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Abstract. This article is concerned with the local well-posedness problem for the com-
pressible Euler equations in gas dynamics. For this system we consider the free boundary
problem which corresponds to a physical vacuum.

Despite the clear physical interest in this system, the prior work on this problem is limited
to Lagrangian coordinates, in high regularity spaces. Instead, the objective of the present
work is to provide a new, fully Eulerian approach to this problem, which provides a complete,
Hadamard style well-posedness theory for this problem in low regularity Sobolev spaces. In
particular we give new proofs for both existence, uniqueness, and continuous dependence on
the data with sharp, scale invariant energy estimates, and continuation criterion.
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1. Introduction

In this article we study the dynamics of the free boundary problem for a compressible gas.
In the simplest form, the gas is contained in a moving domain Ωt with boundary Γt, and is
described via its density ρ ≥ 0 and velocity v. The evolution of the Eulerian variables (ρ, v)
is given by the compressible Euler equations

(1.1)

{
ρt +∇(ρv) = 0

ρ(vt + (v · ∇)v) +∇p = 0,

with the constitutive law

p = p(ρ).
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In the present paper we will consider constitutive laws of the form1

(1.2) p(ρ) = ρκ+1, κ > 0.

Heuristically one can view this system as a coupled system consisting of a wave equation
for the pair (ρ,∇ · v) and a transport equation for ω = curl v. In this interpretation, a key
physical quantity is the propagation speed cs for the wave component. This is called the
speed of sound, and is given by

(1.3) c2s = p′(ρ).

We consider this system in the presence of vacuum states, i.e. the density ρ is allowed to
vanish. The gas is located in the domain Ωt := {(t, x) | ρ(t, x) > 0}, whose boundary Γt is
moving. The defining characteristic in the case of a gas, versus the fluid case, is that the
density vanishes on the free boundary Γt, which is thus described by

Γt = ∂Ωt := {(t, x) | ρ(t, x) = 0}.

In this context, the decay rate of the sound speed near the free boundary plays a fundamental
role both in the gas dynamics and in the analysis. In essence, one expects that there is a
single stable, nontrivial physical regime, which is called physical vacuum, and corresponds
to the sound speed decay rate

(1.4) c2s(t, x) ≈ d(x,Γt).

The property (1.4) will propagate in time for as long as ∇v ∈ L∞, which will be the case for
all solutions considered in this article. We remark that in particular such a bound guarantees
a bilipschitz fluid flow.

To provide some intuition for this we note that the acceleration of particles on the free
boundary is exactly given by −κ−1∇c2s, which is normal to the boundary. Heuristically,
because of this, the property (1.4) yields the correct balance which allows the free boundary
to move with a bounded velocity and acceleration while interacting with the interior, as
follows:

• A faster fallout rate for the sound speed would cause the boundary particles to simply
move independently and linearly with the outer particle speed. This can only last for
a short time, until the faster waves inside overtake the boundary and likely lead to
a more stable regime where (1.4) holds. See for instance the results in this direction
in [25], but also the dispersive scenario discussed in [11].

• A slower fallout rate would cause an infinite initial acceleration of the boundary,
likely leading again to the same pattern.

A fundamental observation concerning physical vacuum is that the relation (1.4) guarantees
that linear waves with speed cs can reach the free boundary Γt in finite time. Because of
this, in the above flow the motion of the boundary is strongly coupled to the wave evolution
and is not just a self-contained evolution at leading order.

There are two classical approaches in fluid dynamics, using either Eulerian coordinates,
where the reference frame is fixed and the fluid particles are moving, or using Lagrangian

1Here, for expository reasons, we use κ + 1 rather than κ as the exponent, as it is more common in the
literature.
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coordinates, where the particles are stationary but the frame is moving. Both of these ap-
proaches have been extensively developed in the context of the compressible Euler equations,
where the local well-posedness problem is very well understood.

By contrast, the free boundary problem corresponding to the physical vacuum has been
far less studied and understood. Because of the difficulties related to the need to track the
evolution of the free boundary, all the prior work is in the Lagrangian setting and in high
regularity spaces which are only indirectly defined.

Our goal in this paper is to provide a new, complete, low regularity approach for this
free boundary problem which is fully within the Eulerian framework. In particular, our work
contains the following steps, each of which represents original, essential advances in the study
of this problem:

a) We prove the uniqueness of solutions with very limited regularity2 v ∈ Lip, ρ ∈ Lip.
More generally, at the same regularity level we prove stability, by showing that bounds
for a certain distance between different solutions can be propagated in time.

b) We develop the Eulerian Sobolev function space structure where this problem should
be considered, providing the correct, natural scale of spaces for this evolution.

c) We prove sharp, scale invariant energy estimates within the above mentioned scale
of spaces, which show that the appropriate Sobolev regularity of solutions can be
continued for as long as we have uniform bounds at the same scale v ∈ Lip.

d) We give a simpler, more elegant proof of existence for regular solutions, fully within
the Eulerian setting, based on the above energy estimates.

e) We devise a nonlinear Littlewood-Paley type method to obtain rough solutions as
unique limits of smooth solutions, also proving the continuous dependence of the
solutions on the initial data.

At a conceptual level, we also remark that in our approach the study of the linearized
problem plays the main role, whereas the energy bounds for the full system are seen as
secondary, derived estimates. This is unlike in prior works, where the linearized equation is
relegated to a secondary role if it appears at all.

1.1. The material derivative and the Hamiltonian. The derivative along the particle
trajectories Dt is called the material derivative and is defined as

Dt = ∂t + v · ∇.

With this notation the system (1.1) is rewritten as

(1.5)

{
Dtρ+ ρ∇v = 0

ρDtv +∇p = 0.

Differentiating once more in the first equation we obtain

D2
t ρ− ρ∇(ρ−1p′(ρ)∇ρ) = ρ[(∇ · v)2 − Tr(∇v)2],

which at leading order is a wave equation for ρ with propagation speed cs, and where ∇ · v
can be viewed as a dependent variable.

On the other hand, for the vorticity ω = curl v one can use the second equation to obtain
the transport equation

Dtω = − ω · ∇v − (∇v)Tω.

2In an appropriately weighted sense in the case of ρ, see Theorem 1.
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The last two equations show that indeed one can interpret the Euler equations as a coupled
system consisting of a wave equation for the pair (ρ,∇v) and a transport equation for
ω = curl v.

This problem admits a conserved energy, which in a suitable setting can be interpreted as
a Hamiltonian, see [3], [23], [10],

E =

ˆ
Ωt

e dx,

where the energy density e is given by

e =
1

2
ρv2 + ρh(ρ),

with the specific enthaply h defined by

h(ρ) =

ˆ ρ

0

p(λ)

λ2
dλ.

1.2. The good variables. The pair of variables (ρ, v) is convenient to use if κ = 1. However,
for other values of κ in (1.2) we can make a better choice. To understand that, we compute
the sound speed

c2s = (κ+ 1)ρκ.

This should have linear behavior near the boundary. Because of this, it is more convenient
to use r = r(ρ) defined by

r′ = ρ−1p′(ρ),

which gives

r =
κ+ 1

κ
ρκ

as a good variable instead of ρ.
Written in terms of (r, v) the equations become

(1.6)

{
rt + v∇r + ρr′∇v = 0

vt + (v · ∇)v +∇r = 0.

In our case we have ρr′ = κr so we rewrite the above system as

(1.7)

{
rt + v∇r + κr∇v = 0

vt + (v · ∇)v +∇r = 0

or, using material derivatives,

(1.8)

{
Dtr + κr∇v = 0

Dtv +∇r = 0.

We will work with this system for the rest of the paper.
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1.3. Energies and function spaces. Given the constitutive law (1.2), the conserved energy
is

(1.9) E =

ˆ
1

κ
ρκ+1 +

1

2
ρv2 dx.

Switching to the (r, v) variables and adjusting constants, we obtain

(1.10) E =

ˆ
r

1−κ
κ

(
r2 +

κ+ 1

2
rv2

)
dx.

This will not be directly useful in solving the equation, but will give us a good idea for
the higher order function spaces we will have to employ. Based on this, we introduce the
energy space H with norm

(1.11) ∥(s, w)∥2H =

ˆ
r

1−κ
κ

(
|s|2 + κr|w|2

)
dx

for functions (s, v) defined a.e. within the fluid domain Ωt. Importantly, we note that the
constants above do not match (1.10), and instead have been adjusted to match the energy
functional for the linearized equation, which is discussed in Section 3. The two components
of the H space as weighted L2 spaces,

H = L2(r
1−κ
κ )× L2(r

1
κ ).

For higher regularity, we take our cue from the second order wave equation, which has the
leading operator c2s∆ = r∆, which is naturally associated to the acoustic metric3

(1.12) g = r−1dx2 in Ωt.

Correspondingly, we define the higher order Sobolev spaces H2k for distributions within the
fluid domain Ωt to have norms

∥(s, w)∥2H2k =

|β|−α≤k∑
|β|≤2k

∥rα∂β(s, w)∥2H,

where α is implicitly restricted to 0 ≤ α ≤ k. More generally, for all real k ≥ 0 one can define
by interpolation the spaces H2k. These spaces and their properties are further discussed in
the next section.

1.4. Scaling and control parameters. The equation (1.7) admits the scaling law

(1.13) (r(t, x), v(t, x)) → (λ−2r(λt, λ2x), λ−1v(λt, λ2x)).

We use this scaling in order to track the order of factors in multilinear expressions, intro-
ducing a counting device based on scaling:

i) r and v have degree −1, respectively −1
2
.

ii) ∇ has order 1 and Dt has order
1
2
.

The order of a multilinear expression is defined as the sum of the orders of each factors. In
this way, all terms in each of the equations have the same order. This property remains valid
if we either differentiate the equations in x, t or apply the material derivative Dt.

3Technically one should add a k−1 factor here.
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Corresponding to the above spaces and scaling we identify the critical space H2k0 where
k0 is given by4

2k0 = d+ 1 +
1

κ
.

This has the property that its (homogeneous) norm is invariant with respect to the above
scaling.

Associated to this Sobolev exponent we introduce the following scale invariant time de-
pendent pointwise control norm

(1.14) A = ∥∇r −N∥L∞ + ∥v∥
Ċ

1
2
,

where N is a given nonzero vector. Here N can be chosen as N = ∇r(x0) for some fixed point
x0 where r(x0) = 0. The motivation for using such an N , rather than just ∥∇r∥L∞ , is that
the latter is a scale invariant quantity of fixed, unit size. On the other hand the A defined
above can be harmlessly assumed to be small simply by working in a small neighbourhood
of the reference point x0. Such a localization is allowed in the study of compressible Euler
system because of the finite speed of propagation. The control parameter A will play a
leading role in elliptic estimates at fixed time, and, in order to avoid cumbersome notations,
will be implicitly assumed to be small in all of our analysis.

For the energy estimates we will also introduce a second time dependent control norm
which is associated with the space H2k0+1, namely

(1.15) B = ∥∇r∥
C̃0, 12

+ ∥∇v∥L∞ ,

where the C̃0, 1
2 norm is given by

∥f∥
C̃0, 12

= sup
x,y∈Ωt

|f(x)− f(y)|
r(x)

1
2 + r(y)

1
2 + |x− y| 12

.

This scales like he Ċ
1
2 norm, but it is weaker in that it only uses one derivative of r away

from the free boundary.
The role of B will be to control the growth rate for our energies, while also allowing for a

secondary dependence of the implicit constants on A.

1.5. The main results. Our main result is a well-posedness result for the compressible
Euler evolution (1.7). However, it is more revealing to break the result down into several
components. We begin with the uniqueness result, which requires least regularity.

Theorem 1 (Uniqueness). For every Lipschitz initial data (r0, v0) satisfying the nondegen-
eracy condition |∇r0| > 0 on Γ0, the system (1.7) admits at most one solution (r, v) in the
class

(1.16) v ∈ C1
x, ∇r ∈ C̃

0, 1
2

x .

In other words, uniqueness holds in the class of solutions (r, v) for which B remains finite.
One can further relax this to B ∈ L1

t . We note that only the spatial regularity is specified
in the theorem, as the time regularity can then be obtained from the equations. Also the
nondegeneracy condition is only given at the initial time, but it can be easily propagated to
later times given our regularity assumptions.

4In general this will not be an integer.
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To the best of our knowledge, this is the first uniqueness proof for this problem which
applies directly in the Eulerian setting, and also the first uniqueness result at low, scale
invariant5 regularity.

Remark 1.1. The result in Theorem 1 can be seen as a subset of Theorem 5 in Section 4.
There we go one step further, and prove that a suitable nonlinear distance between two
solutions is propagated along the flow, under the same assumptions as in Theorem 1.

Next we consider the well-posedness question. Here we define the phase space

(1.17) H2k = {(r, v) | (r, v) ∈ H2k}.
One should think of this in a nonlinear fashion, as an infinite dimensional manifold, as the
H2k norms depend on Ωt and thus on r. The topology on this manifold is discussed in the
next section. Now we can state our main well-posedness result:

Theorem 2 (Well-posedness). The system (1.1) is locally well-posed in the space H2k for
k ∈ R with

(1.18) 2k > 2k0 + 1.

The well-posedness result should be interpreted in a quasilinear fashion, i.e. including:

• Existence of solutions (r, v) ∈ C[0, T ;H2k].
• Uniqueness of solutions in a larger class, see Theorem 1 above.
• Weak Lipschitz dependence on the initial data, relative to a new, nonlinear distance
functional introduced in Section 4.

• Continuous dependence of the solutions on the initial data in the H2k topology.

The last question we consider is that of continuation of the solutions, which is where our
control norms are critically used. This is closely related to the energy estimates for our
system:

Theorem 3. For each integer k ≥ 0 there exists an energy functional E2k with the following
properties:

a) Coercivity: as long as6 A ≪ 1, we have

(1.19) E2k(r, v) ≈ ∥(r, v)∥2H2k .

b) Energy estimates for solutions to (1.1)

(1.20)
d

dt
E2k(r, v) ≲A B∥(r, v)∥2H2k .

By Gronwall’s inequality this implies the bound

(1.21) ∥(r, v)(t)∥2H2k ≲ e
´ T
0 C(A)B(s) ds∥(r, v)(t)(0)∥2H2k .

Remark 1.2. These energies are constructed in an explicit fashion only for integer k. Nev-
ertheless, as a consequence in our analysis in the last section of the paper, it follows that
bounds of the form (1.21) hold also for all noninteger k > 0. However, we do this using
a mechanism which is akin to a paradifferential expansion, without constructing an explicit
energy functional as provided by the above theorem in the integer case.

5Scale invariance corresponds to the assumption B ∈ L1
t .

6Recall that we can harmlessly assume A small.
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A consequence of the last result is the following continuation criteria for solutions to (1.1),
which holds regardless of whether k is an integer:

Theorem 4. Let k be as in (1.18). Then the H2k solutions to (1.1) given by Theorem 2 can
be continued for as long as A remains bounded and B ∈ L1

t .

Here we implicitly make a topological assumption and exclude the possibility that two gas
bubbles at some point touch each other, or that the free boundary self-intersects. This latter
possibility is prohibited at small scales by our result, but certainly not at large scales.

This result is consistent with the standard continuation results for quasilinear hyperbolic
systems in the absence of a free the boundary. But for the physical vacuum free boundary
problem, this work is the first where anything close to such a continuation result has been
proved.

1.6. Historical comments. The study of the compressible Euler evolutions has a long
history, and also considerable interest from the physical side. Allowing for vacuum states
introduces many added layers of difficulty to the problem, whose nature greatly depends on
the behavior of the sound speed near the vacuum boundary. Within this realm, physical
vacuum represents the natural boundary condition for compressible gasses. Below we begin
with a brief discussion of the broader context, and then we focus on the problem at hand.

1.6.1. Compressible Euler flows. The compressible Euler equations are classically considered
as a symmetric hyperbolic system, and as such, local well-posedness has long been known,
see e.g. [15], and also the Euler oriented analysis in [21]. The local solutions can be obtained
using the energy method, and relying solely on the energy requires initial data local regularity

(ρ0, v0) ∈ Hs with s >
d

2
+ 1, with the continuation criteria

ˆ ∞

0

∥∇(ρ, v)∥L∞ < ∞.

By now it is known that these results can be improved by taking advantage of Strichartz
estimates for wave equations. In the irrotational case, for instance, the result of [26] applies

directly and yields the sharp local well-posedness result, for7 s >
d+ 1

2
. In the rotational

case, it is not yet clear what would be the optimal condition on the vorticity which would
allow for a similar improvement; see the results in [9] and [29].

1.6.2. Vacuum states in compressible Euler flows. Vacuum states correspond to allowing for
the density to vanish in some regions. Here one should think of having a particle region Ωt,
and a vacuum region, separated by a moving free boundary Γt = ∂Ωt. There are two major
physical scenarios, distinguished by the boundary behaviour of the density ρ, or equivalently
of the sound speed cs:

(1) Fluid flows, where the pressure is constant on the free boundary, describing a balance
of forces, and the density and implicitly the sound speed are assumed to have a
nonzero, positive limit there.

(2) Gas flows, where the density decay to zero near the free boundary; this is our main
focus in this paper.

7Here d = 3, 4, 5.
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Both are free boundary problems associated to compressible Euler, but their nature is
very different in the two cases. Fluid flows were considered in [4] and [17], and also the
incompressible limit was investigated in [18].

Now we turn our attention to our present interest, namely the gas flows. Heuristically
one distinguishes several potential scenarios when comparing the sound speed cs with the
distance dΓ to the vacuum boundary.

a) Rapid decay corresponds to
cs ≲ dΓt .

In this case the vacuum boundary evolves linearly, and internal waves cannot reach the
boundary arbitrarily fast. Thus this geometry persists at least for a short time, and the
local well-posedness problem can be even studied using the standard tools of symmetric
hyperbolic systems; see for instance [8], [2] and [19], as well as the alternative approach in
[22],[1] and the one dimensional analysis in [20]. Thus this case cannot be thought of as a
true free boundary problem. Furthermore, after a finite time, the internal waves will reach
the boundary [20], and this geometry breaks down.

b) Slow decay,
cs ≫ dΓt .

This is where the problem indeed becomes a genuine free boundary problem, as internal
waves can reach the boundary arbitrarily fast, and then the flow of the free boundary becomes
strongly coupled with the internal flow. One might think that there might be a range of
possible decay rates, for instance like

cs ≈ dβΓt
, 0 < β < 1.

However, both physical and mathematical considerations seem to indicate that among these
there is a single stable decay rate, which corresponds to β = 1

2
. This is commonly referred

to as physical vacuum. The other values of β are expected to be unstable, with the solutions
instantly falling into the stable regime; but this is all a conjecture at this point, and likely
there will be significant differences between the cases β < 1

2
and β > 1

2
.

1.6.3. The physical vacuum scenario. We turn now our attention to the problem at hand, i.e.
the physical vacuum scenario. The easier one dimensional setting was considered first, in [6]
followed by [13]. While some energy estimates are formally obtained in [6] and a procedure
to construct solutions is provided, the functional structure there does not provide a direct
description of the initial data space. This issue is remedied in [13], which first introduces
the Lagrangian counterparts of the scale of spaces we are also using here, and provides both
existence and uniqueness results in sufficiently regular spaces.

More recently, the three dimensional case was considered in several papers. Energy es-
timates for κ = 1 were formally derived in [5]. This was followed by an existence proof
proposed in [7], which is based a parabolic regularization. However, the functional setting
is similar to their prior one dimensional paper, and some steps are merely claimed rather
than proved; for instance the difference bound, which also, as stated, requires additional
regularity for the solutions compared to the existence result. Independently, [14] offers an
alternative existence and uniqueness proof for arbitrary κ > 0, this time within the correct
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scale of weighted Sobolev spaces, using an iterative argument for the existence part, and
with a different approach to the energy estimates.

All the results described above are in the Lagrangian setting, and aim to give existence
and uniqueness results in sufficiently regular function spaces. In addition to the limitations
mentioned above, no attempt is made to provide any continuous dependence results, nor to
transfer the results to the physical, Eulerian framework.

By contrast, our results in the present paper are fully developed within the Eulerian set-
ting, at low regularity, in all dimensions and for all κ > 0. In this context we provide
completely new arguments for existence, uniqueness, and continuous dependence of the solu-
tions on the initial data, i.e. a full well-posedness theory in the Hadamard sense. In addition
we prove a family of sharp, scale invariant energy estimates, which in particular yield op-
timal continuation criteria at the level of ∥∇v∥L∞ , consistent with the well-known results
for hyperbolic systems in the absence of the free boundary. Despite the fact that we only
construct energy functionals corresponding only to integer Sobolev spaces, we nevertheless
are able to use these estimates in order to obtain energy estimates in fractional Sobolev
spaces as well, nicely completing the theory up to the optimal Sobolev thresholds.

1.7. An outline of the paper. The article has a modular structure, where, for the essential
part, only the main results of each section are used later.

1.7.1. Function spaces and interpolation. The starting point of our analysis, in the next sec-
tion, is to describe the appropriate functional setting for our analysis, represented by the H2k

scale of weighted Sobolev spaces. These are associated to the singular Riemannian metric
(1.12) under the sole assumption that the boundary Γt is Lipschitz, with r as a nondegen-
erate defining function. A similar scale of spaces was introduced in [14] in the Lagrangian
setting, though under more regularity assumptions. However, since in the Eulerian setting
the boundary is moving, the corresponding state space H2k for (r, v) is seen here akin to an
infinite dimensional manifold.

We remark on the dual role of r, as a defining function of the boundary implicitly as
a weight on one hand, and as one of the dynamical variables on the other hand; for our
low regularity analysis we carefully decouple these two roles, in order to avoid cumbersome
boootstrap loops.

Interpolation plays a significant role in our study. First this occurs at the level of the H2k

scale of spaces, and it allows us to work with fractional Sobolev spaces without having to
directly prove energy estimates in the fractional setting, using expansions which are akin to
paradifferential ones but done at the level of the nonlinear flow. Secondly, we also interpolate
between the H2k spaces and the pointwise bounds captured by our control parameters A and
B. It is this last tool which allows us to work at low regularity and to obtain sharp, scale
invariant energy estimates.

1.7.2. The linearized equation and transition operators. In Section 3 we consider the lin-
earized equation, which is modeled as a linear evolution in the time dependent weighted L2

space H. We view this as the main tool in the analysis of the nonlinear evolution, rather
than the direct nonlinear energy estimates as in all prior work (except for [14], to some
extent). This later helps us not only to prove nonlinear energy estimates for single solutions,
but also to compare different solutions, which is critical both for our uniqueness proof and
for our construction of rough solutions as strong limits of smooth solutions. We remark that
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at the level of the linearized variables (s, w) there is no longer any boundary condition on
the moving free boundary Γt; this is closely related to the prior comment about uncoupling
the roles of r.

Next, using the linearized equation, we obtain the transition operators L1 and L2, which
act at the level of the two linearized variables s, respectively w, and should be though of as
the degenerate elliptic leading spatial part of the wave evolution for s, respectively ∇ · w.
We call them transition operators because they tie the successive spaces H2k and H2k+2 on
our scale in a coercive, invertible fashion. These operators play a leading role in both the
higher order energy estimates and in the regularization used for our construction of regular
solutions.

1.7.3. Difference estimates and the uniqueness result. The aim of Section 4 is to construct a
nonlinear difference functional which allows us to track the distance between two solutions
roughly at the level of theH norm. This is akin to the difference bounds in a weaker topology
which are common in the study of quasilinear problems.

This is one of the centerpieces of our analysis, and to the best of our knowledge this is
the first time such a construction was successfully carried out in a free boundary setting.
The fundamental difficulty is that we are seeking to not only compare functions on different
domains, but also to track the evolution in time of this distance. This difficulty is translated
into the nonlinear character of our difference functional; some delicate, careful choices are
made there, which ultimately allow us to propagate this distance forward in time.

1.7.4. Higher order energy estimates. The aim of Section 5 is to establish energy estimates
in integer index Sobolev spaces on our H2k scale. We define the nonlinear energy functionals
E2k using suitable vector fields applied to the equation. This energy has two components,
a wave component and a transport component, which correspond to the heuristic (partial)
decoupling of the evolution into a wave part for r and ∇ · v and a transport part for the
vorticity ω. Our proof of the energy estimates is split in a modular fashion into two parts,
where we succesively (i) prove the coercivity of our energy functional and (ii) track the time
evolution of the energy.

The coercivity bound is obtained inductively in k, using the transition operators L1 and
L2 as key tools. The main part of the proof of the propagation bound happens at the level
of the wave component, where we identify Alihnac style “good variables” (s2k, w2k), which
are shown to solve the linearized equation modulo perturbative source terms.

Our energy functionals are to some extent the Eulerian counterparts of energies previously
constructed in [7], [14] in the Lagrangian setting and at higher regularity. They are closer
in style to [7], though the coercivity part is largely missing there and as a consequence some
of the functional setting is incomplete/incorrect. The analysis in [14], on the other hand,
corresponds to combining the two steps above together. This leads to a more comprehensive
energy functional, where the coercivity part is relatively straightforward, but instead moves
the difficulty to the propagation part, which becomes considerably more complex.

1.7.5. Existence of regular solutions. The aim of Section 6 is to prove the existence theorem
in the context of regular solutions. The scheme we propose here is constructive, using a time
discretization via an Euler type method to produce good approximate solutions. However
a naive implementation of Euler’s method looses derivatives; to rectify this we precede the
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Euler step by (i) a regularization on a suitable scale, and (ii) a separate transport part8. The
challenge is to control the energy growth at each step of the way. This is more delicate for
the regularization, which has has to be done carefully using the elliptic transition operators
L1 and L2.

We note that our construction is very different from any other approaches previously used
in analyzing this problem; they all relied on parabolic regularizations. Our construction is
simpler and more direct, though not without interesting subtleties. It is also better tailored
to the physical structure of the equations, which makes this approach more robust and also
successful in the relativistic counterpart of our problem.

1.7.6. Rough solutions as limits of regular solutions. The last section of the paper aims to
construct rough solutions as strong limits of smooth solutions. This is achieved by considering
a family of dyadic regularizations of the initial data, which generates corresponding smooth
solutions. For these smooth solutions we control on one hand higher Sobolev norms H2N ,
using our energy estimates, and on the other hand the L2 type distance between consecutive
ones, which is at the level of the H norms. Combining the high and the low regularity
bounds directly yields rapid convergence in all H2k1 spaces below the desired threshold,
i.e. for k1 < k. To gain strong convergence in H2k we use frequency envelopes to more
accurately control both the low and the high Sobolev norms above. This allows us to bound
differences in the strong H2k topology. A similar argument yields continuous dependence
of the solutions in terms of the initial data also in the strong topology, as well as our main
continuation result in Theorem 4.
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2. Function spaces

The aim of this section is to introduce the main function spaces where we will consider the
free boundary problem for the compressible gas. These are Sobolev type spaces of functions
inside the gas domain Ωt, with weights depending on r, or equivalently on the distance to
the free boundary. We begin with a more general discussion of weighted Sobolev spaces in
Lipschitz domains, and then specialize to the function spaces that are needed in our problem.

2.1. Weighted Sobolev spaces. As a starting point, in a domain Ω ⊂ Rd with Lipschitz
boundary Γ and nondegenerate defining function r we introduce a two parameter family of
weighted Sobolev spaces (see [27, 28] for a more general take on this):

Definition 2.1. Let σ > −1
2
and j ≥ 0. Then the space Hj,σ = Hj,σ(Ω) is defined as the

space of all distributions in Ω for which the following norm is finite:

(2.1) ∥f∥2Hj,σ :=
∑
|α|≤j

∥rσ∂αf∥2L2 .

8This bit is optional but does simplify the analysis.
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By complex interpolation, one also defines corresponding fractional Sobolev spaces Hs,σ for
s ≥ 0 and σ > −1

2
. This yields a double family of interpolation spaces.

Some comments are in order here:

• At this point, all we assume about the geometry of the problem is that the boundary
Γ is Lipschitz, and that r is a non-degenerate defining function for Γ, i.e. proportional
to the distance to Γ. Different choices for r yield the same space with different but
equivalent norms. Without any restriction in generality, we can assume that r is
Lipschitz continuous.

• The requirement σ > −1
2
corresponds to the fact that no vanishing assumptions on

the boundary Γ are made for any of the elements in our function spaces.
• If σ = 0 then one recovers the classical Sobolev spaces Hk,0 = Hk.
• If j = 0 these are weighted L2 spaces, H0,σ = L2(r2σ).

Next, we establish some key properties of these spaces. First, we have the Hardy type
embeddings (see the book [16] for a broader view):

Lemma 2.2. Assume that s1 > s2 ≥ 0 and σ1 > σ2 > −1
2
with s1 − s2 = σ1 − σ2. Then we

have

(2.2) Hs1,σ1 ⊂ Hs2,σ2 .

Proof. By interpolation and reiteration it suffices to prove the result when s1 − s2 = 1, both
integers. Thus we will show that

(2.3) Hj,σ ⊂ Hj−1,σ−1, j ≥ 1, σ >
1

2
.

It suffices to prove the result in dimension n = 1; then all the higher dimensions will follow
by considering foliations of Ω with parallel one dimensional lines which are transversal to Γ.

Here r is the distance function to the boundary of Ω. Setting Ω = [0,∞), r is pointwise
equivalent to x, and in particular givesˆ

Ω

(
rσ−1

)2 |∂j−1
x f |2 dx ≈

ˆ
Ωt

(
xσ−1

)2 |∂j−1
x f |2 dx.

The inclusion follows from the following integration by partsˆ
Ω

(
xσ−1

)2 |∂j−1
x f |2 dx =

ˆ
Ωt

(
x2σ−1

2σ − 1

)′

|∂j−1
x f |2 dx

= |∂j−1
x f |2

(
x2σ−1

2σ − 1

)⏐⏐⏐⏐
x∈∂Ω

− 2

2σ − 1

ˆ
Ω

x2σ−1|∂j−1
x f ||∂j

xf | dx.

The boundary term vanishes, and we can now apply Cauchy-Schwartz’s inequality to obtain

∥f∥Hj−1,σ−1 ≤ 2

2σ − 1
∥f∥Hj,σ .

□

As a corollary of the above lemma we have embeddings into standard Sobolev spaces:

Lemma 2.3. Assume that σ > 0 and σ ≤ j. Then we have

(2.4) Hj,σ ⊂ Hj−σ.
13



In particular, by standard Sobolev embeddings, we also have Morrey type embeddings
into Cs spaces:

Lemma 2.4. We have

(2.5) Hj,σ
r ⊂ Cs, 0 ≤ s ≤ j − σ − d

2
,

where the equality can hold only if s is not an integer.

2.2. Weighted Sobolev norms for compressible Euler. Our starting point here is the
conserved energy for our problem, namely

E(r, v) =

ˆ
Ωt

r
1−κ
κ

(
r2 +

κ+ 1

2
rv2

)
dx.

Even more importantly, in our study of the linearized equation (see Section 3) for linearized
variables (s, w) we use the weighted L2 type energy functional

Elin(s, w) =

ˆ
Ωt

r
1−κ
κ (|s|2 + κr|w|2) dx.

Based on this, we define our baseline space H with norm

∥(s, w)∥2H = Elin(s, w).

In terms of the Hs,σ spaces discussed earlier, or weighted L2 spaces, we have

(2.6) H = H0, 1−κ
2κ ×H0, 1

2κ = L2(r
1−κ
κ )× L2(r

1
κ ).

Next we define a suitable scale of higher order Sobolev spaces for our problem. To under-
stand the balance between weights and derivatives we consider the leading order operator,
if we write the wave part of our system as a second order equation for r. At leading order
this yields the wave operator

D2
t − κr∆,

which is naturally associated with the Riemannian metric (1.12) in Ωt.
So, to the above L2 type space H we need to add Sobolev regularity based on powers of

r∆, or equivalently, relative to the metric g defined above. Hence we define the higher order
Sobolev spaces H2k

H2k := H2k,k+ 1−κ
2κ ×H2k,k+ 1

2κ , k ≥ 0

of pairs functions defined inside Ωt. These form a one parameter family of interpolation
spaces. The H2k spaces have the obvious norm if k is a nonnegative integer; for instance one
can set

(2.7) ∥(s, w)∥2H2k :=

|β|−α≤k∑
|β|≤2k

∥rα∂β(s, w)∥2H,

where α is also restricted to nonnegative integers.
On the other hand, if k is not an integer then the corresponding norms are Hilbertian

norms defined by interpolation. Since in the Hilbertian case all interpolation methods yield
the same result, for theH2k norm we will use a characterization which is akin to a Littlewood-
Paley decomposition, or to a discretization of the J method of interpolation. Precisely, we
have

14



Lemma 2.5. Let 0 < k < N . Then H2k can be defined as the space of distributions (s, v)
which admit a representation

(2.8) (s, w) =
∞∑
l=0

(sl, wl)

with the property that the following norm is finite:

(2.9) |||{(sl, wl)}|||2 :=
∞∑
l=0

22kl∥(sl, wl)∥2H + 22l(k−N)∥(sl, wl)∥2H2N ,

and with equivalent norm defined as

(2.10) ∥(s, w)∥2H2k := inf |||{(sl, wl)}|||2,
where the infimum is taken with respect to all representations as above.

2.3. The state space H2k. As already mentioned in the introduction, the state space H2k

is defined for k > k0 (i.e. above scaling) as the set of pairs of functions (r, v) defined in a
domain Ωt in Rn with boundary Γt with the following properties:

i) Boundary regularity: Γt is a Lipschitz surface.
ii) Nondegeneracy: r is a Lipschitz function in Ω̄t, positive inside Ωt and vanishing

simply on the boundary Γt.
iii) Regularity: The functions (r, v) belong to H2k.

Since the domain Ωt itself depends on the function r, one cannot think of H2k as a linear
space, but rather as an infinite dimensional manifold. As time varies in our evolution, so does
the domain, so we are interested in allowing the domain to vary in H2k. However, describing
a manifold structure for H2k is beyond the purposes of our present paper, particularly since
the trajectories associated with our flow are merely expected to be continuous with values
in H2k. For this reason, here we will limit ourselves to defining a topology on H2k.

Definition 2.6. A sequence (rn, vn) converges to (r, v) in H2k if the following conditions are
satisfied:

i) Uniform nondegeneracy, |∇rn| ≥ c > 0.
ii) Domain convergence, ∥rn − r∥Lip → 0.
iii) Norm convergence: For each ϵ > 0 there exist smooth functions (r̃n, ṽn) in Ωn, re-

spectively (r̃, ṽ) in Ω so that

(r̃n, ṽn) → (r̃, ṽ) in C∞

while

∥(r̃n, ṽn)− (rn, vn)∥H2k(Ωn) ≤ ϵ.

We remark that the last condition in particular provides both a uniform bound for the
sequence (rn, vn) in H2k(Ωn) as well as an equicontinuity type property, which ensures that a
nontrivial portion of theirH2k norms cannot concentrate on thinner layers near the boundary.
This is akin to the the conditions in the Kolmogorov-Riesz theorem for compact sets in Lp

spaces.
This definition will enable us to achieve two key properties of our flow:

• Continuity of solutions (r, v) as functions of t with values in H2k.
15



• Continuous dependence of solutions (r, v) ∈ H2k as functions of the initial data
(r0, v0) ∈ H2k.

2.3.1. Sobolev spaces and control norms. An important threshold for our energy estimates
corresponds to the uniform control parameters A and B given by (1.14) and (1.15), respec-
tively. Of these A is at scaling, while B is one half of a derivative above scaling. Thus, by
Lemma 2.4 we will have the bounds

(2.11) A ≲ ∥(r, v)∥H2k , k > k0 =
d+ 1

2
+

1

2κ
,

respectively

(2.12) B ≲ ∥(r, v)∥H2k , k > k0 +
1

2
=

d+ 2

2
+

1

2κ
.

2.3.2. The regularity of the free boundary. Another property to consider for our flow, in
dimension n ≥ 2, is the regularity of the free boundary, as well as the regularity of the
velocity restricted to the free boundary. This is given by trace theorems and the embedding
(2.4):

Lemma 2.7. Suppose that (r, v) ∈ H2k and that 2k− 1
κ
is not an even integer. Then Γt has

regularity

Γt ∈ Hk− 1
2κ .

If in addition 1
κ
is also not an odd integer then the velocity restricted to Γt has class

v ∈ H
k−1
2

− 1
2κ (Γt).

These properties are provided here only for comparison purposes, and play no role in the
sequel. This is because in this problem one cannot view the evolution of the free boundary
as a stand alone flow, not even at leading order. In particular, a-priori this velocity does not
suffice in order to transport the regularity of Γt; instead the boundary evolution should be
viewed as a part of the interior evolution. Indeed, we will see that there is some interesting
cancellation arising from the structure of the equations which facilitates this.

2.4. Regularization and good kernels. An important ingredient in our construction of
solutions to our free boundary evolution is to have good regularization operators associated
to each dyadic frequency scale 2h, h ≥ 0. These operators will need to accomplish two
distinct goals:

• Fixed domain regularization. Given (s, v) ∈ H2k(Ω), construct regularizations (sh, wh)
within the same H2j(Ω) scale of spaces.

• State and domain regularization. Given (r, v) ∈ H2k, where the first component
defines a domain Ω, construct regularizations (rh, vh) within the H2j scale of spaces,
where the regularized domains Ωh are defined by rh, Ωh := {x ∈ Rd | rh(x) > 0}.

We begin with some heuristic considerations and notations. Given a dyadic frequency scale
h, our regularizations will need to select frequencies ξ with the property that rξ2 ≲ 22h, which
would require kernels on the scale

δx ≈ r
1
22−h.
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Γ

2−2h Ω[>h]

2−2hΩ[h]

2−2h

Ω[<h]

Ω̃[h]

Figure 1. Boundary layers associated to frequency scale 2h.

However, if we are too close to the boundary, i.e. r ≪ 2−2h, then we run into trouble with
the uncertainty principle, as we would have δx ≫ r. Because of this, we select the spatial
scale r ≲ 2−2h and the associated frequency scale 22h as cutoffs in this analysis.

To describe this process, it is convenient to decompose a neighbourhood of the boundary
Γ into boundary layers. We denote the dyadic boundary layer associated to the frequency
2h by

(2.13) Ω[h] = {x ∈ Ω, r(x) ≈ 2−2h},

the corresponding full boundary strip by

(2.14) Ω[>h] = {x ∈ Ω, r(x) ≲ 2−2h},

and the corresponding interior region by

(2.15) Ω[<h] = {x ∈ Ω, r(x) ≳ 2−2h}.

We will also use dyadic enlargements of Ω, denoted by

(2.16) Ω̃[h] = {x ∈ Rd, d(x,Ω) ≤ c2−2h},

with a small universal constant c, and

(2.17) Ω̃[>h] = {x ∈ Rd, d(x,Γ) ≤ c2−2h}.

Given a domain Ω with a nondegenerate Lipschitz defining function r, and (s, w) functions
in Ω, we will define regularizations (sh, wh) associated to the h dyadic scale using smooth
kernels Kh,

(sh, wh)(x) = Ψh(s, v) :=

ˆ
Kh(x, y)(s, w)(y) dy.

The heuristic discussion above leads to the following notion of good kernels :

Definition 2.8. The family of kernels Kh are called good regularization kernels if the fol-
lowing properties are satisfied:

17



i) Domain and localization:

(2.18) Kh : Ω̃[h] × Ω → R
with support properties

(2.19) supp Kh ⊂ {(x, y) ∈ Ω̃[h] × Ω<h, |x− y| ≲ δyh := 2−2h + 2−hr(y)
1
2}.

ii) Size and regularity

(2.20) |∂α
x∂

β
yK

h(x, y)| ≲ (2−2h + 2−hr(y)
1
2 )−N−|α|−|β|, |α|+ |β| ≤ 4N,

where N is large enough.
iii) Approximate identity,

(2.21)

ˆ
Kh(x, y) dy = 1,

(2.22)

ˆ
Kh(x, y)(x− y)α dy = 0, 1 ≤ |α| ≤ 2N.

Notably, the first property will allow us to define the regularizations (sh, wh) in the ex-
tended domain Ω̃[h], with dyadic mapping properties as follows:

• For j < h, the regularizations (sh, wh) in Ω[j] are determined by (s, w) also in Ω[j].
• For the h layers, the regularizations (sh, wh) in Ω̃[>h] are determined by (s, w) only
in Ω[h].

Thus our regularization operators use their inputs only outside the 2−2h boundary layer, but
provide outputs in a 2−2h enlargement of the domain Ω. Such a property is critical in order
to have good domain regularization properties.

The role of the third property on the other hand is to ensure that polynomials of suffi-
ciently small degree are reproduced by our regularizations. This will later provide good low
frequency bounds for differences of successive regularizations.

Regularization kernels with these properties ca be easily constructed:

Lemma 2.9. Good regularization kernels exist.

Proof. We outline the steps in the kernel construction, leaving the details for the reader:

a) We consider a unit vector e which is uniformly transversal to the boundary, outward
oriented. Such an e can be chosen locally, and kernels constructed based on a local choice
of e can be assembled together using a partition of unity in the first variable.

b) Given such an e, we consider a smooth bump function ϕ with properties as follows:

• the support of ϕ is such that

suppϕ ⊂ B(e, δ), δ ≪ 1,

• its average is 1: ˆ
ϕ(x) dx = 1,

• and, it has zero momentsˆ
xαϕ(x) dx = 0, 1 ≤ |α| ≲ N.
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c) For each dyadic scale m we consider a shifted regularizing kernel

Km
0 (x− y) = 22mdϕ(22m(x− y))

on the 2−2m scale, which is accurate to any order.
Correspondingly we also consider a partition of unity in Ω,

1 =
∞∑

m=0

χm,

where the functions χm select the region Ω[m] and are smooth on the 2−2m scale. Given a
fixed dyadic scale h, we adapt this partition of unity to h,

1 = χ>h +
h∑

m=0

χm,

where the first term χ>h can be extended by 1 to the exterior of Ω.
d) We define the regularization kernels

Kh(x, y) := χ>h(x)K
h
0 (x− y) +

h∑
m=0

χm(x)K
m
0 (x− y),

which are still accurate to any order. It is easily verified that these kernels have the desired
properties.

□

Next we prove bounds for our regularizations in H2k spaces:

Proposition 2.10. The following estimates hold for good regularization kernels whenever r1
is a nondegenerate defining function with |r − r1| ≪ 2−2h:
a) Regularization bound:

(2.23) ∥Ψh(s, w)∥H2k+2j
r1

≲ 22jh∥(s, w)∥H2k
r
, j ≥ 0,

b) Difference bound:

(2.24) ∥(Ψh+1 −Ψh)(s, w)∥H2k+2j
r1

≲ 22jh∥(s, w)∥H2k
r
, −k ≤ j ≤ 0,

c) Error bound

(2.25) ∥(I −Ψh)(s, w)∥H2k+2j
r

≲ 22jh∥(s, w)∥H2k
r
, −k ≤ j ≤ 0.

Here we recall that the regularized functions Ψh(s, v) are defined on the larger domain Ω̃[h].
This is what allows us to measure them with respect to a perturbed domain Ω1 = {r1 > 0}
as long as the two boundaries are within O(2−2h) of each other.

Proof. By interpolation we can assume that k and j are both integers. Because of the support
properties of Kh, we can prove the desired estimate separately in each boundary layer Ω[l],
for 0 ≤ l ≤ h, and then separately for Ω̃[>h]. For instance in the case of (2.23) we will show
that

(2.26) ∥Ψh(s, w)∥H2k+2j(Ω[l]) ≲ 22hj∥(s, w)∥H2k(Ω[l]),
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where the domain restricted norms are interpreted as the square integral of the appropriate
quantities over the restricted domains9.

The above localization allows us to fix the r dependent localization scale δx = 2−(h+l) for
Ψh, which becomes akin to a scaling parameter. Even better, we can localize further to a
ball Bδx ⊂ Ω[l] and show that

∥Ψh(s, w)∥H2k+2j(Bδx) ≲ 22jh∥(s, w)∥H2k(2Bδx).

Consider one component of the norm on the left, namely the maximal one, and show that

(2.27) ∥rk+j
1 ∂2(k+j)Ψh(s, w)∥Hr1 (Bδx) ≲ ∥rk∂2k(s, w)∥Hr(Bδx).

To avoid distracting technicalities, consider first the case l < h, where the weights are
constant and can be dropped. Then the above inequality becomes

(2.28) ∥∂2(k+j)Ψhu∥L2(Bδx) ≲ 22j(h+l)∥∂2ku∥L2(2Bδx).

The difficulty here is that we only have control over the derivatives of u (here u can be
replaced by either s or w). We can bypass this difficulty using (a higher order version of)
Poincare’s inequality in Bδr, which allows us to find a polynomial P of degree 2k− 1 so that

∥∂b(u− P )∥L2(Bδx) ≲ δx2k−b∥∂2ku∥L2(Bδx), 0 ≤ b < 2k.

The property (2.22) shows that KhP = P , therefore in (2.28) we can replace u by u−P , for
which we have better control of the lower Sobolev norms. Then the estimate (2.28) easily
follows.

Minor adjustments to this argument are needed in Ω[h]. Then δx ≈ 2−2h, and we can still
freeze r in the input region to r = 2−2h. On the other hand in the output region we have
r1 ≲ 2−2h, which still allows us to drop the rk1 weight. The Poincare inequality still applies.
The only difference is that the weight in the H norm on the left might be singular. However,
this weight is nevertheless square integrable near the boundary, which suffices due to the
fact that in effect in Bδx we can obtain pointwise control for ∂2k+2jΨh(u− P ).

Now we consider the case (b). There the same localization applies, and the main difference
in the proof is that now for a polynomial P of degree at most 2N we have

(Ψh+1 −Ψh)P = 0.

This in turn allows us to also substitute u by u − P in (2.28) when j is negative. The rest
of the argument is identical.

Finally, for the bound (2.25) we simply add up (2.24) for scales > h. □

Given a rough state (r, v) ∈ H2k, we can use the above Lemma to construct a regularized
state (rh, vh) as follows:

a) We define the regularized functions (rh, vh) in the larger domain Ω̃[h] by

(rh, vh) = Ψh(r, v).

b) We restrict (rh, vh) to the set10 Ωh := {rh > 0}.

9In a standard fashion, we also need to allow the domain on the right to be a slight enlargement of the
domain on the left.

10Here and below we use subscripts for Ω as in Ω∗ = {r∗ > 0} to indicate the domain associated to a
function r∗, and the superscripts Ω[∗] to select various boundary layers.
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Such a strategy works provided that the domain Ω̃[h] is large enough in order to allow rh to
transition to negative values before reaching the boundary of its domain. We will see that
this is indeed true provided that k is above the scaling exponent k0. Our main result is
stated below. For better accuracy, we use the language of frequency envelopes to state it.

Proposition 2.11. Assume that k > k0. Then given a state (r, v) ∈ H2k, there exists a
family of regularizations (rh, vh) ∈ H2k, so that the following properties hold for a slowly
varying frequency envelope ch ∈ ℓ2 which satisfies

(2.29) ∥ch∥ℓ2 ≲A ∥(r, v)∥H2k .

i) Good approximation,

(2.30) (rh, vh) → (r, v) in C1 × C
1
2 as h → ∞,

and

(2.31) ∥rh − r∥L∞(Ω) ≲ 2−2(k−k0+1)h.

ii) Uniform bound,

(2.32) ∥(rh, vh)∥H2k ≲A ∥(r, v)∥H2k .

iii) Higher regularity

(2.33) ∥(rh, vh)∥H2k+2j
h

≲ 22hjch, j > 0.

iv) Low frequency difference bound:

(2.34) ∥(rh+1, vh+1)− (rh, vh)∥Hr̃
≲ 2−2hkch |r̃ − r| ≪ 2−2h.

Proof. To start with, we will assume that (rh, vh) are defined in the larger set Ω̃[h] using good
regularization kernels Kh,

(rh, vh) = Ψh(r, v).

By Sobolev embeddings we know that

(r, v) ∈ C1+k−k0 × C
1
2
+k−k0(Ω).

This easily implies the uniform bound for (rh, vh) in C1×C
1
2 (Ω̃[h]), as well as the convergence

in the same topology to (r, v) in Ω. It also implies the pointwise bound (2.31). This in
turn shows that on the boundary Γ we have |rh| ≲ 2−2(k−k0+1)h, therefore the zero set
Γh = {rh = 0} is within distance 2−2(k−k0+1)h from Γ, and thus within Ω̃[h]. This ensures
that (rh, vh) restricted to Ωh = {rh > 0} is a well defined state.

Next we consider the bound (2.32). In view of the difference bound (2.31), this is a
consequence of (2.23) with r1 = rh and j = 0.

It remains to prove (2.33) and (2.34). If we were to replace ch by 1 on the right, this
would also follow from Proposition 2.10. To gain the extra decay associated with a frequency
envelope, for the functions (r, v) we will use the interpolation space representation given by
Lemma 2.5 with N sufficiently large,

(2.35) (r, v) =
∞∑
l=0

(sl, wl),
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for which the norm in (2.9) is finite. Accordingly, we can choose a slowly varying frequency
envelope cl so that

(2.36) ∥(sl, wl)∥H ≤ 2−2lkcl, ∥(sl, wl)∥H2N ≤ 22l(N−k)cl.

with ∑
c2l ≲ ∥(r, v)∥2H2k .

The frequency envelope cl above is the one we will use in the Proposition. The property
(2.29) is then automatically satisfied.

iii) Proof of (2.33). Our starting point is again the decomposition (2.35)-(2.36) for (r, v),
but now we separate the contributions of l ≤ k and l > k.

a) Low frequency components l < k. Using the Ψh bounds in Proposition 2.10, the bounds
for (rl, vl) carry over to Ψh(rl, vl), namely

∥Ψh(sl, wl)∥H ≤ 2−2lkcl, ∥Ψh(sl, wl)∥H2N ≤ 22l(N−k)cl.

Then by interpolation we have

(2.37) ∥Ψh(sl, wl)∥H2k+2j ≲ 22ljcl.

b) High frequency components l ≥ k. Here we discard the H2N bound, and instead
estimate directly

(2.38) ∥Kh(sl, wl)∥H2k+2j ≲ 22h(j+k)∥(sl, wl)∥H ≲ 22jh22(h−l)jcl.

Combining (2.37) and (2.38), we obtain

∥Kh(r, v)∥H2k+2j ≲
∑
l≤h

22ljcl +
∑
l>h

22jh22(h−l)jcl ≲ ch

as needed.

v) Proof of (2.34). We follow the same strategy as above, where we still can use all the
Ψh bounds in Proposition 2.10, but with the difference that now we also have access to the
difference bound in (2.24).

Starting with the decomposition (2.35)-(2.36) for (r, v), we observe that the H bound for
(rl, vl) suffices in the high frequency case l ≥ h. It remains to consider the low frequency
case l < h, where we will have to rely instead on the H2N norm. Precisely, by (2.24) we have

(2.39) ∥∂hKh(rl, vl)∥H ≲ 2−2Nh∥(rl, vl)∥H2N ,

which again, combined with (2.36), suffices after dyadic l summation. □
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2.5. Interpolation inequalities. Next we consider Lp interpolation type inequalities, which
are critical in order to prove our sharp, scale invariant energy estimates.

For clarity and later use we provide a more general interpolation result. Our main result,
which applies in any Lipschitz domain Ω with a nondegenerate defining function r, is as
follows:

Proposition 2.12. Let σ0, σm ∈ R and 1 ≤ p0, pm ≤ ∞. Define

(2.40) θj =
j

m
,

1

pj
=

1− θj
p0

+
θj
pm

, σj = σ0(1− θj) + σmθj,

and assume that

(2.41) m− σm − d

(
1

pm
− 1

p0

)
> −σ0, σj > − 1

pj
.

Then for 0 < j < m we have

(2.42) ∥rσj∂jf∥Lpj ≲ ∥rσ0f∥1−θj
Lp0 ∥rσm∂mf∥θjLpm .

Remark 2.13. One particular case of the above proposition which will be used later is when
p0 = p1 = p2 = 2, with the corresponding relation in between the exponents of the rσj weights.

As the objective here is to interpolate between the L2 type Hm,σ norm and L∞ bounds,
we will need the following straightforward consequence of Proposition 2.12:

Proposition 2.14. Let σm > −1
2
and

(2.43) m− σm − d

2
> 0.

Define

(2.44) θj =
j

m
,

1

pj
=

θj
2
, σj = σmθj.

Then for 0 < j < m we have

(2.45) ∥rσj∂jf∥Lpj ≲ ∥f∥1−θj
L∞ ∥rσm∂mf∥θjL2 .

We will also need the following two variations of Proposition 2.14:

Proposition 2.15. Let σm > −1
2
and

m− 1

2
− σm − d

2
> 0.

Define

σj = σmθj, θj =
2j − 1

2m− 1
,

1

pj
=

θj
2
.

Then for 0 < j < m we have

∥rσj∂jf∥Lpj ≲ ∥f∥1−θj

Ċ
1
2
∥rσm∂mf∥θjL2

respectively
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Proposition 2.16. Let σm > m−2
2

and

m− 1

2
− σm − d

2
> 0.

Define

σj = σmθj −
1

2
(1− θj), θj =

j

m
,

1

pj
=

θj
2
.

Then for 0 < j < m we have

∥rσj∂jf∥Lpj ≲ ∥f∥1−θj

C̃0, 12
∥rσm∂mf∥θjL2

Here the role of the lower bound on σm is to ensure that σj > − 1
pj

for all intermediate j,

where the j = 1 constraint is the strongest.
We will use the last two propositions for (r, v), where the pointwise bound comes from the

control norms A and B.

Proof of Proposition 2.12. We begin with several simplifications. First we note that it suf-
fices to prove the case m = 2 and j = 1. Then the general case follows by reiteration. Indeed
the case m = 2 allows us to compare any three consecutive norms

∥rσj+1∂j+1f∥Lpj+1 ≤ ∥rσj∂jf∥
1
2

Lpj ∥rσj+2∂j+2f∥
1
2

Lpj+2 .

and then the main estimates (2.42) follows from combining the above bounds.
A second simplification is to observe that we can also reduce the problem to the one

dimensional case, which we state in the following lemma:

Lemma 2.17. Let pj ∈ [1,∞], and σj ∈ R with j = 0, 2, so that

1

p2
+

1

p0
=

2

p1
, and σ0 + σ2 = 2σ1,

and with

2− d

(
1

p2
− 1

p0

)
> σ2 − σ0, σ1 > − 1

p1
.

Then the following inequality holds

(2.46) ∥xσ1∂f∥Lp1 ≲ ∥xσ0f∥
1
2
Lp0∥xσ2∂2f∥

1
2
Lp2 ,

To see that the n-dimensional case reduces to the one dimensional case, we consider a
constant vector field X which is transversal to the boundary, apply (2.46), with x replaced
by r, on every X line Ωy in Ω, where y denotes the transversal direction. We raise it to the
power p and integrate in y. This yields

∥rσ1Xf∥p1Lp1 (Ω) ≲
ˆ

∥rσ0f∥
p1
2

Lp0 (Ωy)
∥rσ2X2f∥

p1
2

Lp2 (Ωy)
dy

≲ ∥rσ0f∥
p1
2

Lp0 (Ω)∥r
σ2X2f∥

p1
2

Lp2 (Ω),

where at the second step we have used Hölder’s inequality. The full n-dimensional bound is
obtained by applying the above estimate for a finite number of vector fields X which (i) are
transversal to the boundary and (ii) span Rn. It remains to prove the last Lemma 2.17:
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Proof of Lemma 2.17. This interpolation inequality is a weighted GagliardoNirenberg-Sobolev
inequality, see[24]. One main ingredient in the original proof given in [24] for the unweighted
case, is the following inequality due to P. Ungar:

Proposition 2.18. On an interval I, whose length is denoted by λ, one has

∥ux∥p1Lp1 (I) ≲ λ
1+p1− p1

p2 ∥uxx∥p1Lp2 (I) + λ
−(1+p1− p1

p2
)∥u∥p1Lp0 (I),

where pj ∈ [1,∞], j = 0, 2

The heuristic interpretation of Proposition (2.18) is that the average of the first derivative
of a function is controlled by its pointwise values, and its variation is controlled by its second
derivative. This observation yields the balance between the parameters m, σ0, σ1 and σ2 in
Lemma 2.46. We will use the same result here to prove (2.46).

The first step is to use a dyadic spatial decomposition of R+, such that the interval I in
Proposition 2.18 is fully contained in a generic interval [r, 2r], where r = 2k, and k ∈ Z.
Using Proposition (2.18), we have

rσ1p1∥∂f∥p1Lp1 (I) = ∥xσ1∂f∥p1Lp1 (I)

≲ rp1(σ1−σ2)λ
1+p1− p1

p2 ∥xσ2∂2f∥p1Lp2 (I) + r(σ1−σ0)p1λ
−(1+p1− p1

p0
)∥xσ0f∥p1Lp0 (I).

To get from this inequality to (2.46) it would be convenient to know that the last two terms
in the above inequality are comparable in size. One can try to achieve this by increasing
the size of the interval I until this is true. The difficulty is when this it cannot be done
without going past the dyadic interval size. So the natural strategy is to consider the dyadic
decomposition of interval [0,∞] and compare the Lp2 and Lp0 norms in each of these dyadic
intervals.

If on any such dyadic interval we get

(2.47) r
p1(σ1−σ2)+1+p1− p1

p2 ∥xσ2∂2f∥p1Lp2 ([r,2r]) ≥ r
(σ1−σ0)p1−(1+p1− p1

p2
)∥xσ0f∥p1Lp0 ([r,2r])

then we subdivide this interval into pieces where these two terms are comparable, and com-
plete the proof of (2.46) within this interval.

Unfortunately this may not be the case in all dyadic subintervals. To rectify this we
introduce a slowly varying frequency envelopes {c2k} for ∥xσ2∂2f∥Lp2 and {c0k} for ∥xσ0f∥Lp0 ,
so that the following properties hold:

• Control norm

∥xσ2∂2f∥Lp2 ([Ik]) ≤ c2k and ∥xσ0f∥Lp0 ([Ik]) ≤ c0k

• lp2 and lp0 summability∑
k

(c2k)
p2 ≈ ∥xσ2∂2f∥p2Lp2 and

∑
k

(c0k)
p0 ≈ ∥xσ0f∥p0Lp0

• Slowly varying

c0k
c0j

≲ 2δ|j−k|, and
c2k
c2j

≲ 2δ|j−k|

for δ small and positive.
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Now, we compare again as in (2.47)

(2.48) 2
k
{
p1(σ1−σ2)+1+p1− p1

p2

}
(c2k)

p1 ≥ 2
k
{
(σ1−σ0)p1−(1+p1− p1

p2
)
}
(c0k)

p1

(2.49) 2
k
{
1+(σ1−σ2)+

1
p1

− 1
p2

}
c2k ≥ 2

k
{
(σ1−σ0)−1−( 1

p1
− 1

p2
)
}
c0k

which holds iff

c2k ≥ 2
k
{
(σ2−σ0−2)+ 1

p2
− 1

p0

}
c0k.

In the dyadic regions where this holds we finish the proof as discussed above, by subdivid-
ing the dyadic intervals and applying Proposition 2.18. To see where the switch happens
we observe that c2k is slowly varying whereas the RHS of the inequality above decreases
exponentially, as k grows. Then we can find a unique k0 where the two are comparable,

(2.50) c2k0 ≈ 2
k0

{
(σ2−σ0−2)+ 1

p2
− 1

p0

}
c0k0 .

Then (2.49) holds for k ≥ k0, which implies that

(2.51) ∥xσ1∂f∥p1Lp1 (Ik)
≲ (c0kc

2
k)

p1
2 .

It remains to consider the case when k < k0, where we are simply going to obtain a
pointwise bound for ∂f . Selecting a favorable point x0 ∈ Ik0 , i.e. where

(2.52) ∂f(x0) ≲ 2−k0

ˆ
Ik0

|∂f | dx ≲ 2
−( 1

p1
+σ1)k0∥xσ1∂f∥Lp1 (Ik0 )

we estimate for x ∈ Ik1 with k1 < k0:

|∂f(x)| ≲ |∂f(x0)|+
ˆ x0

x

|∂2f | dx

≲ |∂f(x0)|+
k0∑

k=k1

ˆ
Ik

|∂2f | dx

≲ |∂f(x0)|+
k0∑

k=k1

2
k
(

p2−1
p2

−σ2

)
∥xσ2∂2f∥Lp2 (Ik)

≲ |∂f(x0)|+
k0∑

k=k1

2
k
(

p2−1
p2

−σ2

)
(c2k)

≲ |∂f(x0)|+ 2
(k0−k1)

(
− p2−1

p2
+σ2+2δ

)
+ · 2k0

(
p2−1
p2

−σ2

)
(c2k).

≲ |∂f(x0)|+ (x0/x)

(
− p2−1

p2
+σ2+2δ

)
+ · 2k0

(
p2−1
p2

−σ2

)
(c2k).

Now we estimate using the bound above

(2.53) ∥xσ1∂f∥p1Lp1 ([0,x0])
=

ˆ x0

0

xp1σ1(∂f)p1 dx ≲ xp1σ1+1
0 |∂f(x0)|p1 +2

k0p1
(

p2−1
p2

+σ1−σ2

)
x0(c

2
k),

where the integral converges since as the exponents obey the restriction dictated by the
scaling in (1.13), and δ is sufficiently small. To finish the proof we observe that by (2.50)
and (2.52), the RHS of (2.53) is comparable to the right hand side of (2.51) when k = k0.
This concludes the proof of Lemma2.17. □
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The proof of the Proposition 2.14 follows as a straightforward consequence. □

Proof of Proposition 2.15. This is largely similar to the proof of Proposition 2.12, so we omit
the details and only describe the key differences. The reduction to the case m = 2 is similar,
using also the m = 2 case of Proposition 2.12, at least if we allow p2 to be arbitrary rather
than 2. The one dimensional reduction is also similar. Thus we are left with having to prove
the following analogue of Lemma 2.17

Lemma 2.19. Let pj ∈ [1,∞], and σj ∈ R with j = 1, 2, so that

1

p2
=

3

p1
, and σ2 = 3σ1,

and with
3

2
− 1

p2
> σ2, σ1 > − 1

p1
.

Then the following inequality holds

(2.54) ∥xσ1∂f∥Lp1 ≲ ∥f∥
2
3

Ċ
1
2
∥xσ2∂2f∥

1
3
Lp2 .

This Lemma is proved using the following analogue of Proposition 2.18, which is a straight-
forward exercise.

Proposition 2.20. On an interval I, whose length is denoted by λ, one has

∥ux∥p1Lp1 (I) ≲ λ
1+p1− p1

p2 ∥uxx∥p1Lp2 (I) + λ
− 1

2
(1+p1− p1

p2
)∥u∥p1

Ċ
1
2 (I)

,

where pj ∈ [1,∞], j = 0, 2.

□

Proof of Proposition 2.16. This is also similar to the proof of Proposition 2.12, so we omit
the details and only describe the key differences. The reduction to the case m = 2 uses again
the m = 2 case of Proposition 2.12, and the one dimensional reduction is also similar. Thus
we are left with having to prove the following analogue of Lemma 2.17:

Lemma 2.21. Let pj ∈ [1,∞], and σj ∈ R with j = 1, 2, so that

1

p2
=

2

p1
, and σ2 −

1

2
= 2σ1,

and with

2− d

p2
> σ2 +

1

2
, σ1 > − 1

p1
.

Then the following inequality holds

(2.55) ∥xσ1∂f∥Lp1 ≲ ∥f∥
1
2

C̃0, 12
∥xσ2∂2f∥

1
2
Lp2 ,

This Lemma is proved in the same fashion as Lemma 2.17 using directly Proposition 2.18
for f + c with well chosen constants c.

□
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3. The linearized equations

This section is devoted to the study of the linearized equations, which have the form

(3.1)

{
∂ts+ v · ∇s+ w · ∇r + κ(s∇ · v + r∇ · w) = 0

∂tw + (v · ∇)w + (w · ∇)v +∇s = 0.

Using the material derivative, these equations are written in the form

(3.2)

{
Dts+ w · ∇r + κ(s∇ · v + r∇ · w) = 0

Dtw + (w · ∇)v +∇s = 0.

Here (s, w) are functions defined within the time dependent gas domain Ω. Notably, no
boundary conditions on (s, w) are imposed or required on the free boundary Γ.

3.1. Energy estimates and well-posedness. We first consider the question of proving
well-posedness and energy estimates for the linearized equations:

Proposition 3.1. Let (r, v) be a solution to the compressible Euler equations (1.7) in the
moving domain Ωt. Assume that both r and v are Lipschitz continuous, and that r vanishes
simply on the free boundary. Then the linearized equation (3.2) is well-posed in H, and the
following energy estimate holds for all solutions (s, w):

(3.3)

⏐⏐⏐⏐ ddt∥(s, w)∥2H
⏐⏐⏐⏐ ≲ ∥∇v∥L∞∥(s, w)∥2H

Here we estimate the absolute value of the time derivative of the linearized energy, in order
to guarantee both forward and backward energy estimates; these are both needed in order
to prove well-posedness.

Proof. We recall the time dependent weighted H norm,

∥(s, w)∥2H =

ˆ
r

1−κ
κ (|s|2 + κr|w|2) dx.

To compute its time derivative, we use the material derivative in a standard fashion. For
later reference we state the result in the following Lemma:

Lemma 3.2. Assume that the time dependent domain Ωt flows with Lipschitz velocity v.
Then the time derivative of the time-dependent volume integral is given by

(3.4)
d

dt

ˆ
Ω(t)

f(t, x) dx =

ˆ
Ωt

Dtf + f∇ · v(t) dx.

Using the above Lemma, we compute

d

dt
∥(s, w)∥2H = −κ

ˆ
Ωt

r
1−k
k ∇v

(
|s|2 + 2r|w|2

)
dx− 2

ˆ
Ωt

r
1−κ
κ (s(w · ∇r + κr∇ · w) + κrw∇s)dx.

We observe that the last integral is zero. The computations is straightforward and follows
from integration by parts:

−2

ˆ
r

1−κ
κ (sw · ∇r + κr∇(sw)) dx = 0,

as the boundary terms vanish on Γ.
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The first integral includes the bounded term ∇ · v. It follows right away that the energy
norm will indeed control it, and the desired energy estimate (3.3) follows.

The well-posedness result will follow in a standard fashion from a similar estimate for the
adjoint equation, interpreted as a backward evolution in the dual space H∗. We identify
H∗ = H by Riesz’s theorem, with respect to the associated inner product in H:

(3.5) ⟨(s, w), (s̃, w̃)⟩H =

ˆ
Ωt

r
1−κ
κ (ss̃+ κrww̃) dx,

Then the adjoint system associated to (3.1), with respect to this duality, is easily computed
to be the following:

(3.6)

{
Dts̃+ κr∇w̃ + w̃∇r = 0

Dtw̃ − w̃∇v +∇s̃ = 0.

Modulo bounded, perturbative terms, this is identical to the direct system (3.2), therefore
the backward energy estimate for the adjoint problem (3.6) follows directly from (3.3). □

In particular we note that, due to translations in time and space symmetries, the linearized
estimate applies to the functions (s, w) = (∇r,∇v), as well as (s, w) = (∂tr, ∂tv).

3.2. Second order transition operators. We remark that discarding the ∇v terms from
the equations we obtain a reduced linearized equation,

(3.7)

{
Dts+ w · ∇r + κr∇ · w = 0

Dtw +∇s = 0,

which is also well-posed in H. For many purposes it is useful to also rewrite the linearized
equation as a second order evolution. We will only seek to capture the leading part, up to
terms of order 1. Starting from the above reduced linearized equation, we compute second
order equations where we discard the ∇v terms arising from commuting Dt and ∇.

Then for s we obtain the reduced second order equation, (which would be exact if v were
constant)

(3.8) D2
t s ≈ L1s, L1s = κr∆s+∇r · ∇s,

which for κ = 1 yields
L1 = ∇r∇.

On the other hand for w we similarly obtain

(3.9) D2
tw ≈ L2w, L2w = κ∇(r∇ · w) +∇(∇r · w).

The operators L1 and L2 will play an important role in the analysis of the energy functionals
in the next section. An important observation is that they are symmetric operators in the
L2 spaces which occur in our energy functional Elin and in the norm H. For a more in depth
discussion we separate them:

Lemma 3.3. Assume that r is Lipschitz continuous in the domain Ω, and nondegenerate
on the boundary Γ. Then the operator L1, defined as an unbounded operator in the Hilbert
space H0, 1−κ

κ = L2(r
1−κ
κ ), with

D(L1) :=
{
f ∈ L2(r

1−κ
κ ) |L1f ∈ L2(r

1−κ
κ ) in the distributional sense

}
.

is a nonnegative, self-adjoint operator.
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The proof is relatively standard and is left for the reader. Later in the paper, see
Lemma 5.2, we prove that L1 is coercive, and that it satisfies good elliptic bounds, which in
particular will allow us to identify the domain of L2 + L3 as

D(L1) = H2, 1+κ
2κ ,

which is the first component of the H2 space.
Next we turn our attention to the operator L2. This is also a symmetric operator, this time

in the space L2(r
1
κ ), which is the second component of H. However, it lacks full coercivity

as L2w only controls the divergence of w. For this reason, we will match it with a second
operator which controls the curl of w, namely

L3 = κr−
1
κ div r1+

1
k curl = κ div r curl +∇r curl

so that L2L3 = L3L2 = 0. Then the operator L2 + L3 has the right properties:

Lemma 3.4. Assume that r is Lipschitz continuous in Ω, and nondegenerate on the boundary
Γ. Then the operator L2+L3, defined as an unbounded operator in the Hilbert space L2(r

1
κ ),

with

D(L2 + L3) :=
{
f ∈ L2(r

1
κ ) | (L2 + L3)f ∈ L2(r

1
κ ) in the distributional sense

}
.

is a nonnegative, self-adjoint operator.

Later in the paper, as a consequence of Lemma 5.2, it follows that L2+L3 is coercive, and
that it satisfies good elliptic bounds, which in particular will allow us to identify the domain
of L2 + L3 as

D(L2 + L3) = H2, 1+3κ
2κ ,

which is the second component of the H2 space.

Remark 3.5. For the most part, we will think of L1 and L2 in a paradifferential fashion,
i.e. with the r dependent coefficients localized at a lower frequency than the argument. The
exact interpretation of this will be made clear later on.

4. Difference bounds and the uniqueness result

Our aim here is to prove L2 difference bounds for solutions, which could heuristically
be seen as integrated11 versions of the estimates for the linearized equation in the previous
section. As a corollary, this will yield the uniqueness result in Theorem 1.

For this we consider two solutions (r1, v1) and (r2, v2) for our main system (1.7), and seek
to compare them. Inspired by the linearized energy estimate, we seek to produce a similar
weighted L2 bound for the difference

(s, w) = (r1 − r2, v1 − v2).

The first difficulty we encounter is that the two solutions may not have the same domain.
The obvious solution is to consider the differences within the common domain,

Ω = Ω1 ∩ Ω2.

The domain Ω no longer has a C1 boundary. However, if we assume that the two boundaries
Γ1 and Γ2 are close in the Lipschitz topology, then Ω still has a Lipschitz boundary Γ which

11Along a one parameter C1 family of solutions.
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is close to C1. To measure the difference between the two solutions on the common domain,
we introduce the following distance functional12

DH((r1, v1), (r2, v2)) =

ˆ
Ωt

(r1 + r2)
σ−1

(
(r1 − r2)

2 + κ(r1 + r2)(v1 − v2)
2
)
dx,(4.1)

where σ = 1
κ
throughout the section. We remark that the weight r1 + r2 vanishes on Γ only

at points where Γ1 and Γ2 intersect. Away from such points, both r1 + r2 and r1 − r2 are
nondegenerate; precisely, we have

|r1(x0)− r2(x0)| = r1(x0) + r2(x0), x0 ∈ Γt.

Since both r1 and r2 are assumed to be uniformly Lipschitz and nondegenerate, it follows
that this relation extends to a neighbourhood of x0,

|r1(x)− r2(x)| ≈ r1(x0) + r2(x0), |x− x0| ≪ r1(x0) + r2(x0).

Then the first term in DH yields a nontrivial contribution in this boundary region:

Lemma 4.1. Assume that r1 and r2 are uniformly Lipschitz and nondegenerate, and close
in the Lipschitz topology. Then we have

(4.2)

ˆ
Γt

|r1 + r2|σ+2dσ ≲ DH((r1, v1), r2, v2)).

One can view the integral in (4.2) as a measure of the distance between the two boundaries,
with the same scaling as DH.
Now we can state our main estimate for differences of solutions:

Theorem 5. Let (r1, v1) and (r2, v2) be two solutions for the system (1.7) in [0, T ], with

regularity ∇rj ∈ C̃0, 1
2 , vj ∈ C1, so that rj are uniformly nondegenerate near the boundary

and close in the Lipschitz topology, j = 1, 2. Then we have the uniform difference bound

(4.3) sup
t∈[0,T ]

DH((r1, v1)(t), (r2, v2)(t)) ≲ DH((r1, v1)(0), (r2, v2)(0)).

We remark that

DH((r1, v1), (r2, v2)) = 0 iff (r1, v1) = (r2, v2).

Thus, our uniqueness result in Theorem 1 can be viewed as a consequence of the above
theorem.

The remainder of this section is devoted to the proof of the theorem.

4.1. A degenerate difference functional. The distance functional DH introduced above
is effective in measuring the distance between the two boundaries because it is nondegenerate
at the boundary. This, however, turns into a disadvantage when we seek to estimate its time
derivative. For this reason, in the energy estimates for the difference it is convenient to
replace it by a seemingly weaker functional, where the weights do vanish on the boundary.
Our solution is to replace the r1+ r2 weights in DH with symmetric expressions in r1 and r2,
which agree to second order with r1 + r2 where r1 = r2, and also which vanish on Γt = ∂Ωt.

12We do not prove or claim that this defines a metric.
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Precisely, we will consider the modified difference functional

(4.4) D̃H((r1, v1), (r2, v2)) :=

ˆ
Ωt

(r1 + r2)
σ−1

(
a(r1, r2)(r1 − r2)

2 + κb(r1, r2)(v1 − v2)
2
)
dx,

where for now the weights a and b are chosen as follows as functions of µ = r1 + r2 and
ν = r1 − r2:

(1) They are smooth, homogeneous, nonnegative functions of degree 0 respectively 1,
even in ν, in the region {0 ≤ |ν| < µ}.

(2) They are connected by the relation µa = 2b.
(3) They are supported in {|ν| < 1

2
µ, with a = 1 in |ν| < 1

4
µ.

For almost all the analysis these conditions will suffice. Later, almost of the end of the
section, we will add one additional condition, see (4.26), and show that such a condition can
be enforced.

Our objective now is to compare the two difference functionals. Clearly D̃H ≲ DH. The
next lemma proves the converse.

Lemma 4.2. Assume that A = A1 + A2 is small. Then

(4.5) DH((r1, v1), (r2, v2)) ≈A D̃H((r1, v1), (r2, v2)).

Proof. We need to prove the ”≲” inequality. To do that, we observe that by foliating Ω(t)
with lines transversal to Γ, the the bound (4.5) reduces to the one dimensional case. Denoting
the distance to the boundary by r and the value of r1 + r2 on the boundary by r0, we have
the relations

r1 + r2 ≈ r + r0, a ≈ r

r + r0
, b ≈ r.

Then

D̃H ≈
ˆ ∞

0

r(r + r0)
σ−2

(
(r1 − r2)

2 + κ(r0 + r)(v1 − v2)
2
)
dr.

On the other hand,

DH ≈
ˆ ∞

0

(r + r0)
σ−1

(
(r1 − r2)

2 + κ(r0 + r)(v1 − v2)
2
)
dr + rσ+2

0 .

In the region where r ≪ r0 we have |r1 − r2| ≈ r0. Then we can evaluate the first part in
the D̃H integral by ˆ cr0

0

r(r + r0)
σ−2(r1 − r2)

2dr ≈ rσ+2
0 ,

thereby obtaining the integral in (4.2). Conversely, we haveˆ cr0

0

(r + r0)
σ−1(r1 − r2)

2dr ≈ rσ+2
0 ,

which gives the desired bound for the missing part of the first term of DH.
It remains to compare the v1− v2 terms, where we also need to focus on the region r ≈ r0.

Denote by

v̄ :=

 
r≈r0

v1 − v2 dr

for which we can estimate
|v̄|2 ≲ r−σ−1

0 D̃H.
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Then for smaller r we can use the Hölder C
1
2 norm to estimate

|v1 − v2|2 ≲ |v̄|2 + Ar0.

Hence ˆ r0

0

(r + r0)
σ(v1 − v2)

2dr ≲ rσ+1
0 (|v̄|2 + Ar0) ≲ D̃H,

as needed. □

4.2. The energy estimate. The second step in the proof of Theorem 5 is to track the time
evolution of the degenerate energy D̃H:

Proposition 4.3. We have

(4.6)
d

dt
D̃H((r1, v1), (r2, v2)) ≲ (B1 +B2)DH((r1, v1), (r2, v2)).

In view of Lemma 4.2, the conclusion of the theorem then follows if we apply Gronwall’s
inequality.

Proof. To compute the time derivative of D̃H(t) we use material derivatives. But we have
two of those, D1

t and D2
t , and it is essential to do the computations in a symmetric fashion

so we will use the averaged material derivative

Dt =
1

2
(D1

t +D2
t ).

Using the equations (1.8), we compute difference equations

Dt(r1 − r2) =− κ

2
(r1 − r2)∇(v1 + v2)−

κ

2
(r1 + r2)∇(v1 − v2)−

1

2
(v1 − v2)∇(r1 + r2),(4.7)

Dt(v1 − v2) =−∇(r1 − r2)−
1

2
(v1 − v2)∇(v1 + v2).(4.8)

We will also need a symmetrized sum equation

(4.9) Dt(r1 + r2) = −κ

2
(r1 + r2)∇(v1 + v2)−

κ

2
(r1 − r2)∇(v1 − v2)−

1

2
(v1 − v2)∇(r1 − r2).

We use these relations to compute the time derivative of the energy, using Lemma 3.2 with
v := 1

2
(v1 + v2). We have

|∇v1|+ |∇v2| ≲ B := B1 +B2,

so the contribution of the ∇ · v term is directly estimated by BDH(t), and so are the
contributions of the first term in (4.7), the first two terms in (4.9), as well as the second
term in (4.8). Hence we obtain

d

dt
D̃H(t) = I1 + I2 + I3 +O(B)DH(t),

where the contributions Ij are as follows:

i) I1 represents the contributions of the averaged material derivative applied to the first
factor (r1 + r2)

σ−1 via the third term (4.9), namely

I1 = −σ − 1

2

ˆ
(r1 + r2)

σ−2
(
a(r1, r2)(r1 − r2)

2 + κb(r1, r2)(v1 − v2)
2
)
(v1 − v2)∇(r1 − r2) dx.
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We separate the two terms,
I1 = Ja

1 +O(J2),

where

Ja
1 = −σ − 1

2

ˆ
(r1 + r2)

σ−2a(r1, r2)(r1 − r2)
2(v1 − v2)∇(r1 − r2) dx

and

J2 =

ˆ
(r1 + r2)

σ−1|v1 − v2|3 dx.

ii) I2 represents the contributions of the averaged material derivative applied to the a and
b factors via the third13 terms in (4.7) and (4.9), namely

I2 = − 1

2

ˆ
(r1 + r2)

σ−1
(
aµ(r1, r2)(r1 − r2)

2 + κbµ(r1, r2)(v1 − v2)
2
)
(v1 − v2)∇(r1 − r2) dx

− 1

2

ˆ
(r1 + r2)

σ−1
(
aν(r1, r2)(r1 − r2)

2 + κbν(r1, r2)(v1 − v2)
2
)
(v1 − v2)∇(r1 + r2) dx.

We also split this into
I2 = J b

1 + J c
1 +O(J2),

where

J b
1 = −1

2

ˆ
(r1 + r2)

σ−1aµ(r1, r2)(r1 − r2)
2(v1 − v2)∇(r1 − r2) dx

J c
1 = −1

2

ˆ
(r1 + r2)

σ−1aν(r1, r2)(r1 − r2)
2(v1 − v2)∇(r1 + r2) dx.

iii) I3 represents the contribution of the averaged material derivative applied to the qua-
dratic factors (r1 − r2)

2 and (v1 − v2)
2 via the second and third term in (4.7) and the first

term in (4.8).

I3 =− κ

ˆ
(r1 + r2)

σ−1(a(r1, r2)(r1 − r2)(r1 + r2)∇(v1 − v2)+2b(r1, r2)(v1 − v2)∇(r1 − r2))dx

−
ˆ

(r1 + r2)
σ−1a(r1, r2)(r1 − r2)(v1 − v2)∇(r1 − r2) dx.

This is the main term, where we expect to see the same cancellation as in the case of the
linearized equation. At this place we need the matching condition between a and b, namely
2b = (r1 + r2)a. Substituting this in and integrating by parts, we obtain an almost full
cancellation unless the derivative falls on a, namely

I3 = κ

ˆ
(r1 + r2)

σ(r1 − r2)(v1 − v2)∇a(r1, r2) dx = Jd
1 + Je

1 ,

where

Jd
1 = κ

ˆ
(r1 + r2)

σaµ(r1, r2)(r1 − r2)(v1 − v2)∇(r1 + r2) dx,

Je
1 = κ

ˆ
(r1 + r2)

σaν(r1, r2)(r1 − r2)(v1 − v2)∇(r1 − r2) dx.

13The contributions of the first and second terms terms in (4.7) and (4.9) are directly bounded by
O(B)DH(t).
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The above analysis shows that

d

dt
D̃H(t) ≤ Ja

1 + J b
1 + J c

1 + Jd
1 + Je

1 +O(J2) +O(B1 +B2)DH(t).

Hence, in order to prove (4.4), it remains to estimate the error terms,

(4.10) Ja
1 + J b

1 + J c
1 + Jd

1 + J2 ≲A (B1 +B2)DH(t).

A. The bound for J2. We begin with the bound for J2, which is simpler and will also
be needed later. As in Lemma 4.2, we can reduce the problem to the one dimensional case
by foliating Ω with parallel lines nearly perpendicular to its boundary Γ. Denoting again
the distance to the boundary by r and the value of r1 + r2 on the boundary by r0, we have

DH(t) =

ˆ ∞

0

(r + r0)
σ−1

(
(r1 − r2)

2 + (r + r0)(v1 − v2)
2
)
dr + rσ+2

0 .

Then in order to estimate J2, it suffices to prove the L3 bound in the following interpolation
lemma

Lemma 4.4. Let σ > 0 and r0 > 0. Then we have the following interpolation bound in
[r0,∞):

(4.11) ∥r
σ−1
3 w∥3L3 ≲ ∥r

σ
2w∥2L2∥w′∥L∞ .

The Lemma is applied with w = v1 − v2. Note that by direct integration the same bound
holds in all dimensions. Thus we obtain

Corollary 4.5. In the context of our problem we have

(4.12) ∥r
σ−1
3 w∥3L3 ≲ BDH(t).

The same bound also holds if all norms are restricted to any horizontal cylinder (i.e. transver-
sal to Γ).

Proof. We think of this as some version of a Hardy type inequality. The proof is based on
similar argument as seen before in Section 2. We interpret r as being pointwise equivalent
with x and get

∥r
σ−1
3 w∥L3(0,∞) ∼ ∥x

σ−1
3 w∥L3(0,∞).

To get the result we integrate by part and use Hölder’s inequality as followsˆ ∞

0

xσ−1w3 dx = − 3

σ

ˆ ∞

0

xσw2w′ dx.

Since, we assumed that w′ ∈ L∞(0,∞), we indeed get:

∥r
σ−1
3 w∥L3(0,∞) ≤

3

σ
∥w′∥L∞∥r

σ
2w∥2L2 .

□

B. The bound for Ja
1 , J

b
1, J

c
1, J

d
1 and Je

1 . We group the like terms and set

Ja
1 + J b

1 + Je
1 := J−

1 , J c
1 + Jd

1 := J+
1
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where we can express J−
1 and J+

1 in the form

J−
1 =

ˆ
(r1 + r2)

σ−2a±(r1, r2)(r1 − r2)
2(v1 − v2)∇(r1 − r2) dx.

with a− smooth and 0-homogeneous,

a−(r1, r2) = −σ − 1

2
a(r1, r2)−

1

2
(r1 + r2)aµ(r1, r2) + κ(r1 + r2)

2(r1 − r2)
−1aν(r1, r2),

respectively

J+
1 =

ˆ
(r1 + r2)

σa+(r1, r2)(r1 − r2)(v1 − v2)∇(r1 + r2) dx.

with a+ smooth and −1-homogeneous,

a+(r1, r2) = (κ− 1

2
)aµ(r1, r2).

Here we have used the fact that a is 0-homogeneous, which yields µaµ + νaν = 0. Also we
remark that aµ vanishes in a conical neighbourhood of ν = 0, therefore we can also think of
the J+

1 integrand as being at least cubic in r1 − r2.
Heuristically, one might think that after another round of integration by parts one might

place the derivative in J−
1 either on v1 − v2, in which case we get good Gronwall terms, or

on r1 + r2, where we just discard it and reduce the problem to estimating an integral of the
form

J1 =

ˆ
Ω

(r0 + r)σ−3|v1 − v2||r1 − r2|3 dx,

Unfortunately such a strategy works only if κ ∈ (0, 1]; for larger κ a problem arises, having
to do with potentially large contributions within a thin boundary layer.

Instead, to address the full range of κ, we will develop the idea of separating a carefully
selected boundary layer, where we provide a direct argument, whereas outside this boundary
layer we can use the simpler integration by parts idea above.

To understand our choice of the boundary layer, we consider first the much simpler case
when r1 − r2 = 0 and ∇(r1 − r2) = 0 on the boundary, where r0 = 0 and

(4.13) |∇(r1 − r2)| ≲ Br
1
2 , |r1 − r2| ≲ Br

3
2 .

Then the estimate for J1 above reduces to the one dimensional case, where we can simply
argue by Holder’s inequality:

(4.14)
J1 ≲ ∥r

σ−1
3 (v1 − v2)∥L3∥r

2
9
σ− 8

9 (r1 − r2)∥3
L

9
2

≲ ∥r
σ−1
3 (v1 − v2)∥L3∥r

σ−1
2 (r1 − r2)∥

4
3

L2∥r−
3
2 (r1 − r2)∥

2
3
L∞∥(r1 − r2)/r∥L∞ ≲ BDH.

Unfortunately, in general the bound (4.13) will not hold, and we will separate the region
where it holds and the region where it does not hold.

Our boundary layer will depend on B, and will roughly be defined as the complement of
the region where (4.13) holds, with the additional proviso that it must have thickness at
least r0. For a rigorous definition, we start with the function r3 defined on the boundary Γ
of Ω as follows:

(4.15) r3 = Cr0 + (B−1r0)
2
3 + (B−1|∇(r1 − r2)|)2,
36



Γ2

Γ1

Γ
r0

cr3Ωin

Figure 2. The boundary layer of variable thickness cr3.

where C is a fixed large universal constant. Then we define our boundary layer as

(4.16) Ωin = Ω ∩
⋃
x∈Γ

B(x, cr3(x)),

as well as its enlargement

(4.17) Ω̃in = Ω ∩
⋃
x∈Γ

B(x, 4cr3(x)).

Here c is a small universal constant.
We want this boundary layer to have a locally uniform geometry. This is insured by a

slowly varying type property of the function r3.

Lemma 4.6. We have

(4.18) |r3(x)− r3(y)| ≲ r
1
2
3 (x)|x− y|

1
2 + |x− y|+ r

1
2
0 r

1
2
3

Proof. We consider each of the three components of r3 in (4.15). For the first one we simply

use the Lipschitz bound for r0. For the second one, we use the C̃0, 1
2 bound on ∇r1 and ∇r2

to estimate

|r0(x)− r0(y)| ≲ |x− y||∇r0|+B(|x− y|
3
2 + r0(x)

1
2 |x− y|) ≲ B(|x− y|r

1
2
3 + |x− y|

3
2 ),

which suffices. Finally for the last term we have

|∇(r1 − r2)(x)−∇(r1 − r2)(y)| ≲ B(r
1
2
0 (x) + |x− y|

1
2 ),

which is again enough. □

This property insures that Ωin and Ω̃in are separate:

Lemma 4.7. There exists a smooth cutoff function 0 ≤ χ ≤ 1 in Ω with the following
properties:

a) Support: χ = 1 in Ωin and χ = 0 in Ω \ Ω̃in,
b) Regularity: |∂αχ(x)| ≲ (r1 + r2)

−|α|.

Proof. For y ∈ Ω we define the function

G(y) = min
x∈Γ

|x− y|r3(x)−1

so that Ωin, Ω̃in are described by

Ωin = {G(y) ≤ c}, Ω̃in = {G(y) ≤ 4c}.
Then we can use the function G to describe the separation between Ωin and Ω\Ω̃in. Precisely,
it suffices to show that we can control the Lipschitz constant for G in the transition region,

c ≤ G(y) ≤ 4c ⇒ |∇G(y)| ≲ r−1.
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Since G is an infimum, it suffices to show the same for each of its defining functions. Equiv-
alently, it suffices to show that if y is in the transition region then

c ≤ |x− y|r3(x)−1 ≤ 4c ⇒ r(y) ≲ r3(x).

Let z be the closest point to y on the boundary, so that r(y) ≈ |y−z|. Then the first relation
implies that

|x− z| ≤ 8cr3(x).

Since c is small, Lemma 4.6 shows that r3(z) ≈ r3(x). Since we are in the transition region,
we must also have

|x− z| ≥ cr3(z),

as needed. □

Finally we verify that we have good control over r1 − r2 on the outer region:

Lemma 4.8. The good bound (4.13) holds outside Ωin.

Proof. Let y ̸∈ Ωin, and x the closest point to y on the boundary. Then

r(y) ≈ |x− y| ≥ cr3(x).

Using the C̃0, 1
2 bound for ∇(r1 − r2) along the [x, y] line, we have

|∇(r1 − r2)(z)−∇(r1 − r2)(x)| ≲ B(r0(x)
1
2 + |z − x|

1
2 ).

If we use this directly we obtain

|∇(r1 − r2)(y)| ≲ |∇(r1 − r2)(x)|+B(r0(x)
1
2 + |z − x|

1
2 ) ≲ B(r3(x)

1
2 + |y − x|) ≲ Br(y)

1
2 .

If instead we integrate it between x and y then we obtain

|(r1 − r2)(y)| ≲ r0(x) + |x− y||∇(r1 − r2)(x)|+B(r0(x)
1
2 |x− y|+ |x− y|

3
2 )

≲ Br3(x)
3
2 +Br3(x)

1
2 |x− y|+B(r0(x)

1
2 |x− y|+ |x− y|

3
2 ) ≲ Br

3
2
3 .

□

Now we use the cutoff χ to split each of the above integrals in two, and estimate each of
them in turn.

B.1. The estimate in the outer region. Here we insert the cutoff (1 − χ) in each of
the two integrals J±

1 , and integrate by parts in J−
1 . Precisely, the outer part of J−

1 is

J−,out
1 =

ˆ
(1− χ)(r1 + r2)

σ−2a−(r1, r2)(r1 − r2)
2(v1 − v2)∇(r2 − r1) dx.

The ν dependent part of the integrand is

ν2a−(µ, ν)∇ν.

In order to be able to integrate by parts, we define a function c(µ, ν) in the region of interest
|ν| < µ by

∂νc(µ, ν) = ν2a−(µ, ν), c(µ, 0) = 0.

By definition, c is smooth, homogeneous of order three, and satisfies

|c(µ, ν)| ≲ ν3, |∂µc(µ, ν)| ≲ µ−1ν3.
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Then we can write

ν2a(µ, ν)∇ν = ∇c(µ, ν)− ∂µc(µ, ν)∇µ.

We substitute this in J−,out
1 to obtain

J−,out
1 =

σ − 1

2

ˆ
(1− χ)(r1 + r2)

σ−2(v1 − v2)∇c dx+

ˆ
(1− χ)(r1 + r2)

σ−2cµ(v1 − v2)∇µ dx.

In the first integral we integrate by parts. If the derivative falls on v1− v2 we get a Gronwall
term. Else, it falls on µ, which we discard, or on χ, where we use Lemma 4.7. Hence we
obtain

J−,out
1 ≲

ˆ
Ω\Ωin

(r0 + r)σ−3|v1 − v2||r1 − r2|3 dx+O(B1 +B2)DH(t).

In view of Lemma 4.8, we can estimate the integral as in (4.14) and conclude.

The argument for J b,out
1 is similar but simpler, as no integration by parts is needed.

B.2. The estimate in the boundary layer region. To fix scales, we use the slowly
varying property of r3 in Lemma 4.6 to partition Ω̃in into cylinders Cx0 centered at some
point x0 ∈ Γ, with radius 4cr3(x0) and similar height, and correspondingly, we partition our
integrals using an appropriate locally finite partition of unity,

χ =
∑

χx0 ,

where each χx0 is smooth on the r3(x0) scale. Within this cylinder we will think of r3 as a
constant, r3 = r3(x0).
Denoting

J−,x0

1 =

ˆ
Cx0

χx0(r1 + r2)
σ−2a−(r1, r2)(r1 − r2)

2(v1 − v2)∇(r1 − r2) dx,

and similarly for J+
1 , our objective will be to show that in each such component we have

(4.19) J±,x0

1 ≲ BDx0
H ,

where Dx0
H denotes the integral in DH but with the added cutoff χx0 . After summation over

x0 this will give the desired estimate. We will consider separately the cases when B is small
or large.

As a prerequisite to the proof of (4.19), we consider pointwise difference bounds within
Cx0 . We begin with r1 − r2. By construction, within Cx0 we have

(4.20) |∇(r1 − r2)| ≲ Br
1
2
3 , |r1 − r2| ≲ Br

3
2
3 .

In particular this yields

(4.21) r0 ≲ Br
3
2
3 ,

and the improved pointwise bound

(4.22) |r1 − r2| ≲ r0 +B r r
1
2
3 ,

where we observe that r0 needs not be constant on the boundary within Cx0 .

Depending on the relative size of B and r3 we will distinguish two scenarios:
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Lemma 4.9. One of the following two scenarios applies in Cx0:
a) Either r0(x0) ≪ r3, in which case we must have B

√
r3 ≲ 1.

b) Or r0 ≈ r3, in which case we must have B
√
r0 ≳ 1.

We will refer to the first case as the small B case and the second as the large B case.

Proof. We start by comparing r0(x0) with r3. If r3 ≈ r0, then we must have

r0 ≳ (B−1r0)
2
3 ,

and further B ≳ (r0)
− 1

2 , which places us in case (b).
If r3 ≫ r0(x0), then we have two nonexclusive possibilities. Either we have

r3 ≈ (B−1r0)
2
3 ≫ r0,

which yields B2 ≈ r20r
−3
3 ≪ r−1

3 , placing us in case (a). Or, we have

r3 ≈ B−2|∇(r1 − r2)|2 ≲ B−2,

which places us again in case (b). □

In addition to bounds for r1 − r2, we also need bounds for v1 − v2. We will show that
within the same cylinder we have a good uniform bound for v1 − v2:

Lemma 4.10. Within Cx0 we have

(4.23) |v1 − v2| ≲ Br3 + (Dx0
H )

1
2 r

−σ+1
2

3 r
− d−1

2
3 .

Proof. Denote by (v1 − v2)avg the average of v1 − v2 in the region

C̃x0 = Cx0 ∩ {r ≳ 1

2
r3(x)},

which represents an interior portion of Cx0 away from the boundary. We estimate this using
the distance Dx0

H , where we observe that within C̃x0 we have b ≈ r3. Then we obtain

rd3r
σ
3 (v1 − v2)avg ≲ Dx0

H .

To obtain the full bound for v1 − v2 we combine this with the B Lipschitz bound, which
yields

|v1 − v2| ≲ Br3 + |(v1 − v2)avg|
within the full cylinder Cx0 .

□

B.2.a. The case of large B. We recall that in this case we have r3 = r0 and B
√
r0 ≳ 1.

Consider J−,x0

1 first. We discard the gradient terms, bound r1−r2 by r0 and use Lemma 4.10
for v1 − v2. This yields

J−,x0

1 ≲ rd0r
σ
0 (Br0 + (Dx0

H )
1
2 r

−σ+1
2

0 r
− d−1

2
0 ).

On the other hand, a localized version of (4.2) yields

rσ+2
0 ≲ r

−(d−1)
0 Dx0

H .

Combining the last two bounds gives

J−,x0

1 ≲ Dx0
H (B + r

− 1
2

0 ) ≲ BDx0
H ,
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as needed. The arguments for J+,x0

1 is identical.

B.2.b. The case of small B. We recall that this corresponds to r0 ≪ r3 and B
√
r3 ≲ 1.

This is the more difficult case.
The first observation concerning the cylinder Cx0 is that r1 − r2 is large there on average,

of size Br
3
2
3 . This is reflected in a bound from below for Dx0

H :

Lemma 4.11. Assume we are in the small B case. Then we have

(4.24) B2rσ+3
3 rd−1

3 ≲ Dx0
H .

Proof. We approximate r1 − r2 near x0 with its linear expansion,

(r1 − r2)(y) = r0 +∇(r1 − r2)(x0)(y − x0) +O(B(r
1
2
0 + |x0 − y|

1
2 )|x0 − y|)).

Within Cx0 this can be simplified to

(r1 − r2)(y) = r0 +∇(r1 − r2)(x0)(y − x0) +O(Br
1
2
3 |x0 − y|)).

Now we consider a small interior ball

B = B(x0 + 2rN, r), r0 < r < cr3,

where we have a ≈ 1 and r1 + r2 ≈ r, and use Dx0
H to estimate

rσ−1

ˆ
B

|r0 +∇(r1 − r2)(x0)(y − x0)|2dy ≲ rσ−1rd(Br
3
2 )2 +Dx0

H .

The integral on the left is easily evaluated, to get

rσ−1rd(r20 + r2|∇(r1 − r2)(x0)|2) ≲ rσ−1rd(Br
3
2 )2 +Dx0

H .

We can compare the constants on the left and the first term on the right. We know that

r3 ≈ max{(B−1r0)
2
3 , (B−1|∇(r1 − r2)(x0)|)2}.

If the first quantity on the right is larger, then

r0 = Br
3
2
3

and we obtain

rσ−1rd(Br
3
2
3 )

2 ≲ rσ−1rd(Br
3
2 )2 +Dx0

H .

Choosing r = cr3 with a small constant c, the first term on the right is absorbed on the left
and we arrive at the desired conclusion.

If the second quantity on the right is larger, then

|∇(r1 − r2)(x0)| = Br
1
2
3 ,

and we obtain

rσ−1rdr2(Br
1
2
3 )

2 ≲ rσ−1rd(Br
3
2 )2 +Dx0

H .

Hence we can conclude exactly as before. □

The above Lemma allows us to slightly improve Lemma 4.10 to

Lemma 4.12. Assume that B is small. Then within Cx0 we have

(4.25) |v1 − v2| ≲ (Dx0
H )

1
2 r

−σ+1
2

3 r
− d−1

2
3 .
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We are now ready to estimate the first integral,

J−,x0

1 ≲
ˆ
Cx0

(r0 + r)σ−2(r1 − r2)
2|v1 − v2||∇(r2 − r1)| dx

≲ Br
1
2
3 r

−σ+1
2

3 r
− d−1

2
3 (Dx0

H )
1
2

ˆ
Cx0

(r0 + r)σ−2(r0 +B r r
1
2
3 )

2 dr dx0

≲ Br
1
2
3 r

−σ+1
2

3 r
− d−1

2
3 (Dx0

H )
1
2

(ˆ
rσ+1
0 dx0 + rd−1

3 B2rσ+2
3

)
≲ Br

1
2
3 r

−σ+1
2

3 r
− d−1

2
3 (Dx0

H )
1
2 rd−1

3

(
(Br

3
2
3 )

σ+1 +B2rσ+2
3

)
≲ (Dx0

H )
1
2B2r

d−1
2

3 r
σ+3
2

3 ((B
√
r3)

σ +B
√
r3)

≲ BDx0
H .

It remains to estimate J+,x0

1 , which we recall here:

J+,x0

1 = C

ˆ
χx0νµ

σaµ(v1 − v2)∇µ dx, C = κ− 1

2
.

Aside from the obvious cancellation when κ = 1
2
, we would like to integrate by parts in order

to move the derivative away from µ. To implement this integration by parts, we need an
auxiliary function c(µ, ν) so that

∂µc(µ, ν) = µσaµ.

Suppose we have such a function c which is smooth, homogeneous of order σ and supported
in |µ| ≲ |ν| < µ. Then integration by parts yields

J+,x0

1 = C

ˆ
χx0νcµ(µ, ν)(v1 − v2)∇µ dx

= − C

ˆ
χx0νc(µ, ν)∇ · (v1 − v2) dx

− C

ˆ
χx0(c(µ, ν) + νcν(µ, ν))(v1 − v2)∇ν dx

− C

ˆ
νc(µ, ν)(v1 − v2)∇χx0 dx.

In the first integral we bound ∇· (v1−v2) by B, and then bound the rest by Dx0
H since µ ≈ ν

in the support of the integrand. The second integral is similar to Ja,x0

1 . Finally in the third
integral the gradient of χx0 yields an r−1

3 factor, and we can estimate it using Lemma 4.12
and the bound (4.22) for r1 − r2 by

≲ r−1
3

ˆ
Cx0

(r1 − r2)
σ+2|v1 − v2| dx

≲ rd−1
3 (r3r

σ+2
0 + (B

√
r3)

σ+2rσ+3
3 )(Dx0

H )
1
2 r

−σ+1
2

3 r
− d−1

2
3

≲BDx0
H ,

where at the last step we bound r0 ≲ Br
3
2
3 twice, r0 ≤ r3 for the rest of r0, and use

Lemma 4.11; the powers of r3 will all cancel, as predicted by scaling considerations.
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It remains to show that we can find such a function c. This is where a convenient choice
of a helps. Precisely, we want a to be nonnegative, even in ν, supported in |ν| < µ and equal
to 1 when |ν| ≪ µ. In order to avoid boundary terms in the integration by parts, we will
choose c with similar support. But we also want c to be smooth and homogeneous, and then
we will have an issue at µ = 0, unless we can arrange for c to also be supported away from
µ = 0. But this will happen only if

(4.26)

ˆ
µσaµ dµ = 0.

Lemma 4.13. There exists a good choice for a which satisfies (4.26).

Proof. We will take advantage of the fact that the function µσ is increasing, as follows. We
start with a choice a0 for a which is nonincreasing. That would make the integral in (4.26)
positive. To correct this we use a nonnegative, compactly supported bump function a1. Its
contribution will be negative, as it can be seen integrating by parts:ˆ

µσa1,µ dµ = − 1

σ + 1

ˆ
µσ+1a1 dµ.

Then we choose a = a0 + Ca1, with C > 0 chosen so that the two contributions to the
integral in (4.26) cancel. □

□

5. Energy estimates for solutions

Our objective here is to prove Theorem 3. More precisely, we aim to establish uniform
control over the H2k norm of the solutions (v, r) in terms of the similar norm of the initial
data, with growth estimated in terms of the control parameters A,B. The key to this is
to characterize these norms using energy functionals constructed with suitable vector fields
naturally associated to the evolution.

5.1. The div-curl decomposition. A first step in our analysis is to understand the struc-
ture of our system of equations. In the nondegenerate case, it is known that at leading order
the compressible Euler equations decouple into a wave equation for (r,∇·v) and a transport
equation for ω = curl v. We will show that the same happens here. Of course, algebraically
the computations are identical. However, interpreting the coupling terms as perturbative is
far more delicate in the present context.

We begin with a direct computation, which yields the following second order wave equation
for r,

(5.1) D2
t r = κr∆r + κ2r|∇ · v|2 + κ∇v(∇v)T

with speed of propagation (sound speed)

cs = κr,

where ∇·v corresponds to the (material) velocity

−κ∇·v = r−1Dtr.

On the other hand for the vorticity we obtain the transport equation

(5.2) Dtω = −ω∇v − (∇v)Tω.
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These two equations are coupled, so it is natural to consider them at matched regularity
levels, but we will use different energy functionals to capture their contributions to the
energy.

5.2. Vector fields. Our energy estimates will be obtained by applying a number of well
chosen vector fields to the equation in a suitable fashion, so that the differentiated fields
obtained as the outcome solve the linearized equation with perturbative source terms. We
do this separately for the wave component and for the transport part.

a) Vector fields for the wave equation. Here we use all the vector fields which commute
with the wave equation at the leading order. There are two such vector fields, which generate
an associated algebra:

a1) The material derivative Dt; this has order
1
2
.

a2) The tangential derivatives, Ωij = ri∂j − rj∂i; these have order 1.

We will only use Dt in this article, but note that a similar analysis works for the tangential
derivatives.

b) Vector fields for the transport equation. Here we have more flexibility in our choices,
again generating an algebra.

b1) The material derivative Dt; this has order
1
2
.

b2) All regular derivatives ∂, of order 1.
b3) The multiplication by r, which has order −1.

In order to avoid negative orders here, one may replace r by r∂2, which has has order 1.

5.3. The energy functional. Here we define energy functionals E2k(r, v) of order k, i.e.
which involve combinations of vector fields of orders up to k. We will set this up as the sum
of a wave and a transport component,

(5.3) E2k(r, v) = E2k
w (r, v) + E2k

t (r, v).

a) The wave energy. Here we want to use operators of the form

Dj
t , j ≤ 2k

applied to the solution (r, v). However, we would like to have these defined in terms of the
data at each fixed time, rather than dynamically. Algebraically this is easily achieved by
reiterating the equation. We define

(rj, vj) = (Dj
t r,D

j
tv),

which should be viewed as discussed above, as nonlinear14 functions of (r, v) at fixed time.
One might hope that these functions should be good approximate solutions for the lin-

earized equations. Unfortunately, this is not exactly the case even for (r1, v1). This is
because, unlike ∂, Dt does not exactly generate an exact symmetry of the equation. The
solution to this difficulty is to work with associated good variables, obtained by adding suit-
able corrections to them. We denote these good variables by (sj, wj), and define them as
follows:

14Strictly speaking, at leading order these are linear expressions, so the better terminology would be
quasilinear.
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i) j = 0.
(s0, w0) = (r, v).

ii) j = 1.
(s1, w1) = ∂t(r, v).

iii) j = 2.

(s2, w2) = (r2 +
1

2
|∇r|2, v2).

iv) j ≥ 3:
(sj, wj) = (rj −∇r · wj−1, vj).

We now define the wave component of the energy as

(5.4) E2k
w (r, v) =

∑
j≤k

∥(s2j, w2j)∥2H,

where we recall that H defined in (1.11) represents the natural energy functional for the
linearized equation. In the sequel we will use these good variables only for even j, but for
the sake of completeness we have listed them for all j.

b) The transport equation. Here we consider a simpler energy, namely

(5.5) E2k
t (r, v) = ∥ω∥2

H2k−1,k+ 1
κ

which at leading order scales in the same way as the wave energy above. One can think
of this energy as the outcome of applying vector fields up to and including order k to the
vorticity ω.

5.4. Energy coercivity. Our goal here is to prove the equivalence of the energy E2k with
the H2k size of (r, v).

Theorem 6. Let (r, v) be smooth functions in Ω so that r is positive in Ω and uniformly
nondegenerate on Γ = ∂Ω. Then we have

(5.6) E2k(r, v) ≈A ∥(r, v)∥2H2k .

Proof. a) We begin with the easier part “≲”. This is obvious for the vorticity component so
it remains to discuss the wave component.

We consider the expressions for (s2k, w2k). These are both linear combinations of multi-
linear expressions in r and ∇v with the following properties:

• They have order k − 1, respectively k − 1
2
.

• They have exactly 2k derivatives.
• They contain at most k + 1, respectively k factors of r or its derivatives.

These properties suffice in order to be able to distribute the powers of r and use the
interpolation inequalities in Proposition 2.14. We will demonstrate this in the case of s2k;
the case of w2k is similar. A multilinear expression in s2k has the form

M = ra
J∏

j=1

∂njr
L∏
l=1

∂mlv,

where nj ≥ 1, ml ≥ 1, ∑
nj +

∑
ml = 2k,
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and15

a+ J + L/2 = k + 1.

We seek to split

a =
∑

bj +
∑

cl,

and correspondingly

M =
J∏

j=1

rbj∂njr

L∏
l=1

rcl∂mlv,

so that we can apply our interpolation inequalities from Proposition 2.14, Proposition 2.15.
These will give bounds of the form

∥rbj∂njr∥
Lpj (r

1−κ
κ )

≲ A
1− 2

pj ∥(r, v)∥
2
pj

H2k ,
1

pj
=

nj − 1− bj
2(k − 1)

,

respectively

∥rcl∂mlr∥
Lql (r

1−κ
κ )

≲ A
1− 2

ql ∥(r, v)∥
2
ql

H2k ,
1

ql
=

ml − 1/2− cl
2(k − 1)

,

where the denominators represent the orders of the expressions being measured, so they add
up to k − 1 as needed.

It only remains to verify that the bj’s and the cl’s can be chosen in the range where our
interpolation estimates apply, which is

0 ≤ bj ≤ (nj − 1)
k

2k − 1
,

respectively

0 ≤ cl ≤ (ml − 1/2)
k + 1/2

2k − 1
2

.

To verify that we can satisfy these conditions we need∑
(nj − 1)

k

2k − 1
+
∑

(ml − 1/2)
k + 1/2

2k − 1
2

≤ a.

But the sum on the left is evaluated by

≤ (
∑

nj +
∑

ml − J − L)
k

2k − 1
= (2k − J − L)

k

2k − 1
≤ (a+ k − 1)

k

2k − 1
≤ a

using a ≤ k. Here equality holds only if a = k, J = 1 and L = 0 i.e. for the leading linear
case.

b) We continue with the “≳” part. To do this we will argue inductively, relating (s2j, w2j)
with (s2j−2, w2j−2). This is done using the transition operators L1 and L2 introduced earlier.

Lemma 5.1. For j ≥ 2 we have a pair of homogeneous recurrence type relations

(5.7) s2j = L1s2j−2 + f2j, w2j = L2w2j−2 + g2j,

where f2j and g2j are also multilinear expressions as above, of order j− 1, respectively j− 1
2
,

but with the additional property that they are non-endpoint, i.e. they contain at least two
factors of the form ∂2+r or ∂1+v.

15Here we allow for J = 0 or K = 0, in which case the corresponding products are omitted.
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Proof. We begin with the first relation, for which we first discuss the generic case j ≥ 3. We
begin expanding the expression of s2j, and then continue calculating the LHS of (5.7). We
have

(5.8) s2j = (κr∆+∇r · ∇)(r2j−2 −∇r · w2j−3) + f2j.

The LHS expands as follows

(5.9) s2j = r2j −∇r · w2j−1 = D2j
t r −∇r ·D2j−1

t v.

Each of the two terms appearing in the expression above can be further analyzed. For the
first term on the RHS in (5.9) we have

(5.10) D2j
t r = D2j−2

t (D2
t r) = D2j−2

t

(
κr∆r + κ2r|∇ · v|2 + κ∇v(∇v)T

)
.

The last two terms already satisfy the non-endpoint property, so we are left to process the
first term on the RHS of (5.10) further:

D2j−2
t (κr∆r) = κ

2j−2−m∑
m=0

(
2j − 2
m

)
D2j−2−m

t r Dm
t ∆r.

We note that Dm
t ∆r gives at least ∂2+r derivatives, and, for any m ̸= 2j − 2 the claim is

obvious, as we have that one material derivative on r will produce ∂1+v derivatives. Hence,
the more difficult case is when m = 2j − 2; we discuss it further:

(5.11) κrD2j−2
t ∆r = κrD2j−3

t (Dt∆r) = κrD2j−3
t (Dt∆r) .

We commute the material derivative with the Laplacian using the formula

(5.12) [Dt,∆] = −∆v · ∇ −∇v∇2,

and 5.11 gives

(5.13)

κrD2j−2
t ∆r = κrD2j−3

t (Dt∆r)

= κrD2j−3
t

(
∆Dtr −∆v · ∇r −∇v∇2r

)
= κrD2j−3

t (∆Dtr)− κrD2j−3
t (∆v · ∇r)− κrD2j−3

t

(
∇v∇2r

)
.

The last term in the expression above gets absorbed in f2j. For the next to last term we
have

−κrD2j−3
t (∆v∇r) = −κr

2j−3∑
k=0

(
2j − 3

κ

)
D2j−3−k

t (∆v)Dk
t (∇r).

We distribute and commute all the material derivatives to observe that all but one term are
readily in f2j (commuting Dt with ∇, or even better with ∆ gives rise to ∇v ·∇, respectively
(5.12) terms, which ensures the non-endpoint property), namely

κD2j−3
t (∆v)∇r.

For this we need commute the material derivatives with ∆:

(5.14)

D2j−3
t (∆v)∇r = ∆(D2j−3

t )v∇r

= [D2j−3
t ,∆]v∇r +∆(D2j−3

t v)∇r

= [D2j−3
t ,∆]v∇r +∆v2j−3∇r.

The first term above is in f2j and the last term is part of the expression in (5.8).
47



For the first term in (5.13), we commute D2j−3
t with the Laplacian

κrD2j−3
t (∆Dtr) = κr

{
∆D2j−3

t (Dtr) +
[
D2j−3

t ,∆
]
Dtr

}
.

We observe that the first term on the RHS above is κr∆D2j−3
t (Dtr) = κr∆r2j−2 which is

one of the terms on the RHS of the expansion in (5.8). The last terms is included in f2j, as

the commutator
[
D2j−3

t ,∆
]
, for j ≥ 2, will produce at least one of each terms in {∇v, ∇r}.

We now deal with the last term in (5.9)

(5.15)

−∇r ·D2j−1
t v = −∇r ·D2j−2

t (−∇r)

= ∇r ·D2j−3
t (Dt∇r)

= ∇r ·D2j−3
t ([Dt, ∇]r +∇Dtr)

= ∇r ·D2j−3
t (−∇v · ∇r +∇Dtr).

For the first term on the RHS of (5.15)we get

−∇r ·D2j−3
t (∇v · ∇r) = −∇r ·

2j−3∑
k=0

(
2j − 3

k

)
D2j−3−k

t (∇v)Dk
t∇r

= −∇r ·
2j−3∑
k=0

(
2j − 3

k

)
D2j−3−k

t (∇v)Dk−1
t (Dt∇r),

where we can, by inspection, see that almost all the terms are in f2j, except for the case

k = 0, i.e. the term D2j−3
t (∇v)∇r. As before, we have

D2j−3
t (∇v)∇r = [D2j−3

t , ∇]v∇r +∇r∇D2j−3
t v = [D2j−3

t , ∇]v∇r +∇r∇v2j−3,

where the first terms is in f2j and the last one (together with ∇r from (5.15)) gives another
term in (5.8), namely

(5.16) ∇r∇v2j−3∇r.

Lastly, we return to the last term in (5.15),

∇r ·D2j−3
t (∇Dtr),

which we rewrite as

∇r ·D2j−3
t (∇Dtr) = ∇r · ([D2j−3

t ,∇]Dtr+∇(D2j−2
t r)) = ∇r · [D2j−3

t ,∇](Dtr) +∇r · ∇r2j−2.

This finishes the proof of the (5.7) for the s2j formula in the case j ≥ 3: the first term is
part of the f2j and the last one appears in (5.8).
The argument for the case j = 2 is similar. The only difference occurs at the very end,

where we collect the contribution of last term in (5.14) (with the corresponding κr factor)
and the expression in (5.16) and rewrite them as follows:

κr∇r∆∇r +∇r∇2r∇r = L1(
1

2
|∇r|2) + κr|∇2r|2,

where the last term goes into f4.

For the w2j there is no difference in the case j = 2. The formula we are asked to show is

(5.17) w2j = κ∇(r∇ · w2j−2) +∇(∇r · w2j−2) + g2j.
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As before, we expand the LHS of (5.17) and peel off the terms that belong to g2j, and then
inspect that the remaining terms match its RHS

w2j = D2j−1
t (Dtv) = −D2j−1

t (∇r) = −D2j−2
t (Dt∇r) = −D2j−2

t (∇Dtr +∇v · ∇r),

which gives

w2j = κ
{
∇D2j−2

t (r∇ · v) + [D2j−2
t ,∇](r∇ · v)

}
−D2j−2

t (∇v · ∇r) := I + II + III.

The commutator terms II gets absorbed in g2j. For I we note that all but one of the terms

have the non-endpoint property, namely κ∇(r∇D2j−2
t v) = κ∇(r∇w2j−2), which is part of

the RHS of (5.17). Lastly, for the III we have

D2j−2
t (∇v · ∇r) =

2j−2−m∑
m=0

(
2j − 2
m

)
D2j−2−m

t (∇v) ·Dm
t (∇r),

The case m = 0 gives

D2j−2
t (∇v) · ∇r = (∇D2j−2

t v + [D2j−2
t ,∇]v) · ∇r.

the commutator term belongs to g2j, and hence we are left with

∇v2j−2 · ∇r,

which is again part of the RHS of (5.17).
□

To take advantage of the above recurrence lemma, we will need a pair of elliptic estimates
for the operators L1, L2. There is one small matter to address, which is that we would
like these bounds to depend only on our control parameter A, whereas L2 contains second
derivatives of r in the coefficients. This can be readily rectified by replacing L2 by

(5.18) L̃2 = κ∇r∇+∇r∇

or in coordinates, to avoid ambiguity in notations,

(5.19) (L̃2)ij = κ∂ir∂j + ∂jr∂i

We note that the difference between L2w and L̃2w is the expression∇2rw, whose contribution
can be harmlessly placed in g2j in (5.7).

Set

σ :=
1

2κ
.

Then we have

Lemma 5.2. Assume that A is small. Then the following elliptic estimates hold:

(5.20) ∥s∥
H2,σ+1

2
≲ ∥L1s∥H0,σ− 1

2
+ ∥s∥

H0,σ+1
2
,

respectively

(5.21) ∥w∥H2,σ+1 ≲ ∥L̃2w∥H0,σ + ∥ curl w∥H1,σ+1 + ∥w∥H0,σ+1

and

(5.22) ∥w∥H2,σ+1 ≲ ∥(L̃2 + L3)w∥H0,σ + ∥w∥H0,σ+1
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Remark 5.3. We note that in essence this estimate has a scale invariant nature. The lower
order term added on the right plays no role in the proof, and can be dropped if either (s, w) are
assumed to have small support (by the Poincare inequality), or if we use the corresponding
homogeneous norms on the left.

We will in fact need a more general result, where the L1 and L̃2 operators are replaced by
Lb
1 and L̃b

2, respectively, where b > 0:

Corollary 5.4. The results in Lemma 5.2 also hold when L1 and L̃2 are replaced by Lb
1 and

L̃b
2, for b > 0, where

Lb
1 = (κr∇+ (1 + bκ)∇r) · ∇, L̃b

2 := κ∇r∇+ (1 + κb)∇r∇.

This is a direct consequence of the proof of Lemma 5.2, rather than of the Lemma.

Proof of Lemma 5.2. We first observe that the bound (5.21) is a direct consequence of (5.22)
since L3w is a function of curl w. Hence it suffices to prove (5.20) and (5.22).
Before we dwelve fully into the proof, we note that we have the relatively standard weaker

elliptic bounds
∥s∥

H2,σ+1
2
≲A ∥L1s∥H0,σ− 1

2
+ ∥s∥

H1,σ− 1
2
,

respectively
∥w∥H2,σ+1 ≲A ∥(L̃2 + L3)w∥H0,σ + ∥w∥H1,σ .

For these bounds we only need integration by parts, treating the first order term in both
L1 and L̃2 + L3 perturbatively, and using only the pointwise bound for ∇r. We leave this
straightforward computation to the reader.

Taking the above bounds into account, our bounds (5.20) and (5.22) reduce to the scale
invariant estimates

(5.23) ∥∇s∥
H0,σ+1

2
≲ ∥L1s∥H0,σ− 1

2
,

respectively

(5.24) ∥∇w∥H0,σ+1 ≲ ∥(L̃2 + L3)w∥H0,σ .

We consider first (5.20), where we proceed using a simple integration by parts. To avoid
differentiating r twice, we assume that at some point ∇r(x0) = en. Then in our domain we
have

|∇r − en| ≲ A ≪ 1.

We computeˆ
r

1−κ
κ (κr∇+∇r)∇s · ∂ns dx =

ˆ
κr

1
κ∆s∂ns+ r

1−κ
κ (|∂ns|2 +O(A)|∇s|2) dx

=
1

2

ˆ
r

1−κ
κ |∇s|2 +O(A)|∇s|2 dx,

which suffices by the Cauchy-Schwarz inequality.

Next we consider the bound (5.21) for the v component, where

r
1
κ ((L̃2 + L3)w)i = κ[∂ir∂jwj + ∂jr(∂jwi − ∂iwj)] + ∂jr∂iwj + ∂jr(∂jwi − ∂iwj)

= κ[∂j(r
1
κ
+1∂jwi) + r

1
κ (∂ir∂jwj − ∂jr∂iwj)].
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We use a computation similar to the one before, integrating by parts and using the fact that
all the tangential derivatives of r are O(A) and its normal derivative is 1 +O(A),ˆ

r
1
κ (L̃2 + L3)w·∂nw dx =κ

ˆ
−r

1
κ
+1∂jwi∂n∂jwi+r

1
κ

(
(∂ir∂jwj−∂jr∂iwj)∂nwi+O(A)|∇w|2

)
dx

=κ

ˆ
r

1
κ

[
1

2
(
1

κ
+ 1)|∂jwi|2 + ∂jwj∂nwn − ∂nwj∂jwn +O(A)|∇w|2

]
dx.

We claim that the above expression can be bounded from below by

≥ (1−O(A))

ˆ
r

1
κ |∇w|2 dx.

To see that, we cancel the two |∂nwn|2 terms, and restricting indices below to k,m ̸= n, we
have to show that

(5.25) −
ˆ

r
1
κ (∂kwk∂nwn − ∂nwk∂kwn) dx ≲

1

2

ˆ
r

1
κ

[
|∂jwi|2 +O(A)|∇w|2

]
dx

Indeed, we can bound the expression on the left by Cauchy-Schwarz as

−
ˆ

r
1
κ (∂kwk∂nwn−∂nwk∂kwn) dx ≲

1

2

ˆ
r

1
κ (|

n−1∑
k=1

∂kwk|2+|∂nwn|2+
n−1∑
k=1

(|∂nwk|2+∂kwn|2)) dx.

If we can establish that the first term on the right admits the equivalent representation
ˆ

r
1
κ (|

n−1∑
k=1

∂kwk|2 dx =

ˆ
r

1
κ (

n−1∑
k,m=1

∂kwm∂mwk +O(A)|∇w|2) dx,

then (5.25) follows by one more application of Cauchy-Schwarz. This last bound, in turn,
reduces to the relation

(5.26) Ikm :=

ˆ
r

1
κ (∂kwm∂mwk − ∂mwm∂kwk) dx = O(A)

ˆ
r

1
κ |∇w|2 dx.

In the model case r = xn, the left hand side is exactly zero, integrating by parts. In the
general case, we arrive at almost the same result after a more careful integration by parts:

Ikm =

ˆ
r

1
κ
+1∂n(∂kwm∂mwk − ∂mwm∂kwk) dx+O(A)

ˆ
r

1
κ |∇w|2 dx

=

ˆ
r

1
κ
+1∂k(∂nwm∂mwk − ∂mwm∂nwk) + ∂m(∂nwk∂kwm − ∂kwk∂nwm) dx

+O(A)

ˆ
r

1
κ |∇w|2 dx

=O(A)

ˆ
r

1
κ |∇w|2 dx

This concludes the proof of (5.26), and thus the proof of the lemma.
□

The above set-up suffices in order to prove our coercivity bounds. We will successively
establish the estimates

(5.27) ∥(s2j−2, w2j−2)∥H2k−2j+2 ≲ ∥(s2j, w2j)∥H2k−2j +O(A)∥(r, v)∥H2k , 1 ≤ j ≤ k.
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Concatenating these bounds we get the desired estimates in the theorem, where the errors
are absorbed using the smallness condition A ≪ 1.

The case j = k follows directly from Lemma 5.2 above, using the interpolation estimates
to get smallness for (f2k, g2k), in the sense that

(5.28) ∥(f2k, g2k)∥H ≲A A∥(r, v)∥H2k .

The case 2 ≤ j < k requires an additional argument. Precisely, we will apply Lemma 5.2
to functions (s, w) of the form

s = Ls2j−2, w = Lw2j−2,

where L is any operator in the right class,

L = ra∂b, 2a ≤ b ≤ 2(k − j).

In order to do that we need to have a good relation between L(s2j, w2j) and L(s2j−2, w2j−2).
To achieve this, we apply L in (5.7). For s2j this yields

L1Ls2j−2 = Ls2j − [L,L1]s2j−2 − Lf2j,

where we need to examine more closely the commutator term. To keep the analysis simple it
suffices to argue by induction on a, beginning with a = 0. All terms in the commutator, where
at least one r factor gets differentiated twice, are non-endpoint terms, and can be estimated
by interpolation. All terms in the commutator where two r factors get differentiated are
taken care of by the induction in a. Finally, all terms where only one r term is differentiated
are also taken care of by the induction in a, unless a = 0. Thus if a > 0 then all commutator
terms are estimated either as error terms or via the induction hypothesis.

So the only nontrivial case is when a = 0. In this case it is convenient to consider a frame
(x′, xn) adapted to the free surface, so that

|∂′r| ≲ A, |∂nr − 1| ≲ A.

Then all commutators with tangential derivatives are error terms, and the only nontrivial
commutator terms are those with ∂n. For these, we write modulo good O(A) error terms

[∂b
n, L1] ≈ b∆∂b−1

n ≈ b∇r · ∇∂b
n + b∂b−1

n (∂′)2.

The contribution of the first term on the right can be included in L1, akin to a conjugation.
The contribution of the second term on the right can be viewed as an induction term if we
phrase the argument as an induction in the number b of normal derivatives. Then we can
write

∂b
nL1 ≈ Lb

1∂
b
n,

where

Lb
1 = (κr∇+ (1 + bκ)∇r) · ∇

for which we can still apply the analysis in Lemma 5.2.
Finally, we consider the case j = 1, where the relation in Lemma 5.1 is not exactly true,

but it is essentially true once we differentiate at least twice. Precisely, we compute

s2 = κr∆r +
1

2
|∇r|2 + rO(|∇v|2).
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Instead of comparing s2 with L1s0, we compare Ls2 with L1Ls0 where as before L = ra∂b.
Here we must have b ≥ 2, so we begin with the case a = 0 and b = 2. For tangential
derivatives we get modulo O(A) error terms

∂bs2 ≈ L1∂
bs0,

while for normal derivatives
∂b
ns2 ≈ Lb

1∂
b
ns0.

From here on the argument is similar to the j > 2 case.
The analysis is similar in the case of L2, which, we recall, has the form

L2 = ∇(κr∇+∇r).

For this we can write a similar conjugation relation, again modulo O(A) perturbative and
induction terms,

∂b
nL2 ≈ Lb

2∂
b
n,

where
Lb
2 = ∇(κr∇+ (1 + κb)∇r).

Substituting Lb
2 with L̃b

2, we can then apply the elliptic bounds in Corollary 5.4. □

5.5. Energy estimates. Here we prove energy estimates in H2k for solutions (r, v). We
recall the equations.

(5.29)

{
rt + v∇r + κr∇v = 0

vt + (v · ∇)v +∇r = 0,

or, with Dt:

(5.30)

{
Dtr + κr∇v = 0

Dtv +∇r = 0.

We will also use the transport equation for ω = curl v,

(5.31) Dtω = − ω · ∇v − (∇v)Tω.

Now we consider the higher Sobolev norms H2k. For these we will prove the following:

Theorem 7. The energy functional E2k in H2k has the following two properties:
a) Norm equivalence:

(5.32) E2k(r, v) ≈A ∥(r, v)∥2H2k .

b) Energy estimate:

(5.33)
d

dt
E2k(r, v) ≲A B∥(r, v)∥2H2k .

The first part of the theorem, i.e. the coercivity, was proved in the previous subsection.
To prove the second part of the theorem we will separately estimate the time derivative of
each component in E2k. The first step in that is to derive the equations satisfied by the
functions used in the definition of the energy.

I) The wave component. Here we will show that (s2k, w2k) is a good approximate solution
to the linearized equation:
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Lemma 5.5. Let k ≥ 1. The functions (s2k, w2k) solve the equations

(5.34)

{
Dts2k + w2k · ∇r + κr∇w2k = f2k

Dtw2k +∇s2k = g2k,

where f2k and g2k are non-endpoint16 multilinear expressions in r, ∇v of order k− 1
2
, respec-

tively k, with exactly 2k + 1 derivatives.

Proof. The assertions about the order and the number of derivatives are obvious. It remains
to show that no single factor in f2k, respectively g2k has order larger that k− 1, respectively
k− 1

2
. In other words, we want to see that each product in f2k, respectively g2k, has at least

two factors of the form ∂2+r or ∂1+v.
We begin with f2k:

f2k = Dt(D
2k
t r −∇r ·D2k−1

t v) +∇r ·D2k
t v + κr∇D2k

t v

= − κ(D2k
t (r∇v)− r∇D2k

t v)−Dt(∇r)D2k−1
t v.

The first term has a commutator structure involving [D2k
t , r∇] which yields at least a ∇v

coefficient. The same happens with Dt∇r in the second term.
We continue with g2k:

g2k = D2k+1
t v +∇(D2k

t r −∇r ·D2k−1
t v)

= −D2k
t ∇r +∇D2k

t r −∇r · ∇D2k−1
t +∇2r∇D2k−1

t v.

Here we are commuting D2k
t with ∇, which yield at lest a ∇v term. The only case when we

do not get the desired structure is if the commutator occurs at the level of the last Dt,

[D2k
t ,∇] = [D2k−1

t ,∇]Dt +Dk−1
t [Dt,∇].

The contribution of the first term is always balanced. However, for the second term we have

[Dt,∇]r = −∇v · ∇r.

Thus we get a possibly an unbalanced contribution if all of D2k−1
t applies to v. We obtain,

g2k = ∂ir∂jD
2k−1
t vi − ∂ir∂jD

2k−1
t vi + balanced = balanced.

The computation for k = 1 is similar but simpler, and it is omitted.
□

II) The transport component. Here the functions whose weighted L2 norms we are trying
to propagate are denoted by ω2k, and have the form

(5.35) ω2k = ra∂bω, |b| ≤ 2k − 1, b− a = k − 1.

For these functions we have

Lemma 5.6. The functions ω2k are approximate solutions for the transport equation

(5.36) Dtω2k = h2k,

where h2k are non-endpoint multilinear expressions in r, ∇v of order 2k with exactly k
derivatives.

16We recall that this means that there is no single factor in f2k, respectively g2k which has order larger
that k − 1, respectively k − 1

2 . Equivalently, each of them has at least two ∂2+r or ∂v factors.
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Proof. We compute the transport equation

Dtω2k = h2k,

where we write schematically

h2k = Dt(r
k∂2k−1ω) = [Dt, r

k∂2k−1]ω − rk∂2k−1(∇v)2.

This proves that all terms in h2k are balanced, since all commutators include ∇v factors. □

To conclude the proof of the energy estimates it remains to bound the time derivative of
the linearized energies

∥(s2k, w2k)∥2H, ∥ω2k∥2L2
σ

by ≲A B∥(r, v)∥H2k . In view of our energy estimates for the linearized equation, respectively
the transport equation, in order to obtain the desired estimate it suffices to bound the source
terms (f2k, g2k), respectively h2k:

Lemma 5.7. The expressions f and g above satisfy the scale invariant bounds

(5.37) ∥(f2k, g2k)∥H + ∥h2k∥H0,σ ≲A B∥(r, v)∥H2k .

Proof. This follows using our interpolation inequalities in Propositions 2.14 2.15 and 2.16,
following the same argument as in the proof of part (a) of Theorem 6.

The control parameter A gives L∞ control at degree 0, i.e. for ∥∇r∥L∞ and ∥v∥
Ċ

1
2
, and

B gives L∞ control at degree
1

2
, i.e. for ∥∇v∥L∞ and ∥∇r∥

C̃0, 12
.

We consider the factors in each multilinear expression in f2k, g2k and h2k as follows. The
factors of order −1

2
(i.e. the r factors are interpreted as weights, and distributed to the other

factors. The factors of order 0 in f2k, g2k, h2k (i.e. ∂r factors) are directly estimated in L∞

by A and discarded. The factors of maximum order are estimated directly by ∥(r, v)∥H2k .
The intermediate factors can be estimated in Lp norms in two ways, by interpolating the
H2k norm with A, or by interpolating with B.
Overall the product needs to be estimated in L2, using exactly one ∥(r, v)∥H2k factor. Then

a scaling analysis shows that we will have to use exactly one B norm, i.e. for instance for
monomials fm

2k of order m in f2k we have

∥fm
2k∥H0,σ− 1

2
≲ Am−2B∥(r, v)∥H2k .

This is exactly as in the proof of Theorem 6(a); the details are left for the reader.
□

6. Construction of regular solutions

This section contains the first part of the proof of our well-posedness result; precisely, here
we give a constructive proof of existence of regular solutions. The rough solutions will be
obtained in the following section as unique limits of regular solutions.

Given an initial data (r0, v0) with regularity

(r0, v0) ∈ H2k,

where k is assumed to be sufficiently large, we will construct a local in time solution with
a lifespan depending on the H2k size of the data. Unlike all prior works on this problem,
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which use parabolic regularization methods in Lagrangian coordinates, here we propose a
new approach, implemented fully within the setting of the Eulerian coordinates.

Our novel method is loosely based on nonlinear semigroup methods, where an approximate
solution is constructed by discretizing the problem in time. Then the challenge is to carry
out a time step construction which, on one hand, is as simple as possible, but where, on the
other hand, the uniform in time energy bounds survive. In a classical semigroup approach
this would require solving an elliptic free boundary problem, with very precise estimates. At
the other extreme, in a pure ode setting one could simply use an Euler type method. The
Euler method cannot work here, because it would loose derivatives. A better alternative
would be to combine an Euler method with a transport part; this would reduce, but not
eliminate the loss of derivatives.

The idea of our approach is to retain the simplicity of the Euler + transport method, while
preventing the loss of derivatives by an initial regularization step. Then the regularization
step becomes the more delicate part of the argument, because it also needs to have good
energy bounds. To achieve that, we carry out the regularization in a paradifferential fashion,
but in a setting where we are avoiding the use of complicated classes of pseudodifferential
operators. Thus, in a nutshell, our solution is to divide and conquer, splitting the time step
into three:

• Regularization
• Transport
• Euler’s method,

where the role of the first two steps is to improve the error estimate in the third step.
To summarize, our approach provides a new, simpler method to construct solutions in the

context of free boundary problems. Further, we believe it will prove useful in a broader class
of problems.

6.1. A few simplifications. In order to keep our construction as simple as possible, we
observe here that we can make a few simplifying assumptions:

i) By finite speed of propagation and Galilean invariance, we can assume that v vanishes
and r is linear outside a small compact set.

ii) Given the reduction in step (i), the coercivity bound (5.22) proved in Lemma 5.2 carries
over to the operator L2 + L3. This yields a natural div-curl orthogonal decomposition for v
in H,

v = L2(L2 + L3)
−1 + L3(L2 + L3)

−1v := v1 + v2

where the first component is a gradient and the second depends only on curl v. In particular,
it follows that we have

∥ curl v∥2
H2k−1, 1κ

= ∥ curl v2∥2
H2k−1, 1κ

≈
k∑

j=0

∥(L2 + L3)
jv2∥2

H0, 1κ

≈ ∥ curl v∥2
H0, 1κ

+
k∑

j=1

∥Lj
3v∥2H0, 1κ
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where we refer the reader to Lemma 6.5 below for the second step. This allows us to make
the simplified choice

(6.1) E2k
t (r, v) = ∥ curl v∥2

H0, 1κ
+

k∑
j=1

∥Lj
3v∥2H0, 1κ

.

for the transport component of the energy.

6.2. Construction of approximate solutions. Given a small time-step ϵ > 0 and an
initial data (r0, v0) ∈ H2k we will produce a discrete approximate solution (r(jϵ), v(jϵ)),
with the following properties:

• (Norm bound) We have

(6.2) E2k(r((j + 1)ϵ), v((j + 1)ϵ)) ≤ (1 + Cϵ)E2k(r((jϵ), v(jϵ)).

• (Approximate solution)

(6.3)

{
r((j + 1)ϵ)− r(jϵ) + ϵ [v(jϵ)∇r(jϵ) + κr(jϵ)∇ · v(jϵ)] = O(ϵ1+)

v((j + 1)ϵ)− v(jϵ) + ϵ [(v(jϵ) · ∇)v(jϵ) +∇r(jϵ)] = O(ϵ1+).

The first property will ensure a uniform energy bound for our sequence. The second
property will guarantee that in the limit we obtain an exact solution. There we can use a
weaker topology, where the exact choice of norms is not so important.

Having such a sequence of approximate solutions, it will be a fairly simple matter to
produce, as the limit on a subsequence, an exact solution (r, v) on a short time interval
which stays bounded in the above topology. The key point is the construction of the above
sequence. It suffices to carry out a single step:

Theorem 8. Let k be a large enough integer. Let (r0, v0) with regularity

(6.4) E2k(r0, v0) ≤ M,

and ϵ ≪ 1. Then there exist a one step iterate (r1, v1) with the following properties:

(1) (Norm bound) We have

(6.5) E2k(r1, v1) ≤ (1 + C(M)ϵ)E2k(r0, v0)

(2) (Approximate solution)

(6.6)

{
r1 − r0 + ϵ[v0∇r0 + κr0∇v0] = O(ϵ2)

v1 − v0 + ϵ[(v0 · ∇)v0 +∇r0] = O(ϵ2).

The remainder of this subsection is devoted to the proof of this theorem.

We begin with an obvious observation, namely that a direct iteration (Euler’s method)
loses derivatives. A better strategy would be to separate the transport part; this reduces
(halves) the derivative loss, but does not fully eliminate it. However, if we precede this by an
initial regularization step, then we can avoid the loss of derivatives altogether. In a nutshell,
this will be our strategy. We begin with the outcome of the regularization step.
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Proposition 6.1. Given (r0, v0) ∈ H2k as in (6.4), there exists a regularization (r, v) with
the following properties:

(6.7) r − r0 = O(ϵ2), v − v0 = O(ϵ2),

respectively

(6.8) E2k(r, v) ≤ (1 + Cϵ)E2k(r0, v0),

and

(6.9) ∥(r, v)∥H2k+2 ≲ ϵ−1M.

We postpone for the moment the proof of the proposition, and instead we show how to
use it in order to prove the result in Theorem 8.

Proof of Theorem 8. Here we construct (r1, v1) starting from (r, v) given by the last propo-
sition. Naively the remaining steps are the Euler iteration{

r1 = r − ϵκr∇v

v1 = v − ϵ∇r,

and the flow transport

(6.10) x1 = x+ ϵv(x).

The important point is that these two steps cannot be carried out separately, as each of them
taken alone seems to be unbounded. Instead, taken together there is an extra cancellation
to be taken advantage of, which is the direct analogue of a similar cancellation in the energy
estimates. Using the transport as above, (r1, v1) are defined as follows:

(6.11)

{
r1(x1) = r(x)− ϵκr(x)∇v(x),

v1(x1) = v(x)− ϵ∇r(x).

It remain to show that these have the properties in the proposition. We begin by observing
that

r1(x1) = r(x)(1 +O(ϵ)),

so these can be used interchangeably as weights. We also have

dx1 = dx(1 +O(ϵ)),

so the same can be said for the measures of integration.
We successively compute Dt derivatives of (r1, v1) in terms of similar derivatives of (r, v).

We will work with operators of the form D2j
t . As before, when applied to a data set (r, v),

these are interpreted as multilinear partial differential expressions, as if they were applied
to a solution and then re-expressed, using the equations, in terms of the initial data. In
particular, we recall that the expressions D2j

t r and D2j
t v have orders (j − 2)/2, respectively

(j − 1)/2.
Switching from derivatives in x to derivatives in x1 is done by repeated applications of the

chain rule, which involves the Jacobian

J = (I + ϵDv)−1.

Thus in this calculation we will not only produce multilinear expressions, but also powers of
J . To describe errors, we will enhance our standard notion of order by assigning the order
−1

2
to ϵ; this is natural because as a time step, ϵ can be thought of as the dual variable to
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Dt. Such a choice will ensure that the expression ϵ∇v has order 0, and that all our relations
below are homogeneous. Then we have

Lemma 6.2. a) The following algebraic relations hold:

(6.12)

{
D2j

t r1(x1) = D2j
t r(x) + ϵD2j+1

t r(x) + ϵ2R2j(r, v, ϵ∇v)(x)

D2j
t v1(x1) = D2j

t v(x) + ϵD2j+1
t v(x) + ϵ2V2j(r, v, ϵ∇v)(x),

where Rj and Vj are multilinear expressions in (r,∇v, ϵ∇v) and their derivatives, and also
J , with the following properties:

• v does not appear undifferentiated.
• They have order 2 respectively j + 1/2.
• In addition to powers of J , they contain exactly 2j + 2 derivatives applied to factors
of r, v or ϵ∇v.

• They are balanced, i.e. they contain at least two ∂2+r or ∂1+v factors.

b) Similar relations hold for ω = curl v and its weighted derivatives ω2j

(6.13) ω2j,1(x1) = ω2j(x)− ϵh2j − ϵ2W2j(ω, v, ϵ∇v)(x).

where h2j is as in (5.36) and W2j has the same properties as R2j and V2j above.

Proof. We prove part (a), as part (b) is similar. As discussed earlier, transcribing the ex-
pression Dj

t r1(x1) in terms of r and v is based on repeated application of chain rule, which
involves the Jacobian

J = (I + ϵDv)−1,

and yields contributions of order zero. Thus one easily obtains

(6.14)

{
Dj

t r1(x1) = Dj
t r(x) + ϵR̃j(r, v, ϵ∇v)(x)

Dj
tv1(x1) = Dj

tv(x) + ϵṼj(r, v, ϵ∇v)(x),

where R̃j and Ṽj are multilinear expressions in (r,∇v, ϵ∇v) and with added powers of J and
which have order (j− 1)/2, respectively j/2, and exactly j +1 derivatives applied to factors
of r, v or ϵ∇v.

It remains to identify the coefficients of the ϵ terms, which are

(R̃j(r,∇v, 0), Ṽj(r,∇v, 0)).

Identifying ϵ with time t, and redenoting (r1, v1) = (r(t), v(t)), we have

(R̃j(r,∇v, 0), Ṽj(r,∇v, 0)) =
d

dt
(Dj

t r(x), D
j
tv(x)),t=0 .

But by construction the functions (r(t), v(t)) solve the equation at t = 0, so the desired
identification holds. □

Returning to the proof of the theorem, we note that the above lemma already gives the
bound (6.6) in the uniform topology. It remains to prove the bound (6.5), where we have to
compare E2k(r, v) with E2k(r1, v1). We recall that these energies have the wave component
and the curl component. These are treated in a similar way, so we will focus on the wave
component which is more interesting. For this we need to compare the L2 type norms of the
good variables

∥(s2k, w2k)∥2Hr
, ∥(s1,2k, w1,2k)∥2Hr1

.
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The lower order norms also need to be compared, but that is a straightforward matter. Note
that these norms are represented as integrals over different domains. However, we identify
these domains via (6.10), and we compare the corresponding densities accordingly.

For exact solutions, the good variables solve the linearized equations with source terms
(5.34). For our iteration, the above lemma yields a similar relation with additional source
terms,

(6.15)

{
s2k,1 = s2k − ϵ(w2k · ∇r + κr∇w2k)− ϵf2k + ϵ2R2k

w2k,1 = w2k − ϵ∇s2k − ϵg2k + ϵ2V2k,

where f2k, g2k are perturbative source terms as in Lemma 5.5, and (R2k, V2k) are as in the
lemma above. The terms (f2k, g2k) satisfy the bound (5.37) in Lemma 5.7, which we recall
here:

∥(f2k, g2k)∥H ≲A B∥(r, v)∥H2k ,

which is what allows us to treat them as perturbative.
In a similar fashion, Lemma 5.7 shows that the expressions (R2k, V2k) satisfy

∥(R2k, V2k)∥H ≲A B∥(r, v)∥H2k+1 .

Since these terms have an ϵ2 factor, the bound (6.9) also allows us to treat them as pertur-
bative.

It remains to estimate the main expression, for which we compute

E1 = ∥(s2k − ϵ(w2k · ∇r + κr∇w2k), w2k − ϵ∇s2k)(x1)∥2Hr1

= ∥(s2k − ϵ(w2k · ∇r + κr∇w2k), w2k − ϵ∇s2k)∥2Hr
+ C(M)ϵ

= ∥(s2k, w2k)∥2H − 2ϵ⟨(s2k, w2k), (w2k · ∇r + κr∇w2k,∇s2k)⟩H
+ ϵ2∥(w2k · ∇r + κr∇w2k,∇s2k)∥2H + C(M)ϵ.

The second term can be seen to vanish after integrating by parts; this is the same cancellation
seen in the proof of the energy estimates for the linearized equation. The third term, on the
other hand, can be estimated as an error term via (6.9),

∥(w2k · ∇r + κr∇w2k,∇s2k)∥H ≲ ∥(s2k, w2k)∥
1
2
H∥(s2k, w2k)∥

1
2

H2 ,≲M ϵ−1.

This concludes the proof of the theorem. □

Now we return to the proof of our regularization result in Proposition 6.1.

Proof of Proposition 6.1. We begin with a heuristic discussion, for which the starting point
and the first candidate is the regularization already constructed in Proposition 2.11, with
the matched parabolic frequency scale 2−2h = ϵ. This will satisfy the properties (6.7) and
(6.9), but it is not accurate enough for (6.8).

To improve on this and construct a better regularization we need to understand its effect
on the energies, and primarily on the leading energy term which is ∥(s2k, w2k)∥2H. For this
we need to better understand the expressions for (s2k, w2k). We have seen earlier that we
have the approximate relations

s2k ≈ L1s2k−2, w2k ≈ L2w2k−2,
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so one might expect that we have

s2k ≈ Lk
1r, w2k ≈ Lk

2v.

However, this is not exactly accurate, as one can see by considering the first relation for
k = 1. There

s2 = κr∆r +
1

2
|∇r|2,

whereas

L1r = κr∆r + |∇r|2.
To rectify this discrepancy, we will interpret the operators L1 and L2 in a paradifferential
fashion, i.e. decouple the r appearing in the coefficients of L1 and L2 from the r in the argu-
ment of Lk

1. Instead, the r in the coefficients will be harmlessly replaced with a regularized
version of itself, call it r− and correspondingly L1 and L2 will be replaced by L−

1 , L
−
2 . Then

we will be able to write approximate relations of the form

s2 ≈ L−
1 (r − r−) + s−2 ,

and further

s2k ≈ (L−
1 )

k(r − r−) + s−2k,

and similarly for w2k.
Based on these considerations, we will construct our regularization as follows:

• Start with the initial state (r0, v0) ∈ H2k.
• Produce two initial regularizations r+ and r− of r0, on scales h+ > h > h−, with
slightly larger domains, and then restrict them to Ω− = {r− > 0}.

• Use the selfadjoint operators L1 and L2 + L3 associated to r− to regularize the high
frequency part (r+ − r−, v+ − v−) within Ω− below frequency 2h.

• Obtain the h scale regularization (r̃, ṽ) of (r0, v0) in Ω−, by adding the low frequency
part (r−, v−) to the regularized high frequency part.

• Decrease r̃ by a small constant c = O(ϵ4) and set (r, v) = (r̃−c, ṽ), in order to ensure
that Ω := {r > 0} ⊂ Ω−.

1. A formal computation and the good variables. Both in order to motivate the
definition of our regularization, and as a tool to prove we have the correct regularization, here
we consider the question of comparing the good variables (s02k, w

0
2k) associated to (r0, v0) with

(s̃2k, w̃2k) associated to (r̃, ṽ). The lemma below is purely algebraic, and makes no reference
to the relation between (r0, v0) and (r̃, ṽ).

Each term in (s2k, w2k) is a multilinear expression of the same order in (r, v), so we will
view the difference

(s02k, w
0
2k)− (s̃2k, w̃2k)

as a multilinear expression in (r0 − r̃, v0 − ṽ) and (r̃, ṽ). Heuristically we will think of the
first expression as the high frequency part of (r0, v0) and the second expression as the low
frequency part. Since we are working here in high regularity, the intuition is that high-high
terms will be better behaved and can be assigned to the error. Explicitly, we write

(6.16)

{
s02k = s̃2k +Ds2k(r̃, ṽ)(r0 − r̃, v0 − ṽ) + F2k

w0
2k = w̃2k +Dw2k(r̃, ṽ)(r0 − r̃, v0 − ṽ) +G2k,
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where Ds2k and Dw2k stand for the differentials of s2k and w2k as functions of (r, v). This
is akin to a paradifferential expansion of (s02k, w

0
2k). In this expansion all terms on each line

have the same order, which is k − 1, respectively k − 1
2
, and (F2k, G2k) are at least bilinear

in the difference (r0 − r̃, v0 − ṽ).
The high-high terms (F2k, G2k) will play a perturbative role in our analysis. This leaves us

with the terms which are linear in the difference, i.e. the low-high terms involving the two
differentials Ds2k and Dw2k. We will further simplify this, by observing that the low-high
terms where the low frequency factor is differentiated (i.e. has order > 0) are also favourable.
This leaves us only with low-high terms with top order in the high frequency factor in the
leading part. These terms are identified in the following lemma:

Lemma 6.3. We have the algebraic relations

(6.17)

{
Ds2k(r̃, ṽ)(r0 − r̃, v0 − ṽ) = (L1(r̃))

k(r0 − r̃) + F̃2k

Dw2k(r̃, ṽ)(r0 − r̃, v0 − ṽ) = (L2(r̃))
k(v0 − ṽ) + G̃2k,

where the error terms (F̃2k, G̃2k) are linear in (r0 − r̃, v0 − ṽ),

F̃2k = D1
2k(r̃, ṽ)(r0 − r̃, v0 − ṽ), G̃2k = D2

2k(r̃, ṽ)(r0 − r̃, v0 − ṽ),

whose coefficients are multilinear differential expressions in (r̃, ṽ) which contain at least one
factor with order > 0, i.e. ∂2+r̃ or ∂1+ṽ.

We remark that combining (6.16) and (6.17) we obtain the expansion

(6.18)

{
s02k = s̃2k + (L1(r̃))

k(r0 − r̃) + F2k + F̃2k

w0
2k = w̃2k + (L2(r̃))

k(v0 − ṽ) +G2k + G̃2k,

where all terms on each line are multilinear expressions in (r0 − r̃, v0 − ṽ) and (r̃, ṽ) of order
k − 1, respectively k − 1

2
, and whose multilinear error terms have either:

a) (high-high) two difference factors, i.e. (F2k, G2k) or
b) (low-high balanced) exactly one difference factor, and at least one nondifference factor

with order > 0, i.e. (F̃2k, G̃2k).

One should think of the above expansions as paradifferential linearizations, but implemented
without using the paraproduct formalism.

Proof. Our starting point is provided by the relations (5.7), differentiated with respect to
(r, v). This yields

Ds2j = L1(r)Ds2j−2 −DL1(r)s2j−2 +Df2j, j ≥ 2.

Since the expression f2j is balanced, its differential can be included in D1
2k. Similarly, the

second expression on the right also has terms of order > 0 in (r, v). Thus we get

(6.19) Ds2j = L1(r)Ds2j−2 + F̃2j, j ≥ 2.

Next we turn our attention to the case j = 1, where we have

s2 = κr∆r − 1

2
|∇r|2 + f2,

therefore
Ds2 = κr∆+ κ∆r −∇r∇+Df2,

62



r− = 0
Γ

2−2h−

2−2h+

Ω− Ω

r+

r−

2−2h−(k−k0+1)

Figure 3. Domains associated with the regularization scheme.

where the second and forth terms are admissible errors, so we also get (6.19). Then the
conclusion of the lemma follows by reiterated use of (6.19). The argument for w2k is similar.

□

2. Regularizations for (r0, v0). We begin with the dyadic frequency scale h matching
the time step ϵ, in a parabolic fashion, namely 2−2h = ϵ. As mentioned earlier, the direct
regularization (rh, vh) of (r0, v0) given by Proposition 2.11 is not a sufficiently accurate
regularization, in that it satisfies the properties (6.7) and (6.9), but not necessarily (6.8).

Nevertheless, we will still use Proposition 2.11 to bracket our desired regularization as
follows. Starting with the frequency scale h we define a lower and a higher frequency scale

1 ≪ h− < h < h+,

where h− and h+ will be chosen later to satisfy a specific set of constraints. We remark for
now that this is a soft choice, in that there is a large range of parameters that will work.

Correspondingly we consider the regularizations given by Proposition 2.11, denoted by

(r+, v+) = (rh
+

, vh
+

), (r−, v−) = (rh
−
, vh

−
).

These regularizations are defined on the enlarged domains Ω̃[h+], respectively Ω̃[h−]. We will
use them on the domain Ω− = {r− > 0}. By Proposition 2.11, this domain’s boundary is
at distance at most 2−2h−(k−k0+1) from the original boundary Γ0. In order to ensure that
(r+, v+) are defined on this domain, we will impose the constraint

(6.20) h+ < h−(k − k0 + 1).

We will think of (r−, v−) as a “sub”-regularization, which has to be a part of (r̃, ṽ), and
of (r+, v+) as a “super”-regularization, in that (r̃, ṽ) will be a regularization of it. We arrive
at (r, v) in two steps:

i) We define our first regularization (r̃, ṽ) as smooth functions in Ω− as follows:

(6.21) r̃ := r− + χϵ(L1(r−))(r+ − r−),

(6.22) ṽ := v− + χϵ((L2 + L3)(r−))(v+ − v−),
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where χϵ(λ) := χ(λϵ), with χ a smooth, positive bump function with values in (0, 1)
and the following asymptotics:

(6.23)
χ(λ) ≈ 1− λ near λ = 0

χ(λ) ≈ 1/λ near λ = ∞

ii) The functions (r̃, ṽ) in Ω− are not yet the desired regularizations as r̃ does not vanish
on the boundary Ω−. If it were negative there, we would simply restrict them to
Ω = {r > 0}. Unfortunately, all we know is that for some large C we have

|r̃| ≪ 2−2Ch on Γ−.

Then we define

(6.24) (r, v) := (r̃ − 2−2Ch, ṽ)

restricted to Ω = {r > 0} as our final regularization.

3. Bounds for the regularization (r̃, ṽ). To start with, we have the bounds for (r±, v±)
from Proposition 2.11. So here we consider the bounds for (r̃, ṽ).

Lemma 6.4. Assume that ∥(r0, v0)∥H2k ≤ M . Then the following estimates hold for (r̃, ṽ)
in Ω−:

(6.25) ∥(r̃, ṽ)∥H2k+2j
r−

≲M 22hj, j = 0, 1,

respectively

(6.26) ∥(r+ − r̃, v+ − ṽ)∥H2k−2
r−

≲M 2−2h.

Proof. a) With L1 = L1(r−) and similarly for L2 and L3, we have the obvious bounds

∥(Lk+j
1 r̃, (L2+L3)

k+j ṽ)∥H ≲ 22hj(∥(Lk
1r+, (L2+L3)

kv+)∥H+∥(Lk
1r−, (L2+L3)

kv−)∥H) ≲M 22hj.

Then (6.25) follows from elliptic bounds for L1, respectively L2 + L3, which for convenience
we collect in the next Lemma:

Lemma 6.5. Assume that r satisfies

∥(r, 0)∥H2k ≤ M,

and

∥(r, 0)∥H2k+2j ≤ M22hj, 0 < j ≤ N.

Then we have the estimates

(6.27) ∥(s, w)∥H2k ≲M

k∑
l=0

∥(Ll
1s, (L2 + L3)

lw)∥H,

respectively

(6.28) ∥(s, w)∥H2k+2j ≲M ϵ−2j

k+j∑
l=0

∥(Ll
1s, (L2 + L3)

lw)∥H 0 < j ≤ N.
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Proof. The estimates in (6.27), respectively (6.28) will follow from the bounds

(6.29) ∥(s, w)∥H2m ≲M ∥(L1s, (L2 + L3)w)∥H2m−2 1 ≤ m ≤ k − 1,

respectively

(6.30) ∥(s, w)∥H2k+2j ≲M ∥(L1s, (L2+L3)w)∥H2k+2j−2+

j−1∑
l=0

2−2h(j−l)∥(s, w)∥H2m+2l j ≥ 1.

The bounds for s and the bounds for w are independent of each other. As the arguments
are similar, we will prove the bounds for s and leave the bounds for w for the reader. We
begin with (6.29), where we have to estimate

∥s∥H2m,m+σ , σ =
κ− 1

2κ
.

To achieve this we will inductively bound the norms

∥s∥Hm+a,a+σ , a = 0,m.

For the induction step, we need to bound

∥Ls∥H2,σ ,

where L = ra−1∂m−2+a is an operator of order m− 1. By Lemma 5.2 we have

∥Ls∥H2,σ+1 ≲ ∥L1Ls∥H0,σ ≲ ∥L1s∥H2m−2,σ+m + ∥[L,L1]s∥H0,σ .

The commutator [L,L1] has order m, but at most 2m − 1 derivatives. Hence by Hölder’s
inequality and interpolation we can estimate

(6.31) ∥[L,L1]s∥H0,σ ≲ ∥s∥Hm+a−1,a+σ−1 .

Thus we obtain
∥s∥Hm+a,a+σ ≲ ∥L1s∥Hm−2,m−1+σ + ∥s∥Hm+a−1,a+σ−1 ,

which concludes the induction step.
It remains to consider the initial case a = 0, where we simply take L = ∂m−1. Here we

argue as in the proof of Theorem 6, more precisely the bound (5.27); in an adapted frame
we split the derivatives into normal and tangential, L = ∂b

n∂
c
τ , and conjugate

LL1 = Lb
1L+R,

where the remainder R has O(A) contributions only,

(6.32) ∥Rs∥H0,σ ≲M A∥s∥Hm,σ .

Applying Lemma 5.2 for Lb
1 we obtain

∥s∥Hm,σ ≲ ∥L1s∥Hm−2,m−1+σ + A∥s∥Hm,σ ,

where the error term on the right can be absorbed on the left.
Turning now our attention to the s component of (6.30), the argument is entirely similar,

with a slight modification in the commutator bounds (6.31) and (6.32). These are in turn
replaced by
(6.33)

∥[L,L1]s∥H0,σ ≲ ∥s∥Hj+k+a−1,a+σ−1 +

j−1∑
l=0

2−2h(l−j)∥s∥H2k+2l,k+l+σ , L = ra−1∂k+j−2+a,
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respectively

(6.34) ∥Rs∥H0,σ ≲M A∥s∥H2k+2l,σ +

j−1∑
l=0

2−2h(l−j)∥s∥H2k+2l,k+l+σ , L = ∂k+j−1.

The O(A) terms in the last bound arise exactly as before when exactly one L derivative
applies to the r factor in L1. All other contributions have fewer derivatives on s, and are
estimated by Hölder’s inequality and Sobolev embeddings. The negative 2−k powers only
arise when more than 2k derivatives apply to the r factors in L1, which means that fewer
derivatives apply to s. The details are somewhat tedious but routine, and are omitted. □

We now return to the proof of Lemma 6.4, and turn our attention to the bound (6.26).
We have

(r+ − r̃, v+ − ṽ) = ((I − χϵ(L1(r−)))(r+ − r−), (I − χϵ(L2 + L3)(r−)))(v+ − v−)).

Hence, given the properties of χϵ, and the above Lemma, we have the H bound

∥(r+ − r̃, v+ − ṽ)∥H2k−2
r−

≲ 2−2h∥(L1(r−)
k(r+ − r−), (L2 + L3)(r−)

k(v+ − v−)∥Hr−
≲M 2−2h.

□

3. Comparing the energies for (r0, v0) and (r̃, ṽ). Here the first energy is taken in the
domain Ω0, while the second is taken in Ω−. Our objective is to prove the following result:

Lemma 6.6. Assume that k is large enough, and that h+ and h− are suitably chosen relative
to h. Then we have

(6.35) E2k(r̃, ṽ) ≤ (1 + Cϵ)E2k(r0, v0).

The proof below consists of several steps, each of which will require various constraints on
h+ and h−. These are then collected at the end of the proof in (6.53). For orientation, one
could simply think of the case h− = h/2 and h+ = Ch with C ≈ k − k0.

Proof. These energies have two components, the wave energy and the transport energy. We
will focus on the wave component in the sequel, as the argument for the transport part
is similar but considerably simpler. For the wave component we need to compare the good
variables (s02k, w

0
2k), respectively (s̃2k, w̃2k), associated to (r0, v0), respectively (r̃, ṽ), and their

H norms,

(6.36) ∥(s02k, v02k)∥2Hr
vs. ∥(s̃2k, ṽ2k)∥2Hr−

.

We note that in the second expression we are using the Hr− norm, as r− is the defining
function for the domain Ω− where (s̃2k, ṽ2k) are defined. As we seek to compare functions on
different domains, it is natural to restrict them to a common domain. To understand this
choice, we recall that the two free boundaries Γ0 and Γ− are at distance ≪ 2−2h−(k−k0+1) of
each other, and the two weights are at a similar distance within the common domain,

|r − r−| ≪ 2−2h−(k−k0+1).

In order for the difference of the two weights to only yield O(ϵ) errors, we will restrict our

comparison to the region Ω
[<h−(k−k0)+1]−h
0 , where we have

|r − r−| ≪ ϵr in Ω
[<h−(k−k0+1)−h]
0 .
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Outside this region we will simply neglect the contribution to the first norm in (6.36). On
the other hand we will seek to make the second norm small in this region. For this to work,
we first need to make sure that the neglected region is within the (r̃, ṽ) boundary layer,
which has width 2−2h. Thus we require that

2h < h−(k − k0 + 1).

But in addition to that, we also want the second norm to be ϵ small in this region. Within
a fixed layer Ω−,[h1] with h1 < h this norm is

(6.37) ∥(s̃2k, ṽ2k)∥2Hr− (Ω−,[h1])
≲M 2

2
κ
(h−h1),

which is a consequence of the fact that we are integrating a function which is smooth on the
2−2h scale, over a thinner region. This is ϵ2 = 2−4h small if

(6.38) h1 > h(1 + 2κ).

Hence we obtain

(6.39) ∥(s̃2k, ṽ2k)∥Hr− (Ω
[>h−(k−k0+1)−h
0 ])

≲ ϵ2,

provided that

(6.40) h−(k − k0 + 1) > 2h(1 + κ).

Within Ω
[<h−(k−k0+1)−h]
0 we use Lemma 6.3, more precisely its consequence (6.18), in order

to compare (s02k, w
0
2k) respectively (s̃2k, w̃2k). There we seek to estimate the errors perturba-

tively. We begin with (F2k, G2k):

Lemma 6.7. Assume that (r0, v0) ∈ H2k, with size M and that (r̃, ṽ) are defined as above.
Then we have the error bounds

(6.41) ∥(F2k, G2k)∥Hr(Ω
[<h−(k−k0+1)−h]
0 )

≲M ϵ2.

The proof of this lemma is similar to the proof of Lemma 5.7, using interpolation inequal-
ities, and is omitted. Here the region where we evaluate the norm is less important, and
serves only to insure that r0 and r− are both defined and comparable there. The gain comes
from the fact that the difference (r − r̃, v − ṽ) is small at low frequency, which comes from
(6.26) combined with the bounds for the differences (r0 − r+, v0 − v+) in Proposition 2.11.
The power ϵ2 requires k > k0 + 2, but one can gain more if k is assumed to be larger.

Next we consider the expressions (F̃2k, G̃2k):

Lemma 6.8. Assume that (r0, v0) ∈ H2k, with size M and that (r̃, ṽ) are defined as above.
Then we have the error bounds

(6.42) ∥(F̃2k, G̃2k)∥Hr(Ω
[<h−(k−k0+1)−h]
0 )

≲ ∥(r+ − r̃, v+ − ṽ)∥H2k−1 + ϵ2C(M).

Proof. We recall that the expressions (F̃2k, G̃2k) are balanced multilinear expressions in (r̃, ṽ),
respectively (r0−r̃, v0−ṽ), linear in the second component, containing exactly 2k derivatives,
and of order k− 1, respectively k− 1

2
. The fact that they are balanced allows us to estimate

them using Hölder’s inequality and interpolation as in Lemma 5.7, by

∥(F̃2k, G̃2k)∥H ≲A0,Ã
(B0 + A0B̃)∥(r̃, ṽ)∥H2k−1 + B̃∥((r0 − r̃, v0 − ṽ)∥H2k−1)
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where A0, B0 respectively Ã, B̃ are control parameters associated to (r̃, ṽ), respectively
(r0 − r̃, v0 − ṽ).

Here the first component (r̃, ṽ) is localized at frequencies below 2h, while the second is
localized at frequencies above 2h. In particular, it follows that A0, B0 are small,

A0 +B0 ≲ ϵ2,

so their contributions go into the second term on the right in (6.42).
On the other hand, Ã and B̃ are merely bounded ≲M 1. We split

(r0 − r̃, v0 − ṽ) = (r0 − r+, v0 − v+) + (r+ − r̃, v+ − ṽ).

The first term is localized at frequencies ≥ 2h
+
so using the bounds in Proposition 2.10 we

have

∥(r0 − r+, v0 − v+)∥H2k−1 ≲M 2−h+

which can be made smaller than ϵ2 if h+ > 4h. The proof of the Lemma is concluded. □

Using the above two lemmas together with (6.39), we obtain our first relation between the
two energies,

∥(s̃2k, ṽ2k)∥2Hr−
≤ ∥(s02k, v02k)∥2Hr

+M∥(r+ − r̃, v+ − ṽ)∥H2k−1 + C(M)ϵ

− 2⟨(L1(r̃)
k(r0 − r̃1), L2(r̃)

k(v0 − ṽ)), (s̃2k, w̃2k)⟩Hr− (Ω
[<2h−(k−k0)]
0 )

.
(6.43)

This is not yet satisfactory, but we can improve it further. We first observe that in the above
inner product we can harmlessly replace the operators L1(r̃) and L2(r̃) by L1(r−) and L2(r−)
respectively. Precisely, we have the difference bound

∥(L1(r̃)
k − L1(r−)

k)(r0 − r̃), (L2(r̃)
k − L2(r−)

k)(v0 − ṽ))∥
Hr− (Ω

[<2h−(k−k0)]
0 )

≲M ϵ.

This is a consequence of interpolation inequalities and Hölder’s inequality due the fact that
both differences r̃− r− and ((r0− r̃), (v0− ṽ)) are concentrated at high frequencies and have
small O(ϵC) pointwise size. The details are left for the reader. We arrive at

∥(s̃2k, ṽ2k)∥2Hr−
≤ ∥(s02k, v02k)∥2Hr

+M∥(r+ − r̃, v+ − ṽ)∥H2k−1 + C(M)ϵ

− 2⟨(L1(r−)
k(r0 − r̃), L2(r−)

k(v0 − ṽ)), (s̃2k, w̃2k)⟩Hr− (Ω
[<2h−(k−k0)]
0 )

.
(6.44)

A second simplification is that we can replace (r0, v0) by (r+, v+) in the inner product.
For this we need to show that

⟨(L1(r−)
k(r+ − r0), L2(r−)

k(v+ − v0)), (s̃2k, w̃2k)⟩Hr− (Ω
[<2h−(k−k0)]
0 )

≲M ϵ.

We first insert a cutoff χ[2h−(k−k0)] function in the differences on the left, associated to the
same boundary layer, which equals 1 further inside and 0 closer to the boundary. This is
allowed because the second factor in the inner product is already ϵ small in the cutoff region,
while the first one is still bounded in Hr− in the same region, provided that the cutoff is
lower frequency than the r+ − r0 frequency,

(6.45) h−(k − k0) < h+.
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One should compare this to (6.20); together these bounds give the allowed range for h+.
With this substitution, we are left with proving that

⟨(L1(r−)
k[χ[2h−(k−k0)](r+ − r0)], L2(r−)

k[χ[2h−(k−k0)](v+ − v0)]), (s̃2k, w̃2k)⟩Hr− (Ω−) ≲M ϵ.

Since L1 and L2 are self-adjoint, we can move one of them to the right. This becomes

⟨(L1(r−)
k−1[χ[2h−(k−k0)](r+−r0)], L2(r−)

k−1[χ[2h−(k−k0)](v+−v0)]), (L1(r−)s̃
1
2k, L2(r−)w̃

1
2k)⟩Hr− (Ω−) ≲M ϵ.

Now the left factor has size 2−2h+
and the right factor has size 22h. This yields an ϵ2 gain

provided that

(6.46) h+ > 4h.

Thus, we can replace (r0, v0) by (r+, v+) in (6.44), to obtain

∥(s̃2k, ṽ2k)∥2Hr−
≤ ∥(s02k, v02k)∥2Hr

+ C(M)∥(r+ − r̃, v+ − ṽ)∥H2k−1
r−

+ C(M)ϵ

− 2⟨(L1(r−)
k(r+ − r̃), L2(r−)

k(v+ − ṽ)), (s̃2k, w̃2k)⟩Hr− (Ω
[<2h−(k−k0)]
0 )

.
(6.47)

Once this is done, the expression on the left in the inner product is defined on the entire do-
main Ω−, and we can harmlessly extend the inner product to the full region as the expression
on the right in the inner product is already ϵ small there. We get

∥(s̃2k, w̃2k)∥2Hr−
≤ ∥(s02k, v02k)∥2Hr

+ C(M)∥(r+ − r̃, v+ − ṽ)∥H2k−1 + C(M)ϵ

− 2⟨(L1(r−)
k(r+ − r̃), L2(r−)

k(v+ − ṽ)), (s̃2k, w̃2k)⟩Hr− (Ω−).
(6.48)

The next step is to apply the expansion (6.18) for the expression on the right in the inner
product to write

(6.49)

{
s̃2k = s−2k + (L1(r−))

k(r̃ − r−) + F−
2k + F̃−

2k

w̃2k = w−
2k + (L2(r−))

k(ṽ − v−) +G−
2k + G̃−

2k.

By the counterpart of Lemma 6.7 the error terms (F−
2k, G

−
2k) will be ϵ small, so their contri-

bution to (6.48) can be included in the expression C(M)ϵ.
For the contribution of (F̃−

2k, G̃
−
2k) we integrate by parts one instance of L1, respectively

L2, to bound it by

∥(L1(r−)
k−1(r+ − r̃), L2(r−)

k−1(v+ − ṽ))∥Hr−
∥(L1(r−)F̃

−
2k, L2(r−)G̃

−
2k)∥Hr−

≲M

∥(r+ − r̃, v+ − ṽ)∥H2k−2
r−

∥(r̃ − r−, ṽ − v−)∥H2k+1
r−

≲M 2−2h∥(r̃ − r−, ṽ − v−)∥H2k+1
r−

Finally, for the contribution of (s−2k, w
−
2k) we can integrate again by parts to obtain

⟨(r+ − r̃, v+ − ṽ), (L1(r−)
ks−2k, L2(r−)

kw−
2k)⟩Hr− (Ω−) ≲M ϵ,

provided that

(6.50) (k − 1)h > kh−.

Thus (6.48) becomes

∥(s̃2k, ṽ2k)∥2Hr−
≤ ∥(s02k, v02k)∥2Hr

+ C(M)ϵ+

+ C(M)(∥(r+ − r̃, v+ − ṽ)∥H2k−1
r−

+ 2−2h∥(r̃ − r−, ṽ − v−)∥H2k+1
r−

)

− 2⟨(L1(r−)
k(r+ − r̃1), L2(r−)

k(v+ − ṽ)), (L1(r−))
k(r̃ − r−), (L2(r−))

k(ṽ − v−)⟩Hr−
.
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Now our choice of (r̃, w̃) guarantees that the inner product is positive. Combining the above
bound with its counterpart for the transport energy (this is where our choice (6.1) simplifies
matters), we further obtain

E2k(r̃, ṽ) ≤ E2k(r0, v0) + C(M)ϵ

+ C(M)(∥(r+ − r̃, v+ − ṽ)∥H2k−1
r−

+ 2−2h∥(r̃ − r−, ṽ − v−)∥H2k+1
r−

)− 2I,
(6.51)

where

I = ⟨(L1(r−)
k(r+− r̃1), (L2+L3)(r−)

k(v+− ṽ)), (L1(r−))
k(r̃−r−), (L2+L3)(r−)

k(ṽ−v−)⟩Hr−
.

is still positive. Finally, we use the positivity of I to estimate the two remaining terms on
the right. Precisely, using the properties (6.23) of the multiplier χ in the definition of (r̃, ṽ)
as well as the ellipticity of L1, respectively L2 + L3 in the two components of H, we have

I ≳ 22h∥(r+ − r̃, v+ − ṽ)∥2H2k−1
r−

+ 2−2h∥(r− − r̃, v− − ṽ)∥2H2k+1
r−

Hence, applying the Cauchy-Schwarz inequality in (6.51) we finally obtain

(6.52) E2k(r̃, ṽ) ≤ E2k(r0, v0) + C(M)ϵ,

as desired.
This concludes the proof of (6.35), provided that the scales h+ and h− were chosen so that

the constraints (6.20),(6.40),(6.45),(6.46) are all satisfied. We recall them all here:

(6.53)

h− <
k − 1

k
h, h+ > 4h,

h−(k − k0) > h(1 +
1

κ
),

h−(k − k0) < h+ < h−(k − k0 + 1).

Then the parameters h+ and h− can be chosen e.g. as follows:

(a) set h− = h/2,
(b) take k large enough so that the second constraint holds,
(c) choose h+ in the range given by the third constraint.

□

4. Comparing the energies of (r̃, ṽ) and (r, v). To recall our setting here, the
functions (r̃, ṽ) are defined in the domain Ω− and are localized at frequency ≤ 2h scale, but
cannot be though of as a state because r̃ does not vanish on the boundary Γ−. Instead we
have

|r̃| ≲ 2−2(k−k0)h−
on Γ−.

To rectify this, we decrease r̃ by a small constant and set

(6.54) (r, v) = (r̃ − c, ṽ), c = 2−2(k−k0)h−
,

so that the level set Γ = {r = 0} is fully contained within Ω−. Then we aim to prove that
the energies do not change much:

Lemma 6.9. We have the energy bound

(6.55) E2k(r, v) ≲ E2k(r̃, ṽ) +OM(ϵ).
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Proof. We separate a boundary layer Ω[>h1], with h1 > h to be chosen later, where we verify
directly that the norm on the left is O(ϵ). Outside this layer, we compare directly the
associated good variables.

For the first step we use (6.37), which suffices if we impose the constraint (6.38), which
we recall here

h1 > h(1 +
1

κ
).

For the second step, we simply note that the good variables are identical except for the r
factors, where we replace r1 by r1 − c. Hence it suffices to ensure that

c ≲ ϵr1 in Ω[<h1],

which yields

(k − k0)h
− > h+ h1.

These two constraints for h1 are again compatible if k is large enough. The proof of the
Lemma is concluded.

□

Combining now the outcomes of Lemma 6.6 and Lemma 6.9, it follows that our final reg-
ularization (r, v) satisfies the bound (6.8). It also satisfies (6.7) and (6.9) due to Lemma 6.4;
there one can harmlessly substitute the weight r− by r since (r, v) are smooth on the ϵ2 scale,
which is larger than c. Thus the proof of Proposition 6.1 is concluded.

□

6.3. Construction of regular exact solutions. Here we use the approximate solutions
above. Given an initial data (r0, v0) so that

∥(r0, v0)∥H2k ≤ M

applying the successive iterations above we obtain approximate solutions (rϵ, vϵ) defined at
ϵ steps, so that

E2k(rϵ, vϵ)((j + 1)ϵ) ≲ (1 + C(M)ϵ)E2k(rϵ, vϵ)(jϵ).

By discrete Gronwall’s inequality, it follows that these approximate solutions are defined
uniformly up to a time T = T (M), with uniform bounds

(6.56) ∥(rϵ, vϵ)∥H2k ≲M 1, t ∈ [0, T ].

On the other hand, in a weaker topology we have

(rϵ, vϵ)((j + 1)ϵ)− (rϵ, vϵ)(jϵ) = O(ϵ).

Hence by Arzela-Ascoli we get uniform convergence on a subsequence to a function (r, v) in
a Cj norm, uniformly in t. Passing to the limit in the relation (6.6), it follows that (r, v)
solves our equation. Finally, taking weak limits in the norms in (6.56) we also obtain an
energy bound on (r, v),

(6.57) ∥(r, v)(t)∥H2k ≲M 1, t ∈ [0, T ].
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7. Rough solutions

Our goal in this section is to construct rough solutions as limits of smooth solutions,
and conclude the proof of Theorem 2. In terms of a general outline, the argument here is
relatively standard, and involves the following steps:

(1) We regularize the initial data,
(2) We prove uniform bounds for the regularized solutions,
(3) We prove convergence of the regularized solutions in a weaker topology,
(4) We prove the convergence in the strong topology by combining the weak difference

bounds with the uniform bounds in a frequency envelope fashion.

The main difficulty we face is that our phase space is not linear, and at each stage we have
to compare functions on different domains. For a description of the ideas here in a simpler,
model setting we refer the reader to the expository paper [12].functions

7.1. Regularizing the initial data. Given a rough initial data (r0, v0) ∈ H2k, our first
task is to construct an appropriate family of regularized data, depending smoothly of the reg-
ularization parameter. Here it suffices to directly use the family of regularizations provided
by Proposition 2.11.

7.2. Uniform bounds and the life-span of regular solutions. Once we have the regu-
larized data sets (rh0 , v

h
0 ), we consider the corresponding smooth solutions (rh, vh) generated

by the smooth data (rh0 , v
h
0 ). A-priori these solutions exist on a time interval that depends

on h. Instead, we would like to have a lifespan bound which is independent of h. To obtain
this, we use a bootstrap argument for our control parameter B for (rh, vh), which depends
on h and t.
For a large parameter B0, to be chosen later, we will make the bootstrap assumption

(7.1) B(t, h) ≤ 2B0, t ∈ [0, T ], 0 ≤ h ≤ h0.

The solutions (rh, vh) can be continued for as long as this is satisfied. We will prove that we
can improve this bootstrap assumption provided that T is small enough, T ≤ T0, but with
T0 independent of h ≤ h0. Here h0 is finite but arbitrarily large; its role is simply to ensure
that we run the bootstrap argument on finitely many quantities at once.

Our choice of T0 will be quite straightforward,

(7.2) T0 ≤
1

B0

.

In view of our energy estimates in Theorem 3 and Gronwall’s inequality, this guarantees
uniform energy bounds for the solutions (rh, vh) in all integer Sobolev spaces H2l in [0, T ].

We remark that the bound (2.32) does not directly propagate unless k is an integer.
Indeed, in that case one could immediately close the bootstrap at the level of the H2k norm
using the embeddings (2.11) and (2.12). The goal of the argument that follows is to establish
the H2k bound for noninteger k, by working only with energy estimates for integer indices.

Combining Theorem 3 with (2.33) we obtain the higher energy bound in [0.T ]

(7.3) ∥(rh, vh)∥H2k+2j
h

≲ 22hjch, j > 0, j + k ∈ N.
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Next we consider the bound (2.34), which we reinterpret in a discrete fashion as a difference
bound

(7.4) D((rh0 , v
h
0 ), (r

h+1
0 , vh+1

0 )) ≲ 2−4hkc2h.

This bound we can also propagate by Theorem 5, to obtain, also in [0, T ], the estimate

(7.5) D((rh, vh), (rh+1, vh+1)) ≲ 2−4hkc2h.

Our objective now is to combine the bounds (7.3) and (7.5) in order to obtain a uniform
H2k bound

(7.6) ∥(rh, vh)∥H2k ≲ M := ∥(r0, v0)∥H2k .

To prove this, we would naively like to consider a representation of the form

(rh, vh) = (r1, v1) +
h−1∑
l=1

(rl+1 − rl, vl+1 − vl),

where we can estimate the successive terms in both H and H2N . The difficulty we face is
that these functions have different domains. Hence the first step is to use the bounds (7.3)
and (7.5) in order to compare these domains.

Lemma 7.1. Assume that rh and rh+1 are nondegenerate, and that (7.5) holds. Then we
have

(7.7) d(Γh,Γh+1) ≲ 2−h(2+δ), δ > 0.

Proof. We use the uniform nondegeneracy property for the functions rh in order to compare
these domains. If r = d(Γh,Γh+1), then we can find a ball Bcr in the common domain so
that

rh, rh+1, |rh − rh+1| ≈ r in Bcr.

Then we obtain
rd+1+ 1

κ ≲ D((rh, vh), (rh+1, vh+1)) ≲ 2−4hkc2h
or equivalently

r2κ0 ≲ 2−4hkc2h.

Since k > k0, we obtain

r ≲ 2−h(2+δ), δ > 0.

□

Now we return to our expansion for (rh, vh). In order to compare functions which are
defined on a common domain, we replace the functions (rl, vl) with their regularizations
Ψl(rl, vl). Their domain includes an additional 2−2l boundary layer, which by the previous
Lemma 6.9 suffices in order to cover the domain Ωh for all h > l. Then we write

(rh, vh) = Ψ0(r0, v0) +
∑

Ψl+1(rl+1, vl+1)−Ψl(rl, vl) + (I −Ψh)(rh, vh),

and claim that this decomposition is as in Lemma 2.5.
The first term is trivial. For the last one we use the boundedness of Ψh in H2k and the

bound (2.39) integrated in h to write

∥(I −Ψh)(rh, vh)∥H2N ≲ ∥(rh, vh)∥H2N ,
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respectively

∥(I −Ψh)(rh, vh)∥H ≲ 2−2Nh∥(rh, vh)∥H2N ,

for a fixed large enough integer N , which together suffice in order to place this term into
(sh, wh), with norm ch.
For later use, we state the remaining bound for intermediate l as a separate result:

Lemma 7.2. For any nondegenerate r with |r − rl| ≪ 2−2l we have the difference bounds

(7.8) ∥Ψl+1(rl+1, vl+1)−Ψl(rl, vl)∥Hr ≲ 2−2lkcl,

(7.9) ∥Ψl+1(rl+1, vl+1)−Ψl(rl, vl)∥H2N
r

≲ 22l(N−k)cl.

As a corollary of this lemma, we remark that via Sobolev embeddings we also get uniform
difference bounds:

Corollary 7.3. In the region Ω̃[l] have

(7.10) ∥Ψl+1(rl+1, vl+1)−Ψl(r
l, vl)∥

C
3
2×C1

≲ 2−2δl, δ > 0.

This will serve later in the study of convergence of the regularized solutions.

Proof. We split

Ψl+1(rl+1, vl+1)−Ψl(rl, vl) = (Ψl+1 −Ψl)(rl+1, vl+1)−Ψl(rl+1 − rl, vl+1 − vl).

For the first term we use again the boundedness of Ψl and then (2.39) to conclude that

∥(Ψl+1 −Ψl)(rl+1, vl+1)∥H2N ≲ ∥(rl+1, vl+1)∥H2N ≲ 22l(N−k)cl,

and

∥(Ψl+1 −Ψl)(rl+1, vl+1)∥H ≲ 2−2lN∥(rl+1, vl+1)∥H2N ≲ 2−2lkcl

as needed.
For the second term we use again the H2N boundedness, but for the H bound we use

instead the difference bound (7.5) together with the H bound

∥Ψl(rl+1 − rl, vl+1 − vl)∥2H ≲ D((rl+1, vl+1), (rl, vl)),

and conclude using (7.5). □

By the above Lemma we can place the telescopic term into (sl, wl), with norm cl and thus,
by Lemma 2.5, we obtain the desired bound (7.6) and conclude our bootstrap argument.

7.3. The limiting solution. Here we show that the limit

(7.11) (r, v) = lim
h→∞

(rh, vh)

exists, first in a weaker topology and then in the strong H2k topology.
As before, the smooth solutions (rh, vh) do not have common domains. However, by

Lemma 7.1 the limit

Ω = lim
h→∞

Ωh

exists, has a Lipschitz boundary Γ, and further we have

d(Γ,Γh) ≲ 2−h(2+δ).
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For this reason, it is convenient to consider instead the limit

(r, v) = lim
h→∞

Ψh(rh, vh),

where the functions on the right are all defined in Ω. Indeed, by Lemma 7.2 we see that we
have convergence in H, and, by interpolation, in H2k1 for all k1 < k.

To obtain convergence in H2k
r , we write

(r, v) = Ψ0(r0, v0) +
∞∑
j=0

Ψl+1(rl+1, vl+1)−Ψl(rl, vl),

and view the telescopic sum as a generalized Littlewood-Paley decomposition of (r, v). Then
Lemma 7.2 shows that (r, v) is in H2k, with norm

(7.12) ∥(r, v)∥H2k ≲ ∥ch∥l2 .

We also see that we have convergence in H2k, namely

(7.13) ∥Ψl(rl, vl)− (r, v)∥H2k ≲ ∥c≥l∥l2 → 0.

We also show that we have strong convergence of (rh, vh) in H2k in the sense of Defini-
tion 2.6. Indeed, it suffices to compare it with the constant sequence Ψl(rm, vm). Then for
l ≥ m we have

(7.14) ∥(rl, vl)−Ψm(rm, vm)∥H2k ≲ ∥c≥m∥l2 → 0

The same relations also show the continuity of (r, v) in H2k as functions of time.

7.4. Continuous dependence. We consider a sequence of initial data (r
(n)
0 , v

(n)
0 ) which

converges to (r0, v0) inH2k in the sense of Definition 2.6, and will show that the corresponding
solutions (r(n), v(n)) converge to (r, v).
The first observation is that the H2k convergence implies H2k uniform boundedness for

(r
(n)
0 , v

(n)
0 ), which in turn implies a uniform lifespan bound for the solutions as well as a

uniform bound in H2k.
Our strategy to prove convergence is to compare this family of solutions with the limit

(r, v) via the regularizations used in the construction of rough solutions. Precisely, denote

by (r
(n),h
0 , v

(n),h
0 ) respectively (rh0 , v

h
0 ) the regularized data sets, for which we have the obvious

convergence

(r
(n),h
0 , v

(n),h
0 ) → (rh0 , v

h
0 ) in C∞.

These are also uniformly bounded in H2k and thus have a uniform lifespan.

Denoting by c
(n)
h corresponding frequency envelopes for (r

(n)
0 , v

(n)
0 ), we have the difference

bounds

∥Ψh(r(n),h, v(n),h)− (r(n), v(n))∥H2k ≲ c
(n)
≥h.

To finish the proof we need to establish two facts:

• For each ϵ > 0, the frequency envelopes c
(n)
h can be chosen so that17

lim sup
h→∞

sup
n

c
(n)
≥h ≤ ϵ.

17One can do better than that and ensure that the limit is zero, but that is not needed for our argument.
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• We have the C∞ convergence

Ψh(r(n),h, v(n),h) → Ψh(rh, vh).

(i) Equicontinuity of frequency envelopes. This is easily achieved via the decomposition

(r
(n)
0 , v

(n)
0 ) = (rsmooth

0 , vsmooth
0 ) +OH2k(ϵ),

which holds for each ϵ. The smooth part yields envelopes which are uniformly decreasing,
and the error term yields ϵ sized envelopes.

(ii) C∞ convergence. Here we have uniform H2N bounds for the sequence (r(n),h, v(n),h),
as well as weak convergence, in the sense that

D((r(n),h, v(n),h), (rh, vh)) → 0.

The last property implies domain convergence. Then we have L2 convergence away from a
2−2h boundary layer, which in turn shows convergence of the regularizations in C∞.

7.5. The lifespan of rough solutions. Here we complete the proof of our last result in
Theorem 4. Thus, we consider a rough initial data (r0, v0) ∈ H2k and a corresponding
solution (r, v) in a time interval [0, T ) with the property that

(7.15)

ˆ T

0

B(t) dt = C < ∞.

By the local well-posedness result, in order to prove the theorem it suffices to show that we
have a uniform bound

(7.16) sup
t∈[0,T ]

∥(r, v)∥H2k < ∞.

We consider the regularized data (rh0 , v
h
0 ) and the corresponding solutions (rh, vh). By the

continuous dependence theorem we know that these solutions converge to (r, v) in [0, T ), and
in particular their lifespans T h satisfy

lim inf
h→∞

T h ≥ T.

What we do not have is a uniform bound for their corresponding control parameters Bh. To
rectify this, we consider a large parameter h0, to be chosen later, and we will show that, for
h > h0, the solutions (rh, vh) persist up to time T with uniform bounds

(7.17)

ˆ T

0

Bh(t)dt ≤ 2C, h ≥ h0.

If that were the case, then by the local well-posedness proof it follows that the solutions
(rh, vh) remain uniformly bounded in H2k and converge to (r, h), thereby concluding the
proof.

To establish the bound (7.17) we will run a bootstrap argument. Precisely, we assume
that on a time interval [0, T0] with T0 < T we have a uniform bound

(7.18)

ˆ T0

0

Bh(t)dt ≤ 4C, h ≥ h0.
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Then we will show that in effect we must have the better bound

(7.19)

ˆ T0

0

Bh(t)dt ≤ 2C, h ≥ h0.

That would suffice, for then the local well-posedness argument would yield a uniform for
(rh, vh) in H2k and thus allow us to expand the interval [0, T0] on which the bootstrap
assumption holds, uniformly with respect to h ≥ h0.

Our goal now is to compare Bh and B. Precisely, we aim to show that

(7.20) Bh ≲ C1B + C22
−δh, δ > 0,

with a universal constant C1 but C2 depending both on the initial data size and on C above.
This suffices in order to establish (7.19), because we are allowed to choose the threshold h0

sufficiently large, depending on parameters which are fixed in the problem.
The tools we have at our disposal are
(i) a high frequency bound, provided by our energy estimates in (3), namely (7.3),
(ii) the difference bound (7.5).
The constants in both bounds depend exactly on the H2k norm initial data and on C

above.
The difficulty we have in comparing Bh and B is that the two solutions are supported

in different domains Ω respectively Ωh. However, the difference bound (7.5) allows us to
apply Lemma 7.1 to conclude that the two domains are at distance ≲ 2−h(2+δ). Thus, rather
than comparing (r, v) and (rh, vh), it is better to compare their regularizations Ψh(r, v) and
Ψh(rh, vh), which are defined on 2−2h enlargements of the domains, which in particular cover
the union of Ω and Ωh. By a slight abuse of notation, we will identify their domains.

We begin with Ψh(r, v), for which we have the straightforward bound

(7.21) ∥∇Ψh(r, v)∥
C̃0, 12×L∞ ≤ C1B.

This is where the universal constant C1 appears.
Next we compare Ψh(r, v) and Ψh(rh, vh). Here we take a telescopic sum,

Ψh(r, v)−Ψh(rh, vh) =
∞∑
l=h

Ψh(rl+1, vl+1)−Ψh(rl, vl).

Using the difference bound (7.5), we can estimate the successive terms in all H2m
rh

norms,

∥Ψh(rl+1, vl+1)−Ψh(rl, vl)∥H2m
rh

≲ cl2
−2kl22mh, m ≥ 0,

which after summation yields

∥Ψh(r, v)−Ψh(rl, vl)∥H2m
rh

≲ cl2
−2kh22mh, m ≥ 0.

Now we can use Sobolev embeddings to conclude that18

(7.22) ∥∇(Ψh(r, v)−Ψh(rh, vh))∥
C̃0, 12×L∞ ≲ 2−δh.

Finally, using (7.3), we compare Ψh(rh, vh) with (rh, vh), estimating also the low frequen-
cies,

∥(rh, vh)−Ψh(rh, vh)∥H2m
rh

≲ cl2
−2kh22mh m ≥ 0.

18From Sobolev embeddings we get in effect a Ċ
1
2 bound for the first component.
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Using Sobolev embeddings again, we conclude that

(7.23) ∥∇((rh, vh)−Ψh(rh, vh))∥
C̃0, 12×L∞ ≲ 2−δh.

Now (7.20) is obtained by combining (7.21), (7.22) and (7.23), and the proof of the theorem
is concluded.
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