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Abstract: Reverse engineering (RE) in Integrated Circuits (IC) is a process in which one will attempt

to extract the internals of an IC, extract the circuit structure, and determine the gate-level information

of an IC. In general, the RE process can be done for validation as well as Intellectual Property (IP)

stealing intentions. In addition, RE also facilitates different illicit activities such as the insertion

of hardware Trojan, pirating, or counterfeiting a design, or developing an attack. In this work,

we propose an approach to introduce cognitive perturbations, with the aid of adversarial machine

learning, to the IC layout that could prevent the RE process from succeeding. We first construct

a layer-by-layer image dataset of 45 nm predictive technology. With this dataset, we propose a

conventional neural network model called RecoG-Net to recognize the logic gates, which is the first

step in RE. RecoG-Net is successful in recognizing the gates with more than 99.7% accuracy. Our

thwarting approach utilizes the concept of adversarial attack generation algorithms to generate

perturbation. Unlike traditional adversarial attacks in machine learning, the perturbation generation

needs to be highly constrained to meet the fab rules such as Design Rule Checking (DRC) Layout

vs. Schematic (LVS) checks. Hence, we propose CAPTIVE as a constrained perturbation generation

satisfying the DRC. The experiments show that the accuracy of reverse engineering using machine

learning techniques can decrease from 100% to approximately 30% based on the adversary generator.

Keywords: reverse engineering; Integrated Circuits; adversarial attacks; machine learning

1. Introduction

To meet the large operational, maintenance, and development costs, the semiconductor
industries are inclining towards a fabless business model, i.e., outsourcing the fabrication
to offshore foundries. Such outsourcing has also led to other benefits of outsourcing the
Integrated Circuit (IC) fabrication and adopting a global supply chain for reduced capital
and maintenance costs, minimized design-flow efforts, and time-to-market [1,2]. Despite
the achieved benefits, such outsourcing and adoption led to a complex verification and
fabrication cycle, and supply-chain increased possible hardware threat space, arising in
different forms, namely IC piracy, overproduction, hardware Trojan (HT) insertion, and
reverse engineering [3–5].

Reverse Engineering (RE) is a process in which one attempts to extract the internals of
an IC, extract the circuit structure, and determine the gate-level information of an IC [6–12].
The RE can lead to adversarial consequences, including IP theft and IP stealing, eventually
leading to financial losses [13]. Among multiple reverse engineering techniques, imaging-
based reverse engineering [14,15] is one of the prominent threats that cannot be mitigated,
as fabricated devices are available in the market for consumer and commercial systems.
The existing imaging-based reverse engineering methods can be divided into destructive
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and non-destructive approaches [6]. In the destructive method, first Scanning Electron
Microscopy (SEM) images of different layers of the layout are captured. The obtained
IC layout or SEM images are fed to reverse engineering tools such as DeGate [14] for
reverse engineering and annotation. In contrast, the foundries can also adapt other recently
introduced non-destructive imaging techniques such as Ptychographic X-ray laminography,
ensuring the reverse-engineered IC functions and not destructed [16].

The imaging-based reverse engineering techniques have two steps in common. First
of all, the gates inside each design should be annotated, then by finding the connectivity
between the gates, the whole reverse engineering process is completed, and the layout
design can be revealed. Given the success of machine learning and statistical methods in a
wide range of applications [17–21] with computer vision and hardware security being no
exceptions, we develop a machine learning model; RecoG-Net is capable of recognizing the
type of gate by using the image of one layer of the layout.

Further, as our principal contribution, we propose CAPTIVE, Constrained Adversarial
Perturbations to Thwart IC Reverse Engineering. CAPTIVE is capable of making gate
recognition, the first step of reverse engineering, impossible. In the CAPTIVE method, we
introduce Design-Rule-Checking (DRC)-compliant adversarial perturbations which are
specially crafted noises and are sometimes invisible to human eyes. The main challenge
was to convert the existing adversarial noises [22–24] to DRC-compliant objects that can be
added to the layout and also be fabricated. An approach is introduced towards reaching
these specific DRC-compliant perturbations. To validate the effectiveness of the CAPTIVE
method, DRC-compliant objects are added to the SEM images of layer(s), and the experi-
ments indicate that the RecoG-Net’s performance in gate recognition will drastically drop
up to 70% (from near 100% to 30%).

The reported results present that even with finding the perfect connectivity if an
attacker can not recognize gates, the process of reverse engineering will fail.

The contributions of this work can be outlined in two main points as follows:

• We propose RecoG-Net, a convolutional neural network model, to fully recognize the
gates from single/multiple layer(s) of SEM or the layout image(s) with approximately
100% accuracy.

• We propose CAPTIVE as a method to add DRC-complaint perturbation to layout
images to thwart IC-RE. We perform different experiments to validate the efficiency
of CAPTIVE.

The proposed CAPTIVE methodology can enable the design of secure and inva-
sive/optical reverse engineering resilient ICs by the inclusion of adversarial perturbations.
Further, to standardize the process of the inclusion of the adversarial perturbations in the
IC design, the perturbation information can be inserted in the standard cell libraries, similar
to how the LP and HP cells are defined in the cell libraries. Such inclusion can enable less
complex and non-intrusive inclusion of the adversarial perturbations in the IC layouts
without the need for disrupting the EDA design flow and yet enable resilient IC designs
compatible with existing fabrication processes.

The rest of this paper is organized as follows: Section 2 describes the reverse engineer-
ing process and our data generation mechanism. Moreover, the RecoG-Net model has been
proposed which is responsible for performing the gate recognition. Section 3 focuses on
the CAPTIVE method to make the first step of reverse engineering, gate recognition, less
possible. The evaluation of the proposed CAPTIVE method and some relevant background
regarding the existing reverse engineering methods are presented in Section 4. Section 5
contains the conclusion and the future work.

2. IC Reverse Engineering Attack

Nowadays, the fabricated ICs are vulnerable to different malicious behaviors. One
of the main possible threats is reverse engineering on the fabricated IC. To perform the
process of reverse engineering on the chip and extract the internal structure inside it, first,
gates, which are the small components inside the chip, should be determined. Then, by
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finding the connectivity between different gates, the logic and internal structure of the IC
can be determined.

As our first contribution, we propose the RecoG-Net model which will help us in
classifying gates and preventing the first step of IC reverse engineering. To achieve this,
first, we need to create a specific dataset of different existing gates.

2.1. Attack Model

Integrated Circuit (IC) design refers to a process of assembling a collection of circuit
elements like transistors, resistors, and capacitors to perform a specific function. These
components are combined to form more complex functions such as logic gates, which are
then connected to build more complex segments such as adders and multipliers. This
process continues to build on itself, resulting in the availability of increasingly complex
circuit building blocks.

In IC design, the circuit elements are implemented on a silicon substrate using a
process called photolithography. The photolithography process creates various geometric
shapes on the silicon substrate where the electrical properties of the region defined by that
shape are altered. Basic circuit elements are created when these regions are combined and
superimposed over each other.

Thus, IC design consists of two distinct processes. First, circuit elements are gathered
together in one place to perform some specific pre-defined function. Next, the various geo-
metric shapes that implement those circuit elements must be assembled and interconnected
on the silicon substrate. The first process is typically called logic design, and the second
process is called physical design.

Nowadays, several companies accomplish the logic design; but these companies
remain fabless due to the high cost of physical design. Therefore, these companies will
send the designed circuit to the fabrication company for physical design, which introduces
additional challenges, especially reverse engineering, as aforementioned.

The threat model we consider in this work is as follows: The attacker has access to a
fully functional IC and the goal is to extract the netlist and the internals of the design. In or-
der to achieve this, the attacker performs a destructive de-layering of the design [3,6,25–27].
Based on the de-layered images of the IC, the attacker feeds it to an automated tool such as
DeGate [28] or a similar surrogate reverse engineering tool to annotate the gates and extract
the high-level information of the IC. A crucial step in the attack process is to identify the
individual gates and determine the interconnectivity to exploit the IP further. This process
is also outlined in Figure 1.

 CAPTIVE
 Method
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Figure 1. IC reverse engineering attack with and without CAPTIVE.

2.2. RecoG-Net: Surrogate Reverse Engineering Model

The primary next step towards reaching our goal is finding a method to determine
the type of gate using the image(s) of one or multiple layers. Since each of these images
contains a tremendous amount of information about the gate, using machine learning
techniques seems to be reasonable. Machine learning techniques are capable of learning
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the patterns in the data, based on which, they can classify or predict a particular outcome
for another set of input data during inference.

We propose a recognition network, RecoG-Net, a combination of two powerful ma-
chine learning techniques, Convolutional Neural Network (CNN) with fully connected
layers. As per the literature, such networks are efficient for having an automatic feature
selection, which will help reduce the dimension of our input. The dimensionality reduction
procedure will both preserve features that are mostly related to the specific characteristics
of a gate and eliminate the meaningless ones. This will help the network to learn valuable
features thoroughly.

Our experimental dataset consists of 889 images with a size of 258 by 1049, which
are converted into black-and-white images to obtain maximum contrast. The dataset is
divided into two parts for the training and testing phases, with 700 and 189, respectively.
The structure of the model that we have proposed is illustrated in Table 1. First of all,
using a 2D-convolutional layer and 32 filters of size 3 × 3, the 258 × 1049 features of the
data point are converted to a matrix of 1256 × 1047 × 32. This initial layer will learn the
basic features of the data. The second 2D convolutional layer, which will help learn more
complex features, is being used with a similar structure. The pooling layer will slide a
filter size of 3 × 3 across the 254 × 1045 × 64 features and replace it with the maximum
value. Therefore, it will result in discarding 45% of the features in the matrix, shaped
84 × 348 × 64. To lower the possibility of overfitting, a dropout layer is utilized. The
dropout rate is equal to 0.5 in our case, which means that 50% of the features will be
discarded. Another set of convolutional layers and pooling is used for understanding even
more complex features. Again, to reduce the likelihood of overfitting, a dropout layer
of 0.5 is applied. A flattened layer is used to convert the 3-dimensional matrix with the
size of 26 × 114 × 64 to a 1-dimensional matrix of size 189,696. Then, a fully connected
layer of size 250 is followed by the convolutional network. In the end, a dense linear layer
with a size equal to 11 will produce the predicted output. More detailed explanations of
each layer can be found in Table 1. To choose the filters, first, we assign a filter size. Then,
CNN randomly initializes the filters and trains until it reaches the best filter. Then, we
try different filter sizes and do the training by using CNN again. In the end, the filter
size with the best result will be chosen as the final filter size. The RecoG-Net employs an
ADAM optimizer for the training purpose and cross-entropy as the loss function during the
training. We have determined the architecture of the RecoG-Net through experimentation
and chose the architecture that best provided us with higher performance.

Table 1. RecoG -Net Architecture for gate recognition.

Layer Structure Output

Conv2d + Relu 32 × 3 × 3 256 × 1047 × 32
Conv2d + Relu 64 × 3 × 3 254 × 1045 × 64
Max pooling2d 3 × 3 84 × 348 × 64

Dropout 0.5 84 × 348 × 64
Conv2d + Relu 32 × 3 × 3 82 × 346 × 32
Conv2d + Relu 64 × 3 × 3 80 × 344 × 64
Max pooling2d 3 × 3 26 × 114 × 64

Dropout 0.5 26 × 114 × 64
Flatten 189,696

Dense + Relu 250 250
Dense + linear 11 11

RecoG-Net is then trained with the training dataset. Then, its performance is measured
based on the testing dataset. The predicted outcome of the network is the type of gate,
which is classified into 11 different types.
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2.3. Training Dataset

The first step towards validating our idea is creating a dataset of all different gates
with some specific considered characteristics. The main important feature of the dataset
is that it should contain all the essential gates like NAND, NOR, and XOR. Moreover, the
input size and the number of inputs for each gate should be considered as other parameters.

In addition to the mentioned criteria, having all the different layers existing in each of
the gates like the metal layer is needed. On the other hand, the dataset that was going to
be used in the experiments had to be in image format. After thoroughly checking on the
existing datasets, we decided to build up a dataset with all the mentioned features. So, to
start our experiments, we used GDSII files of 45 nm technology, and extracted different
layers of each gate. The generated dataset consists of all the layers of all the gates, with
different sizing in image format. Figure 2 shows an example of the constructed dataset of
different layers of 2 inputs NAND gate.

(a) (b)

(c) (d)

Figure 2. An example of different layers of a 2-input NAND gate. (a) Metal 1 layer, (b) Contact layer,

(c) Poly layer, (d) All layers.

2.4. Fabrication Impact

As mentioned before, the first contribution of this paper is to find out the type of IC
components (gates) using image(s) of one or multiple layers of the gate. To have realistic
results, we could not use the generated dataset; since our created dataset was based on
the design layout of the gates, all the edges and corners are entirely straight, accurate, and
sharp lines. Figure 2 is a valid example of this statement.
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Nevertheless, the existing challenge is to distinguish the gates after the physical design
and fabrication process. Figure 3 displays an IC and its components after fabrication.
Therefore, we made some changes in the created dataset to add the effect of fabrication to
increase the resemblance of the dataset to an actual fabricated image of IC.

Figure 3. An example of fabricated IC, with a sample of NAND gate inside it.

To solve the problem, we applied an image processing technique named morphing
transformation. Morphological transformations are collections of some non-linear oper-
ations related to the shape or morphology of an image. In other words, these operations
do not rely on the numerical values of pixels in the image; just the relative ordering of the
pixels is considered. In this technique, two inputs are required, our original image and
kernel or the structuring element. The kernel is the input that is responsible for deciding
the nature of the ongoing operation. It is positioned at all possible locations in the image,
and it is compared with the corresponding neighborhood of pixels. Some operations test
whether the element “fits” within the neighborhood, while others test whether it “hits” or
intersects the neighborhood. Even though different morphological operations exist, no
matter what is being used, a morphological operation on an image creates a new image
in which the pixel has a non-zero value only if the test is successful at that location in the
input image. The two primary operations are Erosion and Dilation, which have been used
in this work.

The Erosion technique erodes away the boundaries of the foreground object. In other
words, all the pixels near the boundary of an object will be discarded depending on the
size of the kernel. So the foreground object shrinks. The dilation technique is just the
opposite of the erosion technique. So, this technique will increase the thickness or size
of the foreground object. In this paper, to mimic the impact of fabrication, the Closing
technique of morphology transformation is also used. The Closing technique helps to
close small holes inside the foreground objects. Figure 4 indicates the impact of different
morphological transformation techniques on a metal layer of NAND example.

To create a more realistic dataset, first, we applied the Erosion technique. In parallel,
the Dilation technique followed by the Closing process was done. Finally, both of the
created images were combined to form a fabricated-resembling dataset.
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(a) (b) (c) (d) (e)

Figure 4. Impact of different morphological transformation operations on a metal layer. (a) Original,

(b) Impact of “Erosion”, (c) Impact of “Dilation”, (d) Impact of “Close”, (e) Impact of morphing.

3. Adversarial Perturbation Methodology

We discuss our proposed CAPTIVE technique in this section. The CAPTIVE technique
eliminates the possibility of reverse engineering a fabricated IC by inducing specially
crafted perturbations named constrained adversarial samples. The perturbed samples
include a minimal amount of noise that sometimes can not even be seen by the naked eyes
nor affect the recognition capability by naked human eyes but can be misclassified by the
ML classifiers.

There exist numerous techniques to inject adversarial perturbations [17,29]. Since
the amount of noise added to the image is better to be minimal, we utilize three different
perturbations, DeepFool, Square-box, and Jacobian-based Saliency Map (JSMA), which are
explained in detail in the Appendix A, to inject noise in the layout images.

Since the chip images will be fabricated, the noises added to the images must follow
the DRC rules. The major problem with the added adversarial noise is that they are
not DRC-compliant. In Section 3.1, we implemented a method to convert adversarial
perturbations to DRC-compliant noises. Later, by using the proposed neural network
method in the previous section, we prove that the certainty of the machine learning model
in gate recognition would decrease by adding these DRC-compliant noises. Algorithm 1
dedicates our experimental validation setup.

As described in Algorithm 1, the first step is to feed the input GDS II images to the
proposed technique. Further, we initialize the noise parameters for the adversarial attack,
which will be used to create the noise for the input GDS II images, as described in line 2
of Algorithm 1. Once the noise parameters are determined, the adversarial perturbations
will be generated (line 3 of Algorithm 1), as described in Section 3.1. These perturbations
under perturbation constraints (derived based on DRC constraints) will be integrated into
the original GDS II input image(s) to create the adversarial layout image, as described in
line 4 of Algorithm 1. Lastly, the RecoG-Net (Line 5) will test the perturbed images for
classification accuracy. If the perturbed images are still classified with higher accuracy, then
the steps are repeated.

Algorithm 1: Experimental validation Setup

Input: GDSII file
Output: Perturbed GDSII file

1 do
2 Initialize perturbation parameter;
3 Generate adversarial perturbation;
4 Add perturbation Constraints;
5 Test using RecoG-Net;

6 while High classification accuracy for perturbed data;
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3.1. Perturbation Generation

Unlike traditional adversarial attacks in machine learning [22,30–35], the perturbation
generation needs to be highly constrained, such as the perturbation can only be placed in
certain parts of SEM/layout to ensure the DRC and LVS checks are not violated and should
be more similar to process variations rather than artificially induced.

To force the noise to be DRC-compliant, the first principal rule is to have some pre-
defined shapes that can be fabricated. Hence, as the first step, we used a filter with a
specific size and moved this filter across the whole image. The filter size is based on the λ

of the technology size. In each step, we compared the original gate image and the image
with induced perturbations. If more than half of the pixels in the filter were perturbed, we
considered the whole filter as an induced noise. Since the induced noise with the size of
the filter should be fabricated at the end, the filter size should not be too small to cause any
problem in fabrication, or too big to be meaningless.

The other essential feature is that all the foreground objects in each layer should
have a minimum distance based on the technology size. This minimum distance is 2 × λ.
Therefore, the square-shaped induced perturbations can not be added if they have less than
2 × λ distance from the existing foreground elements in each layer. To achieve this purpose,
we defined a forbidden area outside of each object. Figure 5 indicates the steps to reach a
DRC-compliant noise.

(a) (b)

(c) (d)

Figure 5. Impact of different morphological transformation operations on a metal layer. (a) Original

image, (b) Morphed image, (c) DRC-compliant perturbation added to noise-free image, (d) DRC-

compliant perturbation added to the morphed image.
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3.2. Machine Learning Validation

In Section 2.2, we proposed RecoG-Net, a method for gate recognition. In this method,
by using image(s) of different layers of gates as an input of DNN and CNN techniques, we
identified the type of gate. The idea is first to add the CAPTIVE DRC-compliant noises.
Then, the chip goes to fabrication and after that RecoG-Net will prove the first step of
reverse engineering, gate recognition, is not possible.

By adding the introduced DRC-compliant perturbations in the previous section, we
can prove that these added noises can decrease the vulnerability of chip reverse engineering.
In other words, this method will cause failure in the first step of chip reverse engineering
that is gate recognition.

To achieve this purpose, RecoG-Net is trained with a noise-free training dataset.
The square-shaped DRC-compliant noises are induced in the testing dataset. Then, the
performance of the new perturbed dataset can be compared with the performance of the
previous noise-free dataset. In the following section, the results of CAPTIVE are presented.

3.3. DRC and LVS Validation

Design Rule Checker (DRC) checks the layout and verifies if the layout meets all
technology-imposed constraints. In comparison to DRC, LVS or Layout Versus Schematic
verifies the functionality of the layout. Since there is some induced noise in the GDSII file,
it is vital first to pass the DRC rules and then check it with LVS validation tools.

Since the size of the noise introduced as CAPTIVE is based on the technology size and
its position is regarding the constraints with the foreground objects, this noise meets the
DRC rules. The next step is to check with some LVS software and verify that the CAPTIVE
methodology will not change the functionality of the designed gate.

4. Results and Discussion

For the first step of the experiments, we created our own dataset consisting of different
layers of the existing gates, such as NAND, NOR, and XOR gates synthesized using
standard CMOS 45 nm technology nodes [36]. Using the GDSII file for each gate containing
the design for all the layers together, we have extracted an image of 258 by 1049 for each
layer. To mimic the impact of fabrication on the generated layer images, we applied
different morphological transformation techniques.

4.1. RecoG-Net Results

Since each image consists of just two colors, we converted the images into black and
white to get the maximum contrast. After that, by using RecoG-Net, the neural network
model introduced in Section 2.2, we tried to recognize the gate based on one/multiple
layers of gates. We first shuffle the dataset to get more meaningful results; then, divide it
into training and testing data with nearly 80% and 20%, respectively. It is worth mentioning
that, due to the shuffling mechanism, we performed each experiment 10 times and reported
the average of all experiments as the final result. So, we trained the model using 80% of the
data and then tested it with other remaining data points. Table 2 represents the results for
using a different layer(s).

Table 2. RecoG-Net recognition accuracy results for different layers.

Layer Name Contact Layer Poly Layer Metal1 Layer All Layers

Train Accuracy 100% 99% 100% 100%
Test Accuracy 99% 78% 99% 100%

The results proved that RecoG-Net is capable of recognizing gates with 99% accuracy
by using just one layer. This layer can be a metal or a contact layer. Hence, we decided to
use these two layers to examine the feasibility of adding perturbations to prevent the first
step of reverse engineering. As the results indicate, the image consisting of all layers also
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has 99% accuracy. Since this image contains lots of information and is more complex, we
decided to continue two parallel experiments using just the metal and the contact layers
separately. The simplicity of our dataset will cause the methodology to be more successful.

4.2. CAPTIVE Results

To achieve the primary purpose of this paper, preventing the chip reverse engineering
process, we generated different adversarial datasets using different adversarial techniques.
First, we applied three different techniques of JSMA, DeepFool, Square, and their com-
bination on our test dataset separately. Then, some square-shaped DRC-compliant noise
generated from different adversarial techniques is added to the test dataset. Finally, the
performance of RecoG-Net was tested using the newly adversary-generated test data set.

We did a thorough experiment using different possible perturbation parameters for
each type of perturbation. Table 3 presents the best model’s performance on different
adversarial techniques with different amounts of perturbations that we used. For JSMA,
γ and θ are set to 1 and 10, respectively. For DeepFool, the amount of perturbation is
considered 0.5. For square-box attack, the best possible parameters are set to norm = 0,
max_iter = 500, ǫ = 0.1, p_init = 0.7, nb_restart = 3, batch_size = 64. These parameters
are similar for both metal and contact layers.

Table 3. Noise-free vs. adversarial vs. DRC-compliant perturbation accuracies with full knowledge

of the RecoG-net with 99.8% and 100% noise-less accuracies for metal and contact layers, respectively.

Layer
Perturbation

Method
Adversarial

Accuracy
DRC-Compliant

Accuracy
Improvement

M
et

al JSMA 57.5% 63% 36.8%
DeepFool 50.1% 62.7% 37.1%

Square-box 32.7% 38.9% 60.9%

C
o

n
ta

ct JSMA 51% 72.4% 27.6%
DeepFool 62.5% 67.7% 32.3%

Square-box 31.9% 46% 54%

The results in Table 3 shows that the most effective perturbation method for both
metal and contact layers is square-box where for the metal layer the perturbation accuracy
dropped to 32.7% and the DRC-compliant accuracy is 38.9%. Also, for the contact layer,
the perturbation accuracy and DRC-compliant accuracy are equal to 31.9% and 46%. In
addition, the square-box is found to perturb the smallest number of pixels among the other
techniques. This makes the square-box perturbation the best candidate for further study to
improve the results.

The aforementioned results are performed assuming the designer fully knows the
attacker model. In other words, the same network (i.e., RecoG-Net) classifying the gates is
used to generate the perturbations. Thus, Table 3 shows the best achievable results. This
scenario is rare to happen since usually the attacker and the designer have no relation.
Hence, we consider two other scenarios where the attacker has no knowledge of the
perturbation network, i.e., consider a black-box attack model.

In the first scenario, the DRC-compliant perturbations are generated using the RecoG-
Net model, and the generated images are validated using a different neural network model,
whose structure is shown in Table 4. All the parameters used for generating adversaries are
the same as before. Table 5 shows the results for two of the networks among many distinct
networks that we experimented on. The reason for choosing these two specific networks is
their performance on gate recognition when adding DRC-compliant perturbations. Based
on the results expressed in Table 5, network “A” has the lowest accuracy in gate recognition
compared to network “B”, with the highest accuracy in gate recognition. The results in
Table 5 illustrate that the most reduction will happen if we apply square-box adversarial
perturbation. The possible improvement can be as high as 65.8% or as low as 18% for the
metal layer (respectively, 70.4% and 15.5% for the contact layer) regarding the network being
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used. Even with the lowest improvement in this range, the accuracy of gate recognition is
around 80%, which indicates that gate recognition can not be done completely.

Table 4. Architectures for Network “A” and “B” in Table 5.

Network “A” Network “B”

Layer Structure Layer Structure

Conv2d + Relu 32 × 3 × 3 Conv2d + Relu 32 × 3 × 3
Conv2d + Relu 32 × 3 × 3 Conv2d + Relu 64 × 3 × 3
Max pooling2d 3 × 3 Conv2d+Relu 64 × 3 × 3

Dropout 0.7 Max pooling2d 3 × 3
Conv2d + Relu 32 × 3 × 3 Dropout 0.5
Conv2d + Relu 32 × 3 × 3 Conv2d + Relu 32 × 3 × 3
Max pooling2d 3 × 3 Conv2d + Relu 64 × 3 × 3

Dropout 0.7 Max pooling2d 3 × 3
Dense + Relu 250 Dropout 0.5
Dense + linear 11 Dense + Relu 250

Dense + Relu 120
Dense + linear 11

Table 5. Noise-free vs. adversarial vs. DRC-compliant perturbation accuracies with different recogni-

tion networks. Adversary is generated using RecoG-Net.

Network “A” Network “B”
Layer Perturbation

Method
Noise-Free
Accuracy

Adversarial
Accuracy

DRC-Compliant
Accuracy Improvement

Noise-Free
Accuracy

Adversarial
Accuracy

DRC-Compliant
Accuracy Improvement

M
et

al JSMA
99.9%

64% 70.5% 29.4%
99.4%

79% 81.4% 18%
DeepFool 52.4% 57.1% 42.8% 54% 62.4% 37%

Square-box 27% 34.2% 65.7% 39.4% 43% 56.4%

C
o

n
ta

ct JSMA
99.4%

51% 67% 32.4%
100%

67.4% 84.5% 15.5%
DeepFool 60% 67.4% 32% 68% 75.4% 24.6%

Square-box 24.5% 29.6% 69.8% 30% 36.4% 63.6%

For the second scenario, we have designed several CNNs similar to RecoG-Net and
generated the DRC-compliant perturbations using these networks. Afterward, the images
were validated using RecoG-Net. The results of one of them are depicted in Table 6. All
the parameters used for each of the perturbations are the same as previously mentioned.
Table 6 shows that the most reduction in the accuracy happens if the square-box adversarial
perturbation is applied, followed by the CAPTIVE method. Clearly, when the perturbation
network and attacker network as mismatched, the improvement is dropped by around 40%.

Table 6. Noise-free vs. adversarial vs. DRC-compliant perturbation accuracies with different

recognition networks. Adversary is validated using RecoG-Net with 99.7% test accuracy for metal

layer and 99.2% for contact layer.

Layer
Perturbation

Method
Adversarial

Accuracy
DRC-Compliant

Accuracy
Improvement

M
et

al JSMA 59.2% 78.3% 21.4%
DeepFool 67.4% 76.9% 22.8%

Square-box 51% 59.4% 40.3%

C
o

n
ta

ct JSMA 67% 96.2% 3%
DeepFool 44.1% 75.5% 23.7%

Square-box 35.6% 71.8% 27.4%

4.3. Related Work

Logic camouflaging has been introduced in [37], where the gates are designed to look
alike when reverse engineered, but, can function in a different manner. Though able to
protect against RE, such techniques lack scalability, can only camouflage a limited number
of gates due to EDA constraints, and are shown to be vulnerable to brute-force attacks [38].
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On the other hand, ReGDS [39] has introduced a framework that exploits unique
relationship-based matching to identify logic gates and thereby, recover the original gate-
level netlist. However, the challenge with such frameworks lies in the scalability and
accuracy of the matching. One of the first successful trials for IC reverse engineering
is Degate tool [14] from academia. Degate is a semi-automated tool to assist in reverse-
engineering the digital logic in ICs. Degate tool performs three main steps: template
matching to recognize gates where it matches standard cells on the imagery given by a
graphical template then via matching followed by wire matching. Then, the SPICE netlist
has to be constructed manually.

The work in Pix2Net is another powerful tool to extract the schematic and logic gates
from SEM images from MicroNet Solutions Inc. (Metro Manila, Philippines) [40]. The primer
version comes with full circuit extraction, VHDL, or SPICE netlisting with a full schematics
library. During the schematics extraction, the Pix2Net performs many steps including
layer alignment, stitching, auto cell identification, placement, electrical error checking,
and others.

Another commercial and powerful tool is Circuit Vision from TechInsights (Ottawa,
ON, Canada). This tool works from IC-level reverse engineering going up to the system
level and functionality. It also supports different types of circuits and chips including
analog, digital, MEMS, and others. The tool was tested on many commercial memory
chips and major companies including Samsung, SK Hynix, Micron, and Intel. However,
the use of commercial and existing tools requires significant expertise in the IC design
and major changes to the overall EDA design flow, which is not a pre-requisite for the
proposed CAPTIVE.

5. Conclusions and Future Work

This paper demonstrates an experiment about the feasibility of adding DRC-compliant
noise to the GDSII file to prevent the first step towards chip reverse engineering, gate
recognition. First, we created the dataset containing the images of different layers of
different gates using 45 nm technology. Then, we classified them into 11 categories and
developed RecoG-Net, a neural network model to do the gate recognition based on the
created dataset. As our last and foremost contribution, we have generated DRC-compliant
perturbations based on some of the adversarial perturbations. These perturbations are
added to the images of different layers. Our experiments report that by adding these DRC-
compliant to the images of the metal and contact layers, the performance of gate recognition
will drastically drop, which will cause unsuccessful gate recognition as the first step of
reverse engineering. We have evaluated the proposed CAPTIVE on different networks,
which is different than the network used to generate the adversarial perturbations on
the layout. We have crafted a dataset of basic logic gates using CMOS 45 nm technology
for evaluation. The proposed CAPTIVE has shown that the recognition of the gates can
drop from 100% to 30% after the inclusion of the perturbations without violating the
DRC-check rules.

To further improve our methodology, a surrogate gradient perturbation has to be
formulated with constraints on the physical design rules. Square-box problem formulation
would be a good candidate to start with since it shows the best perturbation accuracy among
the investigated methods. Secondly, a combination of different adversarial perturbations
needs to be explored and evaluated for enhancing CAPTIVE methodology for robustness
and EDA compliance. Thirdly, to overcome the introduced perturbations, an adversary can
consider adversarial defenses or strategies. To thwart such scenarios, one can introduce
random inclusion of perturbed and non-perturbed gates through the inclusion of both
types of gates into the standard cell library, leading to randomness and moving target
defense. Such random consideration of gates in the layout can lead to a lower probability
or accuracy of reverse engineering by the adversaries.
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Appendix A

The following are summary of the used perturbations methods in CAPTIVE.

Appendix A.1. Jacobian-Based Saliency Map Attack (JSMA)

In contrast to applying noise to every single feature of the input data, [23] proposes
an iterative technique to add the perturbation, where the forward derivative of DNN is
exploited for adding the perturbations.

Consider a neural network F with input x. If the corresponding output is class j, we
represent the model as Fj(x). The main principle of this work is to provide a target t as the
output, the probability for Ft(X) must be increased, and simultaneously, the probabilities
of Fj(X) for all the other classes i.e., j 6= t have to be decreased, until t = arg maxjFj(X) is
achieved. This is accomplished by exploiting the saliency map, as defined below

S(X, t)[i] =







0, if
∂Ft(X)

∂Xi
< 0 or ∑j 6=t

∂Fj(X)

∂Xi
> 0

( ∂Ft(X)
∂Xi

)|∑j 6=t
∂Fj(X)

∂Xi
|, otherwise

(A1)

For an input feature i starting with the normal input x, we determine the pair of
features {i, j} that maximizes S(X, t)[i] + S(X, t)[j] and perturb each of the features by
a constant offset ǫ. This process is repeated iteratively until the target misclassification
is achieved.

Appendix A.2. DeepFool

DeepFool (DF) is an untargeted adversarial attack optimized for L2 norm, introduced
in [22]. DF is an efficient adversarial attack that is capable of producing adversarial samples
that highly resemble the original inputs as compared to the aforementioned adversarial
samples, especially FGSM and BIM attacks. The principle of the DeepFool attack is to
assume neural networks as completely linear with a hyperplane separating each class
from another. Based on this assumption, an optimal solution to this simplified problem
is derived from constructing adversarial samples. As the neural networks are non-linear
in reality, the same process is repeated considering the non-linearity into the model. This
process is repeated multiple times for creating adversaries. This process is terminated when
an adversarial sample is found, i.e., misclassification happens.

Appendix A.3. Square-Box Attack

In contrast to the other adversarial attacks, which primarily rely on the gradients to
insert the perturbations, Square-box attack [24] is a non-gradient attack, which performs
a randomized search and inserts square-shaped perturbations, and in each iteration, the
perturbation is situated approximately at the boundary of the images. A Square-box attack
requires fewer queries for inserting the square pixels compared to other attacks due to the
random search and sampling distribution information.
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