TATCACCGAATCGCATAATAG

J2:  ATTGTGGCTACATACTAAGGG



J1b: TATCACCGAATCGCATAATAGCGTCGAACG

J2b: ATTGTGGCTACATACTAAGGGCGTCGAACG

§3:  AGGCGTTACCGTGTGGTTGCATAGTCAG

§4:  CCGTGTGGTTGC

BB: CATGAAGCTTCATGGTTCGACT

DNA Motifs:

e3PS: L3+M3+J1+J2+S3 (1:3:3:3:3).

e4PS:  LA+MA+T1+J2+S4 (1:4:4:4:4).

b4PS: L4+M4+]1b+J2b+S4+BB (1:4:4:4:4:8).

Buffers:

TAE buffer: 40 mM tris base, 2 mM EDTA and 20 mM acetic acid acetate, pH 8.0

TAE/Mg’* buffer: 40 mM tris base, 2 mM EDTA, 20 mM acetic acid and 12.5 mM

magnesium acetate, pH 8.0

TAE/xxNa™/xxMg** (incubation buffer): 40 mM tris base, 20 mM acetic acid, 2 mM

EDTA, designated concentration for sodium chloride and magnesium acetate, pH 8.0

TA/Mg*>*/Ni** (post-incubation washing buffer): 40 mM tris base, 20 mM acetic acid, 10

mM magnesium acetate and 2 mM nickel (II) chloride, pH 8.0



Mg?*/Ni?* (desalting buffer): 10 mM magnesium acetate and 4 mM nickel (IT) chloride.

4.2. Preparation of individual DNA motifs.

(1) For b4PS motif, mix all ssDNAs (except bridge strands BB) at designated
stoichiometric molar ratio in TAE/Mg?" solution. Sequentially incubate above solutions:
95 °C for 5 min, 65 °C for 30 min, 50 °C for 30 min, 37 °C for 30 min, and 22 °C for 30
min. [500 nM motif solution (no bridges)]. Add 20 pL of bridge DNA, BB, into the
annealed solution above and incubate for 24 hours at 22 °C [final 100 uL 400 nM b4PS

motif solution (with bridges)].

(2) For €3PS and e4PS, mix all ssDNAs at designated stoichiometric molar ratio in
TAE/Mg** solution. Sequentially incubate above solutions: 95 °C for 5 min, 65 °C for 30
min, 50 °C for 30 min, 37 °C for 30 min, and 22 °C for 30 min [final 100 pL 400 nM

€3PS or e4PS motif solution].

4.3. Polyacrylamide gel electrophoresis (PAGE).

Mix 40% acrylamide/bisacrylamide solution (19:1, 5% crosslinker), 10x TAE/Mg*"
buffer, and distilled water to prepare 6% native PAGE gel. The running buffer was
TAE/Mg?** buffer). Gels were run on a FB-VE10-1 electrophoresis unit (FisherBiotech) at
4 °C (250V, constant voltage) for 5 hours. After electrophoresis, the gels were stained

with Stains-all dye (Sigma) and scanned.

4.4. Surface assembly of DNA arrays.



(1) Silica wafer reparation: Silica disc was cut to about 6x6 mm size. Wafers were
washed under ultrasound with water, isopropanol and acetone in sequence, then dried by
nitrogen gas flow. After fully dried, Wafers were cleaned by Piranha solution (3:1
concentrated H2SO4 and 30% H202) for 25 min at 80 °C. Then, wafers were thoroughly
rinsed with water, and wash with washed under ultrasonic with water, isopropanol and
acetone in sequence. Finally, wafers were dried by nitrogen gas flow. Before the DNA

incubation, the silica wafer was cleaned by O2 plasma for 10 min.

(2) Mix DNA motif to a final concentration 200 nM DNA in TAE/Na"/Mg>* (200 mM

Na®, 60 mM Mg?* for b4PS, 60 mM Mg?* for e3PS and e4PS) solution.

(3) Surface assembly: Deposit 10 pL. DNA solution onto silicon wafer surface and

incubate for 24 hours at 22 °C for array formation.

(4) Array post-treatment: After surface assembly, 25 pL TA/Mg**/Ni** buffer was added
onto wafer surface and then removed by compressed air. Then 25 pL Mg**/Ni** buffer
was added wafer mica surface and then thoroughly removed by compressed air. The

wafer was directly used in following AFM imaging or HF vapor etching.

4.5. pLys coating of DNA arrays.

After the surface assembly, 25 uL TA/Mg**/Ni** buffer was added onto wafer surface and
then removed by compressed air. Then, 25 pL TA/Mg?*/Ni*" buffer with 40 pg/mL pLys

solution was added onto wafer surface and incubated for 10 min. After pLys incubation,



25 pL TA/Mg*/Ni** buffer was added onto wafer surface and then removed by
compressed air. Then 25 pL Mg?*/Ni*" buffer was added onto wafer surface and then
thoroughly removed by compressed air. The wafer was directly used in following AFM

imaging or HF vapor etching.

4.6. AFM images

AFM images were captured by MultiMode 8 (Bruker or Veeco) using tapping mode with
HQ:NSC19/Al BS probes (MikroMasch). For AFM parameters: the Z limit is 3.6 pum,
integral gain is 0.7, proportional gain is 0.5, driving amplitude is 1000 mV, the set point

is varied from 100-500 mV. All experiments were carried out at 22 °C.

4.7. HF vapor etching

(1) Etching chamber preparation: 3 mL 48% HF and 20 mL saturated potassium acetate
solution (with about 10 g salt solid) in a 32 oz plastic jar, incubate for at least 24 hours. A

1.5x1.5 cm small hole was on the top of the jar.

(2) Etching: The DNA-masked silica wafer was reversely sticked on a metal water tank,
in which 1 L 40 °C water was filled. The tank was placed on the jar and wafers were
aligned above the hole. Thus, the HF vapor with 21 % humidity could contact wafer.

Wafer was etched for designated time.

(3) Post-treatment after etching: The tank was flipped to make wafers face up. The wafers



were immediately blow by compressed air for 5 s. Then, the wafer was put in 1 mL TAE
solution for 10 min, following with putting in water for 10 min (TAE-water wash).
Finally, the wafer was dried by compressed air and imaged by AFM. For PLL coating
sample, the wafer was additionally cleaned by cleaned by Oz plasma for 10 min before

AFM imaging.

Supporting Information.

Additional experimental data on characterization of DNA structures and nanostructures

on silicon wafer.
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