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1. Introduction

Road traffic congestion is a critical problem affecting urban mobility worldwide and its severity continues to increase, causing
significant costs at the individual and societal level (Eurostat and E.U. Commission, 2018; Schrank et al., 2015). While a significant
agenda has been put forward on the transport supply side, mostly driven by vehicle technology (automation and electrification),
demand shifts are often considered a hard-to-reach but effective means to reduce the social and environmental costs associated with
transport. Demand management has thus become an increasingly important focus of the policy agenda in many metropolitan areas.

As a promising demand management policy, congestion pricing has been widely investigated in the literature and successfully
implemented in practice (Langmyhr, 1999; Yang and Huang, 2005; Lindsey, 2006; Vonk Noordegraaf et al., 2014; Gu et al., 2018).
Since the seminal study by Pigou (2013), numerous first-best pricing models have been proposed, where exact system optimum (SO)
solutions are analytically derived given the explicit demand and cost functions (Smith, 1979; Arnott et al., 1990; Yin and Yang,
2004; Yang and Huang, 2005). However, in practice these functions can be empirically difficult to estimate. Consequently, several
studies have attempted to determine the congestion pricing toll rates via a trial-and-error approach, wherein tolls are dynamically
updated and imposed without knowledge of the demand functions. For example, Li (1999) proposed an iterative bisection algorithm
to optimize tolls using observable traffic count data and travel cost functions for a single road link, and analytically proved its
convergence to SO (Li, 2002). Yang et al. (2004) then extended this trial-and-error approach based on the method of successive
averages (MSA) to the first-best pricing problem in a general network.

However, first-best pricing is difficult to implement in practice due to several complications as summarized in Small et al. (2007),
de Palma and Lindsey (2011); hence, various second-best pricing schemes have been explored in both theory and practice. Typical
second-best pricing strategies include facility-based schemes, e.g., high occupancy vehicle lanes; cordon-based schemes (Meng and
Liu, 2012; Zheng et al., 2012, 2016); area-based schemes (Simoni et al., 2015; Ye et al., 2015); and distance-based schemes (Meng
et al., 2012; Daganzo and Lehe, 2015). Distance-based schemes improve fairness and efficiency by charging based on distance, thus
capturing the congestion externality that a vehicle imposes more accurately than cordon and area-based schemes (Lentzakis et al.,
2020, 2023). Accordingly, this study focuses on distance-based time-of-day pricing (TODP) schemes.

The design of second-best pricing schemes is typically formulated as non-linear programming and bi-level optimization problems
(see for example Zhang and Yang (2004), Meng et al. (2004)). These problems are in general non-convex and computationally
difficult to solve, and hence, researchers typically resort to meta-heuristics, heuristics, or approximations (Zhang and Yang, 2004;
Ekstrom et al., 2012; Verhoef, 2002; Gupta et al., 2020). Trial-and-error methods also have been applied. For instance, Meng et al.
(2005) proposed a method to determine effective link tolls without knowledge of demand and link travel time functions. Yang et al.
(2010) further considered flow interactions, while Meng and Liu (2011) considered probabilistic route choices using a stochastic
user equilibrium formulation. Other extensions of the trial-and-error method related to second-best pricing were proposed in Wang
and Yang (2012), Xu et al. (2013), Zhou et al. (2015).

Congestion pricing has also been studied in the context of day-to-day dynamics and several studies adopt a continuous time
approach, formulating the toll design problem as an optimal control problem (Friesz et al. (2004), Wie and Tobin (1998); see
also (Sandholm, 2002) for an application of evolutionary game theory). In contrast, Rambha and Boyles (2016) propose a dynamic
day-to-day pricing mechanism that computes the optimal link tolls to reduce the expected total system travel time in a discrete
time setting. Yang et al. (2007) derived dynamic marginal cost tolls based on the steepest descent direction of the system cost and
proved convergence to the system optimum. Trial and error schemes of the type discussed earlier have also been proposed within
the day-to-day dynamic setting (Ye et al., 2015; Guo et al., 2016). More recently, Liu et al. (2017) proposed a robust optimization
framework (solved using an artificial bee colony algorithm) for the determination of a day-to-day distance-based toll considering
network performance on each day.

In contrast with the above approaches which largely adopt analytical models of network congestion, when utilizing simulation-
based models, solution of the toll design problem requires computationally intensive objective function evaluations that rely on
a simulator. Given these computational constraints, recently, surrogate-based optimization approaches have been applied as they
can approximate the relationship between decision variables and corresponding objective functions values using a small number
of function evaluations (Osorio and Bierlaire, 2013). For example, Chen et al. (2014, 2016) used the Kriging model for link-based
toll optimization, where the objective functions are assessed through a stochastic simulator for a freeway network. Gu et al. (2019)
applied a surrogate-based optimization with expected improvement sampling to a time- and distance-based toll to reduce travel time
and heterogeneity in the distribution of congestion. Liu et al. (2021) proposed a Bayesian optimization method for the time-of-day
distance-based pricing optimization problem and demonstrated its effectiveness numerically. Zhong et al. (2021) also adopted the
Bayesian optimization framework to design an area-based flat toll considering long-term land use effects. Furthermore, surrogate-
based optimization methods have been widely applied to various traffic and signal control problems (Chong and Osorio, 2018),
transit scheduling (Zhang et al., 2017), and day-to-day model calibration (Cheng et al., 2019).

Although promising, surrogate-based methods still pose computational challenges in the context of day-to-day dynamic models,
where each evaluation of the objective function requires simulating the day-to-day model until stationarity or convergence. This
paper contributes to the literature by proposing a Contextual Bayesian Optimization approach that circumvents this issue by
embedding and integrating the optimization procedure within the day-to-day dynamic model. This is done by incorporating temporal
contextual information (the ‘day’) into the Gaussian process (GP) underlying the BO (in other words the surrogate model maps the
objective function value to the toll design variables and ‘day’). Thus, we implicitly model the day-to-day dynamic evolution of flows
and perform the optimization for each ‘day’, while transferring information of the GP across days. The proposed contextual BO
approach is applied to the design of distance-based time-of-day pricing (TODP) schemes using a day-to-day modeling framework
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consisting of a logit-mixture departure time choice model on the demand side and a simulation-based trip-based macroscopic
fundamental diagram (MFD) model (Lamotte and Geroliminis, 2018) on the supply side. We demonstrate that the scheme efficiently
evolves to a near system-optimal state while achieving a ten-fold reduction in the number of single-day simulations. Further the
scheme is extended to incorporate context specific demand and supply information, which can be of value to policy-makers when
evaluating optimal toll design schemes under a wide range of scenarios in a computational tractable manner. Finally, from a policy
perspective, we find that the distance-based schemes yield significant welfare gains relative to area-based schemes and show that the
design of the distance-based tariff scheme can significantly affect distributional impacts. A suitably designed two-part tariff structure
can partially offset the relatively large welfare losses of travelers with longer commute distances while maintaining overall welfare
gains.

The rest of this paper is organized as follows. Section 2 presents the traffic flow model and day-to-day dynamic model. Section 3
introduces the basic components of BO, and then proposes a contextual BO-based approach to integrate the optimization of the
TODP tariffs within the day-to-day model, as well as two alternative BO-based benchmark optimization strategies. Section 4 consists
of numerical experiments on a reservoir network, which are focused on examining the convergence of the proposed framework,
effectiveness of the BO-based approach and the distance-based TODP scheme, potential of transferability that the approach provides,
and distributional effects of different tariff schemes. Finally, Section 5 summarizes our findings and discusses possible avenues for
future research.

2. Background and modeling context

We consider a morning commute problem where a fixed demand of N travelers (indexed by i = 1... N) wish to travel during the
morning peak. Travelers are assumed to choose their departure time intervals based on travel time, schedule delay (the difference
between the actual arrival time and desired arrival time), and toll cost, in line with the classic Vickrey model (Vickrey, 1969).
The trip-based MFD model, which considers individual traveler attributes, serves as the supply model. A day-to-day modeling
framework (Cantarella and Cascetta, 1995), where perceived travel times and schedule delay of travelers evolve from day to day
through a learning process, determines the evolution of traffic flows. Finally, under the proposed distance-based TODP scheme,
which is used to manage peak-period congestion and achieve peak spreading, traveler i’s toll cost depends on a time-of-day pricing
scheme denoted by g(#|6) and the trip length L,. 6 represents the parameters that define the time-dependent tariff structure.

In this section, we present (1) the supply model based on the trip-based MFD, (2) the demand and day-to-day dynamic model,
and (3) toll design optimization formulation.

2.1. Supply model
As defined and investigated in Fosgerau (2015), Daganzo and Lehe (2015), Mariotte et al. (2017), trip-based MFD models treat

each traveler individually and hence, allow for heterogeneity in terms of trip length, value of time (VOT) and schedule delay
penalties, thus providing a more detailed description of traffic dynamics. The general principle of the trip-based MFD is that the

trip length of traveler i can be computed as the integral of the speed from the entering time t;le” to the exiting time tt‘.le” + T,-(tt‘.’e” ),
which is written as follows,
Idep+7~’_(11dep)
L= Vn(e)ds W
r;""’

The speed V(n(t)) in the network is computed by the aggregated speed-MFD (Daganzo, 2007; Geroliminis et al., 2007), which is
assumed to be the same for all travelers in the network and only changes with an event (departure or arrival). Hence, Eq. (1) can
be decomposed into p parts (where p is the number of arrivals and departures occurring while vehicle i is on the network) and
computed within an event-based simulation framework. This iterative updating is executed until each traveler finishes her/his trip.
Note that this event-based simulation provides more accuracy and realism but makes the model computationally demanding.

2.2. Demand model and day-to-day dynamic learning
The money-metric utility for a traveler i departing in a time interval t € TW; (TW; is the set of feasible departure time intervals
for individual i) on day d is given by:
Uia)=Ciy+e;, (2)

where ¢; is an identically and independently distributed error term; and C, ,(r) is the systematic utility (defined in Eq. (4)) for
traveler i departing in time interval ¢ on day d. The probability of choosing departure time interval 7 is calculated using the logit
model (Ben-Akiva et al., 1985) as follows:

exp(u - Ciy(®)
Zoerw, exp(p - C;4(s)) ’

where u > 0 is the scale parameter, which determines the variance of the unobserved utility.

Pr; 4(Ci y(0) = (3)
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Let ¢; 4(1) denote the perceived utility associated with the time components (travel time, schedule delay early, schedule delay
late) for traveler i on day d departing in time interval r; the systematic utility C, ,(¢) is defined as:

Cia(®)=2¢4(1)—g0)- L; - w, 4

where the tariff payment of traveler i is the product of tariff g(¢|0), trip length L; and a scaling factor w.

Within the day-to-day modeling framework, at the end of each day d, travelers update their perception of the time components
for day d + 1, ¢; 4, (t), combining the initially perceived ¢; ,(r) on day d with the experienced (chosen alternatives) and estimated
(unchosen alternatives) travel time, schedule delays on day d, c; ,(r) as follows:

Gan1 D= g0+ (1= o) - ¢ 4(0), ()

where 0 < w < 1 is a learning parameter, which represents the relative weight given to historical experience (previous perceived
time components) versus current experience (Horowitz, 1984).

The experienced (or estimated) money-metric utility associated with time components for traveler i on day d departing in time
interval 7 is given by

Ga=—a; T y0)=8;- ;- (T} =t =T, 4(0))
—(1=8)7 - (1+ T, =T/}),

where ¢; is the VOT for traveler i, T, ,(¢) is the travel time for traveler i on day d departing in time interval ¢, §; and y; are the
schedule delay penalty parameters for early and late arrival for traveler i, §; is a binary variable that equals 1 if traveler i arrives
early and 0 otherwise, and T} is the preferred arrival time of traveler i.

Moreover, to estimate the travel time for all unchosen departure time intervals in the choice set TW;, we use the concept
of fictional travelers who are assumed to choose these departure time intervals without influencing the accumulation of the
network (Lamotte and Geroliminis, 2015). The choice set of feasible departure time intervals or departure time window TW;, is
individual-specific and defined as TW; = {td“’ de” —(-1),. d"” + 7}, where 7 is a parameter and t P represents the initial
departure time interval on day 0, which is computed from the preferred arrival time T;* and the percelved travel time on day 0.
Thus, the departure time window TW; consists of 2z time intervals centered around the preferred departure time on day 0, tde”

Note that the day-to-day model described above is a stochastic process if the underlying day-to-day stochasticity in departure
flows is explicitly treated (Cantarella and Cascetta, 1995; Watling, 1996). Due to the heterogeneity in trip lengths, which makes it
difficult to derive travel times as a function of aggregate flows (Lamotte and Geroliminis, 2018), the stochastic process is solved
using simulation, in which we assume that the error terms for a given individual are perfectly correlated across days. For more on
the convergence and stationarity properties of this day-to-day dynamic model, we refer the reader to Liu et al. (2022).

©)

2.3. Toll optimization

The social welfare per capita W computed at the equilibrium state (convergence of the day-to-day model) is used to measure the
performance of scenarios with and without the distance-based TODP, and we wish to determine the time-dependent tariff structure
that maximizes W. First, in the no toll case (or NTE, the scenario without distance-based TODP), the social welfare per capita Wﬁ
is the average consumer surplus (CS) per traveler, i.e., the average of observed travel utilities Ui,d(t;{;” ), including travel time cost,
schedule delay penalty and the random component, given by

Wd 2 d(tdep

N
z [ Call) + 6] )

=% Z La D).

i=1

ZI—

=z

where d is the day when the system converges to the equilibrium.
For the TODP scenario, the social welfare is computed as the average of the CS and the regulator revenue (RR) from toll collection
where RR = Z,]i | g(tid:;p |0) - L; - w. The social welfare per capita W;} is calculated as follows:

wg =i [CS + RR]

1 d d d
= Z[ € (17 — g(t710) - L, - w+e,-(tl.'2”)]

1 B ®
M wtos

=L ZU’d(t"e”
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Note that the TODP welfare measure is equivalent to the NTE case and equals the sum of travel time cost, schedule delay penalty,
and the random utility component.

We can thus formulate the simulation-based toll optimization problem with the objective of maximizing social welfare W) as
follows:

mgx Wl‘f
d _
s.t. Wy =SM(gt0),®,¥) ©)
g(tl6)=0
teTW,

where g(-) is the TODP toll function and 6 are the associated parameters. In the case of distance-based scheme, g(-) is in the unit
of [DKK/meter], while in the case of standard area-based scheme, it is in the unit of [DKK]. @ = {N,a, 8,y,T*,TW, L} contains
all input data: number of travelers, value of time, value of schedule delays, preferred arrival time, departure time window and trip
length. ¥ = {n;,,, v,V (n),»} represents model parameters: network capacity, free flow speed, speed function and learning rate.
Function SM(-) is the system model described in Sections 2.1 and 2.2.

3. Methodology

In this section, we first provide an introduction to Bayesian optimization. Next we propose three different Bayesian optimization
approaches to solve the toll optimization problem (9). This includes the novel contextual Bayesian optimization approach designed
specifically for the day-to-day model, and two alternative benchmark BO-based optimization strategies.

3.1. Bayesian optimization

A BO framework essentially consists of two main steps (Frazier, 2018): (1) update a Bayesian statistical model that approximates a
complex map from the decision variables (i.e., the TODP scheme parameters 6; also called inputs or input variables in the remainder
of this section) to the output or objective function value (i.e., the social welfare W}); (2) determine the next trial decision variable
by optimizing an acquisition function (in other words, select the next vector of candidate TODP parameters to observe or evaluate).
These two steps are discussed in detail in Sections 3.1.1 and 3.1.3, respectively.

3.1.1. Gaussian process

The BO framework typically relies on a Gaussian Process (GP), which assumes the objective function values and input variables
are jointly distributed. Let the input variables be denoted by x = 0; then the GP is fully specified by its mean function u(x) and
covariance function k(x, x’) as follows:

W ~ 6P(ueo, kx,x)). (10)

Here W stands for the social welfare per capita under a TODP scheme, dropping the subscript P for notational convenience.

As is standard practice, we assume the mean function u(-) = 0 (Williams and Rasmussen, 2006). Further, assume we have
evaluated m different TODP scheme parameters x according to a space-filling experimental design given by D,, = {x{.,,. Wi.}»
where x,.,, = [x{,%,,...,x,]" are the input points and W;.,, = [W}, W,,...,W,]T are the corresponding objective values. Then, the

joint distribution of W;.,, and a new candidate input point x,,, W,,,, is given by:

w;. K k
o ~ 0, , 11
[ Wm+1 ] N( [ kT k(xm+1’xm+l) ) ( )

where k = [k(x,p1, %) k(X 15 X2)s oo s k(X i1, X,)]7, and K is the covariance matrix with entries K,; = k(x;,x;) for i, j €
{1,2,...,m}.

The posterior distribution of W,,,; can be computed using Bayes’ theorem,

ij

Wm+1|VVI:m ~ N(”(xm+l)’ 52(xm+1)>’ (12)

where p(x,,,.1) = kT K"'W,.,, and 62(x,,1.1) = k(Xps15 Xpy1) — kT K~k. For the covariance function, we choose the commonly used
Matern kernel (Matérn, 2013),
21—\/
k(x,x") = m(\ﬂv Il —x" ID"H,(V2v || x = x" ), 13)

where I'(:) is the Gamma function and H, is the modified Bessel function. In the numerical experiments, we assume v = 5/2.

3.1.2. Contextual Gaussian process

To take into account environmental variables (termed the ‘context’) in addition to the action points (TODP scheme parameters
in our case), Krause and Ong (2011) proposed the contextual GP (CGP), which allows for fitting the GP over the action-context
space.
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Fig. 1. Flowchart of Bayesian optimization for equilibrium social welfare.

Under the day-to-day framework, we consider time, i.e., the index of day, as the context. Therefore, the input point x is
augmented as & = (x,d), associated with the CGP as W (%) ~ CGP(p(%), k(& x")). Note that the chosen Matern kernel has
the property that the product of two Matern kernels with smoothness parameters v is still a Matern kernel with smoothness
parameters v (Krause and Ong, 2011). We use the product form for the composite kernel k, which is written as k{(x,d),(x’,d")} =
k(x,x") - ky(d,d").

3.1.3. Acquisition function

After updating the posterior distribution over W, an acquisition function is constructed that measures the value of candidate input
points by using the inferred objective function value and variance of the prediction. The upper confidence bound (UCB) (Srinivas
et al., 2009) is a commonly used acquisition function, written as follows:

Nycp(X; p) = u(x) + po(x), (14)

where p is a hyperparameter which controls balance between exploration and exploitation, such that a larger p will lead to more
exploration. The next point to be evaluated can be determined by maximizing the UCB function (14),

Xppg] = argmax Nycp(X). (15)

We can derive the generalized contextual UCB function by using the augmented input points * and mean function and standard
deviation of the associated CGP.

3.1.4. Experiment design

When applying the BO algorithm, the initial set of input points is usually randomly generated from the input space. This process
may influence solution quality and algorithm efficiency. Thus, a space-filling experimental design is useful for providing a good set
of initial input points.

We apply one of the most popular sampling methods, Latin Hypercube Sampling (LHS) (McKay et al., 2000), to generate the
initial set of sample points. LHS stratifies each variable of x into m equal intervals, and draws sample points from each sub-interval
uniformly. Compared to the Monte Carlo method, LHS has the advantage that the sampled points are independent without overlap,
which is representative of the real variability.

3.2. TODP optimization strategies based on BO

In this subsection, we introduce three BO-based optimization strategies for the proposed area- and distance-based TODP scheme:
solve optimization problem (9) for (1) the equilibrium state, (2) each day independently, and (3) each day considering temporal
contextual information and the day-to-day evolution of departure flows.

3.2.1. Optimize the social welfare at equilibrium

As shown in Fig. 1, the first toll optimization strategy (denoted by S,) is to find a toll that maximizes the social welfare at
equilibrium. This is analogous to the standard black-box optimization and surrogate-based optimization techniques. A single GP
is constructed using the sample points consisting of the toll parameters and social welfare. Under this strategy, the evaluation of
each input tolling scheme requires a complete day-to-day simulation wherein the value of the objective function is computed after
equilibrium is reached. Thus, the training of the GP essentially treats the day-to-day simulation as a black box and calls for a
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large number of ‘within-day’ (or single-day) simulations. Specifically, for S, let M, represent the number of days needed for the
day-to-day process to converge, Q, represent the number of iterations for BO, and ||D,|| be the number of initial sample points,
then the total number of within-day simulations, denoted by ¢, is given by ¢, = (||D;|| + Q) - M;.

3.2.2. Optimize the social welfare at each day

As shown in Fig. 2, the second toll optimization strategy (denoted by .S,) aims to obtain the optimal tolls for each day within
the day-to-day process independently. The evaluation of a candidate toll scheme uses the social welfare computed from the current
within-day simulation, and the BO algorithm is applied to the optimization of the tolls for the ‘current day’ only. At an arbitrary
intermediate ‘day’, the current perceived travel costs are not (necessarily) equal to realized costs, or in other words, the system is
not yet in equilibrium. The hypothesis underlying this approach is that despite performing the toll optimization independently for
each day, the day-to-day dynamic process (with the tolls in effect) eventually converges to an equilibrium. If convergence is not
significantly worse than the day-to-day model with a fixed toll scheme, and if the number of iterations for the BO algorithm for each
day is significantly smaller than for that in S'1, computational efficiency is likely to be improved. Observe also that the evaluation
of a single candidate toll scheme now involves only a single day simulation rather than the simulation of the entire day-to-day
model until convergence. In Section 4.2, we investigate numerically whether this approach yields the same optimal toll scheme and
equilibrium state as approach .S, and whether it does so using a fewer number of single-day simulations.

Note that this approach may be viewed from two perspectives. First, one may treat it as simply a computational method
to determine an optimal toll scheme that is not day-to-day adaptive. The regulator simply implements the optimal within-day
dynamic toll scheme, which does not vary across days. The second is to in fact view the approach as a form of day-to-day dynamic
pricing, where the toll schemes computed on each day are implemented in practice. Such schemes have been widely studied in
the literature (Friesz et al., 2004; Rambha and Boyles, 2016) and afford an attractive approach to pricing that can accommodate
day-to-day variability and the likely absence of equilibria in the real-world. However, they are also more difficult to implement in
practice (in Singapore for example tolls are only revised once every three months or so) due to the complexity of communicating
a complex tariff structure to travelers every day. For the remainder of the paper, we focus on the first perspective, and defer the
study of day-to-day dynamic pricing to future research.

In this approach, multiple GPs are constructed, one for each day d, using the toll parameters and social welfare on the given
day. Each GP is trained independently, and therefore, the initial sample points are generated separately. If Q, ; denote the number
of BO iterations needed on day d, we have ¢, = ||D,|| - M, + 234:21 Qr4-

3.2.3. Optimize the social welfare at each day utilizing context

The third solution approach (denoted by S5) is the novel Contextual BO, shown in Fig. 3, where once again, the optimization of
the toll scheme is performed separately for each day within the day-to-day process using the BO algorithm. However, in contrast
with approach S, where independent GPs are trained for each day d, here, a single underlying CGP is trained that uses the ‘day’ as
an additional ‘context’ variable. Moreover, sample points are continuously augmented as the day-to-day process evolves. Compared
to S; and S,, the constructed single CGP of §; implicitly incorporates information of the day-to-day dynamic evolution of flows
through the temporal context. In other words, S5 takes the relationship between objective functions from day to day into account
and uses past observations as weak priors for the current day’s optimization problem (9), resulting in a more accurate prediction
(this weak effect is enforced through the covariance structure, i.e., k,;(d,d’) will be larger when d and d’ are farther apart, which
makes k{(x,d), (x",d")} larger as we use the product kernel). This can further enhance computational efficiency relative to .S, since
fewer function evaluations are required for each application of the BO algorithm.

Specifically, in approach 3, initial sample points are first generated on day 1. Then, at each day, given the fixed context (day),
the BO algorithm is applied to optimize the toll parameters iteratively. The trial toll schemes are generated along with the GP’s
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Fig. 3. Flowchart of contextual Bayesian optimization for daily social welfare.

Table 1
Numerical settings.
Parameters [unit] Specification
Demand [traveler] N, =3700 , N, =4500
Initial departure time [min] 17 = N(80,18), 1% € [20,150]
Trip length [m] L; = 4600 + N'(0,(0.2 X 4600)?), L, >0
Trip length scale factor w=2x10"*
Schedule delay penalty p; ~ Lognormal(—1.9,0.2%) x 4
[DKK*/min] ri=pxel
Value of time [DKK/min] a; = f; x e
Time window parameter =90
Time interval [min] At =
Network capacity [vehicle] g = 4500
Free flow speed [m/s] v, =978
Speed function [m/s] Viny=v,(1- ”L)2
Learning parameter =09
Tariff profile function gt| A é,0)=AXe =

* Danish krone.

predictive mean and variance, and these toll parameters and the current ‘day’ are augmented to the data, which is subsequently
passed on to the next day. At the same time, the optimal toll is used for the current within-day simulation, and the corresponding
perceived disutility is updated for each traveler within the day-to-day process. For S;, we thus have, {; = ||Ds|| + 224:31 0s4-

The contextual BO (approach S;) is also appealing since demand and supply information can be added as context variables.
Thus, from a regulator’s standpoint, different optimal tolling schemes can be computed efficiently by utilizing the same underlying
CGP across a range of demand and supply scenarios. The addition of demand and supply information as contextual variables is also
appealing in the context of day-to-day dynamic pricing, where tolls can be efficiently optimized conditional on revealed information
about current or anticipated demand and supply conditions.

4. Numerical experiments

This section begins by introducing the design of the simulation experiments. Next, we present the results of (1) the comparative
performance of the three BO-based optimization strategies (Section 4.2); (2) the performance of the contextual BO using contextual
demand and supply information for optimization of toll schemes under varying travel demand and network capacity (Section 4.3);
and (3) comparison of distance-based and area-based schemes and distributional effects (Section 4.4).

4.1. Experiment settings

The key simulation inputs and other parameters are presented in Table 1.

The experiments consider a single-reservoir network with a capacity of n,,, = 4500 travelers, with the speed function adopted
from Lamotte and Geroliminis (2018) and other parameters (trip length, time window parameters, and time interval) used
in Yildirimoglu and Ramezani (2020). Two demand scenarios, moderate congestion (N; = 3700 travelers) and high congestion
(N, = 4500 travelers), are considered, where N, makes the accumulation at no tariff equilibrium just exceed the critical value of
the accumulation (which equals 7,,,/3 = 1500 in our settings), and N, is the largest possible value that will not trigger gridlock. The
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Fig. 4. Day-to-day evolution in the moderate congestion scenario with optimized TODP for S,.

initial departure time t;ig” is generated from a truncated Gaussian distribution (note that hereafter t;ig” refers to a specific departure

time rather than an interval). The desired arrival time T;* is then computed as tig" + L;/v; for all travelers, which is also normally
distributed. Additionally, heterogeneous travelers are captured by drawing their trip lengths from another truncated Gaussian
distribution and values of schedule delay from a lognormal distribution, respectively. The mean value of the generated value of time
is 1 [DKK/min] (Fosgerau et al., 2007) and the standard deviation is 0.2 [DKK/min]. The values of schedule delay are assumed to
vary proportionally to the value of time and satisfy the widely used trip timing preferences relationship, i.e., §; < a; < y; (Small,
2015). In both demand scenarios, the same distributions are used while all other parameters are constant (see Table 1). To set up a
time-varying pricing scheme, the tariff function is assumed to take the form of a (positive) Gaussian function with three parameters,
mean &, variance ¢ and amplitude A. Without loss of generality, the method described below can be extended to a Gaussian mixture
function to allow for asymmetric and more flexible tariff profiles (Liu et al., 2021).

—(=¢?
262

Yang et al. (2007) refers to a day-to-day dynamic pricing scheme as strong if it improves the social welfare monotonically
during the evolution process. This property guides the day-to-day process to the SO and provides a clear stopping criterion for the
proposed optimization strategies S, and S;. However, due to the uncertainties in our simulation, the monotonic improvement of
social welfare is not guaranteed. Instead, we let the BO terminate if the optimized social welfare on day d, Wp,, is greater than
max{Wp 4, ..., Wp 4_4} — 6, where & is the standard deviation of ng’*, which is the equilibrium social welfare of the no tariff case.
Therefore, the number of BO iterations at each day for S, and S5 are adaptively determined.

In addition, for §;, we generate 30 initial sample points via LHS and set the maximum number of iterations as 50 due to the
limited computational budget; for S,, we generate 10 initial sample points at each day; while for S5, we only generate 10 initial
sample points at the first day of implementing pricing. Moreover, we compute a benchmark solution using the differential evolution
algorithm (DEA), for which, the population size is 20, and the number of iterations is 100. For all experiments, the simulated number
of days is 50.

g(t|0 =[¢,0, A]) = Aexp 16)

4.2. Comparative performance of the BO-based optimization strategies

First, we examine the convergence of the day-to-day dynamic system under the optimized tariff profiles obtained from the
developed BO-based methods for both demand scenarios. Theoretically, when the day-to-day evolution reaches an equilibrium, the
vector of the perceived travel cost of all travelers, c,, should be equal to the vector of the experienced travel cost of all travelers, &,
(recall also that we assume that the individual specific error terms are fixed across days and not redrawn). Thus, the inconsistency
between ¢, and &, is used as a measure of convergence towards the equilibrium. Specifically, the normalized L1 norm of the
difference between them, || (¢, —&,)/c, |l; X100%, is computed to represent the inconsistency. It is worth noting that the equilibrium
states of the base cases are used as the starting states (i.e., day 0) of the TODP cases. Fig. 4 presents the evolution processes of the
social welfare gains per capita, the departure rates for every 5-minute interval (referred to as flow pattern hereafter), and the states
of accumulation on different days for the moderate congestion scenario with optimized TODP by ;. We find that the social welfare
gains per capita stabilises after 40 days with an inconsistency gap of 0.01%, and the flow pattern and accumulation on day 40
overlap with those of day 49. These observations imply that the day-to-day evolution reaches an equilibrium. We also observe
similar patterns in the high congestion scenario, although the plots are omitted here.

Similarly, Fig. 5 shows the evolution processes of the three aforementioned performance indicators for the moderate congestion
scenario with day-to-day dynamic optimized TODP for .S;. We find that an equilibrium state is also reached with an inconsistency
gap of 0.02%.

To provide a straightforward comparison among the three proposed BO-based optimization strategies S;, S,, and .53, we plot
the evolution profiles of social welfare gains and the profiles of flow patterns and accumulations at the equilibrium states together
in Fig. 6. Note that the time-dependent toll rates are fixed across days under S;; we therefore use a horizontal line to represent the
optimal welfare gains in Fig. 6(a). It can be observed that all three strategies attain a near identical social welfare and the system
converges to the same equilibrium.
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Fig. 5. The evolution process in the moderate congestion scenario with optimized day-to-day dynamic TODP for .S;.
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Fig. 6. The evolution process in the moderate congestion scenario with optimized TODPs for S,, S, and S;.

Table 2

Average performance gains under TODP optimized by S, S,, .S; and DEA.
Unit: [DKK/cap] Social welfare Travel time cost Schedule delay cost Tariff payment ¢
N, = 3700
DEA 3.20 5.74 2.86 10.96 10°
S 3.20 5.61 2.72 10.71 4000
S, 3.20 5.78 2.90 10.97 3323
S5 3.20 5.71 2.82 10.77 337
N, = 4500
M 5.95 8.89 3.08 13.27 4000
S5 5.95 8.96 3.16 12.60 278

Next, we investigate the effectiveness of optimization strategies .S, S,, and S5 in terms of optimality, computational efficiency,
welfare and network performance. Table 2 lists monetary gains of the various performance measures at equilibrium for both demand
scenarios under time-dependent distance-based tolls optimized by the different approaches. In the moderate congestion scenario, it
can be seen that all the optimization approaches S|, S,, and S; yield an optimal social welfare that is identical to the benchmark
DEA algorithm. In other words, the optimization of the tolls separately for each day does result in the system converging to the
system optimum for both .S, and .S;. All the BO-based approaches require far fewer single-day simulations than the meta-heuristic
method, and moreover, S5 requires only 1/10th the number of single-day simulation runs { compared to §; and S,. This clearly
demonstrates the benefit of embedding temporal contextual information. It is worth noting that under .S, the welfare gain reaches
3.19 DKK per capita after ¢ = 3350 single-day simulations and 3.20 after { = 3950. Note also that the improvement of .S, over S, is
marginal.

In the high congestion scenario, we see similar results in that §; and .S; have a near identical solution and .S; performs
significantly better than S, in terms of computational efficiency (once again, a more than ten-fold reduction in ¢). Note that S,
obtains the best solution at { = 3650. Taking the moderate congestion scenario as an example, in Fig. 5, we can observe the change
in departure flows and flattening of the accumulation due to the tolls, leading to an improvement in the social welfare per capita
by 3.20 [DKK].

4.3. Contextual demand and supply information
The usefulness of the Contextual BO approach is that in principle, a range of different contextual variables can be incorporated
into the CGP model. In this section, we consider two additional contextual variables, the total travel demand and capacity. To

assess the capabilities of the contextual BO method to effectively ’transfer knowledge’ of the underlying mapping between tolls and

10
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Fig. 7. Day-to-day evolution for the scenario with moderate demand, lower capacity, and optimized TODPs by .5; with and without transferred knowledge.
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Fig. 8. Day-to-day evolution for the high congestion scenario under optimized TODPs by .S; with and without transferred knowledge.

welfare across different demand and supply scenarios, we investigate how well a GP that is trained in one scenario can facilitate the

optimization of toll schemes for other scenarios. Specifically, we select the pre-trained GP from the moderate congestion scenario,

denoted as QP'IZ‘I"", and use it as the starting GP for (1) a scenario with the same demand but a lower network capacity n;’am = 4000,
! !

wherein the resulting GP is denoted as QP';"'"’"’"’”, and (2) the high demand scenario. We further adopt QPZ”""”’“’” as the starting GP

for the high demand scenario. In these tests, extra contextual information (the capacity/demand) is embedded into the pre-trained

GP and the current optimization process.

First, we examine the performance of this method by comparing the equilibria reached via .S; with and without transferred
information from the GP for both scenarios, which are presented in Figs. 7 and 8, respectively. The social welfare gains shows
different evolution processes but finally converge to the same solutions, where the inconsistency gaps are both smaller than 0.03%.
In addition, the accumulation and flow pattern profiles from the two optimization strategies are nearly identical in both scenarios.
Thus, the contextual BO with a pre-trained GP is effective.

Table 3 further summarizes the performance when utilizing the pre-trained GP for the two designed scenarios. The results show
that the contextual BO with transferred knowledge yields an identical solution with an interesting superiority in computational
efficiency over the method that learns from scratch. In particular, the number of iterations needed for this approach is around 20%
lower than the one with no prior experience (S} versus .S3), and it is further reduced when provided with more prior experience.
This can provide significant computational gains when dealing with a large number of scenarios for large size networks. From a
practical perspective, the experiments highlight the advantages of incorporating demand and supply contextual information and a
pre-trained GP. Practical applications include cases where a regulator would like to determine optimal pricing schemes under a range
of different non-recurring and recurring demand and supply scenarios including special events, weather, construction, incidents, etc.

4.3.1. Performance under demand uncertainty

In this section, we assess the capability of the contextual BO method considering demand uncertainty during the day-to-day
process. Specifically, we assume there are 5000 travelers in total and generate individual characteristics (value of time, value of
schedule delay etc.) as before based on the distributions from Table 1. The demand N, on a given day d is now assumed to be
uniformly distributed between [4000, 5000]. It is worth noting that we maintain the perception of the time components ¢; ,(t) for
all travelers at the individual level using Eq. (5). For travelers who do not travel on day d, the travel time for all departure time
intervals is estimated using the ‘fictional user’ method (Lamotte and Geroliminis, 2015).

Note that both ‘day’ and ‘demand’ are treated as contextual variables when applying S;. In this case, however, we do not
determine the number of BO iterations on each day adaptively, and instead terminate the BO when the maximum number of
iterations (30 in this experiment) is reached on each day. To compare the base case and the optimized case, we first run the base
case until convergence, indicated by the normalized L1 norm, which reaches 5%. Starting from this state, we then run the base

11
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Table 3
Average performance gains under TODP optimized by .§; with and without transferred knowledge.
Unit: [DKK/cap] Social welfare Travel time cost Schedule delay cost Tariff payment ¢
N, = 3700, n,,,, = 4000
S5 5.11 8.15 3.21 11.94 329
Sy 5.13 8.12 3.17 11.67 267
N, = 4500, n,, = 4500
5.95 8.96 3.16 12.60 278
5.96 8.98 3.16 13.00 201
Sy 5.96 8.97 3.16 12.94 168

* Using S; with transferred knowledge from QP';\jl

** Using S; with transferred knowledge from QP';(,“I’"‘"
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Fig. 9. Day-to-day evolution for the variant demand scenario under optimized TODPs by S;.

case for another 35 days, recording the IDs of travelers traveling on each day. Next, we run the TODP case starting from the same
state with the same groups of travelers who make trips on the corresponding day in the base case. Fig. 9 presents the welfare gains
per capita (the red solid line) and the number of travelers (the gray dashed line) across days. As shown, there are positive welfare
gains across all days under the optimized TODPs, and the gain in welfare is found to be relatively larger when there are more
travelers (i.e., when the network is more congested). Note that the large magnitude of welfare gains on some days are due to the
fact that the demand of 5000 travelers leads to extreme levels of congestion. The results also suggest that the proposed contextual
BO method can effectively yield welfare gains (comparable with the fixed demand case) in scenarios where the day-to-day process

is not convergent. We can also expect it to be more efficient than the standard BO method (S,) from the findings in Sections 4.2
and 4.3.

4.4. Comparison of distance-based and area-based schemes and distributional effects

In this section, we compare the performance of the distance-based and area-based schemes from the standpoint of both efficiency
(welfare) and equity. Vertical equity is a key concern with congestion pricing, which has long been recognized as being regressive,
as it is often the case that the willingness to pay for gains in travel time is smaller for lower-income travelers (de Palma and
Lindsey, 2020). In the analysis that follows, we assume a simple uniform redistribution of the regulator revenue to all travelers (see
for example Kockelman and Kalmanje (2005)) and investigate travelers’ benefits across different VOT (proxy for income) and trip
length groups. Under the assumption that regulator revenue is uniformly redistributed, traveler’s benefit (TB) is the sum of social
welfare gain under the optimized tariff and the average toll revenue, i.e., TB; = Wp,; — Wy, + %. All travelers are divided into
four groups based on the quartiles of VOT and trip length, respectively.

4.4.1. Comparison between distance-based and standard area-based mechanisms

First, we examine the (trip agnostic) standard area-based (zonal) mechanism, wherein the unit of g(¢) is [DKK]. The box-plots of
traveler benefits (grouped by VOT and trip-length) under high demand are shown in Fig. 10. Note that similar patterns are observed
in the moderate demand scenario although the detailed plots are omitted.
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Fig. 10. Box-plot of the individual traveler’s benefit according to VOT and trip length under area-based tariff.
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Fig. 11. Box-plot of the individual traveler’s benefit according to VOT and trip length under distance-based tariff.

In Fig. 10, the line inside the box represents the median, and the lower and upper lines are 25th (¢;) and 75th (g3) percentiles,
respectively, the whiskers extend from the edges of box by 1.5 * (g3 — ¢;). It can be seen in Fig. 10(a) that most travelers are
better off under the optimized congestion tariff with uniform revenue distribution, and the traveler benefits increase as the VOT
increases, which is in line with intuition and the literature (see for example de Palma et al. (2018), Seshadri et al. (2022), Chen
et al. (2023), Jing et al. (2023)). Note that in the absence of revenue redistribution, a significantly larger percentage of users would
experience negative net benefits. In Fig. 10(b), the traveler benefits also increase along with the trip length, since travelers with
longer trip length benefit more from the reduction in travel time. Next, we examine the distance-based tariff, wherein the unit of
g(1) is [DKK/meter].

First, we observe that the overall social welfare gain under the distance-based scheme (5.95 DKK per capita) is higher than that
of the standard zonal-based scheme (4.85 DKK per capita). This is expected as the former scheme better internalizes congestion
externalities by charging directly based on the contribution to congestion, or in other words, travelers pay in proportion to their
benefits (Levinson, 2010).

The box-plots shown in Fig. 11 summarizes distributional impacts. Again, traveler benefits increases with the VOT as expected.
However, contrary to the pattern in Fig. 10(b), it is observed in Fig. 11(b) that the traveler benefits decrease as trip length increases.
Though travelers with larger trip length have larger travel time reduction, they suffer from larger schedule delay penalties at the
same time as they tend to depart much earlier or later so as to avoid the large tariffs. In addition, they still pay more than those with
smaller trip lengths (given that the toll tariff is proportional to distance with no fixed charge). Consequently, travelers with large
trip lengths have significantly lower gains in benefits. Although this is an outcome of the distance-based charge by design, it may
be problematic from the standpoint of vertical equity if the structure of the urban area is such that lower income travelers reside
in the suburbs and have longer commutes. While inequities of this nature can be remedied via sophisticated revenue redistribution
schemes or tradable credit schemes (see Levinson (2010) and Grant-Muller and Xu (2014) for more discussion on this), they can
also be partially addressed through the design of the distance-based scheme, which we examine in the next section.
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Fig. 12. Box-plot of the individual traveler’s benefit according to VOT and trip length under optimized Toll,.

4.4.2. Two-part distance-based tariffs

Under the proposed distance-based tariff, travelers are charged proportionally to their trip lengths, resulting in gains in efficiency,
but a potential loss in equity if VOT is negatively correlated with trip length (which is possible for certain city structures). Travelers
with short trips might underpay relative to costs they impose, particularly if one considers emissions and environmental impacts.
In this case, a two-part tariff, which is composed of a fixed toll and a distance-based toll, can help in achieving a more equitable
distribution of benefits.

We propose two simple two-part designs to demonstrate how the tariff structure can offset the relatively large welfare losses of
travelers with longer commute distances. In the first tariff, the fixed toll is a constant and the distance-based toll is a linear function
of trip length:

g(t0)-L-w+4, Lel0,1]

Toll,(1,L|6) = .
g(t0) - L - w, otherwise,

where 4 (unit: DKK) is the fixed toll and L is a predetermined constant trip length such that all travelers with trip lengths smaller
than L need to pay the extra toll A. In this experiment, L is set as the median of all trip lengths.

The results indicate that the overall social welfare gain under the optimized two-part tariff is almost identical to the value before
(5.95 DKK per capita) but the distribution of benefits is significantly different, as shown in Fig. 12.

In Fig. 12(a), the distributional effect in terms of VOT is in line with expectation that higher VOT groups benefit more from
the congestion pricing scheme. In Fig. 12(b), we observe that travelers with trip lengths longer than I have larger traveler benefits
than those who have trip lengths smaller than L. This is because the fixed toll 1 imposes extra costs to the latter travelers and leads
to a change in the distribution of social welfare gains. In addition, within the first (or the last) two trip length groups, traveler
benefits still decrease with the trip length as is expected with the distance-based toll. Note also that the median user benefits (in
each trip-length quartile) is not monotonic with trip length as was the case with the area-based scheme and original proportional
distance-based tariff.

Note that these results are not intended to suggest this tariff structure is necessarily superior (this requires more detailed
experiments that explicitly consider emissions and environmental impacts in the objective function). Rather, they highlight the
fact that the distribution of benefits with respect to trip-length can be significantly altered through the tariff structure without
adversely affecting overall welfare. Moreover, due to the discontinuity with respect to trip length, Tol/, is not a practically effective
toll scheme. A more practical alternative would be to revise the second part to be a linear function of trip length which reduces
from 1 to 0 as trip length increases from 0 to the maximum trip length. Although such a scheme solves the discontinuity issue and
is easy to implement, the results indicate that it does not significantly affect the benefits distribution, which shows a similar pattern
to the original case shown in Fig. 11. In order to address this issue, we next consider a second two-part tariff where the second-part
of the tariff is continuous in trip length with an exponential form:

Tolly(t,L|6) = g(t|0) - L-w + A- e 'L (18)

Again, we observe a similar social welfare gain under the optimized Toll, (5.95 DKK per capita) but a different benefits
distribution as shown in Fig. 13.

As expected, higher VOT groups have higher traveler benefits as demonstrated in Fig. 13(a). The slope of the negative exponential
function is relatively steep when trip length is smaller than the first quartile and becomes gentle as trip length increases; in Fig. 13(b),
we find that traveler benefits of the first group is smaller than the second group, and decrease as trip length increases for groups
2-4. Tt is worth noting that the overall social welfare distributes more evenly across the trip length groups compared to that under
Toll; thanks to the continuous fixed toll.
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Fig. 13. Box-plot of the individual traveler’s benefit according to VOT and trip length under optimized Toll,.

In summary, these experiments imply that the two-part tariff can alter the distribution of benefits and potentially improve equity
(when VOT is inversely correlated with trip-length) while sustaining the social welfare gains. However, more detailed experiments
are needed that examine different tariff structures considering environmental impacts, congestion and equity.

5. Conclusions

This paper proposed a contextual BO-based approach for the design of congestion pricing schemes under day-to-day flow
dynamics. The approach is applied to optimize area- and distance-based time-of-day pricing schemes for social welfare maximization
in the context of the morning commute problem. Specifically, the demand (logit mixture) and supply (trip-based MFD) models are
operationalized using an agent-based simulation framework with heterogeneous travelers, which is associated with an expensive-to-
evaluate objective function. The contextual BO-based approach, which uses a Gaussian process embedded with temporal contextual
information in addition to the toll function parameters, takes the day-to-day dynamic evolution of flows into account implicitly,
and therefore optimizes the tolls more efficiently.

The experimental results demonstrated the convergence of the day-to-day system under the proposed contextual-BO approach
(where tolls are optimized for each day separately) to the system optimum. Importantly, the contextual BO-based approach yields a
ten-fold reduction in the number of evaluations compared to benchmark approaches that do not use contextual information. Further,
the scheme is extended to incorporate context specific demand and supply information. The results showed the superiority of the
contextual BO with transferred knowledge in computational efficiency compared to the method that learns from scratch. Finally,
from a policy perspective, we find that the distance-based schemes yield significant welfare gains relative to area-based schemes
and show that the design of the distance-based tariff scheme can significantly affect distributional impacts. A suitably designed
two-part tariff structure can partially offset the relatively large welfare losses of travelers with longer commute distances while
maintaining overall welfare. More detailed experiments are warranted to examine the design of the distance-based, and potentially,
travel time-based tariffs. Moreover, environmental and emission externalities have been ignored and should be considered in the
design of the pricing schemes.

In summary, the above developments and findings provide a promising approach for the optimal design of congestion pricing
schemes considering day-to-day dynamics. Applications include cases where the regulator wishes to determine optimal pricing
schemes under a range of different non-recurring and recurring demand and supply scenarios including special events, weather,
construction, incidents, etc. The addition of demand and supply information as contextual variables also has applications in the
context of day-to-day dynamic pricing (in which tolls adapted from day to day), where tolls can be efficiently optimized conditional
on revealed information about current or anticipated demand and supply conditions.

The current research can be extended in a few directions. First, to bring congestion pricing closer to practice, it is necessary to
consider additional and combined choice dimensions (such as mode, route, and trip cancellation) and more detailed models that are
calibrated using real-world data. Second, the design and performance of the congestion pricing schemes should be studied under
day to day variability in demand and supply. Finally, more contextual variables could be incorporated into the underlying GP to
enhance efficiency for more complex model structures.
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