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Understanding the transport properties of microorganisms and self-propelled particles in porous media has
important implications for human health as well as microbial ecology. In free space, most microswimmers
perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation
mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium,
collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from
its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point
particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a
random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions.
The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle
surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We
show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance
function f (¢, Pe) of the obstacle area fraction ¢ and Péclet number Pe, or ratio of the swimmer run length to the
obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media
(Pe ¢ < 1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model
is also easily generalized to describe dispersion in three dimensions.
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I. INTRODUCTION

Self-propelled particles, from motile microorganisms to
synthetic microswimmers, perform random walks in space
that allow them to explore their environment, for instance in
their quest for oxygen or nutrients. These random dynamics
result from the interplay of self-propulsion and orienta-
tional fluctuations, which cause stochastic changes in their
swimming direction. One classic example is the case of
run-and-tumble bacteria, which perform straight runs in a
given direction alternating with random reorientation events
known as tumbles that are driven by the rapid unbundling
and rebundling of their flagella. As first explained by Berg
[1], the resulting random walks lead to diffusive spreading
at long times, with a mean squared displacement growing
linearly with time as (|Ar|?) ~ 2dDyt, where d is the spa-
tial dimension and Dy is an effective diffusivity. Under the
assumptions of instantaneous and uncorrelated tumbles and
of exponentially distributed run times, a simple random walk
model predicts Dy = v%?/ 3 in three dimensions (3D), where
vo and T are the constant run speed and mean run time,
respectively. These stochastic dynamics play a key role in
various transport strategies such as chemotaxis, where bac-
teria can bias their tumbling frequency based on the local
concentration of a chemical, resulting in a net drift along the
chemical gradient. While synthetic microswimmers do not
perform run-and-tumble dynamics, they typically experience
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rotational Brownian motion, which also leads to correlated
random walks and diffusive spreading on long time scales [2].

Motile bacteria and other microorganisms often reside in
complex environments such as soils or tissues, where their
frequent interactions and collisions with the microstructure
strongly affect their motions. Understanding active dispersion
in such systems is key to a variety of problems in soil ecology,
biofouling, and bioremediation, as well as in medicine where
it affects the spread of bacterial infections. Additionally, the
potential of engineered active particles lies in their ability to
navigate complex geometries, be it in laboratory-on-a-chip
devices or inside living organisms for drug-delivery appli-
cations. Our fundamental understanding of basic transport
properties of active particles in heterogeneous random media
remains, however, incomplete [3].

Recent microfluidic experiments using either living mi-
croorganisms or synthetic self-propelled particles have started
to shed light on the physics of active transport in these com-
plex environments [4,5]. The ability to fabricate model porous
media of controlled porosity and microstructure provides a
useful tool for probing the role of geometry and crowding
in determining long-time dispersion. In both random [6-14]
and periodic [15-20] media, the leading effect of the porous
microstructure is to hinder particle transport as a result of
frequent collisions between microswimmers and obstacles,
resulting in a decrease in the effective diffusivity with the
volume fraction of the medium. While the precise nature of
the scattering dynamics occurring at obstacles is found to
depend on the type of microswimmer [21-26] and potential
role of hydrodynamic interactions [27,28], all self-propelled

©2023 American Physical Society


https://orcid.org/0000-0001-9948-708X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.064608&domain=pdf&date_stamp=2023-12-14
https://doi.org/10.1103/PhysRevE.108.064608

DAVID SAINTILLAN

PHYSICAL REVIEW E 108, 064608 (2023)

particles in confinement have a tendency to accumulate at
boundaries [29-34], with the effect of reducing their run
length, thereby impeding transport. In strongly confined en-
vironments (low-porosity media), motile bacteria have even
been observed to abandon run-and-tumble dynamics in favor
of other more efficient transport strategies [11,12]. The role
of obstacle shape has also been considered, with asymmet-
ric obstacles potentially giving rise to rectified motion [35].
Finally, a few experiments have considered the role of an
externally applied flow [16,36], which has a strong effect on
mean transport and dispersion by reorienting the swimmers in
the fluid shear generated by the microstructure [13,37,38].

Modeling efforts aimed at predicting dispersion in complex
media have been more limited, due in part to challenges in
accounting for details of the scattering dynamics and porous
medium geometry. On the computational side, various nu-
merical simulations have been performed based on the active
Brownian particle (ABP) model in porous media described
as random distributions of obstacles [14,39,40] as well as
in periodic post arrays [41-43], including in the presence
of hydrodynamic interactions [44]. Analytical predictions,
however, have been very scarce, with a few exceptions. The-
oretical models have been proposed for transport of active
particles in cubic lattices in the presence of obstacles [45,46]:
while these models allow for analytical predictions, their un-
derlying assumptions make them difficult to compare with real
systems. In periodic geometries, generalized Taylor disper-
sion theory has been applied to estimate effective transport
coefficients such as the mean velocity and long-time dif-
fusivity of ABPs [43]. Very recently, the case of random
media was also addressed using a continuous random walk
approach modeling the effect of interactions with the porous
microstructure as random trapping events [47]. Yet, a general
theoretical framework able to yield closed-form expressions
for the diffusivity in a random medium remains lacking, even
under the most basic assumptions.

Here, we propose a minimal theoretical model for the
dispersion of microswimmers through a disordered medium.
We consider point-like run-and-tumble microswimmers trav-
eling in two dimensions through the interstices of a random
distribution of circular obstacles in the absence of Brownian
diffusion or hydrodynamic interactions. Simple interaction
rules are adopted whereby a swimmer colliding with an
obstacle simply slides on its surface without friction while
maintaining its orientation, until it either tumbles or escapes
by swimming away tangentially to the surface. A related
model was proposed by Jakuszeit ef al. [42] to analyze trans-
port through periodic arrays; we apply it to the case of random
disordered media. As we show below, the effect of collisions
with the microstructure on the diffusivity can be captured
by a dimensionless hindrance function f(Pe, ¢), which is a
function of the Péclet number Pe = vyT/a, or ratio of the
mean run length vyT to the obstacle radius a, and of the mean
area fraction ¢ of the obstacles. The objective of the paper is to
determine f, which we calculate analytically in the dilute limit
defined as Pe ¢ < 1, and numerically for arbitrary values of
Pe and ¢. As we explain, the model is also easily generalized
to three dimensions.

The paper is organized as follows. Details of the problem
formulation and diffusivity calculation are provided in Secs. II

and III, respectively. The limit of dilute media is analyzed
theoretically in Sec. IV, and results from the theory are dis-
cussed and compared to numerical simulations with varying
porosities in Sec. V. We discuss the extension of the model to
3D in Sec. VI and conclude in Sec. VII.

II. PROBLEM DEFINITION

We analyze the dispersion of noninteracting run-and-
tumble microswimmers traveling through the interstices of a
random porous medium in two dimensions. The medium is
composed of identical nonoverlapping circular pillars of ra-
dius a, with area fraction ¢ = N,ma?/L* where L is the linear
dimension of the square domain and A, is the total number
of pillars. The assumption of identical pillars is convenient
for theoretical analysis but will be relaxed in some of the
simulations of Sec. V. The system is assumed to be large
enough that swimmers remain far away from any domain
boundaries at all times; in simulations, we will make use of
periodic boundary conditions.

In free space (no pillars), the microswimmers perform sim-
ple run-and-tumble dynamics as depicted in Fig. 1(a): straight
runs with constant velocity vy and run time t alternate with
instantaneous reorientation events. The run time is a random
variable governed by a probability density function p(t) with
mean value T. We will consider two cases:

8(t—7T) constant run time,

T)= 1
p() 7 'exp(—t/T) exponential distribution. )

The exponential distribution provides a good approximation
to the distribution of run times for E. coli [48] and has been
widely used in models of bacterial run-and-tumble. More de-
tailed measurements, however, have shown deviations from
the exponential model [49] and have highlighted strong tem-
poral variability in single cells [50,51]; we neglect these
effects here. Given vy and 7, we define the run length £ = vy,
or distance traveled by the swimmer between two tumbles in
the absence of pillars, with mean value = vyT.

In a porous medium [Fig. 1(b)], microswimmers can col-
lide with pillars, and these collisions alter their trajectories,
leading to scattering. We propose a minimal model for colli-
sions based on the following assumptions:

(i) Swimmers are point particles that interact with pillars
via a hard-sphere potential.

(i) When a swimmer collides with a pillar, its orientation
and run time remain unchanged.

(iii) After impact, the swimmer slides along the pillar sur-
face with the tangential component of its swimming velocity,
and no resistance to sliding.

(iv) If the swimmer’s orientation becomes tangent to the
surface, it escapes from the pillar and continues its run in a
straight line, possibly encountering additional pillars before
the end of the run.

(v) If the run time elapses before the swimmer is able
to escape, the run ends on the pillar surface where the next
tumble takes place.

The four types of runs (no collision, collision with no
escape, collision with escape, and multiple collisions) are
depicted graphically in Fig. 2. When a collision occurs, we
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FIG. 1. Typical trajectories of run-and-tumble particles (a) in
free space and (b) in a two-dimensional porous medium, for a
duration of 30 runs. In each case, the run time is exponentially
distributed and pre- and posttumble orientations are uncorrelated. In
(b), the porous medium has a pillar area fraction of ¢ = 0.62 with a
random Gaussian distribution of pillar radii with standard deviation
o,/a =0.5, and the Péclet number based on the mean radius is
Pe = ¢/a = 2.0.

denote by 7. the time to collision from the start of the run,
and by 7, the remaining time in the run after collision, so that
7. + . = 7. Runs with multiple collisions can be recursively
modeled as sequences of single-collision runs with reduced
run times. Any of the runs depicted in Fig. 2 can either start
with the swimmer in the bulk or on the surface of a pillar. Note
that 7, = 0 in cases where a run starts on the surface of a pillar
with the swimmer pointing into the pillar.

While 7 is assumed to be unaffected by collisions, note
that the actual distance traveled by a swimmer colliding with
apillar is in fact shorter than vy 7. In this case, we will continue
to use the variable £ to denote the unimpeded run length vyt.
In a porous medium, system properties are entirely governed
by two dimensionless numbers: the area fraction ¢ introduced
above, as well as Pe = vyT/a = £/a, which compares the
persistence length of swimming trajectories to the pillar size
and can be interpreted as a swimming Péclet number.

duration = run time 7

(a) no collision @ =0
Tr
collision Te /
b + @ c
no escape
Te+Tr =T
C T TT
collision Te 1% / E
(c) + ¢
escape
colhslon
Cn
(d) cscape E1
G
colhslon
—> run ® tumble collision escape

FIG. 2. Types of possible displacements during a single run of
total duration 7. If the swimmer collides with a pillar (point C), it
can either escape (point E) or end its run on the pillar. The time to
collision is 7., whereas 7, = T — 7, is the remaining time in the run
after collision.

The assumptions made here greatly idealize the dynamics
of real microswimmers near walls, which are usually more
complex. In particular, assumptions (i)—(iv) are incompatible
with hydrodynamic interactions, which can lead to a long-
ranged coupling between swimmers and pillars and reorient
swimmers during collisions as seen in various experiments
[7,22,27,52,53] and models [28,54]. In experimental systems,
other effects can also impact orientation dynamics, including
direct steric contacts, especially in the case of flagellated
swimmers [21,22,54] and rodlike swimmers [53], as well
as chemical interactions in the case of phoretic swimmers
[6,24,55,56]. This reorientation at boundaries in turn leads
to scattering at angles that are nontangent with the surface.
The assumption of frictionless sliding is also an approxima-
tion, as either lubrication layers or surface roughness would
come into play and affect tangential motion in experiments.
Nevertheless, this minimal model provides a simple baseline
for understanding the effect of collisions on average transport
properties.

III. DIFFUSIVITY CALCULATION

As they travel through the medium, perform tumbles,
and collide with pillars, the microswimmers execute random
walks, leading to a diffusive behavior at long times [1]. We
denote by r( the position of a swimmer at t = 0, assumed
to coincide with a tumble, and by ry the location of its Nth
tumble at time #y:

N N
ry =ro+ Z Ar;, ty = Z T;. )
i=1 i=1
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At the start of run i, the swimmer selects a new run time t; fol-
lowing the distribution of Eq. (1), and assumes a new random
orientation p; = [cos 6;, sin 0;] where 6; € [0, 2) follows a

uniform distribution. The displacement Ar; = r; —r;_; dur-
ing step i is a random variable expressed as

Ar; = vot; p; + 013, 3

= (vot; + 8r))p; + 87" p;-. €

Here, vyt; p; denotes the displacement in the absence of any
collision. If one or more collision(s) take place during the
run, this displacement is modified by a correction r;, which
is decomposed into longitudinal (along p;) and transverse
(perpendicular to p;) contributions in Eq (4), where p
[—sin 6;, cos 6;]. The displacements (Sr and (Sr are random
variables that depend on the collision mc1dence angle a (to be
defined more precisely later) and collision time t., in addition
to vy, T;, and a. We explain their calculation in detail in
Sec. IV.

Given Eq. (2), we can estimate the mean squared displace-
ment after N runs as

N N
ZZ Ar; - Ar;), 5)

i=1 j=1

(Ity —rol*) =

where brackets (-) denote an ensemble average over all possi-
ble run outcomes (random variables t;, p;, as well as « and .
for any collisions). Assuming successive runs are uncorrelated
and using Eq. (4), we obtain

(Iry — xol®) = N((vo1)* + 2007 8r + 81 +8r1).  (6)

At long times, the mean squared displacement grows linearly,
allowing us to define the effective diffusivity D as

D= lim - —~ %/ 7)

i.e., using Eq. (6) and (ty) = NT,

w3 (t?)  2uo(Tdry) + (8r] +6r7) ®
4T 4T ’

In free space (no collisions, §r; = 0), this expression reduces

to the well-known value [1]

vi(t?) {lvgr

D =

constant run time,

|2 €))

3v5T  exponential distribution.

We can then rewrite the diffusivity of Eq. (8) as
D = Do[1 — f(Pe, ¢)], (10)

where the expected decrease in diffusivity due to collisions
with pillars is entirely captured by a dimensionless hindrance
function

2up(tdry) + ((Srﬁ + 8rf_)
v3(t?) '

f(Pe,p) = — 1D
The main objective of this paper is to determine the function
f(Pe, ¢) governing the dependence of the diffusivity on Péclet
number and area fraction. We first present a theoretical model
for f(Pe, ¢) in dilute media in Sec. IV, and generalize it to the
case of arbitrary area fractions using stochastic simulations in
Sec. V.

(a) Collision type A

2a

current run length ¢ = voT

FIG. 3. (a) Collision of type A: for a swimmer initially pointing
into the bulk, a collision will occur if the shaded region, of area 2a¢,
contains at least one pillar. Dotted circles show the envelope of pillar
positions with which a collision can occur. (b) Collision of type B:
a swimmer performing a tumble on the surface of a pillar such that
its new orientation points into the pillar will start its new run with a
collision.

IV. THEORY FOR DILUTE MEDIA

A. Collision probabilities and time to collision

We develop an asymptotic theory for the hindrance func-
tion f(Pe, ¢) valid in dilute media where collisions are rare.
In this section, we assume that the pillar size a is uniform and
that the run length t is constant; these assumptions will be
relaxed in the numerical simulations of Sec. V. For the sake of
discussion, we first analyze a single run and seek to estimate
the probability that a swimmer will collide with at least one
pillar during that run. As mentioned in Sec. II, a run can
either start with the swimmer pointing into the bulk, or with
the swimmer on a pillar and pointing towards its surface. For
reasons that will become clear later, we need to treat these two
cases separately as they have distinct collision probabilities
and distinct probability density functions for the incidence
angle .

1. Collision of type A: 7. > 0

We denote by type A a collision that occurs during a run
that started with a swimmer pointing into the bulk. Note that
as long as the swimmer points into the bulk, it is irrelevant
whether its initial position is actually in the bulk or on the sur-
face of a pillar. Since the initial part of the run will take place
in the bulk, any collision of type A will have a strictly positive
collision time 7, > 0. The probability for a collision of type
A to occur in any given run can be estimated graphically as
shown in Fig. 3(a): given that the swimmer points into the
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bulk, at least one pillar should have its center inside the shaded
region with area 2af. In sufficiently dilute media, pillars are
distributed randomly inside that region according to Poisson
statistics. For a given pillar number density n = ¢/ma?, the
mean number of pillars inside the shaded region is
2¢ 2
(N) =2aln = ——¢ = —Pe ¢. (12)
Ta b4
The probability P; for a collision of type A is then estimated
as the probability of there being at least one pillar inside the
collision region:

Py =P(N 2 1)=1—exp(—=(N)). 13)
Expanding for Pe ¢ « 1,

2
Py~ (N) = —Peo. (14)

In the theoretical analysis presented here, we will assume that
no more than one collision can occur during a given run.
To quantify the validity of this assumption, we can estimate
the probability of there being two or more pillars inside the
collision area:

PIN>2)=1-P(N=0)—P(N=1)
=1 —exp(—(N)) — (N) exp(—(N))
~ (N)2 (15)

The assumption of no more than one collision per run is
therefore valid so long as Pe ¢ = (£/a)¢ < 1. Note that this
condition involves the current run length ¢ in addition to the
pillar area fraction: a swimmer might collide with multiple
pillars even in dilute media if its run length is very long.
Note that, in the case where t is exponentially distributed,
events will inevitably occur for which the run time is long
enough that the assumption of no more than one collision
breaks down. This effect will be quantified more precisely in
the simulations of Sec. V C.

Assuming a collision takes place, whether the swimmer
ends its run on the pillar or is able to escape depends on
the time 7, remaining in the run after impact. We recall that
T, = T — 7., where 7 is the current run time and 7, is the time
to collision. For a given value of t, the location of the pillar is
uniformly distributed in the shaded region of Fig. 3(a), which
implies a uniform distribution for the collision time:

1
pa(te) = o € ©, ]. (16)
Since t, = T — 1., the remaining time after collision follows
the same distribution:

1
pa(Ty) = o TE [0, 7). (17

2. Collision of type B: 1. = 0

A collision of type B is defined as an event where the
swimmer begins its run on the surface of a pillar with a new
posttumble orientation that points into the pillar [Fig. 3(b)].
For a collision of type B to occur, the previous run must
have involved a collision (of either type A or B) in which the
swimmer did not escape the pillar and thus ended its run on
the surface. In that case, the new run starts with a collision

FIG. 4. Collision dynamics: we choose a Cartesian coordinate
system as shown, with the x direction aligned with p. The swimmer
collides at point C (incidence angle «) and slides on the surface of
the pillar according to the projection of p in the tangent direction
(blue arrows), where 6(¢) denotes the instantaneous angle between
the position vector and the negative x axis. If the run is long enough,
the swimmer can escape as it reaches point £ where p becomes
tangent with the surface.

with 7, = 0. Estimating the probability Py for a collision of
type B is slightly more subtle, as it involves information about
the previous run. We can obtain it as

=[P - B + B0 -R9)) A

where P{* and P5* denote the probabilities of a swimmer
escaping the pillar before the end of its run during a collision
of either type A or B; the calculation of these probabilities
involves consideration of the dynamics during collision and
is deferred to Sec. IV C. The factor of 1/2 in Eq. (18) comes
from the fact that a swimmer tumbling on the surface of a
pillar has equal probabilities of selecting a new orientation
pointing into the pillar (leading to a collision of type B) or
into the bulk. Solving for P§ in Eq. (18) yields

. 1 =P\
where P; was obtained in Eq. (13).
Since collisions of type B are such that . = 0, the corre-

sponding probability density functions for the collision and
remaining times are trivial:

pB(Tc) = §(7), pB(tr) = S(Tr - T)' (20)

B. Dynamics during collision

We now turn to the dynamics during a collision, and ana-
lyze swimmer motion after it first impacts with the pillar and
still has time t, remaining before its next tumble. A schematic
of a collision is shown in Fig. 4. For the purpose of calculating
the displacement ér, we lose no generality by choosing a
Cartesian coordinate system with the x axis aligned with the
current swimming direction p and the origin at the center of
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the pillar. We denote by C the position of the collision point,
which forms an angle o € [—m /2, w /2] with the negative x
axis. Due to the symmetry o <> —«, we can restrict our at-
tention to collisions for which a > (. Note that the incidence
angle is a random variable, whose probability density function
depends on the type of collision. For a collision of type A, the
normal coordinate y. = asin« is uniformly distributed over
[—a, a] since the pillar location is uniformly distributed in the
shaded region of Fig. 3(a), and therefore

pala) =cosa, « €[0,m/2]. 20

However, for collisions of type B, the angle « itself is uni-
formly distributed, i.e.,
2
pe(a) = o Q€ [0, 7 /2]. (22)
As the swimmer moves along the pillar surface, its orienta-
tion p does not change by assumption. Instead, the swimmer
slides with tangential velocity vo(I — fifi) - p, where f is the
unit normal on the surface. This translates into the angular
velocity
do Vo

= —sind, 23
” asm 23)

where the angle 6(¢) defines the angular position of the swim-
mer on the pillar as shown in Fig. 4. This can be integrated as

¢ deo " vy
— = Za, (24)
« sinf 0o a

i.e.,

|:tan(9/2):| _ @t, 25)
tan(a/2)

a
where we have chosen the origin of time = O as the instant
when contact first takes place: 6(0) = «.

There are two possible outcomes to a collision. If 8 reaches
/2 before the end of the run, the swimmer escapes the
pillar at point E in Fig. 3(b) and finishes its run in a straight
line. Otherwise, the current run will end at some location
0r € [a, w /2), where the next tumble will take place. The time
for the swimmer to reach E, or escape time f,, is found by
setting & = /2 in Eq. (25):

t(a) = —Uio log tan(a/2). (26)

The escape time is plotted in Fig. 5(a) and shows a strong
dependence on incidence angle «, with f,(o) — 00 as o —
0. Indeed, a swimmer hitting a pillar nearly head on (o« = 0)
initially slides very slowly as its tangential velocity goes as
sin o, whereas a swimmer hitting a pillar nearly tangentially
(a < 7/2) is able to escape after a short time.

For the swimmer to escape before the end of the current
run, the remaining time 7, after contact should exceed the
escape time:

T 2 te(@). 27)

For a given value of ,, this gives a condition on the incidence
angle: the swimmer will escape if « > «,, where

ac(t,) = 2tan” ' [exp(—vo 7, /a)], (28)

(b)

.—C/

escape

Ty

0 ac /4 /2
«

FIG. 5. (a) Escape time 7,(«) as a function of incidence angle.
The swimmer will escape if 7, > 7,(«). (b) Critical angle for escape:
for the swimmer to escape, its incidence angle must fall outside of a
wedge of angle 2c,.

but will finish the current run on the surface of the pillar
otherwise; see Fig. 5(b). If the swimmer escapes, it continues
its run in the x direction after leaving the surface of the pillar
at point E, for a duration of 7, — #.(«).

We can now estimate the longitudinal and transverse dis-
placements incurred by the collision with the pillar. We first
consider the case where the swimmer escapes the pillar at
point E, i.e., @ > «, or T, > t,. In the x direction, the swim-
mer undergoes a displacement of a cos « over the course of the
collision, while it would have traveled a distance of vyt ()
during the same amount of time, had there been no collision.
Therefore,

Ax = a[cos o + log tan(a/2)]. 29)

In the transverse direction, the displacement is easily obtained
as

Ay = a(l — sina). (30)

On the other hand, if the run time elapses before the swimmer
escapes, i.e., @ < o or T, < t,, the swimmer will finish the
current run at angular position 6y on the pillar surface, where

tan(a/2) :|

exp(—v07,/a) GD

Or(a, 7,) = 2 tan”! |:

In the longitudinal direction, the displacement over the course
of the collision is a[cosa — cos 6], whereas it would have
been vgt, in the absence of collision. Therefore,

Ax = a(cosa — cos ) — voT,, (32)
while the transverse displacement is simply given by
Ay = a(sin 6y — sina). (33)

In summary, the longitudinal and transverse displacements
incurred by a collision are expressed as

3ry cosa + logtan(a/2) o>, (34)
a cosa —cosby — VT, /a o <o
and
|8rl| l —sina Ol)ac’
=1. . (35)
a sinfy —sina a < ac,
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FIG. 6. (a) Longitudinal displacement §r;/a and (b) transverse
displacement |67, |/a as functions of incidence angle «, for different
values of vyt,/a, where 7, is the remaining time in the run after
collision.

where 6, is given by Eq. (31). Note that §r; < 0, whereas r
is of either sign by symmetry: collisions hinder longitudinal
transport but induce transverse motion of either sign. The
displacements éry and |ér, | are plotted vs incidence angle o
in Fig. 6. As expected, collisions have the greatest effect on
transport at vanishing incidence angles (¢ — 0), for which
dry — vo1, and |87 | — a for large vo7,/a.

C. Probability of escape

We are now in a position to calculate the escape probabili-
ties P> and Pg™ for each type of collision, which are needed
to estimate the collision probability Pg in Eq. (19). For a given
collision, escape will occur if the condition of Eq. (27) is met.
Therefore, taking into account all possible incidence angles,

/2
P = / [1 —P(7, < te(@)] plor) der, (36)
0

/2 t,
- f [1— / p(rr)drr}p(a)da- (37)
0 0

Inserting the probability density functions p(z,) and p(«) for
each type of collision, as provided in Egs. (17) and (20)—(22),
we obtain after simplifications

1 T
esc __ -~ _r
P _1+Pe(a0 2), (38)

2
Py =1-"an, (39)

where ap = a.(7) = 2tan~![exp(—Pe)] is the critical angle
for escape for a collision with 7. — 0. The two escape prob-
abilities Pg*° and Pg* only depend on the Péclet number and
are plotted in Fig. 7. For both types of collisions, the escape
probability P increases monotonically with Pe, vanishes in
the limit of short runs (Pe — 0), and tends to 1 in the limit
of long runs (Pe — 00). Collisions of type B are more likely
to lead to an escape than collisions of type A as they have
maximum remaining time 7, = 1.

1.0 T T T

0.8f .
. 0.6F .
,

0.4f .

0.2+ collision type A A

collision type B
O-O 1 1 1 1
0 2 4 6 8 10

Pe

FIG. 7. Escape probability P** for a collision of type A or B as
a function of Péclet number, as obtained in Egs. (38) and (39).

D. Displacement statistics and hindrance function

In the case of constant run time 7, the hindrance function
introduced in Eq. (11) simplifies to

208 (orf)+(8r7)
f(Pe’ ¢) - Pe - P62 . (40)

We obtained analytical expressions for the displacements &7
and ér, in Eqs. (34) and (35). The ensemble average in
Eq. (40) is evaluated over all possible outcomes of a run:

T /2
() = P f f £ Pa(@)pa(n) da dr,

T /2
+P1§/ / x pe(a)pp(ty)dadr,,  (41)
0 0

where the various probability density functions are given in
Egs. (17)-(22). Note that T = Pe in dimensionless variables.
The only dependence on area fraction ¢ in Eq. (41) is through
the prefactors of P; and Pg, which are both proportional to
1 —exp[—(2/m)Pe ¢].

In the limit of low-volume fraction and small Péclet
number, Pe, ¢ — 0, asymptotic expansions of the average dis-
placements can be obtained, with leading-order contributions
given by

5.2
(&) ~ —3—P€ ?, (42)
b4
199
82y ~ —— P, 43
( ||) 1807 e’ ¢ (43)
(8%) ~ iPe3¢ (44)
L7 1807 '
from which the hindrance function is obtained as
17
f(Pe, )~ —Peg. (45)
04

At arbitrary values of Pe and ¢, the integrals in Eq. (41) can
be evaluated using numerical quadrature. We discuss results
from this calculation in Sec. V B, where we compare the dilute
theory predictions to event-based stochastic simulations valid
for a wide range of Pe and ¢.
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(a) Pe = 1.0

® tumble
collision
escape

FIG. 8. Event-based stochastic simulations in random polydisperse media. (a) Single swimmer trajectories consisting of 100 runs of
constant run time, for various combinations of Pe (columns) and ¢ (rows). Red, yellow, and green symbols show the location of tumbles,
collisions, and escape points. Also see movies in the Supplemental Material [57]. (b) Locations of 5000 random tumbles in simulations with
¢ = 0.65 for two different values of Pe, where the locations of tumbles occurring in the bulk or on the surface of a pillar are highlighted in red
and blue, respectively. In all simulations shown, pillar radii were drawn from a Gaussian distribution with mean @ = 1 and standard deviation
o,/a = 0.5, and periodic boundary conditions are used at the edges of the square domain marked by a dotted line.

V. RESULTS AND DISCUSSION

A. Event-based stochastic simulations

We perform event-based stochastic simulations of run-
and-tumble microswimmer trajectories through randomly
generated porous geometries. NV, nonoverlapping pillars are
distributed at random inside a square periodic box to achieve
the desired area fraction. The pillars can be either of uniform
size or polydisperse (see Sec. V C). The simulations track the
positions of noninteracting run-and-tumble swimmers whose
kinematics follow the assumptions of Sec. II. At the start of
each run, the next run time and a new random orientation
are selected, potential collisions are detected, and the swim-
mer position is advanced until the end of the run, where the
location of potential collision and escape points is obtained
analytically based on the calculations of Sec IV B. Multiple
collisions can occur during one run. For each swimmer tra-
jectory, the simulation records the times and locations of all
tumbles, collisions, and escape points. The simulation box
is typically chosen to be significantly larger than the mean
run length, so that the statistics are unaffected by the periodic
boundary conditions.

Typical trajectories showing the locations of these points
in simulations with constant run time but varying pillar size

are plotted in Fig. 8(a) for different combinations of Péclet
number and area fraction (also see movies in the Supplemen-
tal Material [57]). Expectedly, the most efficient dispersion
occurs in dilute media at large Pe (long runs that are largely
unimpeded by the medium), and increasing area fraction
strongly hinders dispersion for all Péclet numbers. As Pe
increases, the swimmers spend a greater fraction of their time
sliding on the surface of pillars. This is illustrated in Fig. 8(b),
showing the locations of 5000 tumbles for two values of Pe: as
the Péclet number increases and swimmer trajectories become
more persistent, a larger fraction of tumbles occurs on the
surface of pillars. We quantify some of these trends further in
the following sections. The calculation of the diffusivity from
simulation data is illustrated in Fig. 9, showing the growth of
the mean squared displacement for ten individual trajectories,
as well as an average over an ensemble of 1000 trajectories.
In all the results that follow, we use dimensionless variables
where lengths have been scaled by a and time by 7.

B. Constant run time and pillar size

We center the following discussion on results in systems
with constant run time and uniform pillar size, which are the
assumptions of the theoretical model of Sec. IV. The effects
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FIG. 9. Mean squared displacement as a function of time in a
typical simulation with uniform pillar size and constant run time.
Gray curves show the square displacement |ry — ro|? for 10 indi-
vidual stochastic simulations with distinct random seeds. The blue
curve shows the mean squared displacement (|ry — 1o|?) obtained as
an average over 1000 trajectories. A linear fit is used to obtain the
diffusivity D as the quarter slope.

of variable run time and pillar size will be briefly considered
in numerical simulations in Sec. V C.

1. Collision probabilities

We first analyze collision probabilities in Fig. 10, where we
compare results from stochastic simulations with theoretical
predictions. Figure 10(a) shows the probability P, = P5 + Pg§
of having at least one collision (of either type A or B) within a

8 |¢| - -l

0.001
= 0.01
— 0.1

0.2

0.3
— 04

AeO4arHE

2
v 2 Pe
™

0 2 4 6 8 10
Pe

FIG. 10. Probability P. of having at least one collision (of
either type A or B) within a given run, scaled by ¢ and plotted
as a function of Péclet number for various area fractions. Symbols
show results from stochastic simulations with uniform pillar size
and constant run time, and lines show the theoretical prediction of
Eq. (46).

0.
0 2 4 6 8 10

0.
0 2 4 6 8 10
Pe Pe

FIG. 11. (a) Mean total number of collisions (type A and B) per
run, (N,), scaled by ¢ and plotted vs. Péclet number for various area
fractions. Symbols show results from stochastic simulations with
uniform pillar size and constant run time, and the gray dash-dot line
shows the estimate (N,.) = (2/7w)Pe ¢. (b and ¢) Mean numbers of
collisions of type A (b) or type B (c) in any given run as functions of
Péclet number for various area fractions, from stochastic simulations.

given run. The dilute theory of Sec. IV provides the expression

2 _ PeSC PCSC 2
P.= A—ZCB 1—exp|—=Peo )|, (46)
1+ P V4

where the escape probabilities P* and Pg* are functions of
Pe only and were obtained in Egs. (38) and (39). Remarkably,
the dilute theory provides an excellent quantitative estimate
of P. over a wide range of area fractions and Péclet numbers,
well beyond its expected range of validity. In very sparse
media (¢ < 1), the collision probability P, increases linearly
with both ¢ and Pe, while it is found to saturate with respect
to Pe in denser media. In the limit of Pe — oo, every run will
incur at least one collision, so that P, — 1.

Note that while the dilute theory assumes that at most one
collision can take place during one run, such is not the case
in simulations. We quantify this more precisely in Fig. 11(a),
where we plot the mean number (N,) of collisions of any type
(A and B), scaled by ¢, as a function of Péclet number. The
simulation data for all area fractions ¢ = 0.001 — 0.4 collapse
and show a nearly linear increase with Pe. Multiple collisions
per run typically occur at sufficiently large values of either ¢
or Pe, and indeed (N,) exceeds 1 in that limit, where we expect
the dilute theory of Sec. IV to be inaccurate. Interestingly,
we find that the mean number of collisions is well approxi-
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FIG. 12. Displacement statistics at low area fraction and Péclet number: (a) (§,)/Pe ¢, (b) ((Sﬁ) /Pe?¢, and (c) (8%) /Pe¢, plotted as
functions of Péclet number for various area fractions ¢. In each case, symbols show results from stochastic simulations with uniform pillar
size and constant run time, whereas full lines show theoretical predictions based on the dilute theory of Sec. IV. Dotted grey lines show the

theoretical asymptotes of Eqs. (42)—(44) in the limit of Pe, ¢ — O.

mated by the simple estimate (N,) ~ (2/m)Pe ¢, which only
slightly underpredicts the data. Recalling the discussion of
Sec. IVA 1, we note that this estimate is simply the mean
number of pillars in the shaded region of area 2af in Fig. 3(a).
Figures 11(b) and 11(c) show the mean numbers (Ng) and
(Ng) of collisions of type A and B per run, respectively, where
(Ne) = (N3) + (N§). The mean number of collisions of type
A increases also linearly with ¢ and Pe, similar to (N,.). On the
other hand, there cannot be more than one collision of type B
in a given run: Ng € {0, 1} and therefore (N§) < 1 as seen in
Fig. 10(c). For all area fractions, (Ng) first increases with Pe
to reach a plateau for Pe 2> 2, with the value of the plateau
displaying a linear dependence on ¢. At large values of Pe,
we find that (Ng) > (Ng), i.e., most collisions are of type A.

2. Displacement statistics and hindrance function

Next, we turn to displacement statistics, focusing on the
limit of low area fraction and Péclet number. Figure 12 shows
the relevant statistics entering the calculation of the hindrance
function in Eq. (40) as functions of Péclet number for various
area fractions: panel (a) shows the mean longitudinal displace-
ment () scaled by Pe ¢, whereas panels (b) and (c) show the
variances of the longitudinal and transverse displacements,
(87) and (87), respectively, both scaled by Pe’¢. At low
Péclet number, all the displacements collapse and are very
well captured by the asymptotic results of Eqs. (42)-(44),
which predict a linear dependence on ¢, as well as a linear
dependence on Pe upon rescaling. As the Péclet number is
increased, the growth of the displacement statistics with Pe
slows down and ultimately saturates, yet the collapse with re-
spect to area fraction persists. As expected, the dilute theory of
Sec. IV is found to provide excellent quantitative predictions
for ¢ < 0.01 over the range of Péclet numbers considered
here. Departures are observed at larger volume fractions when
Pe 2> 1, beyond which the dilute theory underpredicts dis-
placements: this can be attributed to the fact that the dilute
theory assumes at most one collision per run, whereas mul-
tiple collisions of type A typically occur in that regime in
simulations, as previously found in Fig. 10(b). Finally, we
note that the magnitude of (§7) /Pe?¢ is markedly smaller

than (§;)/Pe ¢ and (Sﬁ) /Pe?¢, indicating that the leading con-
tribution to the hindrance function comes from the reduction
in longitudinal displacements: this is a direct consequence of
the fact that lateral displacements are bounded by the obstacle
radius, whereas longitudinal displacements can be as long as
the run length if 7, ~ v and o ~ 0; see Fig. 6.

The hindrance function f(Pe, ¢) is analyzed in Fig. 13,
where we compare results from stochastic simulations (sym-
bols) with the predictions from the dilute theory (lines). The
dependence on area fraction is shown in Fig. 13(a), show-
ing f as a function of ¢ for various Péclet numbers. The
hindrance is found to grow nearly linearly with ¢ for all
values of Pe considered here, as expected from the collapse
of the displacement statistics upon scaling by ¢ in Fig. 12.
Good agreement with the theoretical prediction is observed,
especially at low ¢ and Pe, consistent with the assumptions of
the theory; departures are observed as ¢ increases, where the
theory systematically underpredicts the hindrance function.
The dependence on Péclet number is illustrated in Fig. 13(b),
where we show f scaled by ¢ as a function of Pe. At low
Péclet number, the simulation data matches the theoretical
model very well and collapses onto the asymptotic predic-
tion of Eq. (45), which predicts a linear dependence on Pe.
Upon increasing the Péclet number, the growth of f/¢ slows
down and ultimately saturates, reaching a plateau whose value
depends weakly on ¢, with larger values attained at lower
area fractions. Consistent with the observations in Fig. 12, the
dilute theory for the hindrance function is found to provide an
excellent fit to the data in dilute media (¢ < 0.01) even when
the Péclet number is large, but it significantly underpredicts f
at larger values of ¢, due to the preponderance of runs with
multiple collisions.

A quantitative estimate for the high-Péclet asymptote ob-
served in Fig. 13(b) can be obtained by a heuristic argument.
In that limit, multiple collisions per run can take place, with
an average number of collisions per run given by (N.) ~
(2/m)Pe ¢ as evidenced in Fig. 11(a). When Pe is large, most
collisions are of type A and result in an escape: indeed, the
fraction of collisions that do end on a pillar is (Ng)/(N,) < 1
as seen in Fig. 11(c). Assuming for simplicity that all colli-
sions are indeed of type A and result in an escape, we can
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FIG. 13. (a) Hindrance function f as a function of area function
¢ for various values of Péclet number Pe. (b) Hindrance function
f, scaled by ¢, as a function of Pe for various values of ¢. In both
panels, symbols show results from stochastic simulations with uni-
form pillar size and constant run time, and full lines show theoretical
predictions from the dilute theory of Sec. IV. Dash-dotted lines in
(b) show the low-Pe and high-Pe asymptotes of Eqgs. (45) and (54),
respectively. C &~ 0.916 denotes Catalan’s constant.

estimate the mean longitudinal displacement during one run
as

/2
(6ry) ~ <Nc>/ 8ry(a) cos o da
0

w/2
~ (N,) / [cosa + logtan(a/2)] cos « do
0

1
~ ——Pe ¢. 47
5Pe ) 47
In Eq. (47), we used Eq. (34) to obtain () and assumed
o, — 0, which may not be true for all collisions during the
run. Similarly, we have the estimates
12C -2

/2
(orf) ~ (NL.)/ sri(a)cosada ~ ———Pe¢, (48)
0 37T

/2 2
(8r) ~ (NC)/ 8r% (o) cos a dar ~ 3—Pe ¢, (49
0 T

where C ~ 0.916 is Catalan’s constant. Inserting these expres-
sions into Eq. (40), we obtain the high-Péclet asymptote for
the hindrance function:

fe¢) | 4C,
¢ b4

This prediction is compared with the simulation data in
Fig. 13(b): it slightly overpredicts the data, yet quite good
agreement is found in spite of the various approximations
made.

'~ 1-1.17Pe7 . (50)

C. Variable run time and pillar size

The previous results have exclusively considered the case
of constant run time and monodisperse media—two assump-
tions that are convenient for theoretical analysis but unlikely
to be met in many experimental systems of interest. Here, we
relax these assumptions and analyze the effects of varying run
time and pillar size using stochastic simulations.

We first consider the effect of obstacle polydispersity on
the hindrance function in Fig. 14(a). Porous media of in-
creasing polydispersity were generated by drawing pillar radii
from Gaussian distributions of increasing widths (while re-
jecting negative values). The generated distributions were then
rescaled affinely to have mean 1, and their measured standard
deviations o, are reported in the figure. Weak polydisper-
sity (o,/a = 0.1) has only a negligible effect on dispersion.
The hindrance function, however, is reduced by up to ~20%
in highly polydisperse media (o,/a = 0.5 and 0.8), with
the strongest effect occurring for intermediate Péclet num-
bers (Pe ~ 2—6). That dispersion is easier in a polydisperse
medium is, perhaps, an intuitive result, for the same reason
that it is easier to pack polydisperse particles than monodis-
perse ones. The decrease in f can simply be explained by a
decrease in the mean number of collisions per run, (N.) =
(Ni + Ng), as polydispersity becomes significant; see inset of
Fig. 14(a).

The effect of variable 7 is analyzed in Fig. 14(b), com-
paring the hindrance function for constant and exponentially
distributed run times, in a system with uniform pillars and
¢ = 0.2. In this case, variations in run time cause an increase
in the value of f, especially at low to intermediate Péclet
numbers (Pe ~ 1-4). The reason for this difference is less in-
tuitive: indeed, the mean number of collisions per run is nearly
unaffected by variations in run time, as shown in the inset.
Instead, we attribute it to a change in the relative magnitude
of the averages appearing in Eq. (11), and the effect on the
hindrance is most pronounced at low Péclet numbers, where
the displacement statistics are most sensitive to variations in
Pe.

VI. EXTENSION TO 3D

We discuss in this section how the two-dimensional (2D)
model and simulations presented above can be extended to
3D. The porous medium is now composed of randomly dis-
tributed nonoverlapping spheres, which for simplicity we take
to be of uniform radius a. The swimmer performs a three-
dimensional random walk, where its orientation p; during run
i is a uniformly distributed random vector in 3D. The particle
displacement during one run is still given by Eq. (4), where
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FIG. 14. Scaled hindrance function f/¢ as a function of Pé-
clet number, for (a) simulations with constant run time in several
polydisperse media, where o, is the standard deviation of the pillar
radius distribution; and (b) simulations with uniform pillar size and
either constant or exponentially distributed run times. In both panels,
¢ = 0.2. The insets show the average number of collisions of any
type per run, (N.) = (N§ + Nf), for the same conditions.

the direction p;- of the transverse displacement can be any unit
vector in the plane perpendicular to p;. Its orientation in that
plane during any given collision depends on relative configu-
ration of the swimmer and obstacle, but does not play any role
in the diffusivity calculation of Sec. III. Three-dimensionality
enters in Eq. (7), where the prefactor of 1/4 becomes 1/6. As
a result, the free-space diffusivity in 3D is given by

v%? constant run time,

DSDz—rz (51)

(o))
|
W= V=

vé? exponential distribution,

but the general expression (11) for the hindrance function
remains unchanged.

Interestingly, the dynamics during a collision can also be
mapped exactly to the 2D case. A schematic of an arbitrary
collision is shown in Fig. 15, where we choose a coordinate
system with its origin at the sphere center and such that the
particle orientation p points in the negative z direction. After

FIG. 15. Schematic of a collision in 3D, where p points in the
negative z direction. A collision at point C will result in a circular
trajectory with radius a along a geodesic circle at constant azimuthal
angle ¢.

the collision, the particle will slide on the sphere surface
with velocity v(¢) = [I — fi(¢)i(¢)] - p, which is tangent to
the sphere surface and locally aligned with the ey unit vector
in spherical coordinates (r, 6, ¢). As a result, the azimuthal
angle ¢ will remain constant during the collision, and the
particle will slide along the geodesic circle shaded in gray in
the schematic, which has radius a. In fact, the dynamics of
the swimmer in the plane of that geodesic circle is exactly the
same as in the 2D discussion of Sec. IV B, so that Eqgs. (34)
and (35) for the longitudinal and transverse displacements &7
and |§r | are still valid. In particular, these displacements
are only functions of 7, and o = 6(0), independent of the
azimuthal angle ¢.

In the dilute theory, the only place where dimensionality
has an effect is in the calculation of probabilities. When cal-
culating P{ using Eq. (13), (N) is now obtained as the mean
number of obstacles inside a cylinder of volume 7 a*¢. Denot-
ing by ¢ the mean volume fraction of the spherical obstacles,
the obstacle number density becomes n = ¢/(4/3)ma®, and
we have the estimate

(NYP =ma*tn = 3Pe ¢, (52)

which replaces Eq. (12) and can be substituted into Egs. (13)
and (19) to obtain P{ and Pg, respectively. During a collision
of type A, we expect the projection of the contact point C in
the (x, y) plane to be uniformly distributed inside the circle of
radius a. Since ¢ is clearly uniformly distributed, this implies
that p3P(«) = sin2a for « € [0, /2] in 3D, while pp(a)
remains unchanged. In summary, the only three quantities that
change in 3D throughout the entire theoretical model are Dy,
(N), and pa («). In particular, the dilute asymptote of Eq. (45)
can recalculated in 3D and is given by

fP(Pe,¢p)~ 3Pe¢ for Pep < 1, (53)
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whereas the high-Péclet estimate of Eq. (54) becomes

fPPe,¢) 1 log2
6 2 2

While three-dimensional numerical simulations would be
needed to estimate the hindrance function at arbitrary values
of Pe and ¢, the smooth and monotonic character of f(Pe, ¢)
suggests all the qualitative trends observed in two dimensions
will carry over to three dimensions.

Pe~' for Pe>> I. 54)

VII. CONCLUDING REMARKS

We have presented a minimal theoretical model for the
dispersion of run-and-tumble microswimmers in disordered
porous media composed of randomly distributed circular pil-
lars in two dimensions; a straightforward extension to three
dimensions was also discussed. The effect of the microstruc-
ture on the long-time spatial dispersion was shown to be
entirely captured by a scalar dimensionless hindrance func-
tion f(¢, Pe) of the medium area fraction ¢ and swimming
Péclet number Pe, which compares the persistence length of
swimmer trajectories to the size of the solid inclusions. Under
simple assumptions for the interaction of the microswimmers
with the microstructure, we were able to obtain an analyti-
cal expression for the hindrance function in the dilute limit
of Pe ¢ « 1, and stochastic simulations were performed to
extend this result to the case of denser media. The hindrance
function was shown to depend nearly linearly on area fraction
over a wide range of parameter values—an intuitive result
since the number of collisions incurred during a run increases
linearly with ¢. The dependence on Péclet number was also
found to be linear at low values of Pe, but to saturate at larger
values of Pe. While the analytical prediction captured the data
very well for Pe < O(1), it was found to underestimate the
hindrance function at moderate to high Péclet numbers in
relatively dense media, where multiple collisions can occur
during a given run. Because of its relative simplicity and ease
of analysis, the framework proposed here provides a basis for
the interpretation and analysis of experimental data and for
the benchmarking of more complex models.

We emphasize that the model we developed here relies
on strong simplifying assumptions that may not be satisfied
in many experimental systems. We only considered sys-
tems composed of circular nonoverlapping pillars: while such
geometries have indeed been analyzed in microfluidic ex-
periments [15,16,20,36], natural disordered media typically
involve microstructures that are significantly more complex.

Allowing for overlapping or noncircular occlusions in a theo-
retical framework is, however, significantly more involved and
unlikely to be tractable analytically. The role of obstacle shape
is expected to be of particular interest: nonconvex obstacles
may indeed result in trapping of microswimmers with a strong
effect on dispersion [58], whereas asymmetric shapes can
induce a net drift by a rectification mechanism [35,43]. Note
also that our model assumed point-sized microswimmers,
which are able to pass through arbitrarily thin gaps. In reality,
finite-sized swimmers may get trapped when attempting to
travel through thin gaps, forcing them to reverse direction as
has been observed in experiments on bacteria in dense media
[11,12]; accounting for this motility strategy requires distinct
modeling choices [59,60] easily incorporated in a framework
such as ours.

Another major assumption of our model is that of friction-
less sliding during collisions, with no change to the swimmer
orientation. In particular, this assumes that interactions are
purely steric and that hydrodynamic effects are negligible.
Experiments on various systems have shown that hydrody-
namic interactions can reorient and trap microswimmers near
circular obstacles [7,27], as can chemical interactions in the
case of self-phoretic particles [24,55]. Other types of active
particles, e.g., Quincke rollers, may also undergo more com-
plex scattering dynamics [26]. Accounting for such effects in
our model is possible in principle. Understanding the role of
external fields, such as applied flows [16,36] or chemical gra-
dients [61,62], is also an open problem of great interest which
would require solving for the local velocity or chemical field
in the porous matrix, using, for instance, the boundary element
method. Finally, we note that our model has focused on the
transport of dilute noninteracting swimmer suspensions: the
case of semidilute to dense suspensions, which can undergo
spontaneous flow transitions in confinement [63], has been
considered in a few experimental [64—66] and computational
[67] studies in periodic porous media, but remains an open
area of investigation. Some of these open questions will be
addressed in future work.
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