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A weakly conducting liquid droplet immersed in another leaky dielectric liquid can exhibit 
rich dynamical behaviors under the effect of an applied electric field. Depending on 
material properties and field strength, the nonlinear coupling of interfacial charge transport 
and fluid flow can trigger electrohydrodynamic instabilities that lead to shape deformations 
and complex dynamics. We present a spectral boundary integral method to simulate 
droplet electrohydrodynamics in a uniform electric field. All physical variables, such as drop 
shape and interfacial charge density, are represented using spherical harmonic expansions. 
In addition to its exponential accuracy, the spectral representation affords a nondissipative 
dealiasing method required for numerical stability. A comprehensive charge transport 
model, valid under a wide range of electric field strengths, accounts for charge relaxation, 
Ohmic conduction, and surface charge convection by the flow. A shape reparametrization 
technique enables the exploration of significant droplet deformation regimes. For low-
viscosity drops, the convection by the flow drives steep interfacial charge gradients 
near the drop equator. This introduces numerical ringing artifacts that we treat via a 
weighted spherical harmonic expansion, resulting in solution convergence. The method 
and simulations are validated against experimental data and analytical predictions in the 
axisymmetric Taylor and Quincke electrorotation regimes.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

A wide range of engineering applications involve liquid drops immersed in another fluid while subject to an applied 
electric field. Some examples include ink-jet printing [1], electrospraying [2], and microfluidic devices and pumps [3]. These 
systems exhibit rich dynamics due to the electric field and fluid flow coupling. When an interface separating two immiscible 
fluids is subject to an otherwise uniform electric field, the electric field undergoes a jump across the interface due to the 
mismatch in material properties. This discontinuity in the electric field induces electric stresses that can deform the interface 
and drive the fluid into motion.

We are interested in leaky dielectric liquids such as oils, which serve as poor conductors. Unlike electrolyte solutions 
where diffuse Debye layers affect the system’s dynamics, leaky dielectrics are characterized by the absence of diffuse Debye 
layers [4]. The free charges instead concentrate on the interfaces between different phases in the system. Consequently, 
the electric field acting on the interfacial charge creates electric stresses along the normal and tangential directions, which 
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cause deformations and fluid motion. Surface tension has a stabilizing effect in general, trying to restore the equilibrium 
shape. Melcher and Taylor developed a framework for studying electrohydrodynamic phenomena in leaky dielectric systems, 
known as the leaky dielectric model (LDM) [5]. Central to their work is a charge conservation model that describes a balance 
between Ohmic fluxes from the bulk, interfacial charge convection, and finite charge relaxation. It was previously shown 
that LDM can be derived asymptotically from electrokinetic models in the limit of strong electric fields and thin Debye 
layers [6,7].

This work focuses on the dynamics of a leaky dielectric drop immersed in another dielectric fluid under a uniform DC 
electric field. This canonical problem has been a long-standing research problem in electrohydrodynamics. In his pioneering 
work, Taylor [8] formulated a small-deformation theory for an isolated drop based on LDM and could predict oblate and 
prolate steady shapes depending on the material properties. While Taylor’s theory shows good agreement with experimental 
data in the limit of vanishing electric capillary number CaE (ratio of electric to capillary forces), the discrepancy is significant 
at larger values of CaE. Therefore, other researchers attempted to extend Taylor’s work by accounting for second-order effects 
in CaE [9], considering spheroidal drops [10,11], including inertial effects [12] and interfacial charge convection [13–16].

A variety of computational models have been developed to study drop dynamics under strong electric fields at finite 
deformations, a problem untractable using analytical theories. In the limit of negligible inertia, boundary integral equations 
can be used to formulate and solve the coupled electrohydrodynamic problem. Sherwood was the first to develop a bound-
ary element method for an axisymmetric drop in an equiviscous system and applied it to capture breakup modes in prolate 
drops [17]. His original work was subsequently extended to study drop pair interaction [18] and to cover a wider range 
of fluid and electric parameters [19]. These earlier attempts used a simplified boundary condition for the electric problem, 
which neglected transient charge relaxation and interfacial charge convection by the flow. These two effects have recently 
been shown to play a significant role in drop dynamics and deformations [16]. Lanauze et al. [20] and Das and Saintillan 
[21] recently addressed this problem and developed axisymmetric and three-dimensional boundary element methods based 
on the full Melcher-Taylor LDM. The effect of charge convection was specifically addressed in [21], where it was shown to be 
responsible for Quincke electrorotation. These methods, however, were found to lack accuracy and stability in the regime of 
strong electric fields. Other numerical approaches have been used to study drop electrohydrodynamics, including immersed 
boundary [22], level set [23,24], and finite element methods [25–27]. More recently, finite element simulations [28,29] were 
also used to investigate electrohydrodynamic instabilities such as tip and equatorial streaming in drops under strong electric 
fields. These latter techniques all include finite fluid inertia and, with few exceptions [24], do not treat the drop surface as 
a sharp interface.

Improved accuracy within the boundary integral framework can be achieved using spectral methods, which rely on 
expansions of the shape and interfacial variables based on spherical harmonics. Such methods were recently developed 
to simulate electrohydrodynamics of lipid vesicles [30] and also extended to the case of individual drops and drop pairs 
[31–33]. These studies, however, all neglected charge relaxation and charge convection and were thus restricted to weak 
electric fields. Accurately capturing charge convection is especially challenging as it nonlinearly couples fluid flow and charge 
transport on a deformed interface. It can result in spurious aliasing errors with negative consequences for accuracy and 
stability. This work addresses this challenge and presents a spectral boundary integral method for the electrohydrodynamics 
of deformable liquid drops based on the complete Melcher–Taylor LDM. Interfacial charge convection is rigorously accounted 
for, and dealiasing and reparametrization techniques are implemented to improve accuracy and stability and enable long-
time simulations.

The paper is organized as follows. We define the problem and discuss the governing equations and boundary conditions 
in Sec. 2.1, along with their non-dimensionalization in Sec. 2.2. Sec. 2.3 presents the integral form of the governing equations 
and boundary conditions used in developing the boundary integral method. We discuss different aspects of the numerical 
method in Sec. 3: the spectral representation of all variables in terms of spherical harmonics is discussed in 3.1, followed 
by details of the dealiasing method in Sec. 3.2. Next, in Sec. 3.3, we summarize the numerical integration methods used in 
this study and correction methods to ensure charge neutrality and incompressibility in Sec. 3.4. As explained in Sec. 3.5, we 
also use a reparametrization method to improve the numerical stability in simulations where the drop undergoes significant 
deformations. In Sec. 3.6, we discuss the overall convergence of our numerical method as well as the limitations on the time 
step size. We test and validate our computational model by applying it to a wide range of dynamical behaviors, such as the 
axisymmetric Taylor regime under weak electric fields in Sec. 4.1, and Quincke electrorotation under stronger electric fields 
in Sec. 4.2. We also investigate the dynamics of low-viscosity drops in Sec. 4.3, where charge convection plays an important 
role. Finally, we discuss our conclusions and possible extensions of our work in Sec. 5.

2. Problem definition

2.1. Governing equations

We consider a neutrally buoyant drop of a fluid occupying volume V − immersed in an infinite body of another fluid V +
while subject to a uniform electric field E∞ = E∞ êz as depicted schematically in Fig. 1. The interface D separates the two 
fluid media, and the surface unit normal n(x) is pointed towards the suspending fluid. Initially, the drop is uncharged and 
spherical with radius r0. The material properties, namely the dielectric permittivities, electric conductivities, and dynamic 
viscosities, are denoted by (ε±, σ±, μ±) inside and outside the drop, respectively. Under the Taylor–Melcher leaky dielectric 
2
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Fig. 1. Problem definition: a leaky dielectric drop with (σ−, ε−, μ−) is suspended in another leaky dielectric fluid with (σ+, ε+, μ+) and subject to an 
external electric field E∞ . The drop deforms and diverges from its initially spherical shape.

model [8], any net charge in the system appears on the interface D , and the bulk of the fluids remain electroneutral. 
Therefore, the electric potential is harmonic in the bulk:

∇2ϕ±(x) = 0, x ∈ V±. (1)

Far away from the interface, the electric field E = −∇ϕ tends to the applied electric field:

E+ → E∞ = E∞ êz, as |x| → ±∞. (2)

While the tangential component of the electric field is continuous across the interface, its normal component undergoes a 
jump due to the mismatch in material properties:

n × �E� = 0, x ∈ D. (3)

We define the operator �F� := F+ − F− as the jump in any variable F across the interface D . A surface charge density 
develops at the interface and follows Gauss’s law,

q(x) = n · �εE�, x ∈ D. (4)

The surface charge evolves due to Ohmic currents from the bulk and convective currents on the interface. Consequently, it 
satisfies the conservation equation:

∂tq + n · �σ E� + ∇s · (qu) = 0, x ∈ D, (5)

where ∇s = (I − nn) ·∇ is the surface gradient operator and u is the fluid velocity.
Neglecting the effect of inertia and gravity, the velocity and pressure fields satisfy the Stokes and continuity equations:

μ±∇2u± − ∇p± = 0, ∇ ·u± = 0, x ∈ V±. (6)

The velocity vector is continuous across the interface and vanishes far from it:

�u(x)� = 0, x ∈ D, (7)

u+(x) → 0, as |x| → ∞. (8)

The balance of interfacial forces requires that the jump in hydrodynamic and electric tractions across the interface balance 
capillary forces:

� f H� + � f E� = γ (∇s ·n)n, x ∈ D. (9)

We neglect Marangoni effects due to variations in surface tension, ∇sγ = 0. Hydrodynamic and electric tractions are ex-
pressed in terms of the Newtonian and Maxwell stress tensors, respectively:

f H = n · T H, T H = −p I + μ
(∇u + ∇uT )

, (10)

f E = n · T E, T E = ε
(
EE − 1

2 E
2 I

)
. (11)

The jump in electric tractions can be decomposed into tangential and normal components as
3
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� f E� = �εEn�Et + 1

2
�ε(En2 − Et2)�n = qEt + �pE�n, (12)

where pE = ε(En2 − Et2)/2 is the electric pressure [19]. The first term on the right-hand side represents the tangential 
electric stresses in leaky dielectrics, and it vanishes when both fluids are either perfect dielectrics or perfect conductors.

2.2. Non-dimensionalization

For the system described above, a dimensional analysis yields five dimensionless groups, three of which characterize the 
mismatch of material properties in the drop and the suspending fluid:

R = σ+

σ− , Q = ε−

ε+ , λ = μ−

μ+ . (13)

The limits of λ → 0 and ∞ correspond to a bubble and a rigid particle, respectively. The remaining dimensionless groups 
describe the system’s dynamics and can be obtained by comparing the characteristic time scales in the problem. First, note 
that the response of each fluid phase to Ohmic conduction is characterized by the charge relaxation time:

τ±
c = ε±

σ± . (14)

The product RQ = τ−/τ+ is the ratio of the charge relaxation times in the two fluids and plays an important role in the 
dynamics of the drop [21]. The polarization time for a rigid sphere under an applied electric field is the Maxwell–Wagner 
relaxation time

τMW = ε− + 2ε+

σ− + 2σ+ = R(Q+ 2)

1+ 2R
τ+
c , (15)

which provides an approximate timescale for polarization of the drop. The accumulation of free charges on the interface 
creates electric forces that drive the fluid into motion on the electrohydrodynamic time scale

τEHD = μ+

ε+E2∞
. (16)

Deformations away from the equilibrium spherical shape relax under the effect of surface tension on the capillary time scale

τγ = μ+ r0
γ

. (17)

By taking the ratios of these time scales, the two remaining dimensionless groups can be defined as

CaE = τγ

τEHD
= εE2∞ r0

γ
, Ma = τEHD

τMW
= μ+

τMWε+E2∞
. (18)

The electric capillary number CaE compares electric forces versus capillary forces, while the Mason number Ma character-
izes the importance of charge conduction against surface charge convection. Alternatively, we can combine CaE and Ma to 
construct a third dimensionless group CaMW to be independent of the electric field:

CaMW = τγ

τMW
= μ+(1+ λ) r0

γ τMW
= (1 + λ)CaEMa. (19)

For a given set of material properties, changing CaMW corresponds to varying the drop radius r0.
We scale the governing equations and boundary conditions using length scale r0, time scale τMW, pressure scale ε+E2∞ , 

and the characteristic electric potential E∞r0. In the remainder of this manuscript, all governing equations and boundary 
conditions are dimensionless, and results are presented in terms of the corresponding dimensionless variables.

2.3. Boundary integral formulation

The electric problem is formulated in integral form based on the solution to Laplace’s equation as [17–19]

ϕ(x0) = −x0 · E∞ −
ˆ

D

n · �∇ϕ(x)�G (x0; x) ds(x), for x0 ∈ V ±, D, (20)

where the evaluation point x0 can be anywhere in space, and x denotes the integration point on the interface. The free-
space Green’s function for Laplace’s equation, G (x0; x), captures the electric potential due to a point charge in an unbounded 
domain as
4



M. Firouznia, S.H. Bryngelson and D. Saintillan Journal of Computational Physics 489 (2023) 112248
G (x0; x) = 1

4πr
, where r = x0 − x, r = |r|. (21)

Taking the gradient of Eq. (20) with respect to x0 and using Gauss’s law (4), we derive an integral equation for the jump in 
the normal electric field as a function of the surface charge distribution:

−
ˆ

D

�En(x)�[n(x0) ·∇0G]ds(x) − 1+ Q

2(1− Q)
�En(x0)� = En∞(x0) − q(x0)

1− Q
, for x0 ∈ D. (22)

For a given charge distribution q(x), Eq. (22) can determine �En(x)�, from which En+ and En− follow as

En+(x) = q(x) − Q�En(x)�

1− Q
, En−(x) = q(x) − �En(x)�

1−Q
. (23)

The tangential electric field Et(x) = −∇sϕ(x) can be computed by differentiation of the electric potential (20) along the 
tangential direction. The interfacial jump in electric tractions � f E� follows from Eq. (12) based on the tangential and normal 
electric fields calculated at every point on the interface. This can be used to determine the jump in hydrodynamic tractions 
� f H� using the dynamic boundary condition (9) as

� f H� = −� f E� + Ca−1
E (∇s ·n)n, (24)

which enters the calculation of the velocity field, as explained next.
The flow problem is also recast into a boundary integral form as [34,35]

u(x0) = − 1

4π Ma (1+ λ)

ˆ

D

� f H(x)� ·G(x0; x)ds(x)

+ 1− λ

4π(1+ λ)
−
ˆ

D

u(x) · T (x0; x) ·n(x)ds(x), for x0 ∈ D.

(25)

Here, G is the free-space Green’s function for the Stokeslet or flow due to a unit point force in an unbounded domain, and 
T is the corresponding stress tensor:

G(x0; x) = I

r
+ rr

r3
, T (x0; x) = 6

rrr

r5
. (26)

Note that the integral equations (20), (22) and (25) exhibit singular behaviors of different orders as x approaches x0. This is 
due to the singularity of the Green’s function for Laplace’s (21) and Stokes equations (26). Conventional quadrature schemes 
have poor accuracy in the presence of singular integrands and may not converge by increasing the level of discretization. 
Therefore, accurate numerical integration requires special treatment of the singularities, which we will discuss in Sec. 3.3.

3. Numerical methods

We solve Eqs. (22) and (25) by building upon a spectral boundary integral method introduced by Zhao et al. [36]. This 
method was also previously applied to study vesicle dynamics under shear and extensional flows [37,38] as well as flows 
of confined red blood cells [39–41]. All variables, including the interfacial shape, velocity, and charge, are represented using 
truncated series of spherical harmonic expansions as discussed in Sec. 3.1. Nonlinear operations, geometrical quantities (such 
as mean curvature), and spatial derivatives are computed accurately using a nondissipative dealiasing method discussed 
in Sec. 3.2. The boundary integrals are computed using a quadrature scheme for the surface collocation points, with a 
special treatment for the singular integrands, as summarized in Sec. 3.3. Any changes to the volume and net charge of 
the drop due to numerical errors are corrected as explained in Sec. 3.4 to ensure numerical stability over long simulation 
times. In addition, we adopt a reparameterization technique in Sec. 3.5 to minimize the high-frequency component of 
the interfacial shape, which improves the stability of the numerical method for cases with significant deformations. We 
provide a convergence analysis for our numerical method in Sec. 3.6 and discuss the time step size restrictions for our 
time marching scheme. The code associated with the methods and simulations in this article is publicly available at https://
github .com /mfirouzn /EHD _Drop _3D [42].

At t = 0, the drop is uncharged with a spherical shape. The numerical algorithm used in this study follows that of Das 
and Saintillan [21], Firouznia and Saintillan [43], and Firouznia et al. [44]. We perform the following steps at every time 
iteration:

1. Given the current charge distribution q(x) and shape of the interface, compute �En(x)� by numerically inverting (22)
using GMRES [45]. From �En(x)�, we obtain En+(x) and En−(x) via (23).

2. Determine the potential ϕ along the interface by evaluating (20).
5
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3. Differentiate the surface potential numerically along the interface in order to obtain the tangential electric field E t =
−∇sϕ .

4. Knowing both components of the electric field, determine the jump in the electric traction � f E� and use it to obtain 
� f H� using (24).

5. Solve for the interfacial velocity using the Stokes boundary integral equation (25).
6. Compute ∂tq via (5) and update the charge distribution.
7. Update the position of the interface by advecting the grid with the normal component of the interfacial velocity: 

∂tx = (u ·n)n.
8. Apply corrections to the shape and charge distribution to ensure incompressibility and charge neutrality, as discussed 

in Sec. 3.4.
9. Reparametrize the interfacial shape following the method discussed in Sec. 3.5 to minimize high-frequency components 

in the spherical harmonic expansion.

The algorithm above describes a single time-marching step. In practice, we use a second-order Runge-Kutta method as 
discussed in Sec. 3.6.

3.1. Surface representation

The shape of the drop is assumed to be smooth and of spherical topology. Therefore, the surface is parameterized by a 
truncated series of spherical harmonic expansion from a rectangular domain S2 = {(θ, φ)| θ ∈ (0, π), φ ∈ [0, 2π)} to R3:

x(θ,φ) =
N−1∑
n=0

n∑
m=0

P̄m
n (cos θ) (anm cosmφ + bnm sinmφ) , (27)

where θ and φ are the latitude and longitude angles, and s = {anm, bnm} are the coefficients of the expansion in a compact 
form [46]. The representation above yields N2 spherical harmonic modes per each component of x (total of 3N2 modes). 
The normalized associated Legendre polynomials of degree n (n = 0, 1, 2, . . . ) and order m (m ≤ n) are defined as

P̄m
n (η) = 1

2n n!

√
(2n + 1) (n −m)!

2 (n +m)! (1− η2)m/2 dn+m

dxn+m
(η2 − 1)n, (28)

and satisfy the orthogonality condition

1ˆ

−1

P̄m
n (η) P̄m

n′ (η)dη = δnn′ . (29)

Similarly, the surface charge distribution is represented as

q(θ,φ) =
N−1∑
n=0

n∑
m=0

P̄m
n (cos θ)

(
ãnm cosmφ + b̃nm sinmφ

)
. (30)

The rectangular domain S2 is discretized based on the roots of the Legendre polynomial PN (cos θ) along θ , and uniformly 
along φ. Forward and backward transformations are performed using the SPHEREPACK library [47,48]. Partial derivatives of 
a given distribution can be computed using recurrence relations for the derivatives of the associated Legendre polynomials 
[47,49]. Besides the spectral accuracy, the spherical harmonic representation allows for nondissipative dealiasing, which 
improves the numerical stability of the simulations [36].

A local coordinate system is constructed at every point x(θ, φ) on the surface of the drop, using two tangent vectors 
a1,2 and the unit normal a3:

a1 = ∂θx, a2 = ∂φx, a3 = n = a1 × a2

|a1 × a2| . (31)

Consequently, the first and second fundamental forms of the drop surface have the following components:

Li j = ai ·a j, and Bij = ai, j ·n, (i, j = 1,2), (32)

which will be used in the subsequent derivations. Given a scalar function f (θ, φ) on the surface D defined by the parame-
terization introduced in (27), the surface gradient ∇s f is

∇s f =
(
L22 a1 − L12 a2

2

)
∂θ f +

(
L11 a2 − L12 a1

2

)
∂φ f , (33)
W W

6
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Fig. 2. Error in the mean curvature as a function of the number of modes used in the upsampled P -space. Two ellipsoids with l/b = 5 (prolate) and l/b = 0.2
(oblate) are investigated, representing the typical shapes of a drop due to EHD flows with large deformations. H∗ is the mean curvature computed on the 
finest upsampled grid and is chosen as a surrogate for the exact curvature values.

where W = (det L)1/2 is the area element. Similarly, the surface divergence of a vector field v(θ, φ) can be expressed as

∇s · v =
(
L22 a1 − L12 a2

W 2

)
·∂θ v +

(
L11 a2 − L12 a1

W 2

)
·∂φ v. (34)

In this study, we consider a drop of an incompressible fluid. In the absence of Marangoni effects, the capillary stress is a 
function of the mean curvature H :

H = 1

2
Tr(L−1B) = 1

2

(
L22 B11 − 2L12 B12 + L11 B22

W 2

)
. (35)

3.2. Aliasing errors

Samples of different functions may become indistinguishable on a discrete grid by so-called aliasing [50]. This means, for 
instance, that a high-frequency spherical harmonic basis function may be aliased to lower frequencies and cause numerical 
instability in the simulations. Nonlinear operations and differentiation broaden the deformation and charge distribution 
spectra on a drop. As a result, the energy is moved to frequencies not resolved by the grid resolution and may alias to 
the resolved frequencies [50]. Therefore, it is physically consistent with the discretization level to remove the corresponding 
energy from the solution.

Nonlinear operations that are susceptible to aliasing in our simulations include the calculation of mean curvature, elec-
trical stress, convective charge flux, and quadrature. We use a mesh with finer resolution M > N in the simulations to 
prevent aliasing errors and filter the solution following any nonlinear manipulation [36]. Our numerical experiments show 
that M/N = 2 is sufficient for lower-order and polynomial nonlinearities. For higher-order and non-polynomial nonlinear 
manipulations such as those incurred in calculating mean curvature and charge convection, we use an adaptive algorithm 
that follows Rahimian et al. [49]. Given a function f M sampled over an M-grid (2M2 points in physical space and M2

spherical harmonic modes), one can interpolate the distribution on a finer P -grid (P/M = u f > 1) by upsampling:

sP = {anm, bnm}P =
{

{anm, bnm}M , for n ≤ M and 0 ≤m ≤ n,

0, for n > M.

The upsampling factor u f can be determined based on the desired tolerance. Fig. 2 shows how the error in the mean 
curvature decays as a function of the finer grid resolution P for oblate and prolate spheroids representing typical drop 
shapes subject to an electric field.

3.3. Numerical integration

This section summarizes the numerical integration scheme used in this study, which follows that used by Zhao et al. [36]. 
The boundary integrals in (20), (22), and (25) can be written in the general form

I(x0) =
ˆ

K (x, x0) f (x)ds(x) =
ˆ

2

K (x(θ, φ), x0) f (x(θ,φ)) J (x(θ,φ)) sin θ dθ dφ, (36)
D S

7
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where f (θ, φ) is a smooth scalar function over surface D , and K is the kernel containing the Green’s function for Stokes or 
Laplace’s equations.

The approximate spacing of a mesh with N × 2N points is h = √
A/2N2, where A is the drop surface area. Due to 

the singular behavior of K as x0 → x, the drop surface D is divided into two regions where the integral I has different 
behaviors. Following the method of floating partition of unity [51,52,36], a local polar patch is considered centered around 
x0. For any point x on D , ρ(x, x0) is defined as the distance along the great circle that connects x to x0 on S2. In the next 
step, a mask function is defined based on this coordinate as

η(ρ) =
⎧⎨
⎩exp

(
2e−1/t

t − 1

)
, for t = ρ/ρ1 < 1,

0 for ρ ≥ ρ1,

where ρ1 is the cutoff radius. This representation allows for accurate calculation of the integral (36) as η is a smooth 
function.

Next, the surface integral (36) is split into two parts:

I = I1 + I2 =
ˆ

D

K (x, x0)η(ρ(x, x0)) f (x)ds(x) +
ˆ

D

K (x, x0) [1 − η(ρ(x, x0))] f (x)ds(x). (37)

The integrand of I1 has support only inside the patch.
Using a transformation to the local polar coordinate system (ρ, ϕ), we write:

I1 =
2πˆ

0

ρ1ˆ

D

K (x, x0)η(ρ) f (ρ,ϕ) sinρ dρ dϕ, (38)

where the integrand is finite and periodic in ϕ . The integral (38) is computed using Gauss quadrature along ρ from 0 to ρ1, 
with a uniform mesh in ϕ from 0 to 2π . We set the patch radius on the reference sphere to ρ1 = π/

√
N , which means the 

patch radius is O (h1/2) in R3. Inside the patch, 
√
N points are considered along ρ , and 2

√
N points along ϕ . We note that 

the quadrature points inside the patch do not coincide with the surface mesh points. Therefore, bi-cubic spline interpolation 
is used to evaluate the coordinates and other functions at quadrature points of I1. The error of singular integration with 
the mentioned choice of patch size is O (h3) [52]. Higher-order accuracy can be achieved using a larger patch size at the 
expense of computational cost.

The second part of integral (37) is I2, which has a smooth integrand. Therefore, it is computed accurately as:

I2 ≈
N∑

i=1

2N∑
j=1

K (xi j, x0)η(ρ(xi j, x0)) f i j J i j wij, (39)

where xi j = x(θi, φ j) are the quadrature points, wij are the corresponding weights and J i j is the Jacobian of the transfor-
mation from S2 to R3. The quadrature (39) converges exponentially with the mesh size h, using quadrature points with 
Gaussian and uniform distributions along the θ and φ directions, respectively. Further details on the numerical integration 
scheme can be found in Zhao et al. [36].

3.4. Incompressibility and charge neutrality

We expect no change in the drop volume, as both fluid phases are incompressible. However, small changes in the volume 
occur due to numerical errors, which we correct by adjusting the shape of the drop along the normal direction [36]. In the 
reported simulations, the magnitude of these adjustments is smaller than 10−8r0 at every time step, where r0 is the initial 
drop radius. Similarly, the net charge (less than 10−17εE0) is subtracted from the surface charge distribution at every time 
step to ensure charge neutrality throughout the simulations. The mentioned corrections are especially important for long 
simulation times.

3.5. Reparametrization

The fluid-fluid interface of the drop evolves and deforms. During this process, there is no physical mechanism to in-
hibit in-plane distortions of the grid (i.e., depletion, aggregation, and skewness) since there is no bending rigidity, in-plane 
shear resistance, or surface inextensibility. High-frequency components of the spherical harmonic expansions thus grow, 
exacerbating aliasing errors and resulting in numerical instability. In addition to correcting aliasing errors, as explained in 
Sec. 3.2, one must develop a reparameterization strategy that ensures stable and accurate simulations over long simulation 
times. Here, we use an algorithm that minimizes the high-frequency components in the spherical harmonic expansion of 
8
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the surface parametrization. This method was introduced by Veerapenani et al. [53,49] and improved by Sorgentone and 
Tornberg [54].

Consider an implicit representation of the interface as a smooth function F : R3 �→ R such that F (x) = 0 for all x ∈ D
where D is the drop surface. The unit normal vector can be expressed as n = ∇F/|∇F | at every point on the surface. 
We define a quality metric E : X �→ R where X is the space of smooth functions defined over D . Now, we can view the 
reparameterization problem as a minimization of E(x) subject to the constraint F (x) = 0 as

min
x∈D

{E(x)} subject to F (x) = 0. (40)

It can be shown that the solution to the problem above is

(I − n(x)n(x)) ·∇E(x) = 0, and F (x) = 0. (41)

The choice of quality metric E(x) is not unique and could vary depending on the reparametrization strategy. [53] proposed 
an equivalent of the following quality metric:

E(x) =
N−1∑
n=0

n∑
m=0

αnm

(
|anm|22 + |bnm|22

)
, (42)

where |y|2 is the L2 norm of vector y, and αnm is the weight for (n, m)-th spherical harmonic. E , as defined in (42), can 
be viewed as the spectral energy of the parametrization. We aim to minimize the high-frequency part of x. Therefore, the 
weights αnm must be small for low frequencies and larger for high frequencies. Here, we use the following perfect low-pass 
filter

αnm =
{
1, for n > Ncutoff,

0, for n ≤ Ncutoff,

that was used [53,54] to simulate vesicles and surfactant-laden drops and improved long-time simulations. Ncutoff is the 
cutoff frequency and is chosen adaptively based on the energy spectrum as

Ncutoff = min{k ∈N, 1 ≤ k ≤ N − 1 | Ek/E1 ≤ Pcutoff}, (43)

where Ek = ∑N−1
n=k

∑n
m=0 αnm(|anm|22 + |bnm|22) and Pcutoff determines the fraction of modes we penalize (Pcutoff = 0.2 in our 

simulations) [54].
We solve (41) by marching in pseudo-time τ along the tangential direction at every point:

∂τ x+ (I − n(x)n(x)) ·∇E(x) = 0, with x(τ = 0) = x0. (44)

However, following (44) the volume is not necessarily conserved. In addition, the charge distribution is distorted and hence 
not spectrally accurate. We use the method of Sorgentone and Tornberg [54] to address these challenges. We project the 
linear pseudo-velocity ∂τ x along the latitudinal and longitudinal directions to obtain the angular pseudo-velocity (∂τ θ, ∂τ φ). 
This strategy comprises updates of the angular coordinates (θ, φ) for every point and uses the original spherical harmonic 
expansions for the shape and charge distribution to interpolate the updated distributions. Using the chain rule,

∂τ x = ∂x

∂θ

∂θ

∂τ
+ ∂x

∂φ

∂φ

∂τ
= a1 ∂τ θ + a2 ∂τ φ. (45)

Next, we project ∂τ x along the tangential directions by taking inner products with a1 and a2:

∂τ x ·a1 = |a1|2 ∂τ θ + a1 ·a2 ∂τ φ, (46)

∂τ x ·a2 = a1 ·a2 ∂τ θ + |a2|2 ∂τ φ. (47)

The solution to (46) and (47) is

∂τ θ = L−1w, (48)

where ∂τ θ = {∂τ θ, ∂τ φ}T and w = {∂τ x ·a1, ∂τ x ·a2}T , and L is the surface metric defined in (32). We update the angular 
coordinates of every grid point by marching explicitly in pseudo-time to obtain new angles (θ∗, φ∗). Using the new angular 
coordinates, we interpolate the position and surface charge at every point based on the spherical harmonic expansions of 
the grid before reparametrization (at τ = 0):
9
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Fig. 3. (a) Large deformations and strong flow degrade the grid when a drop of system S5 is subject to (CaE, Ma) = (0.35, 5.75) without reparametrization. 
(b) Using reparametrization for the same system maintains the quality of the grid towards the steady state (Pcutoff = 0.2, τ = 1.0). Both simulations are 
performed with N = 18 and M = 2N . The steady charge profiles and shapes are compared between the two cases in (c) and (d), respectively. Inset of (d) 
shows the evolution of deformation parameter D.

Table 1
Systems studied using simulations and their dimensional and non-dimensional parameters. We use μ+ = 0.69 Pa s, γ = 4.5 mNm−1, and ε0 = 8.8542 ×
10−12 Fm−1 denotes the permittivity of vacuum.

system Q R λ CaE Ma σ+ (Sm−1) ε+/ε0 r0 (mm)

S1 0.57 36.59 1.41 0.05− 0.75 0.21− 3.25 4.5× 10−11 5.3 0.7
S2 0.57 36.59 1.41 0.05− 0.75 0.65− 9.75 4.5× 10−11 5.3 2.1
S3 0.57 36.59 14.12 0.01− 1.44 0.28− 5.0 4.5× 10−11 5.3 0.25, 0.75, 1.25, 1.75
S4 0.60 10.56 0.07 0.15− 1.0 0.43− 2.86 3.8× 10−11 4.7 1.9
S5 1.37 0.1 1.0 0.35 5.75 4.5× 10−11 5.3 1.37

x∗(θ∗, φ∗) =
N−1∑
n=0

n∑
m=0

P̄m
n (cos θ∗)

(
a0
nm cosmφ∗ + b0

nm sinmφ∗) , (49)

q∗(θ∗, φ∗) =
N−1∑
n=0

n∑
m=0

P̄m
n (cos θ∗)

(
ã0nm cosmφ∗ + b̃0nm sinmφ∗) . (50)

Finally, a forward (FSHT) and backward (BSHT) spherical harmonic transformation of x∗ and q∗ yields distributions on a 
standard grid that is spaced uniformly along φ and Gaussian along θ :

x∗ FSHT−−→ {anm, bnm} BSHT−−−→ x, (51)

q∗ FSHT−−→ {ãnm, b̃nm} BSHT−−−→ q. (52)

Fig. 3 shows the effect of reparametrization when a drop of system S5 (see Table 1 for material properties) undergoes 
large prolate deformations when subject to (CaE, Ma) = (0.35, 5.75). In the absence of reparametrization, the grid quality 
decreases, especially near the drop poles where the grid points are depleted. This results in an inaccurate prediction of 
the overall behavior of this system, especially considering the fact that the charge concentration is maximum around the 
poles. We note that this system was previously studied by Lac and Homsy [19] using an axisymmetric model and a simpli-
fied charge conservation equation that only accounted for Ohmic conduction. We observe that including interfacial charge 
convection amplifies the deformation and has a quantitative effect on the behavior of the system, consistent with previous 
studies on the dynamics of prolate drops [26,20].

3.6. Convergence analysis and time step restriction

We study the overall convergence of our numerical method in Fig. 4(a) for model system S2, which reaches a steady 
state. For the purpose of estimating errors, we take the numerical solution on the finest grid, N∗ = 32, as a surrogate for 
the exact solution. We plot in Fig. 4(a) the relative L2 errors in the steady-state charge density distribution, surface velocity 
field, and drop shape. Convergence of these fields is observed with a rate ∼ O (N−α) where 4.11 ≤ α ≤ 5.44. The relative 
10
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Fig. 4. (a) Numerical convergence for drop shape, charge density distribution, and the velocity field. The numerical solution with N∗ = 32 is considered as 
the reference. The plot shows the relative error for each field, defined in Eq. (53), as a function of grid resolution N . (b) Critically stable time step size 
�tc as a function of N . The dashed line represents a first-order variation O (N−1). A drop of system S2 is considered in both cases, with M = 2N and 
(CaE, Ma) = (0.2, 2.44).

Fig. 5. Axisymmetric regime: evolution of a drop of system S2 subject to a uniform electric field with CaE = 0.2 (N = 8, M = 3N). Colors show the 
interfacial charge density q, while arrows show the interfacial fluid velocity. Also see Video 1 in the Supplemental Material.

error plotted in Fig. 4(a) is defined as:

eg =
√´

D |g − g∗|2 ds√´
D |g∗|2 ds

, where g ∈ {q, v, x}. (53)

An efficient time marching scheme needs to strike a balance between computational costs and mitigating numerical er-
rors in the charge density distribution and drop shape. The most computationally expensive part of our numerical method 
is the solution of the Stokes and Laplace’s integral equations, which we limit to twice per time step. Our numerical experi-
ments show that an explicit second-order Runge-Kutta scheme performs sufficiently well in most cases, and all simulations 
shown in the paper were performed using that scheme.

Fig. 4(b) shows the critical time step size for numerical stability, �tc , as a function of resolution N for the same model 
system S2. We determine �tc using the bisection method by starting from a large time step value. A time horizon of T = 40
(in units of τMW) is chosen such that the system reaches steady state. If the simulation is found to be numerically unstable, 
we divide the time step size in half and repeat the process until we reach the maximum time step size required for stability, 
�tc . As shown in Fig. 4(b), our method shows first-order behavior with �tc ∼ O (N−1). Numerical tests further show that 
increasing the electric capillary number up to moderate values CaE ≤ 0.5 only reduces �tc by a small amount (less than 
3%).

4. Numerical results

In this section, we compare the results of our numerical method with existing theoretical solutions and previous compu-
tational and experimental studies on electrohydrodynamic flows in drops. In all simulations, the drop is initially uncharged 
(q = 0) and spherical. Table 1 lists all physical systems considered in this study, including their dimensional and non-
dimensional parameters.
11
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Fig. 6. Steady drop deformation as a function of electric capillary number CaE for systems S1 in (a) and S2 in (b). Results from our spectral boundary 
integral method (SBIM) are compared with the experimental data (EXP) of Salipante and Vlahovska [55], along with axisymmetric and three-dimensional 
boundary integral simulations (BIM) by Das and Saintillan [21,16] and various small-deformation theories (SDT) [8,9,16]. We use N = 8 and M = 3N in the 
simulations shown here.

4.1. Axisymmetric regime

Under weak electric fields (CaE � 1), the drop adopts a steady axisymmetric shape and charge distribution, as shown in 
Fig. 5. Following the pioneering work of Taylor [8], various analytical models have been proposed to improve the predictions 
of the steady shape of a drop subject to weak electric fields and small deformations [34,16]. We characterize the deviation 
from the spherical shape using Taylor’s deformation parameter D defined as

D = l − b

l + b
, (54)

where l and b are the lengths of the major axes of the drop in the directions parallel and perpendicular to the applied 
electric field (see Fig. 1). Fig. 6 shows the steady-state deformation D from our simulations compared to the predictions of 
different small-deformation theories (SDT), prior numerical simulations, as well as experimental data. As shown in Fig. 6, 
our simulation results closely match the experimental data and past predictions. In agreement with past studies [20,16,
21], interfacial charge convection by the fluid flow plays a significant role in the dynamics and tends to weaken drop 
deformations.

4.2. Quincke regime

Upon increasing the intensity of the electric field, the drop can undergo a symmetry-breaking bifurcation to a dynamical 
regime characterized by a rotational component to the EHD flow, as shown in Fig. 7 [56,57,55]. When RQ > 1, the induced 
flow is from the poles to the equator, and the induced electric dipole is anti-parallel to the applied electric field. This 
condition is unfavorable for stability as perturbations to the system result in a destabilizing electric torque that can drive 
spontaneous rotation beyond a critical electric field strength Ec. Quincke first observed a similar phenomenon in solid 
spheres subject to uniform electric fields [58]. In solid spheres, the threshold for Quincke electrorotation is given by [59]

Ec =
√

2μ+
3ε+ τMW (ε̄ − σ̄ )

, where σ̄ = σ− − σ+

σ− + 2σ+ , ε̄ = ε− − ε+

ε− + 2ε+ . (55)

Fig. 7 shows the velocity field and charge distribution in a leaky dielectric drop during Quincke electrorotation. Following 
the onset of instability, the drop tilts away from its initial orientation. The tilt angle α and deformation oscillate until they 
reach their steady-state values. Fig. 8 shows the steady-state tilt angle and deformation as functions of the applied electric 
field E∞/Ec for a drop of the system S3. For a given set of material properties, different values of CaMW correspond to 
different drop sizes, and the effect of capillary forces is stronger for smaller drops (small CaMW). Therefore, we expect the 
drop tilt angle α to approach that of a solid sphere β [59,55]:

β = π

2
− arctan

(
E2∞
E2
c

− 1

)− 1
2

, for E∞ ≥ Ec, (56)

for sufficiently large λ and small CaMW. This is verified in Fig. 8(a), where the green curve for CaMW = 0.44 closely follows 
the black line corresponding to β .
12
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Fig. 7. Quincke regime: spontaneous rotation and tilt of a drop of system S3 subject to an applied electric field with E∞/Ec = 1 and CaMW = 1.32
(N = 10, M = 3N). The tilt angle α is measured from the initial orientation of the drop as depicted. See Video 2 in the Supplemental Material, which 
shows the evolution of the drop in the Quincke regime.

Fig. 8. Steady tilt angle α (a), and deformation D (b) as functions of the applied electric field E∞/Ec for different values of CaMW (different r0) for system 
S3. The solid black line in (a) shows the tilt angle β of a rigid sphere. Filled markers in (b) show cases where Quincke electrorotation occurs. We used 
N = 10 and M = 3N in all simulations.

4.3. Low-viscosity drops

When a leaky dielectric drop with RQ < 1 is subject to a uniform electric field, it compresses along the field direction. 
The induced quadrupolar flow is from the poles to the equator at the interface. Under weak electric fields, the characteristic 
interfacial velocity is:

uT = 9

10

R(RQ− 1)

(2R+ 1)2 (1+ λ)
r0τ

−1
EHD (57)

based on Taylor’s classic solution [8]. According to Eq. (57), we expect the EHD flow to be stronger in low-viscosity drops 
(λ < 1) as uT ∝ (1 + λ)−1. As we increase the intensity of the applied electric field, low-viscosity drops may undergo 
different types of EHD instabilities, such as dimpling, equatorial streaming, or Quincke rotation, depending on their material 
properties [60]. In other experiments, colloidal particles adsorbed on a drop interface were observed to accumulate at the 
equator and form a belt, which broke into vortices of particles [61,62]. In this section, we study the dynamics of an oblate 
drop with a small viscosity ratio λ < 0.1, represented by S4, which is similar to the systems studied in [62].

Our results show that charge convection significantly affects the system’s dynamics in this regime. As a result of the 
nonlinear coupling between the flow and charge dynamics, strong charge gradients build up around the equator, as shown 
in Fig. 9. The nonlinear steepening disappears when we switch off the convective term in the charge conservation equation 
(5). Therefore, we can conclude that the charge convection is responsible for the nonlinear behavior mentioned. This can be 
verified in Fig. 9(c) by comparing the charge profiles for simulations with and without convection. The convergent EHD flow 
sweeps charges of opposite signs towards the equator, which is the stagnation line of the flow where the electric field is 
locally tangent to the interface. It has been shown that in systems where an interface is subject to a tangential electric field 
and a converging flow, strong charge gradients develop around the stagnation line due to the effect of charge convection 
[44].

The emergence of sharp local features in the charge profile poses a fundamental challenge for our numerical method, as 
spectral methods are most efficient for smooth field variables. It is known that large gradients or discontinuities in a function 
result in Gibbs phenomenon or ringing artifacts in its spherical harmonic representation [63]. Following the emergence of 
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Fig. 9. Charge dynamics in a low-viscosity drop of S4 with (CaE, Ma) = (0.3, 1.43): steady-state velocity and charge density fields in the presence of 
charge convection (a), and with no convection (b), and the corresponding charge profiles along the direction of the applied electric field (c). We used 
N = 8, M = 3N in both simulations.

Fig. 10. WSH convergence study on a drop of S4 with (CaE, Ma) = (1.0, 0.43): (a) Error in the steady-state charge density distribution as a function of 
mesh resolution N for a fixed value of δ = 10−3 (N∗ = 42). Open markers correspond to cases with ringing artifacts. (b) Error in the steady-state charge 
density distribution as a function of relaxation factor δ (N∗ = 80, δ/δ0 = 0.75 and δ0 = 10−4 for q∗

WSH). (c) Interfacial charge profiles corresponding to (b). 
See Video 3 for N∗ = 80, δ/δ0 = 0.75 and δ0 = 10−4 in the Supplemental Material.

ringing artifacts, spurious oscillations cannot be contained locally as spherical harmonics are global basis functions. This 
phenomenon occurs due to the inability of the finite spherical harmonic expansions to properly represent the infinite (or 
very large) derivatives in the sharp regions of a discontinuous (or nearly discontinuous) function.

For relatively small electric capillary numbers CaE < 0.2, we can suppress ringing artifacts by using a finer mesh cor-
responding to a larger number of spherical harmonics modes, a more restricted time step size, and, therefore, a higher 
computational cost. However, due to the stronger effect of charge convection at larger values of CaE, refining the resolution 
is insufficient to remove the ringing artifacts when CaE is increased.

To resolve this problem, we propose a weighted spherical harmonic expansion (WSH) for the charge density distribution, 
where the contribution from high-frequency components is exponentially relaxed [64]. For a given charge density distribu-
tion q(θ, φ), the spherical harmonic expansion (30) gives coefficients s̃ = {ãnm, b̃nm} where n = 0, 1, 2, . . . , N −1 and m ≤ n. 
Accordingly, we define WSH: q �→ qWSH as:

qWSH(θ,φ) =
N−1∑
n=0

n∑
m=0

e−n(n+1)δ
(
ãnm cosmφ + b̃nm sinmφ

)
P̄m
n (cos θ), (58)

where δ is the relaxation factor. Based on (58), we note that WSH does not affect the mean, and qWSH converges to q in the 
limit of δ → 0. In Fig. 10(a), we demonstrate that increasing the mesh resolution at a fixed value of δ eliminates the ringing 
artifacts. In addition, Fig. 10(b) shows that the steady-state charge profile at a fixed resolution converges as the relaxation 
factor δ decreases. We combine both approaches and increase N while decreasing δ to refine the numerical solution while 
avoiding the emergence of ringing artifacts. The numerical solution with the finest resolution, N∗ = max(N), is then chosen 
as a surrogate to the exact solution in Fig. 10(a,b). To compare the charge profiles computed on different mesh resolutions, 
we upsample them to a fine grid with Nu > N∗ . Convergence of the charge profile is illustrated in Fig. 10(c), where the 
coupling of the flow and charge dynamics is found to result in the formation of strong gradients in the charge density 
profile near the equator, consistent with previous studies [16]. We note that our simulations for system S4 under electric 
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capillary numbers of up to CaE ∼ O (1) reach a steady axisymmetric profile and do not exhibit any electrohydrodynamic 
instability, suggesting that the equatorial vortices observed by Ouriemi and Vlahovska [62] could be a consequence of the 
colloidal particles present at the interface in their experiments.

5. Conclusions

We developed a spectral boundary integral method for simulating electrohydrodynamic flows in leaky dielectric vis-
cous drops. The drop surface, charge density, and all other variables are represented using truncated series of spherical 
harmonic expansions. In addition to the excellent accuracy of the spectral representation, it enables us to develop a nondis-
sipative dealiasing method required for numerical stability. The charge transport is modeled using a conservation equation 
for Ohmic conduction from the bulk and surface charge convection by the flow and finite charge relaxation. We employ a 
reparametrization technique which allows us to explore regimes where drops undergo significant deformations. Our results 
closely match the existing experimental data and analytical predictions in the axisymmetric Taylor and Quincke electrorota-
tion regimes. The code used in this article is publicly available at https://github .com /mfirouzn /EHD _Drop _3D [42].

Moreover, our simulations confirmed that the dynamics of low-viscosity drops are strongly influenced by interfacial 
charge convection. In this regime, the interplay between the flow and charge dynamics results in steep gradients in the 
interfacial charge density. The development of these sharp features in the charge density profile results in the formation 
of ringing artifacts due to the Gibbs phenomenon. Increasing the mesh resolution would eliminate the Gibbs phenomenon 
under relatively small electric capillary numbers CaE < 0.2. However, the effect of nonlinear steepening by the flow is 
sufficiently strong at larger CaE that increasing the resolution does not prevent ringing. To solve this problem, we introduced 
a weighted spherical harmonic transformation that serves as a relaxation method to exponentially damp high-wave-number 
coefficients. The convergence of our numerical solution with decreasing level of relaxation shows that it provides a close 
approximation to the true solution in this regime. Further characterizing the system’s dynamics in this regime will require 
more sophisticated numerical methods for solutions containing discontinuities.
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