

1 **Why do viruses make aphids winged?**

2

3 Paula Rozo-Lopez & Benjamin J. Parker*

4

5 Department of Microbiology, University of Tennessee, Knoxville, TN 37916, USA

6

7 * bjp@utk.edu

8

9 ORCIDs: PRL - 0000-0001-9207-6579; BJP - 0000-0002-0679-4732

10 ABSTRACT

11

12 Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of
13 viruses is heavily influenced by aphid movement and behavior. Consequently, wing plasticity
14 (where individuals can be winged or wingless depending on environmental conditions) is an
15 important factor in the spread of aphid-associated viruses. We review several fascinating
16 systems where aphid-vectored plant viruses interact with aphid wing plasticity, both indirectly by
17 manipulating plant physiology and directly through molecular interactions with plasticity
18 pathways. We also cover recent examples where aphid-specific viruses and endogenous viral
19 elements within aphid genomes influence wing formation. We discuss why unrelated viruses
20 with different transmission modes have convergently evolved to manipulate wing formation in
21 aphids and whether this is advantageous for both host and virus. We argue that interactions with
22 viruses are likely shaping the evolution of wing plasticity within and across aphid species, and
23 we discuss the potential importance of these findings for aphid biocontrol.

24

25

26 RESUMEN: ¿POR QUÉ LOS VIRUS HACEN QUE LOS ÁFIDOS DESARROLLEN ALAS?

27

28 Los áfidos albergan diversos virus y son vectores de importantes patógenos de plantas. La
29 propagación de virus está fuertemente influenciada por el movimiento y el comportamiento de
30 los áfidos. En consecuencia, la plasticidad de las alas (en la cual algunos individuos desarrollan
31 alas dependiendo de las condiciones ambientales) es un factor importante en la propagación
32 viral asociada a los áfidos. En este documento revisamos varios ejemplos fascinantes en los
33 que virus de plantas transmitidos por áfidos interactúan con la plasticidad fenotípica de las alas,
34 indirectamente manipulando la fisiología de la planta y directamente a través de interacciones
35 moleculares con los mecanismos de plasticidad fenotípica del áfido. También describimos
36 ejemplos recientes que demuestran como algunos virus específicos de áfidos y elementos
37 virales endógenos localizados en los genomas de áfidos influyen en la formación de alas.
38 Últimamente, discutimos por qué virus no relacionados con diferentes modos de transmisión
39 han evolucionado convergentemente para manipular la formación de alas en áfidos y si este
40 fenómeno es beneficioso para el insecto y el virus. Nosotros objetamos que las interacciones
41 con virus están probablemente influenciando la evolución intra- e interespecífica de la
42 plasticidad de las alas en áfidos, y discutimos el potencial de estos hallazgos para el control
43 biológico de los áfidos.

44

45

46 KEY WORDS: aphids, viruses, plasticity, biocontrol

47 Wing development is a phenotypically plastic trait in many insects, allowing for a rapid response
48 to changing environmental conditions (Simpson et al., 2011). In some species, discrete winged
49 and wingless morphs are produced in response to stimuli such as population density, food
50 availability, or host plant quality (referred to as 'polyphenism'). Winged morph individuals,
51 termed 'alates,' have fully developed flight muscles and wings but suffer reduced reproductive
52 output compared with unwinged morphs (Yang and Pospisilik, 2019, Hayes et al., 2019).
53 Because of this tradeoff between fecundity and dispersal, wing plasticity must be finely tuned to
54 environmental conditions (Nettle and Bateson, 2015).

55

56 Plastic wing production is orchestrated at multiple levels, starting with the perception of
57 environmental cues, signaling pathways, and then the physical production of wings. Aphids, in
58 particular, are a model system for studying the ecology and molecular biology of insect wing
59 plasticity (Brisson and Stern, 2006). Some aphid species exhibit trans-generational wing
60 plasticity where signals of crowding trigger the production of offspring that eventually develop
61 wings. In other species, developing juveniles directly sense the environment (Muller et al.,
62 2001). The molecular mechanisms of wing plasticity have been most thoroughly investigated in
63 pea aphids (*Acyrthosiphon pisum*), where signals of crowding trigger a decrease in ecdysone
64 signaling in adult asexual females (Vellichirammal et al., 2017), which further elicits changes in
65 insulin signaling in developing embryos leading to winged offspring (Grantham et al., 2020).
66 Investigations in other aphid species have also implicated microRNAs (miRNAs) in the
67 regulation of wing plasticity, potentially through their post-transcriptional action on insulin and
68 insulin-like signaling pathways (Shang et al., 2020, Li et al., 2022). Collectively, the roles of
69 neuro-endocrine signaling pathways and epigenetic mechanisms in wing plasticity seem likely to
70 be fundamental across aphids and other insects (reviewed in Zhang et al., 2019).

71

72 Winged individuals migrate to new habitats, and wing plasticity is therefore critical for aphid
73 movement and dispersal. Winged aphids have, perhaps unsurprisingly, been shown to be
74 important in the transmission of viruses associated with aphids (Table 1 and references therein).
75 The role of winged aphids in viral spread has been best studied in agriculturally relevant plant
76 pathogens that are vectored by aphids. For example, a longitudinal study of *Plum pox virus*
77 (PPV) transmission using data collected across hundreds of orchards showed that long-range
78 dispersal by winged aphids is needed to explain PPV spread within and among orchards
79 (Pleydell et al., 2018). Epidemiologically, plant virus spread is correlated with the number of

80 vector visits per plant per day, and therefore an increase in the number of winged aphids
81 feeding on virus-infected plants is an important factor driving viral transmission (Madden et al.,
82 2000).

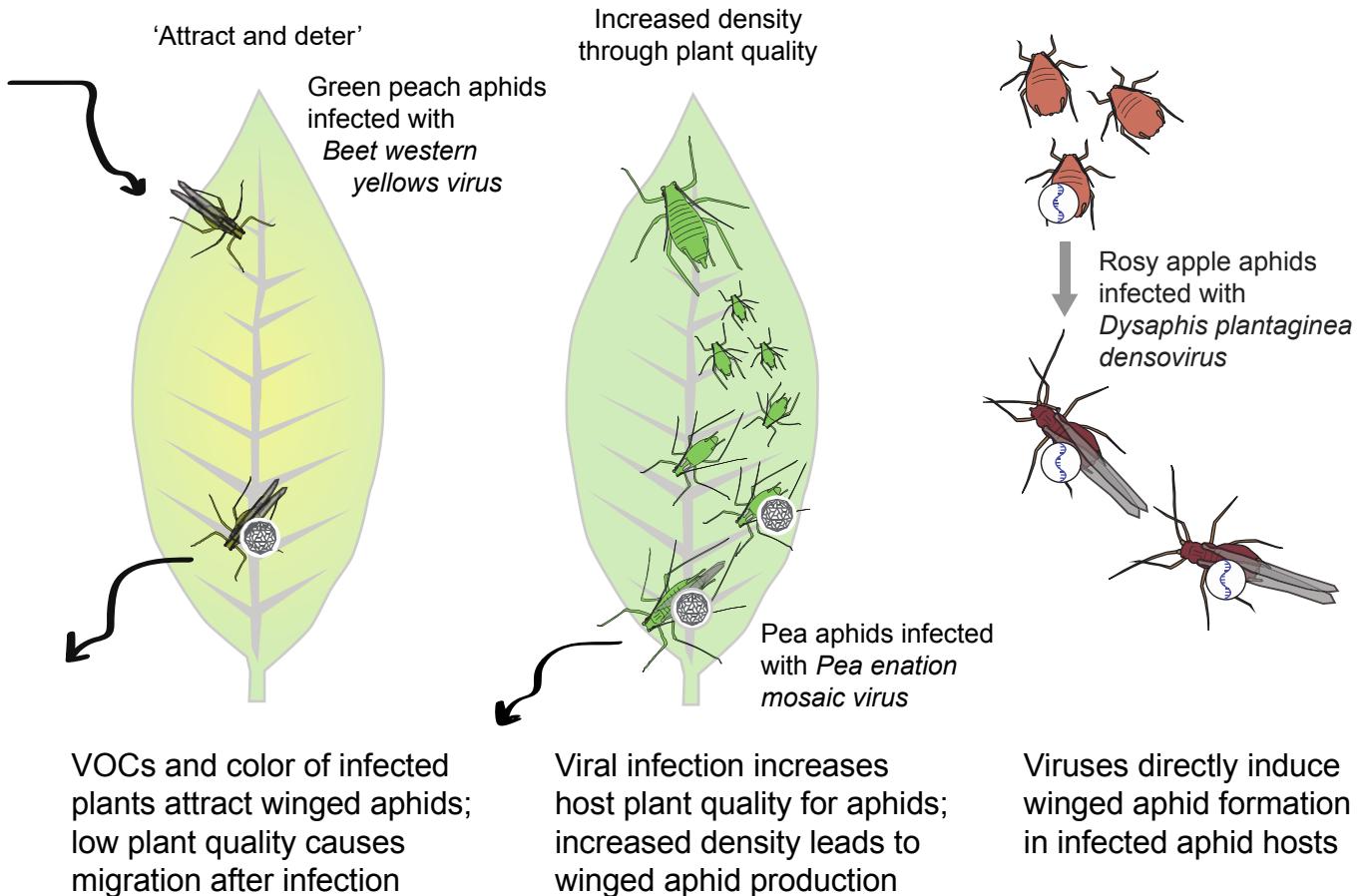
83
84 Interestingly, unrelated viruses have evolved to manipulate wing plasticity both through changes
85 in plant volatile organic compounds (VOCs) and/or host plant quality and through direct
86 interactions with aphid wing plasticity pathways (Jayasinghe et al., 2021, Mauck et al., 2010). In
87 this article, we review these systems and discuss why viruses with different transmission modes
88 may have evolved to manipulate wing formation in aphids and whether this is advantageous for
89 hosts and/or viruses. We argue that interactions between viruses and wing plasticity are likely
90 widespread across the aphid phylogeny and are shaping the evolution of plasticity within and
91 across species. We also highlight the importance of studying these interactions in a broader
92 ecological and evolutionary context and the potential implications for aphid biocontrol.
93

94 **Table 1.** Examples of links between viruses and winged aphids.
95

Virus	Viral family (genome)	Aphid species studied	Host plant	Transmission mechanism	Wing induction	Reference
<i>Cucumber mosaic virus</i> (CMV)	Bromoviridae (ss(+)RNA)	<i>Myzus persicae</i>	<i>Nicotiana tabacum</i>	non-persistent	The number of winged aphids is higher on CMV-infected plants CMV + Y-sat infected plants turn leaves yellow, which preferentially attracts aphids; aphids fed on plants that harbor Y-sat develop wings	(Shi et al., 2016)
<i>Cucumber mosaic virus</i> (CMV) and sat-derived small RNA (Y-sat)	Bromoviridae (ss(+)RNA) and satellite RNA (satRNA)	<i>Myzus persicae</i>	<i>Nicotiana tabacum</i>	non-persistent		(Jayasinghe et al., 2021)
<i>Potato virus Y</i> (PVY)	Potyviridae (ss(+)RNA)	Multiple, including <i>Rhopalosiphum padi</i> and <i>Aphis fabae</i>	<i>Solanum tuberosum</i>	non-persistent	PVY epidemics correlate with an elevated number of winged aphids	(Sigvald, 1989)
<i>Turnip mosaic virus</i> (TuMV)	Potyviridae (ss(+)RNA)	<i>Myzus persicae</i>	<i>Nicotiana benthamiana</i>	non-persistent	Winged aphids are more abundant on TuMV-infected plants than on control plants	(Casteel et al., 2014)
<i>Zucchini yellow mosaic virus</i> (ZYMV)	Potyviridae (ss(+)RNA)	<i>Aphis gossypii</i>	<i>Cucurbita pepo</i>	non-persistent	Early stages of ZYMV infection stimulate wing formation in field experiments	(Blua and Perring, 1992)
<i>Beet western yellows virus</i> (BWYV)	Luteoviridae (ss(+)RNA)	<i>Myzus persicae</i>	<i>Beta vulgaris</i>	persistent	Winged aphids are more likely to be found on virus-infected sugar beet leaves than on healthy leaves	(Macias and Mink, 1969)
<i>Barley yellow dwarf virus</i> (BYDV)	Luteoviridae (ss(+)RNA)	<i>Sitobion avenae</i> and <i>Rhopalosiphum padi</i>	<i>Avena byzantin</i>	persistent	Aphids reared on BYDV-infected oats are more likely to mature as winged adults	(Gildow, 1980)
<i>Pea enation mosaic virus</i> (PEMV)	Luteoviridae (ss(+)RNA)	<i>Acyrthosiphon pisum</i>	<i>Pisum sativum</i>	persistent	Adults crowded onto PEMV-infected plants produce more winged progeny	(Hodge and Powell, 2010)

<i>Potato leafroll virus</i> (PLRV)	Luteoviridae (ss(+)RNA)	<i>Myzus persicae</i>	<i>Solanum tuberosum</i>	persistent	Winged aphids preferentially colonize PLRV-infected plants	(Eigenbrode et al., 2002)
<i>Dysaphis plantaginea densovirus</i> (DpIDNV)	Parvoviridae (dsDNA)	<i>Dysaphis plantaginea</i>	<i>Plantago longifolia</i>	insect specific	DpIDNV infection in asexual clones produces a high percentage of winged offspring	(Ryabov et al., 2009)
<i>Myzus persicae densovirus</i> (MpDNV)	Parvoviridae (dsDNA)	<i>Myzus persicae</i>	<i>Nicotiana benthamiana</i>	insect specific	MpDNV infection correlates with winged aphid formation	(Pinheiro et al., 2019)

96


97 **Vectored viruses are indirectly linked with winged aphids through host plant**
 98 **manipulation.** Winged aphids find host plants using visual and olfactory cues (Döring, 2014).
 99 Plant leaf color and VOCs are important cues in aphid host-finding behavior (Chapman et al.,
 100 1981). Interestingly, viruses have evolved to take advantage of these aspects of aphid biology
 101 by altering plant physiology to attract winged aphids (Figure 1A). For example, some aphid-
 102 vectored plant viruses change the color of infected leaf tissue to light green or yellow by
 103 targeting plant chloroplast structure and function (Li et al., 2016). The lighter leaf color attracts
 104 winged aphids (Hodge and Powell, 2008) which then become exposed to the virus. Infected
 105 plants have also been shown to produce elevated emissions of attractive VOCs through
 106 changes in plant secondary metabolism (Safari Murhububa et al., 2021). Winged aphids are
 107 more sensitive to VOCs than unwinged individuals (Zhang et al., 2021), and increasing
 108 attractive VOC emissions increases colonization by winged aphids (Mauck et al., 2010, Mauck
 109 et al., 2012, Safari Murhububa et al., 2021).

110

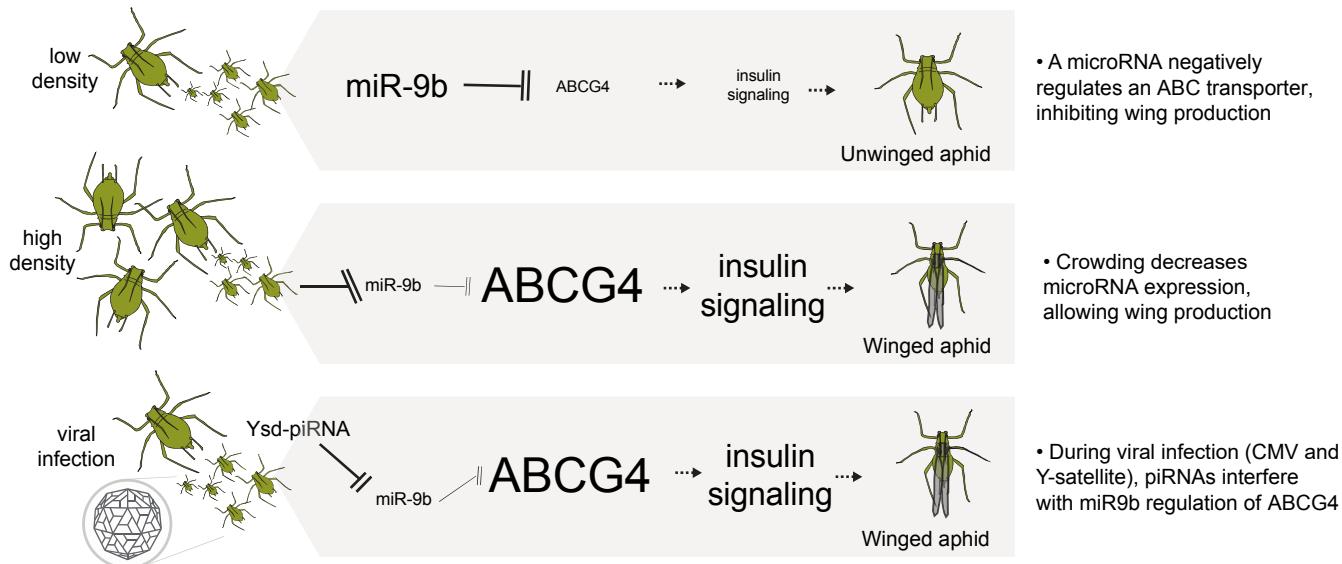
111 After attraction to a new plant, host selection (whether an aphid remains on a plant after landing)
 112 can also be manipulated by viruses. Importantly, the direction in which this occurs varies across
 113 viruses and even among the same virus infecting different host plants. Many aphid-vectored
 114 viruses are localized only on the mouthparts of their aphid vector (e.g., families *Bromoviridae*
 115 and *Potyviridae*). These are acquired in just a few seconds after probing and are thought to
 116 make the aphid infectious for short periods of time (Gray and Banerjee, 1999, Ng and Perry,
 117 2004). Important to the transmission of many of these ‘non-persistent’ viruses is the need for
 118 rapid dispersal of aphids to uninfected plants. Some viruses have evolved to quickly deter
 119 winged aphids, potentially by reducing host plant quality (Shi et al., 2016) and/or by modifying
 120 plant defenses against herbivores like the salicylic acid (SA) and jasmonic acid (JA) plant
 121 defensive pathways (Wu and Ye, 2020). Together, the viral-induced attraction of winged aphids
 122 through color and/or VOCs and the subsequent deterrence of selection by the aphid is referred
 123 to in the literature as the ‘attract and deter’ phenotype (Figure 1A).

124

A Indirect interactions with winged aphids via host plant B Direct wing induction

Figure 1: Indirect (A) and direct (B) interactions between viruses and aphid wing plasticity. This figure shows three examples of how viruses interact with aphid wing formation. Panel A shows two ways in which aphid-vectored plant viruses manipulate winged aphids indirectly through a host plant. The 'attract and deter' phenotype refers (left) to viruses (e.g. *Beet western yellow virus* vectored by *Myzus persicae*) that attract and quickly infect winged aphid vectors, and then deter winged aphids to disperse via altered host plant chemistry. Other viruses (e.g. *Pea enation mosaic virus* infecting *Acyrthosiphon pisum*) increase host plant quality (middle) leading to higher aphid density and winged aphid production. Viruses have also been shown to directly manipulate aphids (right) to form wings or produce winged offspring by interacting with aphid wing plasticity pathways (e.g. *Dysaphis plantaginea densovirus* infecting *Dysaphis plantaginea*).

In contrast, other aphid-vectored plant viruses increase host plant quality for hosts, prolonging aphid feeding after infection (Figure 1A). This has been found both in non-persistent viruses (e.g., *Potato virus Y* and *Zucchini yellow mosaic virus* (Boquel et al., 2010)) and among 'persistent' viruses (i.e., family *Luteoviridae*) that require a longer time to become infectious before transmission to new hosts (Ng and Perry, 2004, Gray and Banerjee, 1999). A possible mechanism for this manipulation involves the reduction of plant defense signaling (Mauck et al., 2012, Bosque-Perez and Eigenbrode, 2011) and changes in the concentrations of the plant's


146 amino acids, sugars, and proteins (Alexander and Cilia, 2016). For example, *Turnip mosaic*
147 *virus* (TuMV) promotes aphid settling on TuMV-infected plants by suppression of callose
148 deposition, an important plant defense (Howe and Jander, 2008, Campbell et al., 1986). TuMV
149 infection also increases free amino acid content of the phloem, a major source of nitrogen for
150 aphids (Casteel et al., 2014). Higher fecundity is achieved by aphids feeding on TuMV-infected
151 plants, which, presumably, can lead to wing induction due to overcrowding. Similarly, the
152 persistent *Turnip yellows virus* (TuYV) relies on aphid settlement for sustained periods on the
153 plants for successful virus acquisition and inoculation. Viral infection leads to decreased
154 expression of genes implicated in salicylic acid biosynthesis (Chesnais et al., 2022).

155

156 **Plant viruses directly manipulate winged aphid formation.** The examples of viral
157 manipulation of winged aphids discussed so far include indirect interactions between viruses
158 and winged aphids mediated through host plants. However, some viruses also directly
159 manipulate wing formation in aphids. This was recently described in *Cucumber mosaic virus*
160 (CMV), a non-persistent virus that is vectored by dozens of aphid species and is capable of
161 infecting a wide range of plant hosts (Jacquemond, 2012). CMV is sometimes associated with a
162 satellite RNA called Y-sat, which induces bright yellow symptoms in host plants and attracts
163 aphids (Shimura et al., 2011). A recent study found that green peach aphids (*Myzus persicae*)
164 fed as 1-day-old first instar larvae on yellow plants harboring CMV and Y-sat subsequently
165 developed wings (Jayasinghe et al., 2021). The wing induction was shown to be a result of
166 sequence complementarity between a Y-sat-derived piwi-RNA (piRNA) and an aphid microRNA
167 (miRNA) called miR-9b (Figure 2). The aphid miR-9b regulates the expression of genes
168 regulating wing formation (Shang et al., 2020). Adult aphids infected as first instars with CMV +
169 Y-sat had higher expression levels of aphid genes that influence wing plasticity (Jayasinghe et
170 al., 2021), including an ABC transporter that is thought to influence wing formation through
171 insulin signaling (Shang et al., 2020).

172

173 **Cucumber mosaic virus (CMV) & Y-sat infecting green peach aphids (*Myzus persicae*)**

Figure 2: Cucumber mosaic virus and its satellite virus in *Myzus persicae*. This figure illustrates the molecular mechanism of direct viral induction of wing formation by CMV in green peach aphids. The top panel shows virus-free aphids in low-density conditions, which have relatively high levels of expression of a miRNA that negatively regulates insulin signaling and does not lead to wing development. The middle panel shows aphids in high-density conditions, which reduces miRNA expression and allows wing development. The bottom figure shows aphids infected with CMV + Y-sat, which interferes with the aphid miRNA, regulating insulin signaling, and leading to wing formation.

Though this direct manipulation of aphid wing plasticity has only been studied mechanistically in one aphid-vectored plant pathogen, this is likely a more widespread phenomenon across aphid-virus interactions. In many previous studies (Table 1), the link between viral infection and the presence of winged aphids has been assumed to be the result of indirect manipulation through host plants, but some of these viruses may instead be directly inducing wings through unexplored mechanisms. Future studies should focus on viruses that have demonstrated impacts on aphid growth and reproduction (e.g., *Potyviruses* and *Luteoviruses* (Bosque-Perez and Eigenbrode, 2011, Gadhave et al., 2019)). Proteins encoded by the genomes of CMV, Cauliflower mosaic virus (CaMV), Barley stripe mosaic virus (BSMV), Tomato yellow leaf curl virus (TYLCV), and Cotton leaf curl Multan virus (CLCuMuV) are known to interact with the autophagy and ubiquitin-proteasome degradation pathways (Li et al., 2018, Ismayil et al., 2020, Yang et al., 2018, Cheng and Wang, 2017, Hafrén et al., 2017), which could affect insect metabolism and thereby manipulate nutrient absorption and wing development.

Insect specific viruses and endogenous viral elements directly induce wing formation. In addition to plant viruses, a group of insect-specific densoviruses (DNVs, family *Parvoviridae*)

199 have also been directly linked to wing formation in aphids (Figure 1B). Rosy apple aphids
200 (*Dysaphis plantaginea*) infected with *Dysaphis plantaginea densovirus* (DpIDNV) were shown to
201 produce winged offspring in response to crowding and poor host plant quality, while virus-free
202 aphids produced no winged offspring, suggesting the virus is inducing winged offspring
203 formation (Ryabov et al., 2009). Relatedly, *Myzus persicae densovirus* (MpDNV) infection titers
204 were found to be correlated with wing induction in *M. persicae*, though this study did not directly
205 test for a causal link between MpDNV and wing induction (Pinheiro et al., 2019). The underlying
206 molecular mechanisms of wing induction by densoviruses are not yet known but could involve
207 direct molecular interactions of small RNAs with wing plasticity pathways or effects of an aphid
208 immune response to viral infection on wing induction.

209
210 Remarkably, some densoviral genes have become incorporated into many aphid genomes, and
211 these endogenous viral elements (EVEs) play a role in wing formation. In pea aphids, two genes
212 with close homology to a DpIDNV non-structural protein (NS1) are up-regulated in response to
213 crowding and play a functional role in wing induction (Parker and Brisson, 2019). The underlying
214 molecular mechanisms are unknown, but EVEs often function in insect genomes as cis-
215 regulatory DNA elements such as enhancers or promoters and can produce small RNAs as
216 targeted immunity against cognate viruses (Blair et al., 2020). Many aphid species in addition to
217 *A. pisum* have transcribed densoviral EVEs (Clavijo et al., 2016, Liu et al., 2011), but the effects
218 on wing formation in these other species are unknown.

219
220 **Is direct viral induction of wings advantageous for aphids?** The examples shown above
221 demonstrate that multiple, unrelated viruses with different life history strategies have
222 convergently evolved to manipulate wing plasticity in their aphid vectors and/or hosts. Multiple
223 authors have argued that viral manipulation of wing induction is advantageous for aphids both
224 as vectors of plant pathogens (Ray and Casteel, 2022) and as hosts (Ryabov et al., 2009).
225 These arguments revolve around the potential benefits to aphids of increased dispersal and
226 host range expansion. DpIDNV, in particular, was shown to facilitate dispersal of *D. plantaginea*
227 under both laboratory and field conditions (Ryabov et al., 2009), and has been cited in the
228 literature as providing a conditional benefit to its host and therefore acting as a mutualist (e.g.
229 Roossinck, 2011).

230

231 We think these arguments are potentially problematic for several reasons. First, studies make
232 the assumption that because DpIDNV is vertically transmitted, wing induction must be
233 advantageous for aphids because providing a benefit to hosts is needed for the virus to spread.
234 However, the extent to which DpIDNV affects aphid survival and fecundity, whether it provides
235 benefits like resistance to pathogenic viruses (as is seen in other insect-Densovirus systems
236 (Johnson and Rasgon, 2018)), and the extent to which DpIDNV is also horizontally transmitted
237 remain to be explored. Second, DpIDNV is described as being required for wing induction and,
238 therefore, essential for *D. plantaginea* movement and dispersal. But little is known about the
239 phenotypic or molecular mechanisms of wing induction in this aphid species and whether
240 dependence on the virus for wing induction is a feature or an evolved response to viral
241 manipulation. Like other phenotypically plastic traits, wing plasticity exhibits genetic variation,
242 where genotypes differ in their sensitivity to environmental cues. Aphid clonal lineages and
243 populations differ in their response to environmental cues triggering wing formation (Grantham
244 et al., 2016, Sentis et al., 2019, Parker et al., 2021). One possibility is that it is difficult to induce
245 winged offspring in virus-free *D. plantaginea* because of evolution with manipulative
246 Densoviruses, i.e., the aphid has had to evolve to compensate for viral wing induction through
247 changes to its own plasticity pathways. More broadly, it is currently unclear how viral
248 manipulation is shaping the evolution of wing plasticity within and across aphid species, but it
249 seems likely that the 'optimal' proportion of winged offspring born to an aphid differs from the
250 perspective of aphid fitness and viral transmission.

251

252 **Is viral wing induction advantageous for viruses?** Across numerous studies, there is another
253 common assumption that viruses benefit from manipulating winged aphid behavior or from
254 triggering wing formation. For example, there is a long-standing hypothesis that manipulating
255 plants to quickly deter winged aphids is beneficial for non-persistent viruses. Rapidly infected
256 aphids remain infectious for brief periods of time, and therefore deterring aphids quickly is
257 thought to increase transmission (Mauck, 2016, Carr et al., 2018). In contrast, when non-
258 persistent viruses encourage prolonged feeding, the assumption is that this strategy inhibits
259 transmission and reflects a non-adaptive mismatch between virus, vector, and/or plant (Mauck
260 et al., 2014).

261

262 However, recent studies have challenged these ideas. For example, a mathematical model of
263 non-persistent viruses vectored by aphids found that deterring winged aphids might be a self-

264 limiting strategy because it leads to a decrease in vector population size, leading to lower
265 epidemic sizes. Facilitating reproduction and the development of winged aphids could lead to
266 greater long-range virus transmission and larger-scale epidemics (Donnelly et al., 2019).
267 Mechanistic studies of viral manipulation have also challenged these hypotheses. For example,
268 CMV is expected to benefit from deterring winged aphids as a non-persistent virus, and studies
269 have found that in the absence of Y-sat the virus does decrease the quality of its host plant
270 through increased plant defense signaling (Shi et al., 2016). However, when co-infected with Y-
271 sat, there appears to be no reduction in photosynthesis or aphid fitness from CMV infection
272 (Jayasinghe et al., 2021), potentially allowing winged aphids to settle on plants and produce
273 more offspring that will eventually become winged due to direct manipulation by Y-sat. These
274 studies highlight the complexity of interactions between viruses and aphid wing plasticity and the
275 difficulty of ascribing adaptive value to wing induction for both aphids and virus.
276

277 **Disrupting wing formation may provide a means of biocontrol.** Aphid control has historically
278 relied on the use of chemical insecticides. However, routine applications of insecticides often
279 exhibit unintended effects on the environment and non-target organisms, while target pests
280 rapidly evolve resistance (Bragard et al., 2013, Bass et al., 2014). As an alternative, genetically
281 modified 'aphid-resistant' plants that express toxins or double-strand RNA inducing RNA
282 interference in aphids have been developed (Yu et al., 2014). This approach has showed
283 promising results in laboratory and semi-field settings. However, in larger agricultural settings,
284 the effectiveness is constrained by the dose-dependent efficiency of the target molecules
285 (natural environmental stress constrains the production of non-plant molecules), dsRNA
286 stability, the effectiveness of target gene selection across multiple generations (evolution of
287 resistance or detoxification mechanisms), and even limited unintended off-target effects on
288 beneficial insects (Zhang et al., 2013, Kolliopoulou et al., 2020).
289

290 A deeper understanding of how viruses interact with aphid wing plasticity could lead to new
291 approaches to minimizing viral disease transmission. For example, when crops are infected with
292 plant pathogenic viruses linked to aphid wing induction, the use of 'decoy' plants that are more
293 attractive to winged aphids could reduce viral spread within the harvest season (Moffett, 2016).
294 Next, dsRNA could be deployed as a sprayable RNA pesticide (Zhang et al., 2022) along with
295 virus-derived RNAs that show sequence complementarity with the aphid microRNAs to disrupt
296 wing development, suppress aphid migration, and control virus spread. The deployment of

297 insect-specific viruses that have no consequences to crops along with these dsRNA delivery
298 systems that generate defective wings could further prevent aphid dispersal and constrain aphid
299 reproduction. Similarly, densovirus-induced control has been shown to have great potential in
300 other insect systems (Johnson and Rasgon, 2018), and aphid specific densoviruses could be
301 used as a tool to limit aphid dispersal parallel to genetically modified effectors that, upon
302 delivery and expression, limit the expression of genes necessary for ingestion and digestion or
303 that intervene in vector competence.

304

305 **Conclusions.** Unrelated viruses have evolved to influence aphid wing plasticity indirectly and
306 directly. This manipulation has important effects on viral transmission and dispersal. Future work
307 is needed to uncover the molecular mechanisms of wing manipulation in different aphid-virus
308 systems, and to determine if and when wing induction is beneficial for hosts and viruses. There
309 is a clear need to exchange ideas between entomologists and virologists to motivate better
310 understanding of how viruses influence insect development. The decreasing costs of next-
311 generation sequencing are enabling high-throughput characterization of viruses in natural
312 populations, leading to a deeper understanding of the hidden roles of viruses in many insect
313 phenotypes. A particularly important and unanswered question is whether viruses are
314 contributing to the extensive phenotypic variation in wing plasticity found in natural aphid
315 populations. We think it is likely that viruses are shaping the evolution of wing plasticity within
316 and among species, and this will be an important consideration for future studies of this
317 important model of phenotypic plasticity.

318

319

320 **ACKNOWLEDGMENTS:** This work is supported by US National Science Foundation (NSF) Grant
321 IOS-2152954. BJP is Pew Scholar in the Biomedical Sciences, funded by the Pew Charitable
322 Trusts.

323

324 **CONFLICT OF INTEREST STATEMENT:** The authors declare no conflicts of interest.

325 REFERENCES:

326 ALEXANDER, M. M. & CILIA, M. 2016. A molecular tug-of-war: Global plant proteome changes
327 during viral infection. *Current Plant Biology*, 5, 13-24.

328 BASS, C., PUINEAN, A. M., ZIMMER, C. T., DENHOLM, I., FIELD, L. M., FOSTER, S. P.,
329 GUTBROD, O., NAUEN, R., SLATER, R. & WILLIAMSON, M. S. 2014. The evolution of
330 insecticide resistance in the peach potato aphid, *Myzus persicae*. *Insect Biochemistry
331 and Molecular Biology*, 51, 41-51.

332 BLAIR, C. D., OLSON, K. E. & BONIZZONI, M. 2020. The Widespread Occurrence and
333 Potential Biological Roles of Endogenous Viral Elements in Insect Genomes. *Curr Issues
334 Mol Biol*, 34, 13-30.

335 BLUA, M. J. & PERRING, T. M. 1992. Alatae production and population increase of aphid
336 vectors on virus-infected host plants. *Oecologia*, 92, 65-70.

337 BOQUEL, S., GIORDANENGO, P. & AMELINE, A. 2010. Divergent effects of PVY-infected
338 potato plant on aphids. *European Journal of Plant Pathology*, 129, 507-510.

339 BOSQUE-PEREZ, N. A. & EIGENBRODE, S. D. 2011. The influence of virus-induced changes
340 in plants on aphid vectors: insights from luteovirus pathosystems. *Virus Res*, 159, 201-5.

341 BRAGARD, C., CACIAGLI, P., LEMAIRE, O., LOPEZ-MOYA, J. J., MACFARLANE, S.,
342 PETERS, D., SUSI, P. & TORRANCE, L. 2013. Status and Prospects of Plant Virus
343 Control Through Interference with Vector Transmission. *Annual Review of
344 Phytopathology*, 51, 177-201.

345 BRISSON, J. A. & STERN, D. L. 2006. The pea aphid, *Acythosiphon pisum*: an emerging
346 genomic model system for ecological, developmental and evolutionary studies.
347 *Bioessays*, 28, 747-55.

348 CAMPBELL, B. C., JONES, K. C. & DREYER, D. L. 1986. Discriminative behavioral responses
349 by aphids to various plant matrix Polysaccharides. *Entomologia Experimentalis et
350 Applicata*, 41, 17-24.

351 CARR, J. P., DONNELLY, R., TUNGADI, T., MURPHY, A. M., JIANG, S., BRAVO-CAZAR, A.,
352 YOON, J. Y., CUNNIFFE, N. J., GLOVER, B. J. & GILLIGAN, C. A. 2018. Viral
353 Manipulation of Plant Stress Responses and Host Interactions With Insects. *Adv Virus
354 Res*, 102, 177-197.

355 CASTEEL, C. L., YANG, C., NANDURI, A. C., DE JONG, H. N., WHITHAM, S. A. & JANDER,
356 G. 2014. The Nla-Pro protein of Turnip mosaic virus improves growth and reproduction of
357 the aphid vector, *Myzus persicae* (green peach aphid). *Plant J*, 77, 653-63.

358 CHAPMAN, R. F., BERNAYS, E. A. & SIMPSON, S. J. 1981. Attraction and repulsion of the
359 aphid, *Cavariella aegopodii*, by Plant Odors. *J Chem Ecol*, 7, 881-8.

360 CHENG, X. & WANG, A. 2017. The Potyvirus Silencing Suppressor Protein VPg Mediates
361 Degradation of SGS3 via Ubiquitination and Autophagy Pathways. *Journal of Virology*,
362 91, e01478-16.

363 CHESNAIS, Q., GOLYAEV, V., VELT, A., RUSTENHOLZ, C., BRAULT, V., POOGGIN, M. M. &
364 DRUCKER, M. 2022. Comparative Plant Transcriptome Profiling of *Arabidopsis thaliana*
365 Col-0 and *Camelina sativa* var. Celine Infested with *Myzus persicae* Aphids Acquiring
366 Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations
367 Relevant to Aphid Feeding Behavior and Transmission. *Microbiol Spectr*, 10, e0013622.

368 CLAVIJO, G., VAN MUNSTER, M., MONSION, B., BOCHET, N. & BRAULT, V. 2016.
369 Transcription of densovirus endogenous sequences in the *Myzus persicae* genome. *J
370 Gen Virol*, 97, 1000-9.

371 DONNELLY, R., CUNNIFFE, N. J., CARR, J. P. & GILLIGAN, C. A. 2019. Pathogenic
372 modification of plants enhances long-distance dispersal of nonpersistently transmitted
373 viruses to new hosts. *Ecology*, 100, e02725.

374 DÖRING, T. F. 2014. How aphids find their host plants, and how they don't. *Annals of Applied
375 Biology*, 165, 3-26.

376 EIGENBRODE, S. D., DING, H., SHIEL, P. & BERGER, P. H. 2002. Volatiles from potato plants
377 infected with potato leafroll virus attract and arrest the virus vector, *Myzus persicae*
378 (Homoptera: Aphididae). *Proceedings of the Royal Society. B, Biological sciences*, 269,
379 455-460.

380 GADHAVE, K. R., DUTTA, B., COOLONG, T. & SRINIVASAN, R. 2019. A non-persistent aphid-
381 transmitted Potyvirus differentially alters the vector and non-vector biology through host
382 plant quality manipulation. *Sci Rep*, 9, 2503.

383 GILDOW, F. E. 1980. Increased production of alatae by aphids reared on oats infected with
384 Barley Yellow Dwarf Virus. *Annals of the Entomological Society of America*, 73, 343-347.

385 GRANTHAM, M. E., ANTONIO, C. J., O'NEIL, B. R., ZHAN, Y. X. & BRISDON, J. A. 2016. A
386 case for a joint strategy of diversified bet hedging and plasticity in the pea aphid wing
387 polyphenism. *Biol Lett*, 12.

388 GRANTHAM, M. E., SHINGLETON, A. W., DUDLEY, E. & BRISDON, J. A. 2020. Expression
389 profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin
390 growth factor signaling in morph differences. *Evol Dev*, 22, 257-268.

391 GRAY, S. M. & BANERJEE, N. 1999. Mechanisms of arthropod transmission of plant and
392 animal viruses. *Microbiol Mol Biol Rev*, 63, 128-48.

393 HAFRÉN, A., MACIA, J.-L., LOVE, A. J., MILNER, J. J., DRUCKER, M. & HOFIUS, D. 2017.
394 Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting
395 of viral capsid protein and particles. *Proceedings of the National Academy of Sciences*,
396 114, E2026-E2035.

397 HAYES, A. M., LAVINE, M. D., GOTOH, H., LIN, X. & LAVINE, L. C. 2019. Mechanisms
398 regulating phenotypic plasticity in wing polyphenic insects.

399 HODGE, S. & POWELL, G. 2008. Do Plant Viruses Facilitate Their Aphid Vectors by Inducing
400 Symptoms that Alter Behavior and Performance? *Environmental Entomology*, 37, 1573-
401 1581.

402 HODGE, S. & POWELL, G. 2010. Conditional facilitation of an aphid vector, *Acyrthosiphon
403 pisum*, by the plant pathogen, Pea Enation Mosaic Virus. *Journal of Insect Science*, 10.

404 HOWE, G. A. & JANDER, G. 2008. Plant Immunity to Insect Herbivores. *Annual Review of Plant
405 Biology*, 59, 41-66.

406 ISMAYIL, A., YANG, M. & LIU, Y. 2020. Role of autophagy during plant-virus interactions.
407 *Seminars in Cell & Developmental Biology*, 101, 36-40.

408 JACQUEMOND, M. 2012. Cucumber mosaic virus. *Adv Virus Res*, 84, 439-504.

409 JAYASINGHE, W. H., KIM, H., NAKADA, Y. & MASUTA, C. 2021. A plant virus satellite RNA
410 directly accelerates wing formation in its insect vector for spread. *Nat Commun*, 12, 7087.

411 JOHNSON, R. M. & RASGON, J. L. 2018. Densonucleosis viruses ('densoviruses') for mosquito
412 and pathogen control. *Curr Opin Insect Sci*, 28, 90-97.

413 KOLLIOPOLOU, A., KONTOGIANNATOS, D. & SWEVERS, L. 2020. The Use of Engineered
414 Plant Viruses in a Trans-Kingdom Silencing Strategy Against Their Insect Vectors. *Front
415 Plant Sci*, 11, 917.

416 LI, F., ZHANG, C., LI, Y., WU, G., HOU, X., ZHOU, X. & WANG, A. 2018. Beclin1 restricts RNA
417 virus infection in plants through suppression and degradation of the viral polymerase.
418 *Nature Communications*, 9, 1268.

419 LI, X., ZHANG, F., COATES, B., WEI, C., ZHU, X., ZHANG, Y. & ZHOU, X. 2022. Temporal
420 analysis of microRNAs associated with wing development in the English grain aphid,
421 *Sitobion avenae* (F.) (Homoptera: Aphididae). *Insect Biochem Mol Biol*, 142, 103579.

422 LI, Y., CUI, H., CUI, X. & WANG, A. 2016. The altered photosynthetic machinery during
423 compatible virus infection. *Curr Opin Virol*, 17, 19-24.

424 LIU, H., FU, Y., XIE, J., CHENG, J., GHABRIAL, S. A., LI, G., PENG, Y., YI, X. & JIANG, D.
425 2011. Widespread endogenization of densoviruses and parvoviruses in animal and
426 human genomes. *J Virol*, 85, 9863-76.

427 MACIAS, W. & MINK, G. I. 1969. Preference of green peach aphids for virus-infected sugar beet
428 leaves. *Journal of Economic Entomology*, 62, 28-29.

429 MADDEN, L. V., JEGER, M. J. & VAN DEN BOSCH, F. 2000. A theoretical assessment of the
430 effects of vector-virus transmission mechanism on plant virus disease epidemics.
431 *Phytopathology*, 90, 576-94.

432 MAUCK, K., BOSQUE-PÉREZ, N. A., EIGENBRODE, S. D., DE MORAES, C. M., MESCHER,
433 M. C. & FOX, C. 2012. Transmission mechanisms shape pathogen effects on host-vector
434 interactions: evidence from plant viruses. *Functional Ecology*, 26, 1162-1175.

435 MAUCK, K. E. 2016. Variation in virus effects on host plant phenotypes and insect vector
436 behavior: what can it teach us about virus evolution? *Curr Opin Virol*, 21, 114-123.

437 MAUCK, K. E., DE MORAES, C. M. & MESCHER, M. C. 2010. Deceptive chemical signals
438 induced by a plant virus attract insect vectors to inferior hosts. *Proc Natl Acad Sci U S A*,
439 107, 3600-5.

440 MAUCK, K. E., DE MORAES, C. M. & MESCHER, M. C. 2014. Evidence of local adaptation in
441 plant virus effects on host-vector interactions. *Integr Comp Biol*, 54, 193-209.

442 MOFFETT, P. 2016. Using Decoys to Detect Pathogens: An Integrated Approach. *Trends in
443 Plant Science*, 21, 369-370.

444 MULLER, C. B., WILLIAMS, I. S. & HARDIE, J. 2001. The role of nutrition, crowding and
445 interspecific interactions in the development of winged aphids. *Ecological Entomology*, 26,
446 330-340.

447 NETTLE, D. & BATESON, M. 2015. Adaptive developmental plasticity: what is it, how can we
448 recognize it and when can it evolve? *Proc Biol Sci*, 282, 20151005.

449 NG, J. C. & PERRY, K. L. 2004. Transmission of plant viruses by aphid vectors. *Mol Plant
450 Pathol*, 5, 505-11.

451 PARKER, B. J. & BRISSON, J. A. 2019. A Laterally Transferred Viral Gene Modifies Aphid Wing
452 Plasticity. *Curr Biol*, 29, 2098-2103 e5.

453 PARKER, B. J., DRISCOLL, R. M. H., GRANTHAM, M. E., HRCEK, J. & BRISSON, J. A. 2021.
454 Wing plasticity and associated gene expression varies across the pea aphid biotype
455 complex. *Evolution*, 75, 1143-1149.

456 PINHEIRO, P. V., WILSON, J. R., XU, Y., ZHENG, Y., REBELO, A. R., FATTAH-HOSSEINI, S.,
457 KRUSE, A., DOS SILVA, R. S., XU, Y., KRAMER, M., GIOVANNONI, J., FEI, Z., GRAY,
458 S. & HECK, M. 2019. Plant Viruses Transmitted in Two Different Modes Produce
459 Differing Effects on Small RNA-Mediated Processes in Their Aphid Vector. *Phytobiomes
460 Journal*, 3, 71-81.

461 PLEYDELL, D. R. J., SOUBEYRAND, S., DALLOT, S., LABONNE, G., CHADOEUF, J.,
462 JACQUOT, E. & THEBAUD, G. 2018. Estimation of the dispersal distances of an aphid-
463 borne virus in a patchy landscape. *PLoS Comput Biol*, 14, e1006085.

464 RAY, S. & CASTEEL, C. L. 2022. Effector-mediated plant-virus-vector interactions. *Plant Cell*,
465 34, 1514-1531.

466 ROOSSINCK, M. J. 2011. The good viruses: viral mutualistic symbioses. *Nat Rev Microbiol*, 9,
467 99-108.

468 RYABOV, E. V., KEANE, G., NAISH, N., EVERED, C. & WINSTANLEY, D. 2009. Densovirus
469 induces winged morphs in asexual clones of the rosy apple aphid, *Dysaphis plantaginis*.
470 *Proc Natl Acad Sci U S A*, 106, 8465-70.

471 SAFARI MURHUBUBA, I., TOUGERON, K., BRAGARD, C., FAUCONNIER, M.-L., BISIMWA
472 BASENGERE, E., WALANGULULU MASAMBA, J. & HANCE, T. 2021. Banana Tree
473 Infected with Banana Bunchy Top Virus Attracts *Pentalonia nigronervosa* Aphids Through

474 Increased Volatile Organic Compounds Emission. *Journal of Chemical Ecology*, 47, 755-
475 767.

476 SENTIS, A., BERTRAM, R., DARDENNE, N., RAMON-PORTUGAL, F., LOUIT, I., LE
477 TRIONNAIRE, G., SIMON, J. C., MAGRO, A., PUJOL, B., HEMPTINNE, J. L. &
478 DANCHIN, E. 2019. Different phenotypic plastic responses to predators observed among
479 aphid lineages specialized on different host plants. *Sci Rep*, 9, 9017.

480 SHANG, F., NIU, J., DING, B. Y., ZHANG, W., WEI, D. D., WEI, D., JIANG, H. B. & WANG, J. J.
481 2020. The miR-9b microRNA mediates dimorphism and development of wing in aphids.
482 *Proc Natl Acad Sci U S A*, 117, 8404-8409.

483 SHI, X., GAO, Y., YAN, S., TANG, X., ZHOU, X., ZHANG, D. & LIU, Y. 2016. Aphid
484 performance changes with plant defense mediated by Cucumber mosaic virus titer. *Virol
485 J*, 13, 70.

486 SHIMURA, H., PANTALEO, V., ISHIHARA, T., MYOJO, N., INABA, J., SUEDA, K., BURGYAN,
487 J. & MASUTA, C. 2011. A viral satellite RNA induces yellow symptoms on tobacco by
488 targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery.
489 *PLoS Pathog*, 7, e1002021.

490 SIGVALD, R. 1989. Relationship between aphid occurrence and spread of potato virus Y°
491 (PVY°) in field experiments in southern Sweden. *Journal of Applied Entomology*, 108, 35-
492 43.

493 SIMPSON, S. J., SWORD, G. A. & LO, N. 2011. Polyphenism in insects. *Curr Biol*, 21, R738-49.

494 VELLICHIRAMMAL, N. N., GUPTA, P., HALL, T. A. & BRISSON, J. A. 2017. Ecdysone
495 signaling underlies the pea aphid transgenerational wing polyphenism. *Proc Natl Acad
496 Sci U S A*, 114, 1419-1423.

497 WU, X. & YE, J. 2020. Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect
498 Vectors. *Viruses*, 12.

499 YANG, C. H. & POSPISILIK, J. A. 2019. Polyphenism - A Window Into Gene-Environment
500 Interactions and Phenotypic Plasticity. *Front Genet*, 10, 132.

501 YANG, M., ZHANG, Y., XIE, X., YUE, N., LI, J., WANG, X.-B., HAN, C., YU, J., LIU, Y. & LI, D.
502 2018. Barley stripe mosaic virus γ b Protein Subverts Autophagy to Promote Viral
503 Infection by Disrupting the ATG7-ATG8 Interaction. *The Plant Cell*, 30, 1582-1595.

504 YU, X., WANG, G., HUANG, S., MA, Y. & XIA, L. 2014. Engineering plants for aphid resistance:
505 current status and future perspectives. *Theoretical and Applied Genetics*, 127, 2065-
506 2083.

507 ZHANG, C. X., BRISSON, J. A. & XU, H. J. 2019. Molecular Mechanisms of Wing
508 Polymorphism in Insects. *Annu Rev Entomol*, 64, 297-314.

509 ZHANG, H., LI, H. C. & MIAO, X. X. 2013. Feasibility, limitation and possible solutions of RNAi-
510 based technology for insect pest control. *Insect Sci*, 20, 15-30.

511 ZHANG, S., ZHANG, Q., JIANG, X., LI, Q., QIN, Y., WANG, W., FAN, J. & CHEN, J. 2021.
512 Novel Temporal Expression Patterns of EBF-Binding Proteins in Wing Morphs of The
513 Grain Aphid *Sitobion miscanthi*. *Front Physiol*, 12, 732578.

514 ZHANG, Y. H., MA, Z. Z., ZHOU, H., CHAO, Z. J., YAN, S. & SHEN, J. 2022. Nanocarrier-
515 delivered dsRNA suppresses wing development of green peach aphids. *Insect Sci*, 29,
516 669-682.