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Abstract

Efforts to catalog global biodiversity have often focused on aboveground

taxonomic diversity, with limited consideration of belowground communities.

However, diversity aboveground may influence the diversity of belowground

communities and vice versa. In addition to taxonomic diversity, the structural

diversity of plant communities may be related to the diversity of soil bacterial

and fungal communities, which drive important ecosystem processes but are

difficult to characterize across broad spatial scales. In forests, canopy structural

diversity may influence soil microorganisms through its effects on ecosystem

productivity and root architecture, and via associations between canopy struc-

ture, stand age, and species richness. Given that structural diversity is one of

the few types of diversity that can be readily measured remotely (e.g., using

light detection and ranging—LiDAR), establishing links between structural

and microbial diversity could facilitate the detection of belowground biodiver-

sity hotspots. We investigated the potential for using remotely sensed informa-

tion about forest structural diversity as a predictor of soil microbial

community richness and composition. We calculated LiDAR-derived metrics

of structural diversity as well as a suite of stand and soil properties from 38 for-

ested plots across the central hardwoods region of Indiana, USA, to test

whether forest canopy structure is linked with the community richness and

diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycor-

rhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density

of canopy vegetation is positively associated with the taxonomic richness

(alpha diversity) of EM fungi, independent of changes in plant taxonomic rich-

ness. Further, structural diversity metrics were significantly correlated with

the overall community composition of bacteria, EM, and total fungal commu-

nities. However, soil properties were the strongest predictors of variation in

the taxonomic richness and community composition of microbial communities

in comparison with structural diversity and tree species diversity. As remote
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sensing tools and algorithms are rapidly advancing, these results may have

important implications for the use of remote sensing of vegetation structural

diversity for management and restoration practices aimed at preserving below-

ground biodiversity.
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INTRODUCTION

Decreases in biodiversity are occurring in nearly all
regions on Earth, with critical consequences for how eco-
systems function (Díaz et al., 2019; Hooper et al., 2012;
Isbell et al., 2022; Loreau et al., 2001). Most research on
biodiversity loss has focused on vascular plants (Tydecks
et al., 2018), partly due to the ease with which plant spe-
cies diversity can be measured. In contrast, far less is
known about the diversity of belowground communities
(e.g., soil microbes), despite their importance to ecosys-
tem functions such as decomposition, nutrient retention,
and feedbacks to the climate system. One reason for our
limited understanding of microbial community diversity
is the greater amount of time and resources needed to
characterize microbial communities compared with other
groups of organisms (Kirk et al., 2004; Maron et al.,
2011), which limits our ability to make inferences.

Theory suggests that diversity at one trophic level
should be positively associated with diversity at another
trophic level. However, it is less clear whether this pat-
tern applies to plants and their associated soil microbial
communities (Fei et al., 2022). Plants are likely to influ-
ence soil microbial communities through resource allo-
cation to belowground structures, litter production, and
through plant–fungal interactions (i.e., mycorrhizal
associations). Because of these close relationships
between plants and soil microbes, plant communities
may be useful surrogates for estimating soil microbial
diversity (Westgate et al., 2017). However, much of the
research linking above- and belowground diversity in
forests has been based on tree species richness (e.g., Li
et al., 2020), but previous work has found equivocal pat-
terns in the direction and strength of the relationships
between tree species richness and microbial diversity,
including that of mycorrhizal fungi (Fei et al., 2022;
Wagg et al., 2015).

The three-dimensional (3D) volume and arrangement
of vegetation within the ecosystem (structural diversity) is
an overlooked aspect of ecological diversity (LaRue et al.,
2023) that may also be linked to soil microbial diversity.
Structural diversity, particularly in forests, can be estimated

with remote sensing (LaRue et al., 2020; Lim et al., 2003;
Mura et al., 2015) and provides an opportunity to capture
multiple aspects of biodiversity (D’Urban Jackson et al.,
2020; Valbuena et al., 2020). Structural diversity represents
functional variation in plant size that creates habitat and
supports ecosystem functions that are linked to the biodi-
versity of soil organisms (Taboada et al., 2010). Of particu-
lar interest are potential linkages between the structural
diversity of vegetation and the diversity of soil microbial
communities, two groups of organisms known to exert
strong controls on ecosystem productivity and biogeochem-
ical cycling (Wagg et al., 2011, 2019; Zak et al., 2003). Yet,
it is still unclear whether the structural diversity of plant
communities is related to the diversity of soil bacteria and
fungi, and whether these remotely sensed metrics of above-
ground structural diversity may be used to predict soil
microbial diversity and belowground ecosystem processes.

There are several ways in which forest structural
diversity may directly or indirectly affect soil microbial
diversity (Figure 1). First, aboveground structural diver-
sity should be positively linked to belowground structural
diversity. More structural complexity belowground may
result from a wider variety of root morphologies, includ-
ing branching architecture and rooting depths, that pro-
vide distinct microbial habitats and thus may support a
more diverse microbial community (McCormack et al.,
2015). Second, structural diversity is known to be posi-
tively associated with higher light capture and comple-
mentary resource use by trees, which corresponds with
higher forest productivity (Gough et al., 2019; Ishii et al.,
2004). Structural diversity may therefore enhance carbon
fixation and, subsequently, root carbon exudation and
carbon allocation to mycorrhizal fungi that fuel both the
soil decomposer and mycorrhizal fungal communities
(Anthony et al., 2022). Third, structural diversity may be
associated with other characteristics of the forest, includ-
ing stand age structure and tree species richness, that
influence soil microbial diversity (Parker & Russ, 2004;
Wales et al., 2020). For example, both above- and below-
ground structural diversity change as trees age (Matsuo
et al., 2021), and the communities of root-associated
microbial taxa shift with tree age and nutrient demand
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(Gange et al., 1993; Johnson et al., 2005). Younger and
more even-aged stands are therefore likely to have a
lower degree of structural complexity both above- and
belowground, and hence a less diverse soil microbial
community, compared with older stands with multiple
cohorts of trees. Further, forests with a greater number of
tree species are more likely to have more complex cano-
pies and root morphologies, provide more diverse organic
matter inputs to the soil microbial community, and sup-
port a larger variety of mycorrhizal associations
(Singavarapu et al., 2022; Steinauer et al., 2016;
Tedersoo & Bahram, 2019). Through these pathways,
whether directly or mediated by changes in stand age
and composition, changes in the structural diversity of
forest canopies may have cascading impacts on the com-
position of soil bacterial and fungal communities.

Microbial guilds, including mycorrhizal fungal guilds,
may respond to changing forest structural diversity via
distinct mechanisms. For example, canopy complexity
may influence the community of decomposers through
corresponding changes in tree productivity and biomass
that ultimately influence the rate of organic matter inputs
to the forest floor (Nguyen et al., 2016). Because canopy
complexity is associated with forest productivity (Gough

et al., 2019), more structurally diverse forests may
support larger pools of coarse woody debris and faster
root turnover due to higher rates of tree growth, supply-
ing decomposers with more substrate than forests with
less complex canopies. Patterns in the community struc-
ture of mycorrhizal fungi, however, are more likely to
respond to canopy complexity via changes in the trait
diversity of the tree species in a stand. Because different
mycorrhizal functional guilds tend to associate with
certain tree species and mycorrhizal communities tend to
differ with tree age class (Aučina et al., 2011; Brundrett,
2004; Ferlian et al., 2021; Johnson et al., 2005; Nguyen
et al., 2016; van der Linde et al., 2018), the most important
effects of canopy structure are likely due to corresponding
changes in tree species richness, forest age structure, or in
traits that influence the formation of mycorrhizal associa-
tions, including root morphology. Further, more produc-
tive host trees tend to supply mycorrhizal fungi with larger
quantities of carbon, so faster growing, structurally com-
plex forests may also harbor distinct communities of
mycorrhizal fungi with higher carbon demand compared
with slower growing stands (Anthony et al., 2022).
Therefore, while bacterial and fungal decomposers may be
influenced most by the variety of substrates available

F I GURE 1 Forest structural diversity may influence soil microbial diversity through several pathways. First, a less structurally diverse forest

(a) may support lower soil microbial diversity than a structurally complex forest (b) due to less effective light capture (yellow arrows), leading to

lower net primary productivity and less belowground carbon allocation to microbial communities (green shaded regions in inset figures indicate

root carbon exudation). Lower aboveground structural complexity may also be associated with less complex rooting architecture, providing fewer

niches for soil microorganisms. Indirectly, changes in structural complexity at the stand level may be associated with stand age and evenness of

tree age classes, or with tree species richness, both of which likely influence soil microbial community composition and richness.
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in highly structurally diverse forests, mycorrhizal fungi
may be linked with variation in tree traits, species
richness, and forest stand age (Anthony et al., 2022;
Birch et al., 2021; Comas et al., 2014).

To identify potential linkages between above- and
belowground diversity, we tested possible correlations
between forest structural and soil microbial diversity in
38 plots across the central hardwood region in Indiana,
USA. We expected that structural diversity would be a sig-
nificant predictor of soil bacterial and fungal (including
mycorrhizal fungal) richness (alpha diversity) and commu-
nity composition. We expected these relationships to be
stronger for the total fungal community and bacterial com-
munities relative to the mycorrhizal fungal communities
due to the direct pathways by which canopy complexity
fuels the production of decomposition substrates. We also
predicted that connections between plant structural diver-
sity and soil microbial diversity would be equally strong or
stronger than relationships between plant richness and
microbial diversity. We also examined the relative predic-
tive ability of tree species richness (Wu et al., 2019), stand
age and productivity (Högberg et al., 2007; Wagg et al.,
2011), climate (Nottingham et al., 2018; Pold & DeAngelis,
2013), and soil properties to explain variation in soil micro-
bial richness and community composition. In particular, we
included several soil factors with known effects on micro-
bial community composition, including pH (Davison et al.,
2021; Rousk et al., 2009), carbon-to-nitrogen ratio
(Midgley & Phillips, 2016; Soares & Rousk, 2019), and min-
eral composition (represented by oxalate-extractable iron
content; Carson et al., 2009; Whitman et al., 2018).

Remote sensing technologies that can resolve 3D
structural diversity (e.g., light detection and ranging—
LiDAR) are becoming readily available from landscape to
global scales (Zeng et al., 2022). Identifying linkages
between above- and belowground diversity will provide
the potential to map indicators of belowground diversity
across large spatial scales, which could become an impor-
tant tool for managing ecosystem services and soil biodi-
versity that might otherwise be difficult to monitor
without time-consuming genomic and chemical analyses
of soils (Bakker et al., 2019).

MATERIALS AND METHODS

Forest structural diversity and stand
properties

We obtained inventory data on 38 forest plots from the
Indiana Continuous Forest Inventory (CFI) (Gallion,
2018) in the central hardwoods region of Indiana, USA
(Figure 2). The dominant tree species in this area

are deciduous hardwoods, including red maple
(Acer rubrum), sugar maple (A. saccharum), American
beech (Fagus grandifolia), white oak (Quercus alba), and
yellow poplar (Liriodendron tulipifera). Coniferous tree
species, including red pine (Pinus resinosa), Virginia pine
(P. virginiana), eastern white pine (P. strobus), and eastern
red cedar (Juniperus virginiana), constituted roughly 7% of
the stems in our data set and were found in 9 of the
38 study plots. Individual trees in each CFI plot were iden-
tified to species and diameter at breast height is measured
every five years. We estimated tree species richness and
productivity with individual stem-level data from the
growing season of 2020 (May–October). Tree species

F I GURE 2 Location of study sites within the central

hardwood region of Indiana, USA (Nplots = 38).
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richness was calculated as the number of unique tree
species found within each 7.3-m-radius circular plot. The
change in basal area of trees over the five-year interval
was used as a predictor of plot productivity, which was cal-
culated as the annual increase in basal area from 2015 to
2020. Stand age was determined by tree ring analysis of a
focal tree at the time of plot establishment. If the stand
was too young and no trees were suitable for coring, stand
age was determined with information from forest man-
agers and land owners. Finally, the type of mycorrhizal
association for each tree host was classified following Jo
et al. (2018) and used to calculate ectomycorrhizal
(EM) and arbuscular mycorrhizal (AM) host richness and
abundance. The dominance of AM trees was calculated by
dividing the AM tree basal area by the sum of AM and EM
tree basal area (Jo et al., 2018).

To quantify the aboveground structural diversity of for-
ests, we obtained discrete return LiDAR from the 2017 to
2019 USDA 3DEP survey (USGS, 2020). Details about the
collection and specifications of the 3DEP LiDAR can be
found on the USDA 3DEP website (https://www.usgs.gov/
3d-elevation-program). A 30-m-radius buffer area was
clipped around the plot centroid. Large groups of atmo-
spheric and ground outliers were filtered by removing
points above and below six SDs of the mean height and
then manually checked to ensure that outliers were actually
removed. All LiDAR processing was conducted in the lidR
(version 3.1.2) R package (Roussel et al., 2020; Roussel &
Auty, 2022). The buffer area was then corrected for eleva-
tion using a Delaunay triangulation before being clipped to
a 2.22-m-radius circular plot. Three structural diversity met-
rics were calculated from each plot area that represent the
volume and arrangement of structural diversity in forests
(LaRue et al., 2020). These metrics were chosen based on
stability across different LiDAR point densities (i.e., 2–8
points per m2) (LaRue et al., 2022). Points below 0.5 m were
filtered from the point cloud to exclude ground points and
the following metrics were calculated: the SD of the height
of points, vegetation area index (VAI), and vertical complex-
ity index (VCI). VAI describes the density of vegetation
within forest canopies and was calculated with the leaf area
density (LAD) function from the lidR package (Roussel
et al., 2020). The standard deviation of vegetation heights
(VertSD) and VCI describe the vertical heterogeneity of veg-
etation throughout the vertical canopy profile. VertSD was
calculated from the cloud_metrics function and VCI from
the VCI function in the lidR package.

Microbial diversity and soil chemistry

Soil samples were collected from each study plot in accor-
dance with protocol from the Indiana CFI program

(Gallion, 2018). Two soil cores (~200 cm3) were
collected on the perimeter of each plot in 2020 during
the growing season; one core was collected each from
the east and west sides of the plot. The cores were
subdivided into two depths (0–5 cm and 5–10 cm) and
homogenized within depths at the time of collection.
Samples were air-dried and passed through a 2-mm sieve
prior to chemical and microbial analyses. The mass
percentage of carbon and nitrogen in each sample was
determined using an elemental combustion system
(Costech ECS 4010, Costech Analytical Technologies,
Valencia, CA, USA). Oxalate-extractable iron content, a
proxy for mineral soil reactivity, was determined
using a 200 mg subsample of soil from each plot and each
depth, and was extracted with a 0.2 M ammonium
oxalate solution. Oxalate-extractable iron concentration
was determined on a mass percent basis using atomic
absorption spectrometry (PerkinElmer Instruments,
Waltham, MA, USA).

DNA was extracted from ~250 mg of homogenized
soil from 0–5 cm and 5–10 cm core depths of each
plot using the Qiagen DNeasy Soil Extraction kit
(Qiagen, Germantown, MD, USA). DNA was quantified
with the Qubit high sensitivity kit (Qubit Fluorometer,
Life Technologies, Carlsbad, CA, USA) and diluted to
~10 ng/μL in sterile water. We amplified fungi using
barcoded 5.8-Fun and ITS4-Fun primers targeting the
internal transcribed spacer 2 (ITS2) region (Taylor et al.,
2016), and bacteria via barcoded S-D-Bact-0341-b-S-17
and S-D-Bact-0785-a-A-21 primers of the 16S region
(Klindworth et al., 2013). Each polymerase chain reaction
(PCR) contained 5 μL of ~1–10 ng/μL DNA template,
21.5 μL of Platinum PCR SuperMix (Thermo Fisher
Scientific Inc., Waltham, MA, USA), 1.25 μL of each
primer (10 μM), 1.25 μL of 20 mg/mL bovine serum albu-
min (BSA), and 0.44 μL of 25 mM MgCl2. For the ITS2
primers, the reactions included an initial denaturing step
at 96�C for 2 min, followed by 24 cycles of 94�C for 30 s,
51�C for 40 s, and 72�C for 2 min, with a final extension
at 72�C for 10 min. For the 16S primers, reactions started
with an initial denaturing step at 95�C for 5 min,
followed by 25 cycles of 95�C for 40 s, 55�C for 2 min,
and 72�C for 1 min, with a final extension at 72�C for
7 min. To accurately capture the AM fungal community,
we amplified AM fungal DNA separately. Due to limited
AM fungal DNA, we first performed a nested PCR reac-
tion. The first reaction amplified an ~800 bp region of
AM fungal and plant DNA in the 18S region using the
NS1–NS4 primers (White et al., 1990), the preferred
marker gene for AM fungi (Lekberg et al., 2018). The
nested reaction amplified an ~400 bp region of 18S AM
fungal DNA with barcoded Illumina TruSeq version
3 indices (Illumina, San Diego, CA, USA) linked to the
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NS31-AML2 primers (Morgan & Egerton-Warburton,
2017). Each reaction contained: 21.5 μL of Platinum PCR
Supermix (Invitrogen, Carlsbad, CA, USA), 1.25 μL of each
primer (10 μM), 0.5 μL of BSA (20 mg/mL), and 2 μL
(~20 ng) of DNA. The first reaction ran at 94�C for 3 min,
followed by 30 cycles of 94�C for 30 s, 40�C for 1 min, and
72�C for 1 min and the nested reaction at 94�C for 5 min,
followed by 40 cycles of 94�C for 45 s, 63.1�C for 1 min,
and 72�C for 1.5 min. In all cases, triplicate reactions were
combined, cleaned with Agencourt AMPure XP magnetic
beads (Beckman Coulter, Brea, CA, USA), and quantitated
fluorometrically (Qubit Fluorometer, Life Technologies,
Carlsbad, CA, USA). Samples were pooled into equal
amounts and run on an Illumina MiSeq version
3 sequencer in a 2 × 300 bp run at the University of
Tennessee Center for Environmental Biotechnology core.

All sequences were processed in the DADA2 pipeline
in R (Callahan et al., 2016). First, primers were trimmed
from all sequences and sequence error rates were calcu-
lated. Sequences were then merged into unique amplicon
sequence variants (ASVs). Finally, chimeras were
removed using a denovo chimera checker. ASVs were not
clustered prior to assigning taxonomy, thus every
sequence variant was included in downstream analysis
(Glassman & Martiny, 2018). For general fungal commu-
nities (ITS) and bacterial communities (16S, short-term
study only), we used the default DADA2 classifier (Wang
et al., 2007) to assign taxonomy based on reference
sequences from the UNITE database version 9.0 (Nilsson
et al., 2019) for ITS sequences and the SILVA database
R138.1 (Quast et al., 2013) for 16S sequences. We identi-
fied AM fungi by BLASTing representative sequences
from ASVs against the MaarjAM database (Opik et al.,
2010), only retaining reads with at least a 97% match for
a known AM fungal virtual taxonomic unit.

Universal ITS barcode primers are known to discrimi-
nate against early-diverging fungal lineages, like AM
fungi (Stockinger et al., 2010), so we do not make direct
comparisons between ITS-derived and small-subunit-
derived data for AM fungi. EM fungi were defined via the
FungalTraits database (Põlme et al., 2020). All ASV read
data were relativized, rather than rarified (McMurdie &
Holmes, 2014), prior to downstream alpha diversity and
community composition analyses. Sequences are depos-
ited in the NCBI Sequence Read Archive (Edwards &
Kivlin, 2023). Minimum, maximum, average, and SE read
number for each group at each processing step are pro-
vided in Appendix S1: Table S1.

We calculated taxonomic richness (alpha diversity)
and community composition of bacteria, total fungi, and
EM and AM fungal groups. We calculated alpha diversity
with the inverse Simpson’s index using the diversity func-
tion in the vegan package in R (Oksanen et al., 2022);

although we tested several diversity metrics for this anal-
ysis, most metrics yielded qualitatively similar results, so
we focused on inverse Simpson’s index based on recom-
mendations for mycorrhizal fungi (Morris et al., 2014)
and for simplicity of interpretation (i.e., larger values of
Simpson’s index indicate greater alpha diversity). We cal-
culated community composition using the quantitative
Jaccard index with the vegdist function in the vegan
package (Oksanen et al., 2022).

Statistical analyses

To test for relationships between variables related to
aboveground vegetation and soil conditions and alpha
diversity of the soil microbes, we constructed a suite of
eight general linear regression models to test for signifi-
cant relationships between microbial alpha diversity (spe-
cies richness) and vegetation and soil conditions;
separate models for alpha diversity were developed for
each microbial guild (bacteria, all fungi, EM fungi, and
AM fungi) at a given depth (0–5 cm and 5–10 cm). We
calculated partial R2 values using the sensemakr package
in R (Cinelli et al., 2021) and scaled model coefficients to
allow for comparison of the strengths of model predictors
(Gelman, 2008). Before developing the general linear
regression models, we removed predictor variables that
had a correlation coefficient greater than 0.70
(Appendix S1: Figure S1; Tabachnick & Fidell, 2013).
Variable selection was based on relevance to our hypoth-
esized drivers and designed to optimize the amount of
information gained by keeping specific predictors in the
model (Gregorich et al., 2021). For example, AM and EM
tree species richness were highly correlated with total tree
species richness and AM dominance, so we removed AM
and EM tree richness because total tree species richness
allowed us to preserve more information about plant com-
munity richness, and because AM dominance reflects the
relative importance of both AM and EM tree species in
each plot based on basal area. However, we also assessed
correlations between microbial diversity and AM and EM
host tree richness to ensure that patterns identified in our
analyses were not due to underlying relationships between
stand properties and host tree richness (Appendix S1:
Figure S1). Finally, we evaluated our models with and
without the random effect of county to account for spatial
patterns in the locations of sampling plots. The effect of
county was negligible in all models (Appendix S1:
Table S2), and therefore, we present the more parsimoni-
ous linear models without a random effect of county.

Next, we tested the significance and relative strength
of structural diversity and other environmental variable
categories for their ability to explain the variation in
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microbial community composition (i.e., community
similarity among sites) at both 0–5 cm and 5–10 cm soil
depths. We conducted a distance-based redundancy anal-
ysis (dbRDA) using the dbRDA function using the vegan
package in R (Oksanen et al., 2022) to assess patterns
in the composition and structure of the total fungal
community, the bacterial community, the AM fungi, and
EM fungi. Factors contributing to the variation in
community composition were partitioned among four
categories (Table 1) and we ran models with variables
grouped into these categories and also separately to
assess individual variable significance. For both variable
groups and individual variables, we ran full dbRDA
models with all terms, then ran subsequent reduced
models with only the terms with p < 0.05 from the full
model. Variation in community composition due to
spatial autocorrelation among plots was detrended prior
to analysis. The explanatory power of each category
indicated as significant by the dbRDA model was
assessed using the varpart function in the vegan package.
We used variance partitioning analysis to assess the
relative importance of different drivers of site-to-site
variation in overall community composition and

structure, following recommended procedure for
analyses of community composition (Legendre, 2008).
Highly correlated variables within each category
were removed before analysis (see Appendix S1:
Figure S1: AM and EM tree richness, soil %N, soil %C).
Data and R code for all analyses are available online
(Lang, 2023).

RESULTS

Stand and soil characteristics

Across the 38 plots, tree species richness ranged
from 1 to 6 species, and both AM and EM tree mycorrhi-
zal types were well represented; AM tree basal area per-
centage ranged from 0 to 100, with a mean value of
52.2%. Stands ranged in age from 15 to 126 years at the
time of soil sampling. Stand age was negatively associated
with AM tree dominance and soil pH, and positively
associated with EM tree species richness (Appendix S1:
Figure S1).

Mean soil C content was 2.95% and mean N content
was 0.19%. C:N ranged from 10 to 28.5. Soil pH ranged
from 3.6 to 6.4, and the mass percentage of
oxalate-extractable iron ranged from 0.1% to 0.86%. Soil
pH was positively associated with iron content, %C and %
N, and C:N, as well as with AM tree species dominance
(Appendix S1: Figure S1).

Microbial community composition

In the fungal communities, Ascomycota were the most
abundant phylum, averaging 41.9% of fungal communities
across all samples. Basidiomycota were the second most
abundant fungal phylum with 34.6% relative abundance on
average, followed by Murcoromycota (13.9%),
Mortierellomycota (6.8%), and Chytridiomycota (1%;
Appendix S1: Figure S2). The most abundant fungal genera
on average were Umbelopsis (10.2%), Russula (7%),
Mortierella (4.2%), Geminibasidium (2.7%), and Lactifluus
(2.4%). Ectomycorrhizal communities were derived from
general fungal communities; thus, their relative abundance
may be less informative, but the most abundant genera des-
ignated as EM-associated were as follows: Russula,
Cenococcum, Tomentella, Inocybe, and Inosperma. Among
the five most abundant AM fungal taxa, four were
Glomeraceae Glomus sp. (VTX 00084, 00392, 00214, and
00199) cumulatively comprising an average of 18.5% of the
AM fungal community. The second most abundant AM
fungal taxon was Acaulosporaceae Acaulospora sp. VTX
00026 with an average of 4.6% of the AMF community.

TAB L E 1 Soil-, plant-, and stand-level variables predicted to

be linked to microbial composition and diversity in forest soils.

Category Variable Unit

Structural
diversity

Standard deviation of
vegetation height (VertSD)

m

Vegetation area index (VAI) m2/m3

Vertical complexity index
(VCI)

Unitless

Tree diversity Tree species richness Species no.

AM dominance Proportion

AM tree richness Species no.

EM tree richness Species no.

Stand
productivity
and age

Basal area increment (BAI) m2/year

Stand age Years

Soil properties Soil pH Unitless

C:N ratio Unitless

Oxalate-extractable iron
(FeOx)

Percent

Note: The effect of each variable was assessed individually in models of
microbial species richness and in groups for models of microbial community
composition. Structural diversity variables were calculated from LiDAR
data, tree diversity, and stand productivity and age data were gathered from
the Indiana Continuous Forest Inventory (CFI) project, and soil properties

were measured from samples collected in each CFI plot in the growing
season of 2020.
Abbreviations: AM, arbuscular mycorrhizal; EM, ectomycorrhizal; LiDAR,
light detection and ranging.
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In bacterial communities, Proteobacteria were the
phylum with the greatest relative abundance, averaging
25.2% across all samples. Acidobacteria were the second
most abundant with an 18.2% average relative abundance,
followed by Actinobacteriota (14.8%), Verrucomicrobiota
(11%), and Chloroflexi (10.9%; Appendix S1: Figure S2).
The most abundant bacterial genera were Candidatus
Udaeobacter (6.2%), Xanthobacteraceae genera (5.2%),
Elsterales genera (4.9%), Gemmataceae genera (4.4%), and
Acidobacteriales genera (3.9%).

Linking forest structural diversity with
microbial richness and diversity

Forest structural diversity was associated with micro-
bial richness (alpha diversity) and community

composition to varying degrees. First, VAI was posi-
tively associated with EM fungal richness in the upper
surface soils (Table 2, Figure 3). No other metrics of
canopy structural complexity (VCI, VertSD) were asso-
ciated with the alpha diversity of the soil microbial
communities.

Second, individual metrics of forest structural
diversity were associated with several components
of microbial community composition. VAI and VertSD
predicted variation in EM fungal communities at
both soil depths and in the total fungal community
at 5–10 cm depth (Appendix S1: Table S3). Collectively,
structural diversity variables significantly predicted
variation in the composition of the bacterial and
EM fungal communities in both soil depths and
the total fungal community in the 0–5 cm depth
(Table 3).

TAB L E 2 Effects of plant community, productivity, canopy structure, and soil properties on the alpha diversity of soil microbial

communities calculated with the inverse Simpson’s index.

Variable

0–5 cm 5–10 cm

Bacteria Total fungi AM fungi EM fungi Bacteria Total fungi AM fungi EM fungi

Total tree richness … … … … … … … …

AM dominance … … … … … … … …

Stand age β = 0.58

… … … R 2 = 0.21 … … … …

t25 = 2.55

p = 0.017

BAI β = 0.41

… … … … … R 2 = 0.29 … …

t25 = 3.18

p = 0.004

VertSD … … … … … … … …

VAI β = 0.41

… … … R 2 = 0.19 … … … …

t25 = 2.43

p = 0.023

VCI … … … … … … … …

C:N … … … … … … … …

pH β = 0.62 β = 0.43 β = 0.63 β = 0.32 β = 0.61

R 2 = 0.37 … R 2 = 0.18 … R 2 = 0.25 R 2 = 0.16 R 2 = 0.19 …

t27 = 4.02 t24 = 2.32 t25 = 2.90 t25 = 2.15 t22 = 2.28

p < 0.001 p = 0.029 p = 0.008 p = 0.042 p = 0.032

FeOx (percent) … … … … … … … …

Nplots 38 37 35 36 36 36 33 36

Note: Linear coefficients (β) indicate the strength and direction of the effects of model parameters and are standardized by dividing by two SDs to allow for
comparison of the strength of drivers within each model. Partial R 2 and p values are reported only for trends significant at α = 0.05. Variable descriptions and
abbreviations are defined in Table 1.
Abbreviations: AM, arbuscular mycorrhizal; EM, ectomycorrhizal.
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Linking soil and stand properties with
microbial richness and diversity

Soil properties were associated with both the richness
and composition of the bacterial, AM fungal, and total
fungal communities, but did not have a consistent effect
on the EM fungal community. Soil pH was positively
associated with the richness of AM fungi, bacteria, and
the total fungal community in both the 0–5 cm and the

5–10 cm soil depths (Table 2; Appendix S1: Figure S3).
Similarly, soil properties were the strongest set of predic-
tors of microbial community composition relative to
aboveground diversity predictors, with the exception of
EM fungal composition (Figure 4).

Stand age and productivity primarily influenced the
fungal, rather than bacterial, community richness and
composition, particularly for mycorrhizal guilds. The
total fungal community richness at 5–10 cm depth was

0−5 cm: r = 0.19; p = 0.023
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F I GURE 3 Relationship between vegetation area index (VAI) and forest stand age and alpha diversity of ectomycorrhizal (EM) fungi,

calculated with the inverse Simpson’s index. Points represent measured values of microbial richness at 0–5 cm and 5–10 cm soil depths and

VAI and stand age of plots in forests across Indiana; solid line represents the marginal effects of each predictor independent of the effects of

other structural diversity variables, and is plotted only for soil depths where the relationship was statistically significant (α = 0.05; Table 2).

TAB L E 3 Significant predictors of microbial community composition explained by structural diversity and environmental variables in a

distance-based redundancy analysis (dbRDA).

Variable group df

0–5 cm 5–10 cm

Bacteria
Total
fungi

AM
fungi

EM
fungi Bacteria

Total
fungi

AM
fungi

EM
fungi

Structural diversity 2 χ2: 8.84 χ2: 11.7 … χ2: 39.8 χ2: 8.42 … … χ2: 71.6

p = 0.031 p = 0.008 p < 0.001 p = 0.038 p < 0.001

Tree diversity 3 χ2: 9.92 χ2: 14.8 … χ2: 67.5 χ2: 13.1 χ2: 15.7 χ2: 26.0 χ2: 50.7

p = 0.007 p < 0.001 p < 0.001 p = 0.001 p < 0.001 p < 0.001 p < 0.001

Stand productivity and age 2 … … … χ2: 18.8 … … χ2: 15.9 χ2: 84.5

p < 0.001 p < 0.001 p < 0.001

Soil properties 3 χ2: 106 χ2: 59.1 χ2: 194 χ2: 547 χ2: 87 χ2: 129 χ2: 275 χ2: 280

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Total df 35 36 37 35 33 35 35 35

Note: χ2 and p values are reported only for a predictor category that explains significant variation in the community composition at α = 0.05. The specific
predictors within each variable group are described in Table 1. Spatial autocorrelation was accounted for by conditioning all dbRDA models on geographical
coordinates and distance-based Moran’s eigenvectors.
Abbreviations: AM, arbuscular mycorrhizal; EM, ectomycorrhizal.

ECOSPHERE 9 of 16



positively associated with basal area increment, and older
stands had greater EM fungal richness at 0–5 cm depth
(Figure 3, Table 2). Stand age and productivity signifi-
cantly influenced the community composition of both
AM and EM fungi (Table 3, Figure 4), although this effect
was apparent for AM fungi only in the deeper soil
(5–10 cm).

DISCUSSION

We expected that structurally diverse forests would pro-
vide a greater variety of habitats and resources for soil
organisms, which would promote higher taxonomic
diversity of soil bacteria and fungi (Figure 1). In partial
support of this hypothesis, we found that canopy density
was positively related to the alpha diversity of one micro-
bial guild (EM fungi) but not the other three groups we
examined here. Further, structural diversity, like tree
richness, was a significant predictor of microbial commu-
nity composition for bacteria, the EM fungal community,
and the total fungal community, but neither structural
nor taxonomic diversity explained as much variance in
microbial community composition as did soil characteris-
tics. Overall, of the four groups of microbes we tested,
forest canopy structure had the most consistent effect on
the richness and composition of the EM fungi.

Collectively, our results suggest that measures of struc-
tural diversity, which can be generated remotely, fre-
quently, and across full landscapes, may improve the
estimates of the diversity and composition of soil
microbes in conjunction with soil chemistry data.

The patterns identified here suggest that the commu-
nities of EM fungi are in part shaped by the aboveground
complexity of vegetation in forest ecosystems. However,
the mechanisms behind this relationship remain unclear,
particularly given that these relationships may be medi-
ated by stand age or tree species composition. Although
canopy density has been associated with more productive
stands (Gough et al., 2019; Hardiman et al., 2011), which
may influence microbial community composition
(Anthony et al., 2022), vegetation density (VAI) was not
strongly correlated with stand productivity in our study
system. However, VAI was positively correlated with
stand age, and stand age was positively correlated
with EM alpha diversity in the surface soil (Table 2). This
suggests that older stands have denser, more vertically
heterogeneous canopies (Franklin & Van Pelt, 2004;
LaRue et al., 2023) and may indicate an uneven age struc-
ture of trees that supports a richer community of
root-associated EM fungi. We may have only seen pat-
terns between structural metrics and EM fungi, rather
than other groups of microbes, because the EM fungi are
the only taxa we examined that are closely linked with

F I GURE 4 Variance explained by each category of predictors that were indicated significant (p < 0.05) in the distance-based

redundancy analysis model at 0–5 cm (a–d) and 5–10 cm (e–h) soil depths for bacterial community (a, e), total fungal community (b, f),

arbuscular mycorrhizal fungi (AMF) community (c, g), and ectomycorrhizal fungi (EMF) community (d, h). See Table 3 for model χ2 and
p values for each significant predictor category.
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only the tree species in each plot: free-living soil
microbial taxa should not be as closely linked with tree
species characteristics, and AM fungi can associate with
both trees and herbaceous plants, likely dampening the
influence of the tree canopy on AM fungal richness.
Further, the composition of EM fungal communities
changes as their host trees age (Birch et al., 2021;
Reverchon et al., 2012); uneven-aged stands contain a
larger variety of host ages and therefore more opportuni-
ties for the establishment of different EM taxa. Notably,
although older stands did support greater species richness
of EM-associated trees, EM fungal richness was not asso-
ciated with EM tree species richness, meaning that this
pattern is unlikely to be due to concomitant changes in
host species richness with stand age (Appendix S1:
Figure S4). Further, EM fungi were the only group
wherein microbial alpha diversity was not significantly
related to the soil pH, further highlighting that while
other microbial taxa are strongly influenced by soil condi-
tions, EM fungal richness may be estimated with tree-
and stand-level forest composition data. Together, these
results suggest that structurally dense and older forest
stands may be associated with higher EM taxonomic
richness in central hardwood forests.

Soil properties, particularly pH, were the best predic-
tors of alpha diversity and community composition of
bacteria, AM fungi, and the total fungal community.
These strong relationships may be explained by the phys-
iological tolerances of these taxa; bacteria in particular
have been shown to be more sensitive than fungi to soil
pH (de Vries et al., 2012; Mitchell et al., 2010; Porter
et al., 1987; Rousk et al., 2009). Further, soil conditions
like the ratio of carbon to nitrogen are often the product
of feedbacks between plant community composition,
organic matter quality, and microbial decomposition pro-
cesses. Together, these ecosystem properties may have
led to the strong patterns we observed between soil C:N
and the community composition of bacteria and fungi
(Cheeke et al., 2016; Soares & Rousk, 2019).

Despite finding several linkages between structural
diversity and the diversity of specific microbial commu-
nity groups, the relationships between microbial
community diversity and canopy structure were weaker
than those observed for other environmental predictors.
This may be due to weak connections between the above-
ground and belowground traits of trees (Weemstra et al.,
2016), or the inherent mismatch between the spatial scale
of the canopy structure measurements and the scale at
which we characterized soil microbial communities. It is
well established that the magnitude and direction of
diversity patterns in ecological relationships can vary
with spatial scale (Rollinson et al., 2021; Wiens, 1989).
Further, the relative importance of environmental drivers

can be variable over space and time, and such variation
can be hard to capture in their impact on ecological pat-
terns at different scales (Wiens, 1989). The belowground
dimensions of diversity change on a smaller spatial and
temporal scale than the structural and species composi-
tion of forest canopies (Averill et al., 2019, 2021; Kivlin &
Hawkes, 2020). Therefore, the linkages between above-
and belowground components of ecosystems may
become decoupled at increasingly large spatial scales
(Martiny et al., 2011), possibly contributing to the large
residual variance in microbial community composition in
our study (Figure 4). For example, on a submeter scale,
microbial richness may be impacted more strongly by soil
properties, fine root activity, or individual host species
traits rather than stand-level structure or biodiversity
(Kivlin & Hawkes, 2016). In our data set, soil properties
were measured at the same spatial scale of the microbial
community (i.e., within a single soil core) and were
therefore more closely matched in sampling spatial scale
than the LiDAR or forest inventory data, likely contribut-
ing to the higher degree of association between microbial
community composition and soil conditions compared
with vegetation properties.

Further, the species richness and structural diversity
of the herbaceous layer may be more influential than the
forest canopy in shaping microbial richness and diversity
(Chen et al., 2021; Yin et al., 2016). These understory
plants may be particularly important in determining the
community composition of mycorrhizal guilds, given that
the mycorrhizal associations of canopy vegetation in tem-
perate forests often do not match those of the understory
plant species, which typically associate with either AM or
ericoid mycorrhizal fungi (Ward et al., 2022;
Wurzburger & Hendrick, 2009). Future work with terres-
trial laser scanning or drones would be better suited to
investigate these potential linkages, as measuring the
herbaceous structural diversity is not currently possible
with aerial LiDAR data due to constraints with data reso-
lution and occlusion by the outer canopy (Li et al., 2021).

We investigated how forest structural diversity relates
to soil microbial diversity within the central hardwoods
region, but it is yet unclear how structural diversity may
be linked to microbial community composition and rich-
ness in other forest types or biomes. Across broad tem-
perature and moisture gradients, abiotic filtering, rather
than structural diversity, may limit microbial community
richness in forest soils (Nottingham et al., 2018). Soil
properties, particularly pH, seem to be a ubiquitous pre-
dictor of microbial diversity (Davison et al., 2021;
Tedersoo et al., 2014; van der Linde et al., 2018) and
are often connected to plant community composition
(Finzi et al., 1998; Templer et al., 2005) and changes in
temperature and moisture conditions (Seaton et al., 2021),
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but the connections between the drivers of above- and
belowground diversity are still largely unexplored
(Fei et al., 2022). In order to understand whether remote
sensing of structural diversity could be used at broad
scales to understand microbial diversity patterns, it is
necessary to establish the biogeography of these
relationships.

CONCLUSIONS

Our results indicate that LiDAR-derived structural diver-
sity metrics measured at the stand level within the central
hardwood region may be useful for predicting EM fungal
richness as well as general shifts in microbial community
composition in forest soils. Specifically, we suggest that
forests with different degrees of structural diversity are
likely to also differ in soil microbial community composi-
tion, and that a higher degree of canopy complexity sup-
ports greater EM fungal richness. Finally, we suggest that,
of the four microbial guilds examined here, EM fungi are
the best candidates for estimating community richness
using remotely sensed canopy structure data. These pat-
terns highlight the potential for using remote sensing for
ecosystem monitoring, particularly in restoration research
where microbial community composition may be used to
achieve targeted ecosystem functions.
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