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A B S T R A C T

Tradable mobility credit (TMC) schemes are an approach to travel demand management that
have received significant attention in recent years as a promising means to mitigate the adverse
environmental, economic, and societal effects of urban traffic congestion. This paper proposes
and analyzes alternative market models for a TMC system – focusing on market design aspects
such as allocation/expiration of credits, rules governing trading, transaction fees, and regulator
intervention – and develops a methodology to explicitly model the dis-aggregate behavior
of individuals within the market. Extensive simulation experiments are conducted within a
combined mode and departure-time context for the morning commute problem to compare the
performance of the alternative designs relative to congestion pricing and a no-control scenario.

The results indicate that small, fixed transaction fees can effectively mitigate undesirable
speculation in the market without a significant loss in efficiency (total welfare) whereas
proportional transaction fees are less effective, both in terms of efficiency and in avoiding
undesirable speculation. Further, an allocation of credits in continuous time can be beneficial in
dealing with non-recurrent events and avoiding concentrated trading activity. In the presence of
income effects, despite small, fixed transaction fees, the TMC system yields a marginally higher
social welfare than congestion pricing while attaining revenue neutrality. Moreover, it is more
robust in the presence of forecasting errors and non-recurrent events due to the adaptiveness
of the market. Finally, as expected, the TMC scheme is more equitable (when revenues from
congestion pricing are not redistributed) although it is not guaranteed to be Pareto-improving
when credits are distributed equally.

1. Introduction

Historically, transportation network inefficiencies and externalities such as congestion and vehicular emissions have been
ddressed through road pricing, which although used in several cities worldwide, is plagued by issues of inequity and public
cceptability (Tsekeris and Voß, 2009; de Palma and Lindsey, 2011). An alternative approach to travel demand management that
has received increasing attention in the transportation domain in recent years is quantity control — in particular, tradable mobility
credit (TMC) schemes (Fan and Jiang, 2013; Grant-Muller and Xu, 2014; Dogterom et al., 2017). Within a TMC scheme, the regulator
rovides an initial endowment of mobility credits or tokens to potential travelers. In order to use the road network or transportation
ystem, users need to spend a certain number of tokens (i.e., pay a tariff) that could vary with the attributes or performance of the
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specific mobility alternative used. The tokens can be bought and sold in a market at a price determined endogenously by token
demand and supply.

In principle, TMC schemes are appealing since they offer a means of directly controlling quantity, they are revenue neutral
n that there is no transfer of money to the regulator, and they are viewed as being less vertically inequitable than congestion
ricing (de Palma and Lindsey, 2020). Despite these promises, several important questions remain with regard to the design and
unctioning of the market within TMC schemes, an aspect critical to the effective operationalization of these schemes. For instance,
ow should the allocation and expiration of tokens be designed? What rules should govern trading behavior in the market so as
o avoid undesirable speculation and trading (see Brands et al. (2020) for more on this), and yet ensure efficiency and revenue
eutrality? How should the regulator intervene in the market in the presence of special or non-recurrent events? What is the role
nd impact of transaction fees? Despite the large body of literature on TMCs, issues of market design, market dynamics and market
ehavior have received relatively little attention although being critical to the successful real-world deployment of a TMC scheme.
This paper aims to address these issues and contributes to the existing literature in several respects. First, we propose alternative
arket models (focusing on all aspects of market design including allocation/expiration of credits, rules governing trading,
ransaction fees, regulator intervention, and price dynamics) for a TMC system and develop a methodology that explicitly models the
is-aggregate behavior of individuals within the market. Second, we conduct extensive simulation experiments within a departure-
ime and mode choice context for the morning commute problem to compare the performance of the alternative designs relative
o congestion pricing and a no-control scenario. The simulation experiments employ a day-to-day assignment framework wherein
ransportation demand is modeled using a logit-mixture model (with income effects) and supply is modeled using a standard
ottleneck model. The experiments yield insights into market design and the comparative performance of the TMC system relative
o congestion pricing.
The results indicate that small, fixed transaction fees can effectively mitigate undesirable speculation in the market without a

ignificant loss in efficiency (total welfare) whereas proportional transaction fees are less effective both in terms of efficiency and
n avoiding undesirable speculation. Further, an allocation of tokens in continuous time provides the TMC system with additional
lexibility (compared to a lump-sum allocation) and can be beneficial in dealing with non-recurrent events. With regard to the relative
erformance vis-a-vis congestion pricing, the results indicate that the TMC scheme attains a marginally higher social welfare (under
ncome effects and a small fixed transaction fee). Further, the TMC scheme is more robust in the presence of forecasting errors (during
he optimization of the toll profiles) and can achieve a higher welfare than congestion pricing through the adjustment of token
llocation. Finally, as expected, the TMC scheme is more equitable (when revenues from congestion pricing are not redistributed)
lthough it is not guaranteed to be Pareto-improving when tokens are distributed equally.
The paper addresses a growing and imminent need to develop methodologies to realistically model TMCs that are suited for

eal-world deployments and can help us better understand the performance of these systems — and the impact in particular, of
arket dynamics.
The rest of the paper is organized as follows. Section 2 presents a review of the literature and identifies contributions of our

aper. Sections 3 and 4 propose a market design for TMCs and a framework for modeling market behavior, respectively. Section 5
ntroduces the simulation model, including demand, supply and day-to-day learning. Section 6 describes findings from extensive
imulation experiments and Section 7 provides concluding remarks and directions for further research.

. Review of literature

Although early work on the use of tradable mobility credits (TMCs; also termed TCS or Tradable Credit Schemes in the literature)
n transportation dates back several years (Verhoef et al., 1997; Raux, 2007; Goddard, 1997), formulations of the market and network
quilibrium for TMCs are more recent, pioneered by the work of Yang and Wang (2011) who proposed a user equilibrium variant to
odel a TMC. Their work, along with advancements in technology and the widely recognized limitations of congestion pricing, has
purred interest in TMCs for transportation network management. Extensive reviews may be found in Grant-Muller and Xu (2014),
an and Jiang (2013) and Dogterom et al. (2017). We provide a brief summary of existing literature, limiting our attention to that
f mobility management (in the context of both entire networks and single bottlenecks) although applications may also be found
n parking.
In the model of Yang and Wang (2011), the regulator distributes a pre-specified number of credits to travelers, charges a link-

pecific credit tariff and allows trading of credits within a market. They identify conditions under which the network and market
quilibrium are unique. Extensions to their model have been proposed to incorporate heterogeneity in the value of time (Wang et al.,
012) and multiple user classes (Zhu et al., 2015) using variational inequality formulations to establish existence and uniqueness of
he equilibrium. He et al. (2013) employed a similar equilibrium approach considering allocations of credits to not just individual
ravelers, but to transportation firms such as logistics companies and transit agencies. The effect of transaction costs in a TMC
cheme with two types of markets (auction-based and negotiated) is considered by Nie (2012). In contrast with the aforementioned
MC schemes, Kockelman and Kalmanje (2005) and Gulipalli and Kockelman (2008) proposed a system of credit-based congestion
ricing (termed CBCP) where credits are allowances used to pay tolls.
TMC schemes have also been studied in the context of managing congestion at a single bottleneck (or simple two route networks)

y achieving peak spreading. Nie and Yin (2013) modeled a tradable credit scheme that manages commuters’ travel choices and
ttempts to persuade commuters to spread their departure times evenly within the rush hour and between alternative routes (see
lso Nie (2015)) whereas Tian et al. (2013) investigated the efficiency of a tradable travel credit scheme for managing bottleneck
2

ongestion and modal split in a competitive highway/transit network with heterogeneity. Along related lines, Xiao et al. (2013)
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studied a tradable credit system (consisting of a time-varying credit charge at the bottleneck wherein the credits can be traded
and the price is determined by a competitive market) to manage morning commute congestion with both homogeneous and
heterogeneous users. More recently, Bao et al. (2019) examined the existence of equilibria under tradable credit schemes using
different models of dynamic congestion and Akamatsu and Wada (2017) proposed a tradable bottleneck credit scheme where the
egulator issues link- and time-specific credits required for passing through a certain link or bottleneck in a pre-specified time
eriod. Liu et al. (2023) considered distance-based token tariffs in a TMC scheme within a departure-time setting and examined its
erformance using a trip-based MFD supply model.
In contrast with the previously described literature that largely focuses on variants of the standard user equilibrium under TMC

chemes, a related stream of research examines the design of the TMC schemes using bi-level optimization formulations in different
ontexts (Wu et al., 2012; Bao et al., 2017; Wang et al., 2014). On the other hand, the comparison of efficiency properties of tradable
redits and congestion pricing has received relatively lesser attention. de Palma et al. (2018) performed a comparative analysis of
he two instruments in a simple static transportation network (see also Seshadri et al. (2022) for a within-day dynamic setting) and
howed that as long as there is no uncertainty, price and quantity regulation are equivalent as in the regular market case studied
y Weitzman (1974). In the presence of uncertainty and strongly convex congestion costs, the TMC instrument outperforms the
ricing instrument in efficiency terms (see also de Palma and Lindsey (2020) for comparisons in the case with one route and time
eriod under elastic demand). Akamatsu and Wada (2017) reached similar conclusions (see also Shirmohammadi et al. (2013)),
emonstrating the equivalence of the tradable permit system and a congestion pricing system when the road manager has perfect
nformation of transportation demands. On the behavior side, several stated preference studies have highlighted the importance of
ey factors from the perspective of behavioral economics and cognitive psychology towards tradable credits (Dogterom et al., 2017).
To the best of our knowledge, Brands et al. (2020) is the only study thus far to examine issues of market design for tradable

redits. They conducted a lab-in-the-field experiment in a parking context and examined performance of the credit system empirically
n terms of several criteria including undesirable speculation, price stability and transaction costs.
In summary, despite the large body of research on TMCs, several important issues remain to be studied. First, the modeling of

he market has received little attention and almost all the studies employ an equilibrium approach to model the credit market (with
he notable exception of Ye and Yang (2013) who model the price and flow dynamics of a tradable credit scheme). The literature
as – to the best of our knowledge – thus far not attempted to realistically model the disaggregate behavior of individuals within the
arket. This would enable the consideration of empirically observed phenomena such as loss aversion, endowment effects, mental
ccounting, and day-to-day learning (Dogterom et al., 2017). Second, despite being a critical step towards real-world deployment,
esign aspects of the credit market have received little attention. In particular, features such as token allocation/expiration, trading,
ntervention, and transaction fees, and their impact on efficiency and market behavior remain to be studied. Finally, income effects,
hich impact both efficiency and equity, have received relatively little attention (with the exception of Wu et al. (2012) who
onsider it in a route choice setting). This paper aims to address these gaps by proposing and analyzing alternative market designs
f the TMC system and investigating their performance relative to congestion pricing using realistic models of traveler behavior
with heterogeneity and income effects) and congestion.

. Market design

In this section, we focus on market design for a tradable credit scheme. Within the TMC scheme, the regulator provides a token
ndowment to all potential travelers. The application we explore involves a daily commute context where, in order to use the road
etwork at a particular time-of-day (e.g., for a given departure time interval), travelers have to pay a pre-specified toll in tokens
hat does not vary from day to day. In other words, the toll in tokens is dynamic and varies by time-of-day, but is fixed across days.
he rationale for this assumption is that modifying the toll in tokens from day to day would involve communicating the tariff or
oll structure on a daily basis, which is complicated, particularly in large general networks (for instance, the electronic road pricing
r ERP scheme in Singapore includes dynamic tolls, which are revised only every three months or longer).
In general, the design choices we employ are motivated by the need to ensure that the TMC system is practical, acceptable, and

ransparent without significant loses in efficiency. This involves keeping transaction costs to a minimum and price volatility low,
nd preventing undesirable speculation (for example, profiting from selling tokens and buying them back later). In this regard, our
esign draws on the experiences of the lab-in-the-field experiment of Brands et al. (2020).

.1. Market setup and role of the regulator

The regulator operates a market where tokens can be bought and sold at a prevailing market price and may also levy pre-specified
ransaction fees for buying and selling. All transactions take place between an individual and the regulator directly, who guarantees
ll buying and selling requests. This central market with a regulator who acts as a price setting intermediary is similar to the virtual
ank in Brands et al. (2020), who observe that such a market can significantly reduce transaction costs (associated with information
cquisition, negotiation, finding a potential buyer or seller etc.) compared to designs that involve consumer to consumer trading (and
ver existing designs such as Dutch and English auctions, sealed-bid auctions and Vickrey auction markets). It is clearly desirable
o reduce transactions costs, which can cause the system to deviate from desired equilibria (Nie, 2012).
With regard to modeling consumer to consumer trading, there exists a rich literature on mechanism design. This includes simple

ilateral trades with a single buyer and seller (Myerson and Satterthwaite, 1983), double auctions in which every seller can trade
single item with every buyer (McAfee, 1992), and in the transportation context — car sharing auctions (Hara and Hato, 2017),
ouble sided-auctions in ride-sourcing platforms (Zhang et al., 2015) and peer-to-peer ride-sharing systems (Tafreshian and Masoud,
3

022). We omit further discussions of this given our assumption of trading with the regulator.
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3.2. Token allocation and expiration

Moving to the token allocation or endowment, we adopt a ‘continuous time’ approach wherein tokens are acquired (provided by
he regulator) at a certain rate over the entire day and each token has a lifetime (i.e., it expires after a certain period specified by the
egulator). The expiration of tokens avoids undesirable consequences of the TMC system that can compromise public acceptability
uch as speculative behavior and hedging in the market. The ‘continuous’ allocation on the other hand avoids concentrated trading
ctivities and excessive trading near a boundary (a time period when a large amount of tokens expire at the same time, such as
or instance, in a lump-sum allocation). It also provides more degrees of freedom for the regulator to intervene than that of a ‘lump
um’ allocation which distributes tokens at the beginning of each day. A comparison between the two allocation approaches will be
erformed through numerical experiments presented in Section 6.6.
As a result, each individual acquires tokens at a constant rate 𝑟 over the entire day (credited into a wallet ) and each token has a

lifetime 𝐿 to avoid speculation and hoarding. Let 𝑥𝑑𝑛 (𝑡) denote traveler 𝑛’s token account (or wallet) balance at time 𝑡 on day 𝑑. A
ull wallet state indicates that the number of tokens in the wallet has reached a maximum (𝐿𝑟), and in the absence of traveling or
elling, does not change since the acquisition of new tokens is balanced by an expiry of old tokens. Thus, a full wallet implies that
he oldest token in an individual’s account has an age of 𝐿. In contrast, when the account is not in a full wallet state, it increases
y an amount 𝑟𝛥𝑡 in a unit time interval 𝛥𝑡.

.3. Rules governing buying and selling

Several additional assumptions regarding market design are noteworthy — these serve to avoid quantity buildup and market
anipulation. First, travelers can only buy tokens from the regulator at the time of traveling for immediate use, i.e., only if they
ish to travel and are short of tokens. This prevents one type of undesired speculation wherein users buy tokens (without intending
o use them for travel) only to sell them later in order to make a profit. Second, when they sell tokens to the regulator, they have
o sell all tokens in their wallet. Third, buying and selling cannot happen at the same time, i.e., travelers can sell all tokens anytime
xcept at the time of buying. The second assumption differs from the design of Brands et al. (2020), who assume that tokens can
be traded per piece, and implications of this assumption warrant more investigation, particularly when the market prices vary
within-day. Since a large part of our experiments do not involve within-day dynamic prices and given that it considerably simplifies
the modeling of selling behavior, we defer the relaxation of this assumption to future research.

3.4. Account evolution

Let 𝑇 (𝑡) denote the toll in tokens to travel at time 𝑡, 𝑡𝑑𝑛 represent the departure time of traveler 𝑛 on day 𝑑 and 𝐷 represent the
duration of one day. Note that in the simulation framework (Section 5), time will be discretized into intervals of a specified size; for
now, we treat it as continuous. Let 𝑟 denote the allocation rate, 𝐿 denote token lifetime, and 𝑥𝑑𝑛 (𝑡) denote traveler 𝑛’s token account
balance at time 𝑡 on day 𝑑. At time 𝑡 on day 𝑑, traveler 𝑛 can perform one and only one of the following actions:

1. Perform a trip if 𝑡 = 𝑡𝑑𝑛 .

• If 𝑥𝑑𝑛 (𝑡) ≥ 𝑇 (𝑡), she consumes 𝑇 (𝑡) tokens. Her account balance at 𝑡 + 𝛥𝑡, 𝑥𝑑𝑛 (𝑡 + 𝛥𝑡), can be written as:

𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) = min
(

𝑥𝑑𝑛 (𝑡) − 𝑇 (𝑡) + 𝑟𝛥𝑡, 𝐿𝑟
)

, (1)

where the cap 𝐿𝑟 ensures that tokens with life greater than 𝐿 expire.
• If 𝑥𝑑𝑛 (𝑡) < 𝑇 (𝑡), she needs to buy 𝑇 (𝑡) − 𝑥𝑑𝑛 (𝑡) tokens. Her account balance 𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) becomes:

𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) = 𝑟𝛥𝑡, (2)

since all of 𝑥𝑑𝑛 (𝑡) and the newly bought tokens are used to travel.

2. Does nothing. Her account balance 𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) becomes:

𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) = min
(

𝑥𝑑𝑛 (𝑡) + 𝑟𝛥𝑡, 𝐿𝑟
)

. (3)

3. Sells all tokens 𝑥𝑑𝑛 (𝑡). Her account balance becomes:

𝑥𝑑𝑛 (𝑡 + 𝛥𝑡) = 𝑟𝛥𝑡. (4)

3.5. Token price dynamics

The allocation of tokens and the resulting evolution of account balances described in 3.2 and 3.4 occur ‘within-day’. In contrast,
we assume that the adjustment of the token price happens only at end of each day (day-to-day adjustment) and hence, prices are
constant within-day. Note that the frequency of price adjustment is another design consideration within the TMC system. In the
most general case, the price adjustment may occur after each transaction, which is the design adopted in Brands et al. (2020).
In the application that we consider in Sections 5 and 6, since we have time-dependent tolls that vary within-day, we deem the
4
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Table 1
Market elements for the tradable mobility credits system.
Elements Design Motivation

Allocation Lump-sum Simple; automated trading
Continuous Avoid concentrated trading; additional control

Expiration Lifetime Avoid quantity buildup

Transaction fee Proportional Avoid undesirable speculation (e.g., frequent selling)Fixed

Price adjustment Day to day constant adjustment Balance demand and supply

Market rules governing trading

assumption of constant within-day prices reasonable. Thus, throughout the model description in Section 5, we will assume that
token prices are constant within-day and only change from day to day.

The marketplace dictates the token price 𝑝𝑑 on day 𝑑, which is adjusted according to an apriori rule established by the regulator
o achieve revenue neutrality. The price 𝑝𝑑 is modified daily with a deterministic rule considering the regulator revenue 𝐾𝑑−1 (net
revenue from all buying and selling transactions of users) from the previous day as follows

𝑝𝑑 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑑−1 𝐾𝑑−1 ∈ [−𝐾̄, 𝐾̄]
𝑝𝑑−1 + 𝛥𝑝 𝐾𝑑−1 < −𝐾̄
𝑝𝑑−1 − 𝛥𝑝 𝐾𝑑−1 > 𝐾̄,

(5)

where 𝛥𝑝 is a constant parameter representing the price change. The regulator revenue 𝐾𝑑−1 is an outcome of the disaggregate
token buying and selling decisions of users over the course of day 𝑑 − 1, which in turn depend on the mobility choices of the users.
These dependencies are explained in more detail in Sections 4 and 5.

𝐾̄ is a constant parameter representing a regulator revenue threshold to adjust the price and ensures that price will not fluctuate
or small regulator revenues close to zero. Price is ensured to be positive and below a certain cap 𝑝𝑚 as follows:

𝑝𝑑 = max
(

0,min
(

𝑝𝑑 , 𝑝𝑚
))

. (6)

.6. Transaction fees for buying and selling

We assume that the regulator levies a two-part (fixed and proportional) transaction fee for both buying and selling transactions.
et 𝐹 𝑃

𝑆 , 𝐹
𝑃
𝐵 (𝐹 𝑃

𝑆 , 𝐹 𝑃
𝐵 ≥ 0) denote the proportional part of selling and buying transaction fees (this component of the transaction fee

s proportional to the amount of the trade), and 𝐹 𝐹
𝑆 , 𝐹

𝐹
𝐵 (𝐹 𝐹

𝑆 , 𝐹 𝐹
𝐵 ≥ 0) denote the fixed part of selling and buying transaction fees.

he effect of transaction fees on market behavior and efficiency will be examined in Section 6.4.
The revenue obtained from selling 𝑦 tokens (𝑦 ≤ 𝐿𝑟) with transaction fees on day 𝑑 at time 𝑡 can be written as,

𝑆(𝑦) = 𝑦𝑝𝑑𝑠 − 𝐹 𝐹
𝑆 , (7)

here 𝑝𝑑𝑠 = 𝑝𝑑 (1 −𝐹 𝑃
𝑆 ) is the token market price adjusted for the proportional selling transaction fee. Transaction fees and price are

ot expressed in function inputs for conciseness.
The cost of buying 𝑦 tokens (𝑦 ≤ 𝐿𝑟) with transaction fees at time 𝑡 on day 𝑑 can be written as,

𝐵(𝑦) = 𝑦𝑝𝑑𝑏 + 𝐹 𝐹
𝐵 , (8)

here 𝑝𝑑𝑏 = 𝑝𝑑 (1 + 𝐹 𝑃
𝐵 ) is the token market price adjusted for the proportional buying transaction fee.

.7. Regulator intervention

In principle, the regulator may choose to intervene in the token market within the day by controlling token market price, token
llocation rate, and transaction fees to manage non-recurrent events. Thus, although these parameters are assumed to be constant
ithin the day throughout most of the paper, in Section 6.6, we will briefly consider the case where the regulator may intervene
n the market to adjust some or all of these parameters within-day in the presence of unusual events. For example, if road capacity
rops because of an accident, or if demand increases due to a concert, the regulator can intervene, increasing token price in a certain
eriod to discourage travel and reduce congestion. Numerical experiments are conducted to study this in Section 6.6.
5

In summary, the various market elements discussed in this section are described in Table 1.
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4. Market behavior

As buying behavior is governed by the previously specified buying rule, this section primarily discusses individual selling
ehavior. It is assumed that the individual selling decision and mobility decision (departure time and mode) are inter-dependent. In
ther words, selling decisions are made conditional on a departure time/mode chosen at the beginning of the day, which in turn is
ased on a forecast of the account balance over the entire day. This forecast is based on historical travel and selling decisions of the
ser and his/her past experience (described in more detail in Section 5.1.3). One could think of the selling behavior as a strategy or
n automated operation performed through (or programmed into) for example, a smartphone application, since in practice, it may
e onerous to expect users to constantly make these selling decisions ‘manually’. In this respect, one may also view it as an element
n the overall design of the tradable credit scheme. Nevertheless, our modeling framework does not preclude the use of an actual
ehavioral model of selling in the market (in place of the selling strategy we formulate next), which would require the collection
f empirical data; we defer this to future research.
From the perspective of simply maximizing profit (which is a reasonable selling strategy), the decision to sell can be formulated as

dynamic programming or optimal control problem, where the optimal selling strategy is characterized by Bellman’s equation (Kirk,
004). However, this is complicated, both from the standpoint of computational complexity and system design, and instead, we
erive a simpler heuristic approach to characterize an individual’s selling strategy.
At time 𝑡 on day 𝑑, assume traveler 𝑛 has an upcoming planned trip at a time denoted by 𝑡𝑛, where 𝑡𝑛 = 𝑡𝑑𝑛 if 𝑡 ≤ 𝑡𝑑𝑛 , and 𝑡𝑛 = 𝑡(𝑑+1)𝑛 ,

if 𝑡 > 𝑡𝑑𝑛 . Given the next trip, a conditional profit function 𝛱𝑑
𝑛 (𝑡), which represents the profit obtained by selling all tokens at time 𝑡

(with no further selling until the next departure 𝑡𝑛) can be written as follows,

𝛱𝑑
𝑛 (𝑡) = 𝑆

(

𝑥𝑑𝑛 (𝑡)
)

− I
(

𝑇 (𝑡𝑛) > 𝑥̂𝑛(𝑡𝑛)
)

⋅ 𝐵
(

𝑇 (𝑡𝑛) − 𝑥̂𝑛(𝑡𝑛)
)

(9)
= 𝑥𝑑𝑛 (𝑡)𝑝

𝑑
𝑠 − 𝐹 𝐹

𝑆 − I
(

𝑇 (𝑡𝑛) > 𝑥̂𝑛(𝑡𝑛)
)

⋅
((

𝑇 (𝑡𝑛) − 𝑥̂𝑛(𝑡𝑛)
)

𝑝𝑑𝑏 + 𝐹 𝐹
𝐵
)

,

here 𝑥̂𝑛(𝑡𝑛) represents the expected account balance at the time of the next trip 𝑡𝑛. Since it is assumed there will be no further
elling until the next departure 𝑡𝑛, it can be written as,

𝑥̂𝑛(𝑡𝑛) = min
[

(𝑡𝑛 − 𝑡)𝑟, 𝐿𝑟
]

. (10)

Other notation used in the conditional profit function 𝛱𝑑
𝑛 (𝑡) includes 𝑇 (𝑡𝑛), which represents the toll in tokens of traveling at

eparture time 𝑡𝑛. A buying cost is incurred only if the toll at 𝑡𝑛 is greater than traveler 𝑛’s expected account balance (i.e., 𝑇 (𝑡𝑛) >
̂𝑛(𝑡𝑛)), which is represented by the indicator function. Note that in defining the profit function above, we have made the critical
ssumption that if a decision to sell at the current time is made, no further selling will occur until the next trip. This simplification
llows us to derive an optimal selling strategy analytically and is partly justifiable given that we also assume that during selling, an
ndividual needs to sell all tokens in her wallet, and that prices do not vary within-day. However, observe that the selling strategy
e derive, when applied, involves a decision made at every time point 𝑡, implying that it does not preclude the possibility of an
ndividual making multiple selling decisions in the time period until the next trip if this is beneficial.
Under our assumptions, at time 𝑡 on day 𝑑, traveler 𝑛 will consider selling tokens only if the profit value is positive, i.e., 𝛱𝑑

𝑛 (𝑡) > 0.
f the profit value is positive, she may still decide to wait if the derivative of the profit function is positive (meaning that the profit
s expected to increase if she defers the decision to sell). Therefore, the selling strategy depends on both the profit function and its
erivative, which can be analyzed in the following three cases:

1. 𝑇 (𝑡𝑛) < 𝑥̂𝑛(𝑡𝑛) (no tokens need to be bought for the next trip)
The profit function 𝛱𝑑

𝑛 (𝑡) can be written as

𝛱𝑑
𝑛 (𝑡) = 𝑥𝑑𝑛 (𝑡)𝑝

𝑑
𝑠 − 𝐹 𝐹

𝑆 , (11)

and the derivative can be written as

𝑑𝛱𝑑
𝑛 (𝑡)
𝑑𝑡

=

{

0 𝑥𝑑𝑛 (𝑡) = 𝐿𝑟
𝑟𝑝𝑑𝑠 otherwise,

(12)

which implies that profit will continue to increase until a full wallet is reached. It does not make sense to wait longer at a
full wallet because newly acquired tokens simply replace expired tokens. Hence, selling should be at a full wallet.
However, it is worth noting that, without fixed transaction fees, the selling revenue at full wallet is the same as that obtained
from selling every time one receives new tokens. In fact, as long as one avoids token expiration, any selling strategy is
equivalent in the absence of fixed transaction fees. It is fixed transaction fees that prevent frequent selling.

2. 𝑇 (𝑡𝑛) > 𝑥̂𝑛(𝑡𝑛) (tokens need to be bought for the next trip)
The profit function 𝛱𝑑

𝑛 (𝑡) can be written as

𝛱𝑑
𝑛 (𝑡) = 𝑥𝑑𝑛 (𝑡)𝑝

𝑑
𝑠 − 𝐹 𝐹

𝑆 −
((

𝑇 (𝑡𝑛) − 𝑥̂𝑛(𝑡𝑛)
)

𝑝𝑑𝑏 + 𝐹 𝐹
𝐵
)

, (13)

and its derivative can be written as

𝑑𝛱𝑑
𝑛 (𝑡)
𝑑𝑡

=

{

−𝑟𝑝𝑑𝑏 𝑥𝑑𝑛 (𝑡) = 𝐿𝑟
𝑑 𝑑 (14)
6

𝑟𝑝𝑠 − 𝑟𝑝𝑏 otherwise,
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which is always negative since 𝑝𝑑𝑠 < 𝑝𝑑𝑏 given that 𝐹
𝑃
𝐵 or 𝐹 𝑃

𝑆 is greater than 0. This implies that profit obtained from waiting
and selling at any time in the future (until the next trip) is guaranteed to be less than the profit from selling now. Hence, she
should sell now if the profit is positive.
Without transaction fees, the profit function 𝛱𝑑

𝑛 (𝑡) can be written as

𝛱𝑑
𝑛 (𝑡) = 𝑥𝑑𝑛 (𝑡)𝑝

𝑑 −
(

𝑇 (𝑡𝑛) − 𝑥̂𝑛(𝑡𝑛)
)

𝑝𝑑 , (15)

and its derivative can be written as

𝑑𝛱𝑑
𝑛 (𝑡)
𝑑𝑡

=

{

−𝑟𝑝𝑑 𝑥𝑑𝑛 (𝑡) = 𝐿𝑟
0 otherwise,

(16)

which means that as long as account balance is not full, it does not matter whether one sells now or later. However, once we
introduce fixed transaction fees, it is better to sell at a full wallet to minimize the number of transactions. With additional
proportional transaction fees, it is better to sell immediately and not worth waiting anymore as the derivative is always
negative.

3. 𝑇 (𝑡𝑛) = 𝑥̂𝑛(𝑡𝑛) (the expected account balance is just enough to cover the toll of the next trip)
The profit function 𝛱𝑑

𝑛 (𝑡) can be written as

𝛱𝑑
𝑛 (𝑡) = 𝑥𝑑𝑛 (𝑡)𝑝

𝑑
𝑠 − 𝐹 𝐹

𝑆 , (17)

but its derivative does not exist because the conditional profit function is discontinuous at 𝑡 due to the transaction fees of
buying. To avoid any buying transaction fees (either fixed or proportional), it is optimal to sell immediately if profit 𝛱𝑑

𝑛 (𝑡)
is positive. Without transaction fees, similarly, it does not matter whether one sells now or later as long as token expiration
is avoided.

Based on the analysis in this section, the effect of fixed transaction fees is to prevent multiple transactions while the effect of
roportional transaction fees is to make one sell as soon as possible when the conditional profit is positive (if tokens need to be
ought for the next trip). The proportional transaction fee is not preferable because it does not prevent frequent selling but instead
revents selling at a full wallet. Numerical experiments in Section 6 will provide further justification for the use of only a fixed
ransaction fee from an efficiency perspective.
The selling strategy for an individual 𝑛 at any time 𝑡 on day 𝑑 considering positive transaction fees is summarized in Algorithm

.
Algorithm 1: Selling Rule

input: 𝑑, 𝑡, 𝑛, 𝑝𝑑 , 𝑡𝑛, 𝑥𝑑𝑛 (𝑡), 𝐿, 𝑟, 𝐹
𝑃
𝑆 , 𝐹 𝑃

𝐵 , 𝐹 𝐹
𝑆 , 𝐹 𝐹

𝐵
At time 𝑡 on day 𝑑, calculate 𝛱𝑑

𝑛 (𝑡);
and expected account balance 𝑥̂𝑛(𝑡𝑛) = min

[

(𝑡𝑛 − 𝑡)𝑟, 𝐿𝑟
]

;
if 𝛱𝑑

𝑛 (𝑡) > 0 then
if 𝑇 (𝑡𝑛) ≥ 𝑥̂𝑛(𝑡𝑛) then

Sell now;
else

if 𝑥(𝑡) = 𝐿𝑟 then
Sell now;

else
Do nothing;

end
end

else
Do nothing;

end

5. Simulation framework

This section describes the modeling and simulation framework for evaluating the performance of the designed instruments
ncluding a no-toll or no-control benchmark, referred to as NT, congestion pricing, referred to as CP, and the tradable mobility
redit scheme, termed TMC. The overall simulation framework is shown in Fig. 2.

𝑁 travelers perform a daily commute between a single origin–destination pair. For the sake of simplicity, each traveler performs a
single morning trip and a single evening trip. The morning commute trip is explicitly simulated whereas the evening trip is assumed
to be a mirror of the morning trip. We consider a standard bi-modal transportation network (similar to Liu and Szeto (2020) and
iu et al. (2017); see Fig. 1) where travelers choose between driving and a public transit alternative. If they drive, they use a path
ontaining a bottleneck of fixed capacity and choose their time of departure. Along the lines of Liu et al. (2017), we do not consider
he departure time dimension for the transit alternative.
7
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2

Fig. 1. Bi-modal transportation network.

Fig. 2. Modeling and simulation framework.

At the beginning of each day, every traveler uses forecasted information of travel times, schedule delays and their account
balance over the entire day to make a pre-day mobility decision, which is the combination of a choice of mode (between car and
public transit, hereafter PT) and departure-time (over an individual specific choice set) for their morning commute trip. Travelers
who choose to drive are subject to a time-of-day toll. For the TMC scheme, the time-of-day toll levied is in units of tokens. Note
that mobility credits can only be used for the toll payment. The individual mobility decision is modeled using a logit-mixture model
allowing for heterogeneity and non-linear income effects.

Next, traffic dynamics along with trading decisions – which occur over the entire day (i.e., are within-day) – are simulated on the
bi-modal network connected by a single driving path and an alternative public transit (PT) line. Congestion (for driving) is modeled
by a point queue model (bottleneck of finite capacity), in which a queue develops once flow exceeds capacity. Travel time of PT is
assumed to be constant.

Day-to-day dynamics and travelers’ learning are modeled through an exponential smoothing filter (Cantarella and Cascetta, 1995)
that updates forecasts of travel time and account balance over the day. The day-to-day framework in Fig. 2 is used to simulate the
evolution of the system state (mode and departure flows, travel times) until a measure of convergence has been reached. The
performance measures (welfare, distribution of user benefits, congestion, and mode shares) at convergence are used to evaluate
the different instruments. The model is a doubly dynamical system (Guo et al., 2018a), which considers the day to day evolution
of a within-day dynamic system involving departure-time and mode choices. In our case, for the TMC scheme, the within-day
dynamics has the added dimension of token selling behavior and the day-to-day dynamics has the added dimension of the token
price adjustment. Doubly dynamical systems of the type we consider have been widely studied in the recent literature (Guo et al.,
018b,a; Liu and Geroliminis, 2017; Liu et al., 2017; Liu and Szeto, 2020) although they date back several decades (Ben-Akiva et al.,
8

1984, 1986).
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In the following sections, we first describe the models of demand, supply and day-to-day dynamics, termed the system model, in
more detail. Next, we discuss social welfare computation and the simulation-based toll optimization problem (to determine optimal
tolls) for the different instruments. Relevant notation is summarized in Table C.6 in Appendix C.

5.1. System model

As noted previously, the setting we consider involves 𝑁 users traveling between a single origin–destination pair connected by
a path containing a bottleneck of finite capacity and a PT line. Users wish to arrive at the destination within a certain ‘‘preferred
arrival time window’’ in the morning, and can choose between PT and car. If they decide to drive, they can adjust their departure
times to avoid congestion (similar to the model in Ben-Akiva et al. (1984), which is a dynamic extension of De Palma et al. (1983)).

The mobility demand model, network model, and day-to-day dynamics are discussed in detail next.

.1.1. Demand model
The demand model (preday mobility decision) is a combined model of departure time and mode choice. Unless otherwise

pecified, the discussion in this subsection pertains to a specific day 𝑑 (we omit 𝑑 in all quantities for notational convenience).
e reintroduce the superscript 𝑑 in Section 5.1.3 when discussing day-to-day dynamics. The day is discretized into ℎ = 1…𝐻 time
ntervals of size 𝛥ℎ (let the set of all time intervals in the day be denoted by  = {1,… , ℎ,… ,𝐻}), and it is assumed that each
ndividual 𝑛 has a preferred/desired arrival time 𝑡𝑛 (more specifically, users are assumed to wish to arrive within a time window
f size 2𝛥𝑎 centered around 𝑡𝑛; this is discussed in more detail later). The day is also discretized into smaller time intervals of size
̄ = 1… 𝐻̄ of size 𝛥ℎ̄, which is the resolution of the supply model and trading (selling) decisions.

The choice set of mode for individual 𝑛 is defined as𝑀𝑛 = {𝐶, 𝑃𝑇 }, where 𝐶 represents car and 𝑃𝑇 represents transit. The choice
et of feasible departure time intervals by car 𝑛 ⊂  is individual-specific and defined as 𝑛 = {𝑡0𝑛−𝜂𝛥ℎ, 𝑡0𝑛−(𝜂−1)𝛥ℎ,… , 𝑡0𝑛+𝜂𝛥ℎ},
here 𝜂 is a parameter, and 𝑡0𝑛 represents the initial departure time interval on day 0, which is computed based on the preferred
rrival time 𝑡𝑛 and the free flow travel time. Thus, the departure time choice set 𝑛 consists of 2𝜂 time intervals of size 𝛥ℎ centered
round the preferred departure time interval on day 0, 𝑡0𝑛. Note that because we model income effects, the individual departure
ime choice set is also subject to a budget constraint (i.e., an individual cannot choose a departure time that is not affordable).
hus, we define the set of feasible departure time intervals under instrument 𝑗 (𝑗 = 𝑁𝑇 , 𝑃 ,𝑀 for the No Toll scenario, congestion
ricing, and the tradable mobility credit scheme respectively), as 𝑗

𝑛 ⊆ 𝑛. Under the No Toll scenario, 𝑁𝑇
𝑛 = 𝑛. We will revisit

he budget constraint later when discussing income effects. For the transit alternative, we consider only one departure time interval
since travel times and headways are constant) that will result in an arrival time closest to the preferred arrival time. This is denoted
y ℎ𝑃𝑇𝑛 and formally defined later. Let 𝑖 = {𝑚, ℎ} ∈ 𝑛 represent an individual’s mobility decision as a combination of mode and
eparture time choice (where 𝑛 = {𝐶, ℎ|ℎ ∈ 𝐻 𝑗

𝑛}
⋃

{𝑃𝑇 , ℎ𝑃𝑇𝑛 }).
Each individual is assumed to be rational and wishes to maximize her money-metric utility from the choice situation. The utility

f the mobility decision 𝑖 for individual 𝑛 is denoted by 𝑈𝑖𝑛, which consists of two parts: a systematic utility 𝑉𝑖𝑛 which is a function
f observable variables and a random utility component 𝜖𝑖𝑛 that represents the analyst’s imperfect knowledge. 𝜖𝑖𝑛 is assumed to
ollow an i.i.d. extreme value distribution with zero mean and individual specific scale parameter 𝜇𝑛. When considering day-to-day
ynamics, it is assumed that the individual random error component is perfectly correlated across days and across instruments
i.e., remains the same before the ‘change’ and after the ‘change’) assuming before and after periods are not too far apart (e.g.,
cFadden (2001) and de Palma and Kilani (2005)). This assumption can be relaxed in future work (see for example, Delle Site and
alucci (2013) and Zhao et al. (2008)).
The systematic money-metric utility for individual 𝑛 departing in time interval ℎ by car under instrument 𝑗 is denoted by 𝑉𝑖𝑛(𝝓̃

𝒋,𝒏
𝒊 ),

here 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ 𝐻 𝑗
𝑛}. 𝝓̃

𝒋,𝒏
𝒊 is a vector of forecasted information in the systematic utility that affects the choice of departure

ime interval for driving and consists of five components. The first is forecasted/expected travel time 𝜏𝑗𝑖 , which determines the
xpected schedule delay early (second component) and schedule delay late (third component). The fourth component is expected
ost 𝑐𝑗𝑖𝑛, which is explained in more detail next. The last component is remaining income, which is equal to the disposable income
or transportation 𝐼𝑛 minus expected cost 𝑐

𝑗
𝑖𝑛.

The marginal utility of an additional unit of travel time for individual 𝑛 is denoted by 𝛼𝑛. For simplicity, we assume travelers
ave common knowledge of forecasted travel times (more on this in Section 5.1.3). The desired arrival time window for individual
is defined as [𝑡𝑛−𝛥𝑎, 𝑡𝑛+𝛥𝑎], where 𝑡𝑛 represents the center of the period and 𝛥𝑎 represents arrival flexibility. If she arrives outside
f the desired time period, she incurs a schedule delay. The marginal utility of an additional unit of schedule delay early is 𝛽𝐸𝑛 and
n additional unit of schedule delay late is 𝛽𝐿𝑛, where 𝛽𝐸𝑛 ≤ 𝛼𝑛 ≤ 𝛽𝐿𝑛 from empirical evidence (e.g., Small (1982)).
The expected cost 𝑐𝑗𝑖𝑛 warrants additional discussion. Under the No Toll (NT) scenario, it is equal to the operational cost 𝑐𝑓 (fuel

ost). Under pricing (𝑗 = 𝑃 ), it is equal to the toll in dollars charged for departing in time interval ℎ, 𝑇 𝑃 (ℎ), plus the operational
ost 𝑐𝑓 , which can be written as

𝑐𝑃𝑖𝑛 = 𝑇 𝑃 (ℎ) + 𝑐𝑓 . (18)

Under the TMC (𝑗 = 𝑀) scheme, it depends on an individual’s expected opportunity cost of tokens 𝑅̃𝑖𝑛 (which can be negative
f one has a net revenue from selling tokens) plus the operation cost 𝑐𝑓 as follows:

𝑀 ̃
9

𝑐𝑖𝑛 = 𝑅𝑖𝑛 + 𝑐𝑓 . (19)
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Recall that the selling revenue of 𝑦 tokens with transaction fees 𝐹 𝐹
𝑆 , 𝐹 𝑃

𝑆 and token price 𝑝, can be written as (selling revenue
function),

𝑆(𝑦) = 𝑦𝑝
(

1 − 𝐹 𝑃
𝑆
)

− 𝐹 𝐹
𝑆 , (20)

and similarly, the buying cost of 𝑦 tokens can be written as (buying cost function),

𝐵(𝑦) = 𝑦𝑝
(

1 + 𝐹 𝑃
𝐵
)

+ 𝐹 𝐹
𝐵 . (21)

Let 𝑡ℎ be the start time of interval ℎ, 𝑥̃𝑛(𝑡ℎ) be the expected account balance at time 𝑡ℎ, the beginning time of the time interval
ℎ. If a traveler does not need to pay any toll, she can sell the entire day’s token allocation completely. Hence, the opportunity cost
(or negative opportunity benefit) is equal to the negative of selling revenue of the entire day’s allocation, −𝑆(𝐿𝑟).

If a traveler needs to pay a toll 𝑇𝑀 (ℎ) in ℎ, and the expected account balance 𝑥̃𝑛(𝑡ℎ) is greater or equal to 𝑇𝑀 (ℎ) (no buying),
her opportunity cost is equal to the negative of selling revenue of the one-day allocation 𝐿𝑟 minus the toll in tokens 𝑇𝑀 (ℎ), which
an be written as

𝑅̃𝑖𝑛 = −𝑆
(

𝐿𝑟 − 𝑇𝑀 (ℎ)
)

. (22)

However, if she does not have enough account balance to cover the toll 𝑇𝑀 (ℎ), she has to buy additional tokens equal to
𝑀 (ℎ) − 𝑥̃𝑛(𝑡ℎ) in order to travel in ℎ. The amount of tokens she can sell for profit is equal to the one-day allocation 𝐿𝑟 minus her

expected account balance 𝑥̃𝑛(𝑡ℎ) since all of her tokens will be used for toll payment if she departs in ℎ. The opportunity cost can
e written as

𝑅̃𝑖𝑛 = −𝑆
(

𝐿𝑟 − 𝑥̃𝑛(𝑡ℎ)
)

+ 𝐵
(

𝑇𝑀 (ℎ) − 𝑥̃𝑛(𝑡ℎ)
)

. (23)

In summary, the expected opportunity cost 𝑅̃𝑖𝑛 of departing by car in interval ℎ depends on an individual’s forecasted account
balance 𝑥̃𝑛(𝑡ℎ), market price 𝑝, the toll in tokens 𝑇𝑀 (ℎ) and transaction fees as follows:

𝑅̃𝑖𝑛 =

{

−𝑆
(

𝐿𝑟 − 𝑇𝑀 (ℎ)
)

𝑥̃𝑛(𝑡ℎ) ≥ T𝑀 (ℎ)
−𝑆

(

𝐿𝑟 − 𝑥̃𝑛(𝑡ℎ)
)

+ 𝐵
(

𝑇𝑀 (ℎ) − 𝑥̃𝑛(𝑡ℎ)
)

otherwise.
(24)

Note that if transaction fees are zero, the opportunity cost in Eq. (24) reduces to the one-day allocation minus the toll in tokens
imes token price, i.e., 𝑅̃𝑖𝑛 = −

(

𝐿𝑟 − T𝑀 (ℎ)
)

𝑝. In the absence of non-linear income effects, 𝐿𝑟𝑝 can be ignored because it is a
onstant (appearing in all alternatives) that does not affect the choice, and the expression reduces to T𝑀 (ℎ)𝑝, which is intuitive.
Regarding the income effect, the diminishing marginal utility of income suggests that as an individual’s income increases, the

xtra benefit to that individual decreases. It is thus natural to model this nonlinear effect of remaining income by a quasiconcave
unction (as per McFadden, 2017). Hence, we add the remaining income plus a natural log of the remaining income to the systematic
oney-metric utility.
The utility of an individual 𝑛 driving and departing in time interval ℎ (choosing a mobility decision 𝑖 ∈ {𝐶, ℎ|ℎ ∈ 𝐻 𝑗

𝑛}) under
nstrument 𝑗 can thus be written as,

𝑈𝑖𝑛

(

𝝓̃𝒋,𝒏𝒊
)

=𝑉𝑖𝑛
(

𝝓̃𝑗,𝑛
𝑖

)

+ 𝜖𝑖𝑛 (25)

= − 2𝛼𝑛𝜏
𝑗
𝑖 − 𝛽𝐸𝑛𝑆𝐷𝐸

(

ℎ, 𝑡𝑛, 𝜏
𝑗
𝑖

)

− 𝛽𝐿𝑛𝑆𝐷𝐿
(

ℎ, 𝑡𝑛, 𝜏
𝑗
𝑖

)

+ 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 𝜆𝑙𝑛
(

𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛
)

+ 𝜖𝑖𝑛,

here

𝑆𝐷𝐸
(

ℎ, 𝑡𝑛, 𝜏
𝑗
𝑖

)

= max
(

0, 𝑡𝑛 − 𝛥𝑎 − (𝑡ℎ + 𝜏𝑗𝑖 )
)

, (26)

𝑆𝐷𝐿
(

ℎ, 𝑡𝑛, 𝜏
𝑗
𝑖

)

= max
(

0, (𝑡ℎ + 𝜏𝑗𝑖 ) − 𝑡𝑛 − 𝛥𝑎

)

. (27)

Schedule delay of the evening trip is ignored because it is assumed to be more flexible.
The systematic money-metric utility function of user 𝑛 who departs in time interval ℎ𝑃𝑇𝑛 by PT is denoted as 𝑉𝑖𝑛(𝝓̃

𝑗,𝑛
𝑖 ), where

= {𝑃𝑇 , ℎ𝑃𝑇𝑛 }. Since the travel time and headway of PT are constant, we only need to consider one departure time interval
𝑃𝑇
𝑛 = ⌊𝑡𝑛 − 𝜏𝑃𝑇 ⌋, which has a corresponding arrival time closest to the desired arrival time 𝑡𝑛. For PT, the vector 𝝓̃

𝑗,𝑛
𝑖 for the

ystematic utility consists of four components: PT travel time 𝜏𝑃𝑇 , expected waiting time 𝑊𝑃𝑇 , expected PT cost 𝑐
𝑗
𝑖𝑛 and remaining

ncome 𝐼𝑛 − 𝑐𝑗𝑖𝑛.
The marginal utility of an additional unit of PT travel time of individual 𝑛 is assumed to be the same as that of car travel time,

𝑛. The marginal utility of an additional unit of waiting time is 𝛽𝑊 𝑛.
The expected PT cost 𝑐𝑗𝑖𝑛 is equal to the PT fare 𝑐𝑃𝑇 under the No Toll (NT) scenario and pricing. Under the TMC scheme, it

epends on an individual’s expected opportunity cost of tokens 𝑅̃𝑖𝑛 and the PT fare 𝑐𝑃𝑇 , where 𝑅̃𝑖𝑛 is equal to the negative of selling
evenue of a full wallet 𝐿𝑟 since travelers who choose PT can sell all of their tokens acquired in one day for maximum return. It
an be written as 𝑅̃𝑖𝑛 = −𝑆(𝐿𝑟).
Hence, the expected PT cost 𝑐𝑗𝑖𝑛 under the TMC scheme can be written as

𝑀 ̃
10

𝑐𝑖𝑛 = 𝑅𝑖𝑛 + 𝑐𝑃𝑇 . (28)
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The utility of an individual 𝑛 using PT who departs in interval ℎ𝑃𝑇 (choosing a mobility decision 𝑖 = {𝑃𝑇 , ℎ𝑃𝑇 }) can be thus
ritten as,

𝑈𝑖𝑛

(

𝝓̃𝒋,𝒏𝒊
)

=𝑉𝑖𝑛
(

𝝓̃𝒋,𝒏𝒊
)

+ 𝜖𝑖𝑛 (29)

= − 2𝛼𝑛𝜏𝑃𝑇 − 2𝛽𝑊 𝑛𝑊𝑃𝑇 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 𝜆𝑙𝑛
(

𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛
)

+ 𝜖𝑖𝑛.

Thus, the probability of individual 𝑛 choosing alternative 𝑖 under tolling instrument 𝑗 is given by:

𝜔𝑗,𝑛
𝑖

(

𝝓̃𝒋,𝒏
)

=
𝑒𝑥𝑝

(

𝜇𝑛𝑉𝑖𝑛
(

𝝓̃𝑗,𝑛
𝑖

))

∑

𝑘∈𝑛 𝑒𝑥𝑝
(

𝜇𝑛𝑉𝑘𝑛
(

𝝓̃𝑗,𝑛
𝑘

)) , (30)

where 𝑖 ∈ 𝑛 and 𝝓̃
𝒋,𝒏 = (𝝓̃𝒋,𝒏𝒊 ,∀𝑖 ∈ 𝑛).

The vector of departure flows by car is denoted by 𝒇 𝒋 = (𝑓 𝑗
ℎ , ℎ ∈ ) where,

E[𝑓 𝑗
ℎ] =

∑

𝑛∶ℎ∈𝑛

𝜔𝑗,𝑛
𝑖

(

𝝓̃𝒋,𝒏
)

, (31)

and 𝑖 = {𝐶, ℎ}.

5.1.2. Supply model
The network is assumed to be a single origin–destination pair connected by a single path containing a bottleneck of fixed capacity

𝑠 (Arnott et al., 1990). A first-in-first-out (FIFO) queue develops once the flow of travelers exceeds 𝑠. The free flow travel time is
𝑡𝑓 and the extra delay for a traveler departing from home at time 𝑡 is 𝑡𝑣(𝑡). Thus, the total travel time for a traveler departing from
home at time 𝑡 is:

𝜏(𝑡) = 𝑡𝑣(𝑡) + 𝑡𝑓 . (32)

Let 𝑄(𝑡) be the number of travelers in the queue at time 𝑡. The delay at time 𝑡 is derived from the deterministic queuing model
as follows:

𝑡𝑣(𝑡) =
𝑄(𝑡)
𝑠

, (33)

where 𝑄(𝑡) = 0 and 𝑡𝑣(𝑡) = 0 when there is no congestion.
Note that within the simulation framework for the supply model, time 𝑡 is discretized into time intervals ℎ̄ = 1...𝐻̄ of size 𝛥ℎ̄(< 𝛥ℎ).

The exact time of departure of a traveler within the supply model is randomly (uniformly) drawn within the chosen departure time
interval ℎ. The travel time for a given departure time interval ℎ is obtained by averaging the travel times of all travelers departing
in ℎ.

Thus, if 𝒇̄ = (𝑓ℎ̄, ℎ̄ = 1...𝐻̄) denotes the departure flows by car in the time intervals ℎ̄ = 1...𝐻̄ (directly obtained from 𝒇 defined
in Eq. (31)), the queue length in time interval ℎ̄ can be written explicitly as a function of 𝒇̄ as follows (see Ramadurai et al. (2010)):

𝑄ℎ̄(𝒇̄ ) =

{

[

𝑓ℎ̄ − 𝑠𝛥ℎ̄
]

+ ℎ̄ = 1
[

𝑄ℎ̄−1(𝒇̄ ) + 𝑓ℎ̄ − 𝑠𝛥ℎ̄
]

+ ℎ̄ = 2....𝐻̄ ,
(34)

where [.]+ =max(., 0). Thus, the experienced travel time by car in interval ℎ̄ is given by,

𝜏ℎ̄(𝒇̄ ) =
𝑄ℎ̄(𝒇̄ )

𝑠
+ 𝑡𝑓 . (35)

With a slight abuse of notation, we will later use 𝜏 to also denote travel times aggregated at the level of the departure time
interval.

The alternative PT line has a constant travel time 𝜏𝑃𝑇 . Its headway is also constant, which is equal to twice the expected waiting
time 𝑊𝑃𝑇 .

5.1.3. Day-to-day dynamics
Let 𝜏𝑑,𝑗𝑖 denote the actual or experienced car travel time on day 𝑑 for choice 𝑖 under instrument 𝑗, where 𝑖 ∈ {𝐶, ℎ|ℎ ∈ }.

s per the demand model, travelers are assumed to make their choices of departure time according to forecasted car travel
imes 𝜏𝑑,𝑗𝑖 , 𝑖 ∈ {𝐶, ℎ|ℎ ∈ } from their memory and learning. We use an exponential smoothing filter, a type of homogeneous
ilter (Cantarella and Cascetta, 1995), to model the learning and forecasting process by weighting actual and forecasted costs of the
revious day as follows:

𝜏𝑑,𝑗𝑖 = (1 − 𝜃𝜏 )𝜏
𝑑−1,𝑗
𝑖 + 𝜃𝜏𝜏

𝑑−1,𝑗
𝑖 (𝒇𝒅−𝟏,𝒋),∀𝑖 ∈ {𝐶, ℎ|ℎ ∈ }, (36)

here 𝜃𝜏 ∈ [0, 1] is a learning weight given to the previous day’s realized travel time, 𝒇𝒅−𝟏,𝒋 = (𝑓 𝑑−1,𝑗
ℎ ,∀ℎ ∈ ) denotes the vector

of departure flows by car on day 𝑑 − 1 under instrument 𝑗, and the dependence of 𝜏𝑑−1,𝑗 on 𝒇𝒅−𝟏,𝒋 is described in Section 5.1.2.
11

𝑖
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An additional component of day-to-day dynamics in the case of the TMC scheme is the daily adjustment of token prices as per
q. (5), where the regulator revenue on day 𝑑 − 1, 𝐾𝑑−1 is a function of the dis-aggregate mobility decisions and buying/selling
ecisions, and is given by:

𝐾𝑑−1 =
𝑁
∑

𝑛=1

⎛

⎜

⎜

⎝

∑

ℎ̄∈{1...𝐻̄}

(

𝐵
(

𝑇𝑀 (

ℎ̄
)

− 𝑥𝑑−1𝑛 (ℎ̄)
)

I𝐵,𝑑−1𝑛
(

ℎ̄|𝑻𝑀)

− 𝑆
(

𝑥𝑑−1𝑛 (ℎ̄)
)

I𝑆,𝑑−1𝑛 (ℎ̄|𝑻𝑀 )
)

⎞

⎟

⎟

⎠

, (37)

where 𝐵(⋅) is cost of buying function and 𝑆(⋅) is revenue of selling function; I𝐵,𝑑−1𝑛
(

ℎ̄|𝑻𝑀)

and I𝑆,𝑑−1𝑛
(

ℎ̄|𝑻𝑀)

are indicators of buying
or selling at ℎ̄ on day 𝑑 − 1 (for individual 𝑛) given the toll in tokens 𝑻𝑀 .

Further, under the TMC scheme, recall that the individual forecasted account balance on day 𝑑 for individual 𝑛, denoted by
𝑥̃𝑑𝑛 (ℎ̄), is required to compute the expected cost in Eq. (24). To compute 𝑥̃𝑑𝑛 (ℎ̄),∀ℎ̄, an individual forecasted departure time 𝑡𝑑𝑛 is first
computed by once again, applying an exponential smoothing filter as follows:

𝑡𝑑𝑛 = (1 − 𝜃𝑡)𝑡𝑑−1𝑛 + 𝜃𝑡𝑡
𝑑−1
𝑛 (𝝓̃𝒅−𝟏,𝒏,𝒋(𝝉̃𝒅−𝟏,𝒋)), (38)

where 𝑗 = 𝑀 (TMC system), 𝜃𝑡 ∈ [0, 1], 𝑡𝑑−1𝑛 is the chosen departure time of individual 𝑛 on day 𝑑 − 1, and 𝝉̃𝒅−𝟏,𝒋 = (𝜏𝑑−1,𝑗ℎ ,∀ℎ ∈ ).
Next, the selling model presented in Section 3.6 is applied using the individual forecasted departure time to determine their
forecasted account balance over the entire day, which is used to compute the expected toll costs under the TMC scheme through
Eq. (24).

For all instruments 𝑗, from Eq. (31), we have,

E[𝑓 𝑑,𝑗
ℎ |𝒇𝒅−𝟏,𝒋] =

∑

𝑛∶ℎ∈𝑛

𝜔𝑛,𝑗
𝑖

(

𝝓̃𝒅,𝒋,𝒏(𝝉̃𝒅,𝒋)
)

,∀ℎ ∈ , (39)

where 𝑖 = {𝐶, ℎ}. Eqs. (36) and (39) (along with Eqs. (38) and (5) for the TMC scheme) completely describe the day-to-day dynamical
system.

If the day-to-day stochasticity in flows is ignored, i.e., 𝑓 𝑑,𝑗
ℎ ≡ E[𝑓 𝑑,𝑗

ℎ |𝒇𝒅−𝟏,𝒋], the Eqs. (36) and (39) (Eqs. (36), (38), (39), and (5)
under the TMC scheme) constitute a deterministic process (Cantarella and Cascetta, 1995). For an analysis of the properties of the
fixed-point of this deterministic day-to-day dynamical system, we refer the reader to Cantarella and Cascetta (1995). In our model,
under the TMC scheme, the lack of a closed-form for the regulator revenue (due to the dis-aggregate selling model) complicates this
analysis. Nevertheless, one approach for demonstrating existence of a fixed-point is to show that the travel time and schedule delay
(and hence, utility) functions in our model are Lipschitz continuous with respect to the departure flows along the lines of Guo et al.
(2018b). Although an interesting avenue for future research, this is beyond the scope of our paper. It should also be pointed out
that Guo et al. (2018a) identify conditions under which the evolution of a day-to-day dynamic system with departure time choice
(for the standard bottleneck model) will not converge to the fixed-point (equilibrium). Nevertheless, they observe that this result
does not necessarily preclude the possibility of convergence occurring under preference heterogeneity in complex networks.

In contrast, if the day-to-day stochasticity in departure flows is explicitly modeled, as we do in our simulation framework, the
Eqs. (36) and (39) (Eqs. (36), (38), (39), and (5) under the TMC scheme) constitute a stochastic process. For details on the conditions
that ensure regularity of the stochastic process, refer Cantarella and Cascetta (1995). Given the complexity of the model, we
numerically examine stationarity of the stochastic process model under different starting conditions in Section 6.2 and Appendix A.

5.2. Simulation-based optimization

The problem of determining the optimal toll in dollars for congestion pricing, 𝑇 𝑃 (ℎ), ∀ℎ ∈  and the optimal toll in tokens for
the TMC scheme, 𝑇𝑀 (ℎ), ∀ℎ ∈  can be formulated as a simulation-based optimization problem with the objective of maximizing
total social welfare (𝑆𝑊 ). The social welfare of the CP and TMC instruments is calculated relative to the NT scenario and is equal to
the sum of user benefits (𝑈𝐵) and regulator revenue (𝐾). All quantities are calculated upon convergence of the day-to-day system,
and hence, we drop the superscript 𝑑 in this Section. We continue to use the notation 𝐾 to denote total revenue, adding a superscript
to denote the specific instrument. Under congestion pricing (P), the regulator revenue is given by,

𝐾𝑃 =
𝑁
∑

𝑛=1

∑

𝑖∈𝑀𝑛×𝐻𝑃
𝑛

𝑐𝑃𝑖𝑛I𝑛
(

𝑖|𝑻 𝑃 ) , (40)

where 𝑖 is the mobility decision, which is a combination of mode and departure time choice; I𝑛(𝑖|𝑻 𝑃 ) is an indicator if traveler 𝑛
chooses mobility choice 𝑖 given toll vector 𝑻 𝑃 = {𝑇 𝑃 (ℎ)|ℎ ∈ }; 𝑐𝑃𝑖𝑛 is equal to the toll payment for driving (𝑇

𝑃 (ℎ)) or the PT fare
payment for PT (𝑐𝑃𝑇 ); and 𝐻𝑃

𝑛 is the set of feasible departure time intervals taking into account budget constraints.
Under the TMC scheme, the regulator revenue 𝐾𝑀 consists of two parts. The first part is the sum of PT fare payments and the

second part is the revenue associated with the buying and selling transactions over one day, given by Eq. (37). Thus, 𝐾𝑀 can be
written as,

𝐾𝑀 =
𝑁
∑

⎛

⎜

⎜

𝑐𝑃𝑇 I𝑛
(

𝑃𝑇 |𝑻𝑀)

+
∑

(

𝐵
(

𝑇𝑀 (

ℎ̄
)

− 𝑥𝑛(ℎ̄)
)

I𝐵𝑛
(

ℎ̄|𝑻𝑀)

− 𝑆
(

𝑥𝑛(ℎ̄)
)

I𝑆𝑛 (ℎ̄|𝑻
𝑀 )

)

⎞

⎟

⎟

. (41)
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𝑛=1
⎝

ℎ̄∈{1...𝐻̄}
⎠
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Note that the price adjustment mechanism described in Section 3.5 is designed to ensure that the regulator revenue of the TMC
cheme (second part in Eq. (41)) at equilibrium is close to zero, thereby achieving revenue neutrality.
The user benefits, which are a measure of consumer well being, can be computed in three ways in the presence of non-linear

ncome effects (we refer the reader to McFadden (2017) for a detailed discussion): Market Compensating Equivalent (MCE), Hicksian
ompensating Variation (HCV), and Hicksian Equivalent Variation (HEV). MCE is equal to the difference in indirect utilities between
‘‘but for’’ scenario and ‘‘as is’’ scenario, scaled to money metric units by dividing by the marginal utility of income (MUI) at the
‘as is’’ scenario. It differs from the commonly used Marshallian consumer surplus (MCS) only in the MUI scaling factor. It can be
asily computed when the indirect utility function and its derivatives are known. HCV is equal to the net decrease in the ‘‘but for’’
cenario income that equates utility in the two scenarios while HEV is equal to the net increase in the ‘‘as is’’ scenario income that
quates utility in the two scenarios.
A potential drawback of these three measures is that their ethical implications are not defensible as pointed out by Blackorby

nd Donaldson (1990). Well-being measured in units of income treat increases in income as equally socially valuable no matter
ho receives them. This is not the case with net utility improvement, since the nonlinear effect of income improvement is captured
y the income effect term in the utility specification (lower income users have a higher marginal utility of income). Hence, we
easure user benefits (𝑍𝑗) under instrument 𝑗 as the sum of all users’ net experienced utilities relative to NT denoted as 𝑧𝑗𝑛 (along

the lines of De Palma and Lindsey (2004)). Since the utilities adopted in this study are money-metric, the net utility amount serves
as a meaningful measurement of improvement directly. An individual 𝑛’s net experienced utility is the difference between maximum
utility under instrument 𝑗 and under NT, which can be written as,

𝑧𝑗𝑛 = max
𝑖∈𝑀𝑛×𝐻

𝑗
𝑛

(

𝑈𝑖𝑛

(

𝝓𝑗,𝑛
𝑖

))

− max
𝑖∈𝑀𝑛×𝐻𝑁𝑇

𝑛

(

𝑈𝑖𝑛

(

𝝓𝑁𝑇 ,𝑛
𝑖

))

, (42)

where 𝝓𝑗,𝑛
𝑖 is a vector of experienced variables under instrument 𝑗 and 𝝓𝑁𝑇 ,𝑛

𝑖 is a vector of experienced variables under 𝑁𝑇 . Hence,
the user benefits 𝑍𝑗 can be written as

𝑍𝑗 =
𝑁
∑

𝑛=1
𝑧𝑗𝑛. (43)

As noted before, in the case of the CP scheme, we determine the toll in dollars which maximizes social welfare 𝑆𝑊 , computed
at the equilibrium (or after convergence of the day-to-day model). For the TMC system, in addition to the toll in tokens, which
is optimized, other parameters like the allocation rate 𝑟 and transaction fees are set exogenously (explained in more detail in
Section 6.3). This is formulated as,

max
𝑻 𝑗

𝑍𝑗 +𝐾𝑗

s.t. 𝑍𝑗 , 𝐾𝑗 = 𝑆𝑀
(

𝑻 𝑗 , 𝝃,𝝍
)

𝑻 𝑗 = {𝑇 𝑗 (ℎ)|ℎ ∈ }

𝑻 𝑗 ≥ 0,

(44)

where 𝑗 can be either 𝑃 or 𝑀 ; the toll profile 𝑻 𝑗 is a set of toll values over the entire day. 𝝃 represents all input data for the
simulation, such as individual income, preferred arrival time, and choice attributes. 𝝍 represents all model parameters, such as
the demand model coefficients, bottleneck capacity, user learning weights, and market parameters for the TMC scheme. The 𝑆𝑀(⋅)
function is the system model discussed in Section 5.1. The toll function that we consider is a step toll profile (of the kind implemented
in Singapore and Stockholm), which consists of five step toll values and six break points.

Clearly, the optimization problem has no closed-form since the objective function for a given toll profile is the outcome of a
simulation of the stochastic process (a simulation-based optimization problem), or more specifically, the system model presented
in 5.1, which includes traveler behavior, regulator states and actions, and the resulting network and market conditions. In order
to solve this simulation-based optimization problem, a differential evolution (DE) algorithm is adopted as it is derivative-free and
performs well for global optimization problems of this kind (Storn and Price, 1997).

5.2.1. Differential evolution algorithm
In this section, we illustrate the application of the DE algorithm. Let 𝐗 represent the decision variables of the simulation-based

optimization problem (i.e., the parameters of the step toll profile). The DE algorithm essentially has three iterative operators,
mutation, crossover, and selection, to iteratively improve candidate solutions.

The mutation operator uses individuals from the current solution population to generate variant vectors. The 𝑔th variable of
vector 𝑖 at generation 𝑘, 𝐘𝑘

𝑔,𝑖, is given by

𝐘𝑘
𝑔,𝑖 = 𝐗𝑘

𝑔,𝑟1 + 𝐹 ⋅ (𝐗𝑘
𝑔,𝑟2 − 𝐗𝑘

𝑔,𝑟3), (45)

where 𝑟1, 𝑟2, 𝑟3 ∈ [1, 𝑁𝑃 ], 𝑖 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3, 𝐹 is a scale factor and 𝑁𝑃 is the solution population size.
Next, the crossover operator creates a trial vector 𝐔𝑘

𝑖 by combining the variant vector and original vector as follows,

𝐔𝑘
𝑔,𝑖 =

{

𝐘𝑘
𝑔,𝑖 if 𝑟𝑎𝑛𝑑(0, 1) < 𝐶𝑅 or 𝑔 = 𝑟𝑔
𝑘 (46)
13

𝐗𝑔,𝑖 otherwise,
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Fig. 3. Individual pre-tax annual income distribution.

here 𝐶𝑅 ∈ [0, 1] is the crossover rate, 𝑟𝑎𝑛𝑑(0, 1) represents a random uniformly distributed variable within (0, 1), and 𝑟𝑔 is a random
integer in [1, ‖𝐗‖] ensuring at least one variable of the trial vector 𝐔𝑘

𝑖 is from the variant vector 𝐘𝑘
𝑖 .

Finally, the selection operator produces the next generation of vectors by comparing the original vector 𝐗𝑘
𝑖 and the trial vector

𝐔𝑘
𝑖 in terms of social welfare as follows,

𝐗𝑘+1
𝑖 =

{

𝐔𝑘
𝑖 if 𝑆𝑊 (𝐔𝑘

𝑖 ) > 𝑆𝑊 (𝐗𝑘
𝑖 )

𝐗𝑘
𝑖 otherwise.

(47)

6. Numerical experiments

This section describes numerical experiments that examine the performance of the TMC scheme using the simulation framework
described in Section 5. Data and parameters of the demand model, supply model, and the day-to-day learning model are introduced
in Section 6.1. The parameters are calibrated based on empirical evidence to represent a realistic base case. Selected parameters will
be varied in later experiments. The objectives of the experiments are to: (1) examine the overall performance of the TMC system
under alternative market designs — more specifically, the effect of transactions fees in avoiding undesirable market behavior whilst
retaining efficiency, (2) compare the efficiency and equity of the TMC scheme (market design based on experiments under (1) and
CP under varying levels of congestion, heterogeneity, income effects, and (3) examine the robustness (adaptiveness) of the TMC
scheme with a lump sum allocation versus a continuous allocation in the presence of unusual events.

6.1. Data and model parameters

The demand model requires both choice attributes and individual characteristics as input data. The individual characteristics
include disposable income 𝐼𝑛 and preferred arrival time 𝑡𝑛. Recall that disposable income 𝐼𝑛 in our context is defined as personal
net income after taxes and after subtracting necessary living expenses (e.g., housing, health, food). The individual pre-tax annual
income is assumed to follow a lognormal distribution and is fitted using the Integrated Public Use Microdata Series (IPUMS) 2019
census data (Ruggles et al., 2021). The cumulative distribution functions (CDF) of IPUMS data and the fitted data are shown in Fig. 3.
ote that all annual incomes greater than 500 thousand dollars are grouped together. As we can see, the lognormal distribution fits
he income distribution reasonably well.
Individual daily income is computed as the annual income divided by 260 working days per year and the individual hourly

age rate is computed by dividing daily income by 8 working hours per day. The minimum wage rate is set to $7.25 per hour as
er the U.S. Department of Labor. It is less straightforward to obtain disposable income after taxes since necessary living expenses
ould vary significantly based on income, and disaggregate data on this is sparse. Based on average data from the Bureau of Labor
tatistics (U.S. Bureau of Labor Statistics, 2019), we assume that each traveler’s daily disposable income after taxes and necessary
iving expenses is equal to 60% of their pre-tax daily income.
The preferred departure time distribution (preferred arrival time 𝑡𝑛 minus the free flow travel time) is based on a recent empirical

tudy of road users in Stockholm (Kristoffersson and Engelson, 2018), and is shown in Fig. 4. For simplicity, the size of the preferred
14

rrival window 𝛥𝑎 is set to 0, which implies that individuals have a single preferred arrival time as in the standard Vickrey model.



Transportation Research Part C 151 (2023) 104121S. Chen et al.

W

t
B
d
c
t
i
t
𝛽
b

b
t
l

c
c
s
a

(
A

m
e

Fig. 4. Individual preferred departure times distribution.

The departure time window size parameter 𝜂 is set to 30, which means the individual departure time choice set 𝐻𝑛 ranges over a
60-minute interval.

Empirical evidence (e.g., Small et al. (2005)) indicates that there is significant heterogeneity in the value of time across drivers.
e assume that the individual value of time 𝛼𝑛 is perfectly correlated with income and is one third of the wage rate (White, 2016).

Note that this assumption will be relaxed in some experimental scenarios to consider different levels of heterogeneity.
Values of schedule delay early 𝛽𝐸𝑛 and late 𝛽𝐿𝑛 are also likely to be distributed across individuals. Due to the lack of empirical

data on this, the literature on bottleneck models incorporate heterogeneity by making assumptions on the ratios between values
of schedule early/late to values of time. Proportional heterogeneity (first considered by Vickrey (1973)) assumes that values of
ime and schedule delays vary proportionally or in other words, the ratio of the parameters is identical for all individuals (Van den
erg and Verhoef, 2011). Ratio heterogeneity assumes that the values of schedule delays are fixed and only values of time are
istributed (De Palma and Lindsey, 2002). As a result, ratios of parameters are distributions. Van Den Berg and Verhoef (2011)
onsiders a more general heterogeneity, assuming the ratio of values of time to values of schedule delay early follows a symmetric
riangular distribution from 1 to 3 based on intuition and the ratio of values of schedule delay late to values of schedule delay early
s a constant 3.9 based on Arnott et al. (1990). Along similar lines, we assume that the ratio of values of schedule delay early 𝛽𝐸𝑛
o values of time 𝛼𝑛 follows a triangular distribution from 0.1 to 1 with a mode at 0.5. The ratio of values of schedule delay late
𝐿𝑛 to 𝛼𝑛 is assumed to follow a triangular distribution from 1 to 3 with a mode at 2 (the selection of the modes as 0.5 and 2 are
ased on Small (2012)). The bounds are set based on the empirical relationship 𝛽𝐸𝑛 ≤ 𝛼𝑛 ≤ 𝛽𝐿𝑛 (Small, 2012).
Further, as pointed out by Small (2012), waiting times are onerous compared to in-vehicle times by multiples of two to three

y most assessments. For simplicity, the ratio of values of time 𝛼𝑛 to values of waiting time 𝛽𝑊 𝑛 is assumed to be a constant equal
o 3. With regard to the income effect, 𝛾 is set to 2 and 𝜆 is calibrated to be 3 to have the highest marginal utility of income to be
ess than 1.34 (Layard et al., 2008).
The scale parameter 𝜇𝑛 is known to be confounded with the systematic utility and inversely related to error variance within the

hoice data (Ben-Akiva et al., 1985). As pointed out in the literature (e.g., Louviere and Eagle (2006)), the modeled heterogeneity
an come from heterogeneity in individual coefficients and scale heterogeneity that is shared across coefficients. We assume the
cale parameter follows a lognormal distribution. The mean value is calibrated based on price elasticity (discussed subsequently)
nd the coefficient of variation is set to 0.5 based on judgement.
Next, we calibrate the mean value of the scale parameter to ensure that the aggregate price elasticities of the mobility model

for departure time choice) are reasonable and accord with empirical evidence. The price elasticity of peak hour demand (7 AM–8
M) is computed assuming there exists a flat toll profile during the period from 6:30–9:30 AM.
From the literature, the aggregate elasticities of peak hour travel vary greatly from case to case as they are dependent on the
odel structure, physical environment, activity type, initial toll levels and many other factors. Ding et al. (2015) estimated the
lasticity of departing during the peak in Washington D.C. to be −0.0906 for driving alone. Sasic and Habib (2013) estimated that
the elasticity of departing by car in the AM peak for work trips in Toronto is between −0.067 to −0.12. Holguin-Veras et al. (2005)
found price elasticity of using crossings (tunnels and bridges) in NYC ranges from −0.31 to −1.97 for weekdays depending on the
time-of-day. When there is no initial toll, the price elasticity simply represents fuel price elasticity. Lipow (2008) estimated fuel
price elasticity as −0.17 and Gillingham (2014) estimated fuel price elasticity in California as −0.15.
15
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Table 2
Price elasticities across income groups by toll levels.
Toll ≤25% 25% to 50% 50% to 75% 75% to 90% 90% ≤ Total

0 −0.34 −0.29 −0.12 0.00 0.00 −0.19
2.5 −1.14 −0.59 −0.10 −0.04 −0.03 −0.38
5 −1.57 −1.07 −0.20 −0.09 −0.06 −0.53

Table 3
Model and simulation parameters.
Variables Description Values

𝑁 Population 7500
𝛥𝑡 Duration of a simulation time step 1 min
𝛥ℎ Duration of a departure time interval 5 min
𝛥𝑎 Size of desired arrival window 0 min
𝜂 Departure time window size parameter 30
𝜆 Coefficient of nonlinear income effect 3
𝛾 Nonlinear income effect adjustment parameter 2
𝑠 Bottleneck capacity (per min) 39
𝑡0 Free flow travel time 24 min
𝑐𝑓 Operation cost of car $3.13
𝜏𝑃𝑇 PT travel time 43 min
𝑊𝑃𝑇 Expected waiting time 5 min
𝑐𝑃𝑇 Operation cost of PT $2
𝜃𝜏∕𝜃𝑡 Learning weights 0.1

From calibration, the mean of scale parameter is determined to be 0.5. The corresponding price elasticities across different
ncome groups and initial toll levels are presented in Table 2. As we can see, low income users are more sensitive to price than
igh income users, and when there is no toll, the aggregate price elasticity is similar to the empirical fuel elasticity. As the toll level
ncreases, the aggregate price elasticity also increases and is similar to empirical values found in Holguin-Veras et al. (2005).
Regarding the supply model, the free flow speed of car is set to be 45 mph (Ali et al., 2007) and the one way driving distance

s assumed to be 18 miles (free flow travel time of 24 min). The operational cost of driving is assumed to be composed of only
uel cost, which is equal to $3.13 (driving distance times 1/23 gallon per mile times 4 dollars per gallon). For public transit, based
n the New York City MTA data, the fare is set to $ 2, average speed is 25 mph, and headway is 10 min. The PT distance is also
ssumed to be 18 miles, and the resulting PT travel time is 43 min since both headway and travel time of PT are constant. The
xpected waiting time is assumed to be 5 min.
The bottleneck capacity 𝑠 is determined based on a calibration of the travel time index (TTI), which represents the ratio between

ctual travel time and free flow travel time. The base case capacity is determined to be 2340 vehicles per hour to have a reasonable
evel of congestion with a TTI of 1.68 (Chen, 2010) under the no toll (NT) scenario.
As described in Section 5.1.3, an exponential smoothing filter is adopted to update travel time information and individual

departure time. The greater the learning weights are, the more unstable the system becomes (Cantarella and Cascetta, 1995). The
learning weights 𝜃𝜏 and 𝜃𝑡 are assumed to be 0.1.

Recall that we focus on the morning commute and hence, we simulate half a day (12 h) with a simulation time interval 𝛥𝑡 of
-minute, yielding 720 time intervals, 𝑡 = 0…719. The market elements (allocation, expiration, and price adjustment) and trading
ehavior are also simulated for the first half. The second half of a day is assumed to be a mirror of the first half. The departure time
nterval (𝛥ℎ) is assumed to be 5 min and the population size 𝑁 is 7500. Descriptions and values of key parameters are summarized
n Table 3.

.2. Convergence of the day-to-day dynamic model

As noted in Section 5.1.3, the day-to-day dynamic model described in Section 5.1.3 is a stochastic process. We numerically
xamine properties of the model via simulations with different initial conditions, which suggest that the day-to-day model converges
o the same stationary distribution of departure flows. The tests on stationarity are summarized in Appendix A.
Note that the travel time of driving is used as a representative measure of the system state partly because it is central to the

ay-to-day learning process of travelers (alternatively, departure flows could also be used). The infinity norm (supremum norm) of
ay 𝑑−1’s travel time vector of driving and day 𝑑’s travel time vector of driving is calculated and used as a measure of convergence
cross days. This is given by,

‖𝝉𝑑−1 − 𝝉𝑑‖∞ = sup {|𝜏𝑑−1𝑖 − 𝜏𝑑𝑖 | ∶ 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ }} (48)

here 𝝉𝑑−1 is the vector of travel times of day 𝑑 − 1 defined over the set of time intervals .
16
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Fig. 5. Convergence of social welfare and optimal time-of-day step toll profile of congestion pricing for different initial populations.

Table 4
Market parameters for tradable mobility credits (base case).
Variables Description Values

𝑟 Token allocation rate 0.00285 per min
𝐿 Token lifetime 720 min
𝐹 𝐹
𝐵 ∕𝐹 𝐹

𝑆 Proportional transaction fee of buying/selling $0
𝐹 𝑃
𝐵 ∕𝐹 𝑃

𝑆 Fixed transaction fee of buying/selling $0
𝑝0 Initial token price $1
𝛥𝑝 Price change $0.05
𝐾𝑡 Regulator revenue threshold $300

6.3. Optimization of tolls in TMC and congestion pricing

As discussed in Section 5.2.1, the time-of-day step toll profile is optimized using a type of metaheuristic algorithm known
as Differential Evolution (DE). Metaheuristic algorithms have been shown to work well for nonconvex and nonlinear toll design
problems (e.g., Shepherd and Sumalee (2004) and Zhang and Yang (2004)). The population size of the DE algorithm 𝑁𝑃 is set
o 15. Using data and parameters discussed in Section 6.1, we first examine the performance of the optimization algorithm for
he congestion pricing (CP) instrument using three different initial populations (with 15 candidates). Next, the performance of the
ptimized TMC instrument and convergence properties are examined.
Under congestion pricing, the convergence of social welfare along with the optimal time-of-day step toll profile with three

ifferent initial populations are shown in Fig. 5. The algorithm converges to the same optimal welfare (within a tolerance of $0.01)
or three different initial populations. The optimal toll profiles are near identical although there are minor differences at the locations
hen the toll changes (‘steps’).
For the TMC instrument, we set the total daily allocation of tokens for each individual as the per capita regulator revenue from

ongestion pricing. This should in theory yield a 1 dollar equilibrium market price and a toll in tokens that is identical to the
ptimal toll in dollars from CP, assuming there are no transaction costs and income effects. Note that the daily allocation can be set
rbitrarily. Next, we optimize the toll profile in tokens given the specified token allocation. We assume that tokens are distributed
niformly to everyone and are allocated in continuous time. Every traveler is assumed to have a random account balance at the
eginning of the simulation (to reflect different times of entry into the system; more on this in Section 6.4). Recall also that we
ssume the evening period is a mirror of the morning period, and hence, we only simulate half a day, and assume the lifetime 𝐿 of
okens is 720 min. For simplicity, in these experiments, transaction fees are set to zero. Other parameters of the TMC are summarized
n Table 4.
The convergence of the optimized objective values (social welfare) along with the optimal time-of-day step toll profile in tokens

ith three different allocation rates ranging from 15% less than the baseline to 15% more than the baseline are shown in Fig. 6.
s we can see, the different allocation rates converge to the same social welfare (within a tolerance of $0.02) at the end of 300
terations. The token price of the baseline allocation rate is close to $1 (as expected) while the lower allocation rate has a higher
oken price of $1.1 and the higher allocation rate has a lower token price equal to $0.9. This is consistent with our expectation that
he lower allocation rate leads to a higher token price due to less supply and vice versa. The optimal toll profiles in tokens in Fig. 6(b)
how that the higher allocation rate leads to the overall higher tolls in tokens and vice versa, again, as expected. Interestingly, due
o the non-linear income effects, the social welfare of the TMC scheme is slightly greater than that of congestion pricing (we return
o this later).
17
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Fig. 6. Convergence of social welfare, and optimal time-of-day step toll profile in tokens and in dollars of TMC for three allocation rates.

Fig. 7. Convergence of social welfare, token price, regulator revenue, and travel time of driving for different allocation rates 𝑟.

Given that disaggregate market behavior is modeled, it is also worthwhile to examine stability and convergence of the market
rices. We examine this under different allocation rates 𝑟 where the toll in tokens is not varied and is set to the optimal profile
nder the baseline allocation rate. The convergence of social welfare, market price, regulator revenue, and travel time of driving
re shown in Fig. 7. As we can see, since tolls are not re-optimized, different allocation rates lead to different social welfare and price
18

alues. The results also indicate stability of the credit market, and that the variation of equilibrium price and welfare with allocation
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Fig. 8. Effect of fixed and proportional transaction fees on social welfare and buyback behavior.

rate is intuitive. The effect of various initial market prices on convergence of token price and social welfare is also examined in
Appendix B.

6.4. TMC design and market behavior

In the literature, a transaction fee has been used to prevent undesirable market behavior like frequent selling. For example,
Brands et al. (2020) apply a small transaction fee of 0.01 euro to prevent frequent selling in their experiment. However, it has also
een shown that transaction fees could reduce system efficiency (Nie, 2012). Our analysis in Section 4 shows that a fixed transaction
ee has the effect of preventing multiple transactions while the proportional transaction fees has the effect of making one sell as soon
s possible when the conditional profit is positive (if buying is required at the time of the next trip). As an alternative to transaction
ees, the regulator may also impose a minimum threshold (in dollar amounts) below which transactions are not permitted.
Numerical experiments in this section examine the effect of proportional and fixed transaction fees on social welfare and

ndesirable behavior. Specifically, undesirable behavior is defined as buying back tokens sold previously. We deem this undesirable
ecause we would like to have users strictly being either sellers or buyers (not both). Sellers are the ones who travel in the off peak
or by transit) and sell their tokens while buyers are the those with a high willingness to pay to travel by car during the peak period.
For simplicity, the fixed transaction fees of buying and selling are varied together with the proportional transaction fees set to

ero and vice versa. The effects of fixed and proportional transaction fees on social welfare and buyback behavior are shown in
ig. 8. From the simulation experiments, a small fixed transaction fee (5 cents in this study) is seen to be able to eliminate buyback
ehavior in Fig. 8(c) and reduce welfare only slightly in Fig. 8(a). On the other hand, there are higher social welfare losses in the
ase of the proportional transaction fees in Fig. 8(b), which are also less effective in reducing buyback behavior in Fig. 8(d). This
s consistent with the findings from the literature on efficiency losses from proportional transaction costs (Nie, 2012).
19
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Fig. 9. The effects of full and random initial account balances on the transaction numbers and amount by time-of-day at equilibrium.

Next, we examine the effect of full initial account balances and random initial account balances on the transaction numbers and
amount by time-of-day at equilibrium. The plots are based on simulations with a particular random seed because stochasticity can
make the visualizations hard to interpret.

In Fig. 9(a), the numbers of buying and selling transactions as a percentage of the corresponding total number by time-of-day at
equilibrium for full initial account balances are plotted. As we can see, buying transactions only happen in the peak hour because
travelers can only buy tokens at time of traveling if they are short of tokens. In contrast, selling transactions happen at the beginning
of the day, in the early morning, and peak hour, which can be explained by the plot of the average transaction amount by time-of-day
for full initial account balances in Fig. 9(b). For travelers selling at the beginning of the day, all of them sell at full wallets as shown
in Fig. 9(b) (2.052 tokens as equilibrium token price is $1) because they travel in the off peak and do not need to use tokens. For
travelers that sell in the early morning (around 2 AM), their account balances at time of selling are not full because their future
token allocations until their departure times can cover their toll and it is optimal for them to sell now. Finally, for travelers that
sell in the peak period, they sell at full wallets because their account balances reach the full wallet after paying small toll charges.
The selling behavior is consistent with the derived selling strategy but the excessive trading at the beginning of the day may be
undesirable and avoiding this was in fact one of the motivations of the continuous allocation.

In practice, it is plausible that travelers will register for the program at different times in the day (one may think of the system
as being implemented via a smartphone app). As a result, their account balances at the beginning of the day will be different, and
we now assume the initial account balances are distributed uniformly between 0 and the maximum account balance (2.052 tokens).
As shown in Fig. 9(c), the selling transactions are now spread across the day with a relatively mild peak in the early morning
(around 2 AM). Apart from these travelers who sell in the early morning not at full wallets, other travelers sell only at full wallets
as shown in Fig. 9(d). Under this assumption, we see a much more desirable pattern of transactions over the day, and the usefulness
20

of the continuous allocation. However, the fact that different initial account states lead to different patterns of selling behavior at
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Table 5
Factor levels for experiments.
Factor Level 1 Level 2 Level 3

Capacity (𝑠) −15% 0% 15%
Income Effect (𝜆) 0 3 6
Heterogeneity (c.o.v) 0.2 0.9 1.6

Fig. 10. Variation of performance measures with capacity.

equilibrium is a problematic property of the system (despite the fact that the optimal welfare and associated market prices and flows
are unique), and one that deserves further investigation.

6.5. Performance of the TMC scheme under varying levels of congestion, heterogeneity and income effects

We next examine the performance of the TMC scheme relative to congestion pricing at varying levels of three important
experimental factors: capacity, income effect and heterogeneity. For the TMC scheme, fixed transaction fees are set to $0.05 and
proportional transaction fees are set to 0 based on the experiments in the previous section. The factors are varied one at a time
across three levels as presented in Table 5. Values used in the base case are highlighted in bold (when varying a given factor, other
actors are fixed at the base level). With regard to capacity, bottleneck capacity 𝑠 is varied from 15% less capacity than the baseline
to 15% more capacity than the baseline; for the income effect, the nonlinear income effect coefficient in the utility specification 𝜆
is varied from 0 to 6; for heterogeneity, the coefficient of variation of value of time 𝛼𝑛 is varied from 0.2 to 1.6. In the following
discussion, the TMC system is denoted by MU (U denotes the uniform allocation of tokens) and congestion pricing is denoted by
P- to indicate that we do not assume a redistribution of toll revenues in any form. The No-toll scenario is denoted by NT. For each
scenario in the experimental design, the two instruments and NT are simulated with five different random seeds until convergence.

6.5.1. Capacity
The comparative performance of the various instruments under varying levels of capacity in terms of social welfare (relative

to the NT scenario), Gini coefficient, PT share and travel time index (TTI) are shown in Fig. 10. First, we observe that the overall
21
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welfare of pricing and the TMC scheme are similar at all levels of capacity, and in fact, marginally higher for the TMC scheme despite
the small fixed transaction fees (due to the income effect). This is in line with the general finding that both pricing and tradable
credits are equivalent in terms of efficiency under deterministic demand/supply and in the absence of transaction costs and income
effects (Yang and Wang, 2011; de Palma et al., 2018). As expected, overall welfare gains decrease as the capacity increases and
ongestion effects are less severe.

Next, Fig. 10(b) shows that when toll revenues are not redistributed, the congestion pricing scheme is regressive, as seen by the
ncrease in the Gini coefficient or GC (computed based on individual disposable income 𝐼𝑛 plus user benefit 𝑧𝑛, see Eq. (43)) relative
o the NT case. Observe also that the GC (𝑃−) increases as capacity level decreases, which implies that 𝑃− becomes less equitable
22
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Fig. 12. Variation of performance measures with income effect level.

because as capacity decreases, the tolls increase to deal with the increasing congestion leading to the greater losses of low income
users.

In contrast, the TMC scheme improves the GC relative to the NT case, due to the free uniform allocation of tokens to all
travelers (a uniform allocation increases the proportion of cumulative benefits obtained by the travelers with lower values of time).
The regressive nature of the congestion pricing scheme can also be observed in Fig. 11(a) which plots cumulative user benefits
normalized by population size) as a function of the user benefit percentile and Fig. 11(b) which plots cumulative user benefits
normalized by population size) as a function of income percentile. Clearly, at all capacity levels, one can observe that a large
roportion of users are worse off from pricing (negative user benefits) whereas in the case of the TMC scheme the proportion of
losers’ is significantly smaller. Although not clearly visible in the plots, there are still some ‘losers’ with small negative benefits
n the TMC scheme. Thus, under a uniform allocation of tokens, a tradable credit scheme does not necessarily guarantee Pareto
mprovement. This conclusion accords with the finding in Arnott et al. (1994) that under pricing, even with a uniform revenue
ebate, some users may still be worse off. Fan et al. (2022) discuss the conditions under which Pareto Improvement is guaranteed
or a tradable credit scheme using the standard bottleneck model with homogeneous users.
It should be pointed out that the above discussion on the regressiveness of pricing is premised on the assumption that value

f time is correlated with income and that there is a one-to-one relationship between VOT and income. Empirical studies have
dentified other correlates of income and hence, Verhoef and Small (2004) have cautioned against viewing the VOT distribution as
simply representing the income distribution (see also Lehe (2020) on this). Moreover, as noted in Eliasson and Mattsson (2006),
ultimately, the distributional outcomes of congestion pricing depend largely on how the toll revenues – which can be significantly
larger than net user benefits – are used. The ratio between tolls revenues and user benefits under pricing in our experiments are in
the range of the empirical values reported in Eliasson and Mattsson (2006).

In terms of network performance, significant improvements in the TTI and larger transit shares are observed under both
instruments (relative to NT) at all capacity levels (Figs. 10(c) and 10(d)).

6.5.2. Income effect
Next we examine the impact of income effects, measured by the parameter 𝜆. As noted previously, non-linear income effects do
23

impact behavior and the relative efficiency of pricing and TMCs. This impact on behavior along with the fact that the valuation of
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Fig. 13. Variation of performance measures with heterogeneity levels.

the token allocation is higher for lower income users (who have a higher marginal utility of income — recall that our measure of user
benefit is directly the money metric utility) results in increasing welfare differences as 𝜆 increases (this can be seen in Fig. 12(a)).
owever, we caution that in terms of magnitudes, these differences are still small. As expected, when income effects are absent, the
elfare of the TMC is marginally lower than P- due to transaction fees. Observe also that the social welfare of 𝑃− decreases as the
ncome effect increases since users are more sensitive to the tolls.
The impact on behavior can also be seen in the lower PT shares with increasing 𝜆 in Fig. 12(c). In terms of distributional impacts,

e observe similar trends in the GC and patterns in user benefits as described in Section 6.5.1 (which show the regressiveness and
larger proportion of ‘losers’ under pricing; see the base capacity case in Figs. 11(a) and 11(b)). There are small variations across 𝜆
and hence, for brevity, we omit plots of user benefits.

6.5.3. Heterogeneity
As can be seen in Fig. 13(a), as the extent of heterogeneity increases, the social welfare of 𝑃− increases, which is consistent

with findings in the literature (e.g., Van Den Berg and Verhoef (2011)). Neglecting heterogeneity underestimates the benefits of
pricing (Verhoef and Small, 2004). The relative performance of the two instruments does not change appreciably with the extent
of heterogeneity, with the TMC scheme having marginally higher welfare and significantly better GC at all levels of heterogeneity.
In terms of distributional impacts, at low levels of heterogeneity (COV of 0.2), it can be seen in Fig. 14(a) that all users are worse
off under P- whereas most of them are better off under the credit system.

6.6. Robustness

In practice, toll profiles may often be sub-optimal because of changing conditions, forecast errors and uncertainty. Practically,
it is difficult to update these toll profiles (especially at the network level) regularly in practice. For example, Singapore updates the
ERP scheme once every three months. In contrast, some market elements of the TMC scheme (e.g., allocation rate) are easier to
adapt and have the potential to influence travelers’ behavior (through the market price) to recover efficiency losses. In this section,
24

two scenarios of a sub-optimal toll profile are investigated, including forecast error and non-recurrent events.
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The first scenario is forecast error wherein actual road capacity is assumed to be 15% less than the anticipated road capacity
sed to optimize the toll profile. The social welfare of pricing and TMC with this sub-optimal toll profile (based on anticipated road
apacity) are plotted in Fig. 15 and denoted by 𝑃−𝑆 and 𝑀𝑈𝑆 . The social welfare of pricing and TMC with the associated optimal
toll profiles are also plotted and denoted as 𝑃−𝑂 and 𝑀𝑈𝑂. As we can see, 𝑀𝑈𝑆 (TMC with sub-optimal tolls) is able to recover
efficiency losses through a reduction in the allocation rate, which reduces token supply and increases token price. The optimal
allocation rate is determined using a grid search and is found to be 15% lower than the original allocation rate.

The second scenario is a non-recurrent event. Specifically, it is assumed that there is a sudden within-day capacity drop by 15%
(e.g., due to an accident or incident) from 7 AM to 8:30 AM on the 10th day after the system has reached an equilibrium. The social
welfare across days for the three instruments are plotted in Fig. 16. The first instrument is pricing without distribution and denoted
25
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Fig. 15. Social welfare of pricing and TMC with sub-optimal and optimal toll profiles.

Fig. 16. Social welfare of pricing and TMC with sub-optimal and optimal toll profiles.

as 𝑃−. The second one is TMC with a lump-sum allocation and denoted by 𝑀𝑈𝐿. The third instrument is TMC with a continuous
allocation and denoted as 𝑀𝑈𝐶 .

Under𝑀𝑈𝐿, travelers receive the entire day’s token allocation at the beginning of the day in the form of a ‘lump-sum’ allocation.
his form of token allocation is the standard design of TMC schemes in the literature (e.g., Yang and Wang (2011) and Brands et al.
2020)). Regarding trading, they can buy additional tokens at the time of traveling for immediate use and redeem unused tokens
t the end of the day. Since trading is automated, there is no transaction fee considered under the lump-sum allocation. Once the
ncident occurs, the regulator has three market parameters to control including token price, regulation starting time and ending
ime. It cannot control allocation rate as all the tokens have already been allocated at the beginning of the day. Note that thus
ar, we have treated the token price as fixed within-day. Incorporating a truly within-day dynamic token price in the day-to-day
eparture time choice model involves additional assumptions about users’ forecasts of the dynamic prices, which would not be
nown when the departure time choice is made. Instead, we use a simpler ad-hoc approach, assuming that users who have not yet
eparted at the time the new token price takes effect, will reevaluate their decisions based on the information of the new prices.
e assume the same behavioral model used in the pre-day decision applies (with updated token prices and transaction fees). Using
he DE algorithm, we determine that it is optimal for the regulator to increase the token price to $1.8 between 6:55 AM and 9:15
M. As shown in Fig. 16, it performs better than 𝑃−.
Under 𝑀𝑈𝐶 , the regulator can control not only token price, regulation starting and ending time, but also the allocation rate

which affects the forecasted account balance of users over the rest of the day) and transaction fees. We optimize the fixed transaction
ees of buying and selling together. Through optimization, between 7:05 AM and 8:50 AM, the regulator should set token price equal
26
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to $1.25, allocation rate 𝑟 equal to 0 and fixed transaction fee equal to $0.5. It performs better than the lump-sum allocation 𝑀𝑈𝐿
as shown in Fig. 16. This is intuitive because the travel behavior is impacted by both the allocation rate and transaction fees, which
provide the regulator more degrees of freedom to intervene. This demonstrates the advantages of a continuous allocation of tokens
over a lump-sum allocation of tokens.

7. Conclusions

This paper proposes and analyzes alternative market models for a tradable mobility credit system focusing on allocation/
expiration of tokens, rules governing trading, transaction fees, and regulator intervention. We develop a methodology to explicitly
model the dis-aggregate behavior of individuals within the market. Extensive simulation experiments are conducted within a
combined mode and departure time context for the morning commute problem using a day-to-day assignment framework wherein
transportation demand is modeled using a logit-mixture model with income effects and supply is modeled using a standard bottleneck
model.

The results show that small, fixed transaction fees can effectively mitigate undesirable speculation in the market without a
significant loss in efficiency whereas proportional transaction fees are less effective both in terms of efficiency and in avoiding
undesirable market speculation. The market design we adopt is shown to yield stable and convergent market prices and is revenue
neutral. We also show that an allocation of tokens in continuous time can be beneficial in dealing with non-recurrent events. One
undesirable property of the system we do observe is that the selling behavior of individuals at equilibrium is dependent on the
initial account states (although optimal welfare, flows and market prices are unique), and this deserves further investigation. With
regard to the comparative performance relative to congestion pricing, in the presence of income effects, the TMC system yields
a marginally higher social welfare. Finally, the TMC scheme is more equitable (when revenues from congestion pricing are not
redistributed) although it is not guaranteed to be Pareto-improving when tokens are distributed equally.

There are several promising directions for future research. First, given that a uniform allocation of tokens does not guarantee
Pareto-improvement, it is clear that personalization is necessary to ensure that no individual loses under the TMC scheme. The design
of personalized token allocation schemes is an important direction of future research. Second, more systematic experiments on day-
to-day variability and its impact on the robustness of the TMC scheme and market are warranted. Finally, large scale simulations
on real-world networks with disaggregate agent-based models is a natural next step in studying market design and other aspects of
tradable credit schemes towards real-world deployments.
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Appendix A. Convergence of the day-to-day dynamic model

In this section, we examine convergence of the day-to-day model (Section 5). Using data and parameters discussed in Section 6.1,
a No Toll (NT) scenario with different sets of initial travel time information for the driving alternatives is simulated. Five independent
replications or draws of the error terms in the utility (Eq. (25)) are performed for each scenario. The four different sets of initial
travel time information of driving are plotted in Fig. A.17(a). Note that the initial travel time information serves as the basis for
the departure time decisions in day 0 of the day-to-day simulation. The initial travel time set 0 represents free flow travel times
across the entire day; the initial travel time set 1 consists of equilibrium travel times of driving obtained from the simulation using
the initial travel time set 0 for a particular random seed; the initial travel time set 2 is 0.6 times the travel time set 1; finally, the
initial travel time set 3 represents a constant 30 min travel time across the entire day.

The corresponding convergence of travel times of driving is plotted in Fig. A.17(b). The lines and bands in the plot represent
averages and standard deviations, respectively, across the five replications. As we can see from the plot, the infinity norm (Eq. (48))
converges to within a threshold of 0.01 by about 50 days, indicating acceptable convergence of the day-to-day model. We perform
a commonly used test for stationarity, the Augmented Dickey–Fuller (ADF) test (Cheung and Lai, 1995), on the infinity norm.
The 𝑝-value is significantly smaller than 0.05 (i.e., the tested data does not have a unit root) indicating that stationarity has been
27
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Fig. A.17. Convergence of the day-to-day model (base capacity).

In order to examine regularity of the stochastic process, the travel time vectors and flow vectors of driving under the four different
tarting conditions are plotted in Fig. A.17(c)–(d). The results indicate that simulations with different initial travel times of driving
onverge to the same distribution of travel times and departure flows. We conduct two-sample t-tests for the mean departure flow
and travel time) in each interval (using the Bonferroni correction for multiple comparisons) across every pair of the four scenarios.
he tests indicate that the mean flows and travel times (at convergence) under the different starting conditions are statistically not
ifferent (𝛼 = 0.01). As only two mode choices are considered and the travel time and headway of PT are constant, once the travel
ime of driving converges, the resulting departure flow of PT also converges.
We also examine convergence of the NT scenario under two additional capacity levels as presented in Table 5 (i.e., increasing

nd decreasing the bottleneck capacity by 15%). All experiment settings are the same as before, except that for the -15% capacity
ase, the initial travel time set 2 is 0.8 times the travel time set 1. Results are shown in Figs. A.18 and A.19, respectively. In both
ases, it is observed that the infinity norms converge and the travel time vectors and flow vectors of driving under different starting
onditions converge to the same distribution of travel times and departure flows. The ADF tests show the stationarity of the infinity
orms (𝑝-values are smaller than 0.01), and the t-tests confirm that the mean flows and the travel times across time intervals are
tatistically the same.

ppendix B. Convergence of market prices

The effect of various initial market prices 𝑝0 on convergence of token market price and social welfare are examined in Fig. A.20.
he price and social welfare converge to values that are not statistically significantly different at a significance level of 0.05
egardless of the initial price. The regulator revenues under the three initial prices converge to be within the regulator revenue
hreshold band (the black lines) as shown in Fig. A.20(c). Travel times under the three initial prices converge too as shown in
ig. A.20(d). Similar experiments under a range of scenarios showed that the price adjustment scheme leads to convergence (in
erms of travel times, flows and token prices) of the day-to-day model to the same stationary distribution for different initial market
rices.
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Fig. A.18. Convergence of the day-to-day model (15% higher capacity).

Fig. A.19. Convergence of the day-to-day model (15% lower capacity).
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Fig. A.20. Convergence of various metrics with different initial prices 𝑝0.

Table C.6
Notation.
Variables Description

ℎ Departure time interval
ℎ̄ Time interval for supply and selling model
𝑡 Continuous time
𝑑 Day 𝑑
𝑡ℎ Start time of interval ℎ
𝛥ℎ Duration of departure time interval ℎ
𝛥ℎ̄ Duration of interval ℎ̄
𝛥𝑎 Size of desired arrival window
𝑛 Individual 𝑛
𝛼𝑛 Value of time of individual 𝑛
𝛽𝐸𝑛∕𝛽𝐿𝑛 Value of schedule delay early/late of individual 𝑛
𝜆 Coefficient of nonlinear income effect
𝛾 Nonlinear income effect adjustment parameter
𝜇𝑛 Random component scale parameter of individual 𝑛
𝜖𝑖𝑛 Random utility component for mobility decision 𝑖 of individual 𝑛
𝐼𝑛 Disposable income of individual 𝑛
𝐻𝑛 Departure time choice set of individual 𝑛
𝑀𝑛 Mode choice set of individual 𝑛

(continued on next page)

ppendix C. Notation

See Table C.6.
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Table C.6 (continued).
Variables Description

𝑡𝑛 Desired arrival time of individual 𝑛
𝜂 Departure time window size parameter
𝑝 Market price
T𝑗 (ℎ) Toll of instrument 𝑗 in ℎ
𝜏𝑖 Forecasted travel time of choice 𝑖
𝑐𝑖𝑛 Expected cost for mobility decision 𝑖
𝑥𝑑𝑛 (𝑡) Account balance of individual 𝑛 at time 𝑡
𝐿 Token lifetime
𝑟 Token allocation rate
𝐹 𝑃
𝑆 , 𝐹

𝑃
𝐵 Proportional transaction fees for selling and buying

𝐹 𝐹
𝑆 , 𝐹

𝐹
𝐵 Fixed transaction fees for selling and buying

𝑡𝑓 Free flow travel time
𝑡𝑣(𝑡) Delay in queue at 𝑡
𝑄(𝑡) Number of drivers in queue at 𝑡
𝜃𝜏∕𝜃𝑡 Weights on previous day’s forecasts
𝑈𝑖𝑛 Utility of individual 𝑛 for mobility alternative 𝑖
(⋅)𝑗 Variable associated with instrument 𝑗
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