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ABSTRACT: Microrobots are being explored for biomedical applications,
such as drug delivery, biological cargo transport, and minimally invasive
surgery. However, current efforts largely focus on proof-of-concept studies
with nontranslatable materials through a “design-and-apply” approach, limiting
the potential for clinical adaptation. While these proof-of-concept studies have
been key to advancing microrobot technologies, we believe that the
distinguishing capabilities of microrobots will be most readily brought to
patient bedsides through a “design-by-problem” approach, which involves
focusing on unsolved problems to inform the design of microrobots with
practical capabilities. As outlined below, we propose that the clinical
translation of microrobots will be accelerated by a judicious choice of target
applications, improved delivery considerations, and the rational selection of
translation-ready biomaterials, ultimately reducing patient burden and

Clinical translation of
medical microrobots
—

® —
. ’ ') q
R 2 N OW\:

Materials
° ‘u ’l °

Delivery Applications

G XM=
.4 =S,

enhancing the eflicacy of therapeutic drugs for difficult-to-treat diseases.

INTRODUCTION

Microrobots are micron-sized objects that carry out program-
mable actions such as sensing,l object mamipulation,2 and
enhanced navigation® when powered by external fields or
environmental sources. Common strategies to power micro-
robots include external fields, such as magnetic,4 acoustic,” and
electric ﬁelds,6 and environmental sources, such as chemical
reactions’~ and biological signals.'” Due to their program-
mable action, the small size of microrobots enables their use in
traditionally difficult-to-reach environments, such as blood
vessels, cavities, and confined porous media (i.e., cortical
bone,"" mucus,'” and extracellular matrix"*) found within the
human body. Moreover, forces acting on microrobots powered
by external fields are significantly greater than those acting on
nanoparticles, allowing them to reach target sites effec-
tively."*™'® This bestows microrobots the potential to
revolutionize minimally invasive medicine and the targeted
delivery of therapeutic agents.

Despite the immense promise of medical microrobots, there
has been limited translation of these technologies from the lab
bench to preclinical or clinical settings. We believe this is
because the community has primarily focused on a small
portion of the major challenges associated with this emerging
technology, shying away from the more practical challenges
required to move microrobots to clinical settings. It is often
claimed that increased robot intelligence, more advanced
materials, and higher resolution imaging are the key challenges
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that remain. However, designing microrobots that address
these issues promotes the development of laboratory-specific
toolboxes for problems that may not necessarily address the
actual clinical needs. More importantly, this focus lends itself
toward continued proof-of-concept studies, such as demon-
strating enhanced maneuverability, resulting in technologies
that are not practical in clinical scenarios (e.g., remote surgery,
in situ sensing, and biopsy collection).

While there is utility in proof-of-concept studies that
advance our knowledge, highlight the functionality of medical
microrobots, and provide solid groundwork for future
advancements, we believe that the key to clinical translation
is shifting our collective focus toward addressing disease states
that lack efficacious treatments. This requires (i) shifting
scientific effort to address more realistic biomedical applica-
tions, (ii) developing application-specific microrobot delivery
requirements, and (iii) using materials with the necessary
properties (e.g, degradation, clearance, and immune inter-
actions) for clinical feasibility. Finally, each of these steps must
be accompanied by earlier and more frequent communication
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Figure 1. Advancements, opportunities, and unsolved challenges for the clinical translation of medical microrobots. Some parts of this figure

were made with BioRender.

with clinicians and end users to help shepherd medical
microrobots from the lab to the bedside and improve current
treatment outcomes.

In this Perspective, we outline what we identify as the most
important advancements, opportunities, and unsolved chal-
lenges in three different aspects of translating microrobots
from proof-of-concept studies to clinical applications (Figure
1). First, we articulate which biomedical applications are most
ready for microrobots, focusing on use cases that can be tested
in biologically relevant environments and take advantage of the
strengths of microrobots for ailments that currently lack
effective treatments. Second, we discuss the negative
consequences of prioritizing studies that focus on single
particle locomotion instead of improving the localization or
dispersion of microrobots in vivo. Lastly, we detail how
advances in materials chemistry from the drug delivery
community can be used to accelerate the clinical translation
of microrobots.

APPLICATIONS

The revolutionary capabilities of microrobots have sparked a
flurry of scientific research aimed at pushing the boundaries of
biomedical research. Advancements in propulsion science,
materials engineering, and fluid mechanics has enabled
engineers and scientists to create microrobots with a suite of
functionalities."’~** Such functions include transporting living
cells and other biological cargo, moving through complex
heterogeneous biological media, providing targeted and
controlled drug delivery,%’27 offering switchable control over

.28
modes of locomotion,”

? and enabling in vivo imaging.”
These advancements have fueled proof-of-concept studies in
areas such as ocular drug delivery,'* in vitro fertilization,” root
canal prevention,3'1 and tumor treatment,4 among others.
Additionally, some theoretical and experimental studies have
shown the propulsion of microrobots in non-Newtonian
environments to highlight their potential for use in vivo.">

Despite this, most of the medical microrobots developed to
date have focused on proof-of-concept applications under
controlled benchtop conditions while claiming improbable
applications. We believe the origins of these limitations for
translation are due to the “design-and-apply” approach that is
commonly employed, which focuses on the fabrication and
propulsion of microrobots under nonphysiological settings.
This approach highlights only the potential for microrobots; it
seldom solves a practical and unmet clinical need. Thus, to go
beyond the bench toward useful applications in humans, we
propound that medical microrobots must be developed using a
“design-by-problem” approach (Figure 2).

To apply a “design-by-problem” approach, microrobots
should first and foremost be designed to solve biomedical
problems that lack effective options and can be overcome by
leveraging the specific strengths of the microrobots. For
example, to use microrobots for cancer treatment, they must
carry therapeutic agents and penetrate the tumor stroma and
cellular junctions.”” This capability is difficult to achieve with
traditional nanoparticles alone. While nanoparticles have
shown utility in biomedicine as therapeutic delivery
vehicles,** ™7 they rely on passive diffusion or circulation for
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Figure 2. Medical microrobots design approach for real-world applications. Some parts of this figure were made with BioRender.

transport, subjecting them to both physical and biological
barriers that limit their delivery efficiency to places like solid
tumors (i.e., only 20.7% of systemically injected nanoparticles
reach solid tumors).>® Thus, designing microrobots with
specific transport capabilities will be necessary for many
biomedical applications to avoid biological filters. Moreover,
once microrobots enter in vivo environments, the adsorption of
macromolecules on their surfaces leads to protein corona
formation that may influence their propulsion, interactions
with target cells, degradation, or internalization by phag-
ocytes.”” Therefore, a tailored microrobot design to maintain
stability and function after in vivo administration should be
addressed. While judicious material choices can be employed
to offset this issue, transport and actuation mechanisms that
may be inhibited by such biological interactions should be
avoided. This illustrates the need for greater communication
across research disciplines; for example, collaboration between
materials scientists, physicists, and immunologists would
promote an understanding of the limitations associated with
multiple aspects of microrobot design. For synergistic problem
solving to occur, researchers must be willing to communicate
the strengths and limitations of their approaches across
disciplines both frequently and candidly such that collabo-
rations can be more easily forged.

Another challenge for the clinical translation of medical
microrobots is to drive propulsion at high Reynolds numbers.
Intravenous injection of microrobots will initially result in
convection-dominated transport, yet most proof-of-concept
studies are performed at low Reynolds numbers.”” Thus, the
route of administration should be carefully considered to avoid
navigation in areas of fast flow, such as the cardiovascular
system. These considerations should also inform the intended
application of medical microrobots. For example, microsurgery
or remote biopsy may be heavily impacted by flow conditions
that make precise control difficult. When considering the
administration of medical microrobots in clinical settings, the
methods used should avoid exposure to regions with high fluid
flows when possible as this may result in limited control over
where the microrobots accumulate. Some promising focus

areas we identify include creating microrobots with a high drug
: o4l : L2 43
loading capacity,” controlling drug release rates in vivo,

. o . . . . 43 .
maximizing microrobot retention time,”” and selecting
o s . . o s . 44

administration routes with minimal travel requirements.

DELIVERY

The delivery and transport of microrobots are other key
aspects of their potential use in biomedical applications (Figure
3). Microrobots must be delivered to the correct area in the
body, with the correct number density, at the correct time.
This task is complicated by the complexity of the biological
environments that microrobots may encounter. During
transport, microrobots must often move through tortuous
networks filled with complex fluids, penetrate biological tissues,
and respond to interactions from other micron-sized objects
such as cells.”™" These challenges have compelled
researchers to focus on building single microrobots that can
move through increasingly complex environments with high
resolution. However, such capabilities are far less useful when
the clinical application involves driving thousands to millions
of robots through tortuous 3D pathways within the body.

In this respect, several microrobots have been proposed to
offer high resolution maneuverability in complex environ-
ments.'”****7" While this problem is interesting from a
fundamental perspective and will enable future studies on
directing the motions of multiple microrobots, single micro-
particle maneuverability in a complex physiological environ-
ment is not applicable to most biomedical tasks. Applications
such as medical catheterization, stent placement, and clot
clearance do require precise single particle manipulation;>*>*
however, many proposed applications such as remote biopsy,
surgery, and sensing are likely infeasible given the current
capabilities of microrobots, meaning that a focus on such
applications will only hinder clinical translatability. To
motivate translatable efforts, we believe that a greater emphasis
should be placed on their use in drug delivery, an application
that will more readily bring microrobots to the bedside and
eventually lead to other applications.
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Figure 3. Considerations and strategies for the delivery of microrobots in vivo. Some parts of this figure were made with BioRender.

The delivery of therapeutic payloads takes advantage of the
ability of microrobots to enhance the localization and release
of drugs. In this way, an ideal microrobot system for drug
delivery must be able to (i) migrate to the region of interest
with high specificity and (ii) disperse itself within that region.
These functionalities are nontrivial. First, the transport of
multiple microrobots to the desired region must be considered.
Similar to single microrobot transport, biological barriers,
complex fluids, and innate clearance mechanisms make it
difficult to maneuver to and sustain many microrobots within a
region of interest. Additionally, there is often the challenge of
determining where the region of interest is located (e.g, the
precise location of a neoplastic tumor). One promising
mechanism to address this challenge is using microrobots
that can home into the regions of interest by responding to
inherent chemical signals such as chemokines. Alternatively, to
circumvent these issues, researchers could address medical
ailments that reside in well-defined regions of the body, where
microrobots have proven transport capabilities. This could
include the gastrointestinal tract,”® reproductive system,”
bladder,” lungs,ss’56 and eye.14 These environments are all
easily accessible through noninvasive means, enabling facile
dispatching.

Despite the challenges associated with using microrobots to
deliver drugs, opportunities are plentiful and careful
implementation could create drug delivery systems that greatly
improve patient outcomes. One exciting opportunity is in the
development of microrobots that can respond to signals
released from target areas in the body by creating cell-
microrobot complexes.”*” These complexes take advantage of
the chemotactic capabilities of cells and may enhance the
localization of microrobots at target sites. Another promising
opportunity to accelerate the therapeutic efficacy of micro-
robots is the use of robotic swarms.”>**~" Swarming allows
for the localized movement of large amounts of microrobots,

which could improve both imaging capabilities and payload
delivery.®’ One final opportunity is to engineer microrobots
that remain at target sites by utilizing microrobots with high
surface areas,”” adhesive surface coatings,63 or responsiveness
to stimuli to promote robust physical interactions with target
tissues,**** to better tolerate biological clearance mechanisms,
such as strong fluid flow. 0499

We also believe that there is an opportunity to show that
microrobots perform in a manner superior to traditional micro-
or nanoparticles in drug delivery, something that has not yet
been adequately investigated by the community. By showing
that microrobots can accumulate at target sites better than
traditional (nonactive) particle systems and provide better
mechanisms for controlling the release of drugs within those
target sites, microrobots may be poised as a top contender for
particle-based drug delivery systems.

MATERIALS

The persistence of microrobots at target sites depends on the
method of administration and their final delivery location. Use
of microrobots in areas that involve direct clearance
mechanisms (e.g,, the bladder, where microrobots attached
to the epithelial lining can be shed and excreted through
urination,® or the lungs, where coughing or mucociliary action
can eject microrobots through the trachea®) allows for use of
materials that are biocompatible but not biodegradable.***” In
contrast, applications in regions where microrobots cannot be
reliably cleared by phagocytosis or excretion (e.g., solid
tumors, where microrobots can be trapped to dense tissue
microstructures, or in the bloodstream, where large micro-
robots cannot undergo di;estion in phagosomes or kidney
filtration) are common.®®~"" In these systems, nonbiodegrad-
able microrobots are unusable. Despite the necessity of
biodegradability for many biomedical applications, current

https://doi.org/10.1021/acsnano.3c03723
ACS Nano XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acsnano.3c03723?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03723?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03723?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03723?fig=fig3&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03723?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

www.acshano.org

Table 1. Biodegradable Polymers for Microrobot Fabrication

fabrication
material degradation immune effects FDA approval methods notes
Poly(lactic-co-gly- Bulk hydrolysis 1—6 months Inert Yes Emulsion, molding  Degradation rate controlled by LA to GA
colic acid) ratio®*¢
[PLGA]
Poly(f-amino Surface, then bulk, hydrolysis Inert No Emulsion, mold- Acrylate modification necessary for photo-

ester) [PBAE] 1-2 years; 1—4S$ days modi-

fied

Yes (poly[4-hydroxybuty-

Yes (without modifications)

ing, photolithog-
raphy
Emulsion, molding

curing; suitable for gene delivery due to
positive charges”®

Produced by bacterial fermentation®*~"°

Emulsion, mold- Methylacrylate modification necessary for

Polyhydroxyalk- Surface hydrolysis and enzyme-  Minimally in-
anoate [PHA] mediated degradation 6 flammatory rate] only)
months to 2 years
Polycaprolactone Bulk or surface hydrolysis (end- Inert
[PCL] group dependent) 1—2 years

Poly(glycerol seba-  Surface hydrolysis 2 months Minimally in-

cate) [PGS] flammatory
Polydioxanone Bulk hydrolysis 1—6 months Minimally Yes
[PDS] anti-inflam-
matory

Yes (reactants [glycerol, se-
bacic acid-containing pol-

ymers] only)

ing, photolithog- pho‘cocuringgl’92
raphy

Emulsion, mold-
ing, photolithog-
raphy

Emulsion, molding

Acrylate modification necessary for photo-
curing 3796

o8
Commonly used as a copolymer””””
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Figure 4. Considerations for selecting or designing materials for microrobots. Some parts of this figure were made with BioRender.

efforts continue to focus on designing proof-of-concept
microrobots with nonbiodegradable components, limiting
their potential for in vivo testing. While proof-of-concept
studies are useful for establishing feasibility, a greater emphasis
must be placed on moving past such systems developed with
nonbiodegradable materials and toward in vivo testing with
translation-ready biomaterials.

Innovations in drug delivery systems over the last several
decades provide a foundation for implementing biodegradable
materials into microrobots. Using drug delivery materials that
have already been clinically investigated (e.g, polyesters,
phospholipids, polysaccharides) will allow for accelerated
translation due to FDA approval and the wealth of supporting
literature.”” However, fabrication techniques compatible with
most of the materials used for drug delivery tend to limit the
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complexity of particles that can be fabricated (e.g., spheres,
discs, or ellipsoids).”””® Particle designs that can undergo
complex transport, such as helices or particles with well-
defined cavities, require the use of high-resolution lithography.
Therefore, there is a critical need for simple, robust, and
tunable materials that are biodegradable and photocurable.”*

Alternatively, multistep fabrication techniques such as
molding/templating can be implemented to formulate micro-
robots from nonphotocurable materials. Molding allows for the
use of nonbiodegradable materials to form negative shapes
with high complexity, followed by backfilling with the desired
biodegradable material. This approach may enable the rapid
use of biodegradable materials that are nonphotocurable, but it
requires careful consideration of solvents and often has limited
throughput compared to lithographic methods.”*~"® One
notable exception is the particle replication in nonwetting
templates (PRINT) method, a high-throughput fabrication
process for generating complex particles for drug delivery,
which demonstrates the potential for clinical translation of
molding methods.”” While molding is a highly enabling
process for the use of many common drug delivery materials,
the need for photocurable drug delivery materials remains due
to the resolution, reliability, and scalability of lithographic
techniques. A comprehensive review of modern fabrication
techniques can be found elsewhere.*

Hydrogels with photocurable linkers have been widely used
for implants and in tissue engineering, and there are some
examples of their successful use in microrobotics.'”*' ™%
However, applications of microrobots made from hydrogels are
limited due to the swelling and relatively low mechanical
strength of hydrogels. Given the challenge of designing
biodegradable materials that enable complex task performance,
we list a handful of synthetic polymers from the drug delivery
and tissue engineering communities that are promising for
making microrobots due to their history of use, biodegrada-
tion, hydrophobicity, and photocurable properties (Table 1).
Natural materials such as polysaccharides, lipids, and
extracellular matrix proteins, while also promising for the
clinical translation of microrobots, have been described
elsewhere.””"*

In addition to these bulk materials, care must be taken to
ensure that stimuli-responsive moieties used in microrobots
(e.g, magnetic handles or catalytic patches) are biodegradable
or at least biocompatible, such as using iron oxide for
imparting magnetic responsiveness instead of cobalt.””'*’
Materials considerations for the fabrication, biological
response, and performance of microrobots are summarized in
Figure 4.

We anticipate that drug, gene, and cell delivery will be one of
the earliest opportunities for translating microrobots. As such,
the physical properties of the drug and manner by which it is
incorporated into the microrobot are critical materials
consideration. Drug loading capacity of small molecules,
proteins, and nucleic acids in common drug delivery systems
have been described elsewhere.'’’ Hydrophobic small
molecules are one of the simplest therapeutic modalities to
incorporate due to their stability in organic solvents and
compatibility with many types of polymers; however, gene
delivery, although more difficult, is an increasingly important
therapeutic strategy that should be investigated for a range of
disease types that are not treatable by other methods.'"” For
example, delivery of genes requires physical insertion into cells,
making nonviral gene delivery a suitable target application for

microrobots due to the potential for actuation-guided gene
insertion.'” As such, strategies for transporting and delivering
genes by microrobots should be prioritized.

For both cell delivery and other applications, exploiting
materials immunogenicity may be a way to confer advanta-
geous immune responses without the use of drugs or
synergistically with drug release. Both the materials used for
fabricating microrobots and their degradation products may
provide some degree of immunomodulation, such as a
proinflammatory response, which may be useful in treating
diseases, such as cancer. Often, immune activation is avoided
(e.g, by inert surface coatings),”’ where the aim is to prevent
unwanted immune activation or premature clearance of
microrobots. Instead, judicious materials selection may enable
control over immune cell activation for a therapeutic benefit; a
similar approach has been demonstrated through the use of cell
membrane particle coatings.”” This design choice may allow
for the use of a wider range of materials that were previously
avoided due to unwanted immune effects. The opportunity for
drug and gene delivery, as well as therapeutic material—cell
interactions, should be leveraged to design medical micro-
robots with multiple therapeutic functionalities.

CONCLUSION

Microrobots are a budding technology with the potential to
mold the future of minimally invasive medicine and drug
delivery. Recent work has illustrated the potential of
microrobots to accomplish challenging biomedical tasks such
as targeted drug release, cell transport, and advanced imaging.
Despite the competencies of microrobots, limited effort has
been made to facilitate their translation to the bedside. This is
due to the “design-and-apply” approach often taken, where in
vitro proof-of-concept studies have been favored over
deliberate pushes to preclinical and clinical trials through in
vivo studies with translational materials. This can be overcome
by applying a “design-by-problem” approach instead, wherein
the intrinsic capabilities of microrobots are used to enhance
the efficacy of treatments for diseases that currently lack
effective treatment options. To accomplish this, researchers
should prioritize feasible applications, consider the dispersion
of microrobots in vivo, and use material advancements from the
drug delivery community to prepare translation-ready micro-
robots. One hurdle that may inhibit the adoption of a “design-
by-problem” approach is a lack of funding sources and
incentives to motivate researchers in basic science and clinical
settings to take on developmental challenges that are often
considered incremental by funding agencies, academic
institutions, and research journals. This might be alleviated
by increased partnership with industry, wherein both monetary
support and the motivation to translate technologies to
patients will be more readily available. Microrobots designed
with these principles will have numerous advantages that will
support their clinical translation and may result in their
widespread adoption in targeted drug delivery, in vivo imaging,
and a collage of other applications.
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