
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Resonance theory and quantum dynamics
simulations of vibrational polariton chemistry

Cite as: J. Chem. Phys. 159, 084104 (2023); doi: 10.1063/5.0159791
Submitted: 26 May 2023 • Accepted: 3 August 2023 •
Published Online: 22 August 2023

Wenxiang Ying1,a) and Pengfei Huo1,2,b)

AFFILIATIONS
1 Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
2The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA

a)Electronic mail: wying3@ur.rochester.edu
b)Author to whom correspondence should be addressed: pengfei.huo@rochester.edu

ABSTRACT
We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the reso-
nance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the
cavity mode acts like a “rate-promoting vibrational mode” that enhances the ground state chemical reaction rate constant when the cavity
mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change
quadratically as the light–matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit,
the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an
analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum
transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the
rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the
best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile
when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic the-
ory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton
chemistry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159791

I. INTRODUCTION

Recent experiments1–5 have demonstrated that chemical kinet-
ics can be enhanced4,5 or suppressed1–3,6 by coupling molecular
vibrations to quantized radiation modes inside an optical micro-
cavity. Note that in these experiments, there is no external influx
of photons to the molecule-cavity hybrid system as the device is
kept under a “dark” condition, and the change of the chemical rate
constants is attributed to the formation of vibrational polaritons,
quasiparticles of photon-vibrational excitation hybridization, as well
as the vacuum field fluctuations.1 This phenomenon is referred to as
the vibrational strong coupling (VSC) enabled change of reactivities.
A central feature of all VSC experiments is that when the cavity fre-
quency ωc is resonant to the bond vibration frequency ω0, i.e., when
the following condition is satisfied:

ωc = ω0, (1)

the reaction rate constant will be enhanced or suppressed, typically
up to 4–5 times compared to the rate constants outside the cav-
ity. If we define �νL� as the vibrational ground state of the reactant
(left well) and �ν′L� as the vibrationally excited state of the reactant,
then ω0 corresponds to the frequency of the �νL�→ �ν′L� transition.
An experimental review summarizing the recent advances in VSC-
modified chemical reactions can be found in Ref. 7, whereas general
discussions of this topic can be found in many recent reviews.8 This
new strategy of VSC, if feasible, will allow one to bypass some intrin-
sic difficulties (such as intramolecular vibrational energy transfer)
encountered in mode-selective chemistry that uses infrared (IR)
excitation to tune chemical reactivities, offering a paradigm shift of
synthetic chemistry through cavity-enabled bond-selective chemi-
cal transformations6 since one can use the cavity to selectively slow
down one competing reaction over the target reactions.9

Unfortunately, a clear theoretical understanding of cavity-
modified ground-state chemical reactivity remains missing, despite
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recent theoretical progress.10 Currently, there are no well-accepted
mechanisms or theoretical explanations for the observed phenom-
ena. For electronically nonadiabatic reactions, such as electron
transfer reactions coupled to optical cavities, there are numer-
ous exciting progress,11–13 which can explain the resonance effect
[Eq. (1)]. Their relevance related to VSC experiments, which are all
electronically adiabatic reactions, has yet to be clarified.10 For the
ground state adiabatic reaction coupled to the cavity, transition state
theory (TST) predicts no modification of the rate constant14–16 nor
any significant cavity frequency dependence.17 From Grote–Hynes
(GH) theory,18–20 it was conjectured that the cavity effect is purely
from the modification of the transmission coefficients due to the
dynamical caging effect9,21,22 (where the cavity mode acts as a regular
nuclear vibration that provides friction to the reaction coordinate),
providing a cavity frequency dependent VSC modification of the rate
constants.

Despite the initial success of classical theories to explain the
cavity frequency, ωc, dependence of VSC modifications, they often
cannot predict the correct resonant frequency that matches the
quantum vibration frequency ω0 measured from the optical spec-
tra. If one describes the rate constant using classical theory, such as
the classical flux-side correlation function,21 the Grote–Hynes (GH)
theory,21,22 the maximum modification of the rate constant occurs
when ωc ≈ ωb, where ωb is the top of the barrier frequency (imagi-
nary frequency of the transition state). The Pollak–Grabert–Hänggi
(PGH) theory,23 or a semi-classical version of the quantum tran-
sition state theory (q-TST) rate theory,24 finds that the cavity-
frequency dependent rate modification is related to the top of the
barrier frequency ωb [Eq. (21)], the classical bottom of the well fre-
quency ωcl

0 [Eq. (26)], or a broad frequency distribution between
these two frequencies. For example, the GH theory for a double-
well (DW) model in the spatial diffusion-limited regime (after the
Kramers turnover) predicts21 that the VSC modification is sensi-
tive to ωb. The GH theory for a solvent–solute model coupled to the
cavity predicts22 that the VSC effect is sensitive to a frequency that
depends on both ωb and ωcl

0 . The q-TST theory predicts24 that the
VSC-modified rate will have a broad profile that spans the range of
ωb and ωcl

0 . The PGH theory for a DW system coupled to the cavity in
the energy diffusion-limited regime (before the Kramers turnover)
predicts that the rate modification could be closer to ωcl

0 (see Fig. 5 of
Ref. 23) or closer to ωb [see Fig. 2(e) of Ref. 25] due to the fact that the
rate profile in this energy diffusion-limited regime is dominated by
the energy loss process of the classical trajectory that travels between
the bottom of the well and the top of the barrier. Related to the
classical rate theory, a direct ab initio simulation26 that investigates
the reaction in Ref. 1 treats the electronic ground states ab-initially
and treats nuclear and photonic degrees of freedom (DOFs) classi-
cally. The simulation suggests that the bond distance (of the reactive
chemical bond) will be modified when the cavity frequency is close
to either ωb or ωcl

0 (note that this is not directly related to the rate
constant).

Overall, in these classical/semi-classical rate theories, there is
no knowledge directly related to the quantum vibrational ground
and excited states and the associated transition frequency ω0, except
for the pure harmonic potential that ωcl

0 = ω0. The only explicitly
available frequencies are those ωcl

0 and ωb that are directly related to
the potential V(R̂) [Eq. (20)]. In this sense, the quantum vibration

frequency ω0 is intrinsically quantum information, as it is directly
related to the vibrational eigenenergies (by solving the eigenequa-
tion and does not have a classical analogy when the potential energy
surface is anharmonic). Interestingly, the purely classical descrip-
tion of vibrational and photonic DOFs will provide different peak
positions of the optical spectra and the rate modification profile. For
example, as demonstrated in Ref. 25, the classical IR spectra of the
molecule peak at ωcl

0 (because the classical trajectory predominantly
samples the bottom of the well region), and the VSC-modified rate
profile peaks at ωb, thus having a large frequency difference. Sim-
ply adding quantum statistics and quantum tunneling using ring
polymer molecular dynamics (RPMD) will not produce the cor-
rect resonance frequency and sharp resonance27 because there is no
explicit information of ω0 in the ring polymer Hamiltonian. As also
extensively discussed in Ref. 25, the exact quantum optical spectra
and VSC-modified rate profile both peak at ω0 because they have a
common origin related to the quantum transition of �νL�→ �ν′L�. Our
work confirms the same discovery25 by treating q̂c as a bath DOF
with spectral density description.

As such, experimental evidence strongly suggests that the VSC
modification needs to be studied by treating the vibrational states
quantum mechanically such that the knowledge of ω0 is included.
The similarity of the optical profile of vibrational absorption and the
cavity-modified rate constant also strongly suggests that both have
a common origin, both of which correspond to the �νL�→ �ν′L� tran-
sition. This is because the optical transition is caused by −�̂ ⋅ E(t),
where �̂ is the transition dipole operator and E(t) is the classi-
cal laser field, whereas the molecule–cavity coupling is caused by
�̂(â † + â)∝ �̂ ⋅ q̂c, where â † and â are cavity field operators and
q̂c =��h�2ωc(â † + â) is the photonic coordinate that is propor-
tional to the displacement field intensity inside the cavity.28 Indeed,
using the numerically exact hierarchical equations of motion
(HEOM)29–32 method to investigate the model reaction coupled to
the cavity and by treating vibrational states and cavity Fock states
quantum mechanically as the quantum subsystem, Lindoy et al. in
Ref. 25, indeed, found resonance behavior of the rate profile, which
is similar to the absorption spectra of the bare molecule outside the
cavity (with similar features of narrow width and centered around
ω0). This numerically exact simulation provides invaluable insights
into the mechanism of how the cavity modifies reaction rate con-
stants. Nevertheless, an analytic theory to explain the VSC-enhanced
rate constant is still missing.

In this work, we follow the inspiration from Ref. 25 and per-
form numerically exact simulations to investigate the VSC enhance-
ment effect when coupling a single molecule inside a cavity. As
opposed to the early work that treats the photonic DOF q̂c using
Fock states and as part of the quantum subsystems, here, we use
an effective spectral density theory to describe q̂c and cavity loss as
an effective bath that couples to the reaction coordinate through
the molecule-cavity interactions.33 Because of the exact nature of
HEOM, including q̂c inside the bath should not influence the
description of quantum dynamics. This effective spectral density
treatment not only provides computational efficiency (because the
quantum subsystem is only the molecular reaction coordinate or
equivalently the quantum vibrational states) that allows for a much
faster convergence for the calculation but also provides an intuitive
understanding of the cavity mode as a “rate-promoting vibration
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(RPV) mode,” which will enhance the rate constant if its frequency
ωc matches the transition frequency ω0. We found that the key
mechanism lies in the population being pumped to the vibrationally
excited state in the reactant well, which quickly tunnels to the vibra-
tionally excited state in the product well and then relaxes to generate
the vibrational ground state in the product well.

Based on these exact dynamics results, we further developed
an analytic rate theory [Eq. (41)], which is the central theoretical
result of this work. Under the short cavity lifetime limit, τc → 0,
the rate reduces to an analytic answer in Eq. (44). We found that
both the HEOM results and Fermi’s Golden Rule (FGR) rate predict
a resonant condition [Eq. (1)] for the VSC-enhanced rate constant
with a narrow width for the rate profile. The FGR rate theory pre-
dicts that the width of the VSC-modified rate profile is controlled
by a convolution of two peaks: one with its width dictated by the
nuclear vibrational broadening and the other with its width related
to the cavity lifetime τc. Both HEOM results and the FGR rate con-
stants predict that the rate enhancement will scale non-linearly with
respect to the light–matter coupling strength [Eq. (48)], resulting
in a nonlinear scaling of the effective free energy barrier change
[Eq. (50)] if one chooses to interpret the VSC rate change entirely
due to the change of effective free energy barrier (which is not a
reasonable interpretation but has been widely used in experimen-
tal papers3). The current theory also predicts an interesting cavity
lifetime dependence of the VSC modification on the rate constant.
To the best of our knowledge, this is the first analytic rate theory to
explain the adiabatic ground state chemical reaction modified by the
VSC effect and to give a clear resonant behavior [Eq. (1)]. The inter-
esting scaling of how the VSC rate constant will change by changing
the light–matter coupling and cavity lifetime predicted by the cur-
rent theory and the exact simulation encourages more experimental
work to carefully study them, even with reactions that have already
been reported.1,4,5,7

II. MODEL HAMILTONIAN AND COMPUTATIONAL
DETAILS
A. The Hamiltonian for molecule–cavity hybrid system

We begin by introducing the Pauli–Fierz (PF) quantum elec-
trodynamics (QED) Hamiltonian, which has been widely used to
describe light–matter interactions in molecular cavity QED.21 We
set h ≡ 1 throughout this paper for convenience. Expressed in the
dipole gauge and under the long-wavelength approximation, it is
expressed as21,34,35

Ĥ = P̂ 2

2M
+V(R̂) + p̂2

c

2
+ ω2

c

2
�q̂ c +

�
2

ω3
c

χ ⋅ �(R̂)�
2

+ Ĥν + Ĥc,

(2)
which is the PF QED Hamiltonian for the model used in this paper.
Here, we include only the ground electronic state of the molecule. A
detailed derivation of this Hamiltonian from the minimum-coupling
Hamiltonian can be found in Ref. 21. In addition, P̂ 2�2M is the
kinetic energy of the nuclear DOF for the molecule, M is the effec-
tive mass of the nuclear vibration, V(R̂) is the ground electronic
state potential energy surface, and R̂ is the reaction coordinate. Fur-
thermore, q̂c =�1�(2ωc)(â + â †) and p̂c = i

�
ωc�2(â † − â) are the

photon mode coordinate and momentum operators, respectively,

where â † and â are the photon mode creation and annihilation
operators and ωc is the cavity frequency. Finally,

χ =�ωc�(2�0V) ê (3)

characterizes the light–matter coupling strength, where ê is the
unit vector of the field polarization, �0 is the permittivity, and V

is the quantization volume inside the cavity. We also assume that
the dipole moment is always aligned with the cavity polarization
direction such that χ ⋅ �(R̂) = χ ⋅ �(R̂), where χ ≡�ωc�(2�0V).

Under the dipole gauge, the matter ground state permanent
dipole moment �(R̂) displaces the photon coordinate q̂c by the
amount of

�
2�ω3

c χ ⋅ �(R̂), which accounts for the light–matter
interaction. Furthermore, Ĥν is the dissipative system–bath Hamil-
tonian that describes the linear coupling between reaction coordi-
nate R̂ and phonon bath, expressed as follows:

Ĥν = 1
2�i

������p̂
2
i + ω2

i �x̂ i − ci

ω2
i

R̂�2������, (4)

where the reorganization energy of the phonon (vibrational) envi-
ronment is λν ≡ ∑i c2

i �(2ω2
i ). Furthermore, Ĥc describes the loss of

the cavity photon through the non-cavity modes {x̃ j} that directly
coupled to the cavity photon mode coordinate q̂c, expressed as
follows:

Ĥc = 1
2�j

������
ˆ̃p2

j + ω̃2
j� ˆ̃x j − c̃ j

ω̃ 2
j
q̂ c�2������. (5)

According to the Caldeira–Leggett system–bath model,36 the baths
and their coupling to the “system” can be described by spectral
density functions, defined as

Jν(ω) ≡ π
2�j

c2
j

ω j
δ(ω − ω j), (6a)

Jc(ω) ≡ π
2�j

c̃2
j

ω̃ j
δ(ω − ω̃ j), (6b)

for molecular phonon and cavity photon-loss baths, respectively.
For simplicity, in this work, we assume that the dipole operator

is linear, �(R̂) = R̂.37 As a result, the light–matter coupling term in
Eq. (2) is simplified as

√
2ωcq̂cχ ⋅ �(R̂) =√2ωcχq̂cR̂. Furthermore,

we define the normalized light–matter coupling strength,

ηc = χ
ωc
=
�

1
2�0ωcV

, (7)

and then, the photon coordinate displacement in Eq. (2) becomes�
2�ω3

c χ ⋅ �(R̂)→�2�ωc ηcR̂. The total Hamiltonian in Eq. (2)
then becomes

Ĥ = P̂ 2

2M
+V(R̂) + p̂2

c

2
+ ω2

c

2
�
�q̂ c +

�
2

ωc
ηcR̂
�
�

2

+ Ĥν + Ĥc. (8)
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To solve the quantum dynamics of Eq. (8), we plan to describe
the reaction coordinate R̂ quantum mechanically through its vibra-
tional eigenstates and everything else as the “bath” DOF through the
corresponding exact quantum description.

B. The effective spectral density theory
The key idea in this paper is to establish a simple system–bath

model described by an effective spectral density function without
explicitly taking the photon DOF, q̂c, into the description of the
quantum subsystem (such as through Fock states). This can be
achieved by regarding the cavity photon mode as the primary bath
mode with the “coordinate” q̂c that directly couples to the reaction
coordinate R̂ and cavity loss as the secondary bath that couples to q̂c.
This multi-layer bath model has been extensively discussed in the
literature, including the seminal work from Garg et al.,38 as well as
many others.39–43 By performing harmonic analysis to the equations
of motion,44 it is shown that the model Hamiltonian of Eq. (8) has
a one-to-one map (through a normal mode transformation) to the
effective Hamiltonian as follows:38,39

Ĥ = P̂ 2

2M
+V(R̂) + Ĥν + Ĥeff, (9)

where Ĥν and its spectral density function is already defined in
Eqs. (4) and (6a), respectively. The cavity and its associated loss are
combined as

Ĥeff = 1
2�j

������
ˆ̃P2

j + �̃2
j� ˆ̃X j − C̃ j

�̃ 2
j
R̂�2������, (10)

with the effective spectral density function as follows:39,43

Jeff(ω) ≡ π
2�j

C̃2
j

�̃ j
δ(ω − �̃ j)

= 2η2
cω3

cJc(ω)
�ω2

c − ω2 + R̃(ω)�2 + [Jc(ω)]2 , (11)

where R̃(ω) is expressed as

R̃(ω) = 2ω2

π
P� ∞

0
ds

Jc(s)
s(ω2 − s2) , (12)

where P in the above expression denotes the principal value integral;
Jc(ω) in Eq. (11) is defined in Eq. (6b). Details of the derivations
for Eqs. (9)–(12) are provided in Appendix C. If the secondary
bath spectral density function (the photon-loss bath) takes the
Drude–Lorentz form,

Jc(ω) = 2λcγcωc

ω2 + γ2
c

, (13)

where γc is the bath characteristic frequency and λc is the reorga-
nization energy, then the integral in Eq. (12) can be analytically
evaluated as R̃(ω) = ωJc(ω)�γc, which is later used in our numeri-
cal evaluation. The Markovian limit will be reached when γc →∞;

hence, R̃(ω)→ 0, and the effective spectral density has a Brownian
oscillator form,38

Jeff(ω) = 2αη2
cω3

cω
(ω2

c − ω2)2 + α2ω2 , (14)

where the broadening parameter

α ≡ 2λc�γc (15)

controls the width of the spectral density. A similar argument for
the Markovian limit can also be made for the Ohmic spectral den-
sity.45 Equation (14) represents a seminal result from the early work
of Leggett44 and Garg et al.,38 which was derived from perform-
ing a normal-mode transformation of the bath while assuming the
Markovian limit for the secondary bath. It can also be reached from
the more general results in Eq. (11) by directly taking the Markovian
limit.39,43

The reorganization energy for the effective bath described by
Jeff(ω) in Eq. (11) is given as46

λeff ≡�
j

C̃2
j

2�̃2
j
= 1

π�
+∞

0
dω

Jeff(ω)
ω

. (16)

Note that Eq. (9) corresponds to a much simpler system–bath
model, with linear coupling between the system and the two baths
[cf. Eq. (9)],

Ĥ = ĤS + Ĥren + ĥeff
B + ĤSB, (17)

where each term of the Hamiltonian is defined as

ĤS = P̂ 2

2M
+V(R̂), (18a)

Ĥren = (λν + λeff)R̂ 2, (18b)

ĥeff
B = 1

2�i
�p̂2

i + ω2
i x̂2

i � + 1
2�j

� ˆ̃P2
j + �̃2

j
ˆ̃X2

j�, (18c)

ĤSB = R̂⊗ (F̂ν + F̂eff), (18d)

where Ĥren denotes the reorganization energy term, and the
stochastic force operators are

F̂ν ≡�
i

ci x̂i, F̂eff ≡�
j

C̃ j
ˆ̃X j. (19)

Note that under the vibrational eigenbasis {�νi�} [see Eq. (22)], the
Ĥren operator will be a constant matrix because it is only a function
of R̂. As a consequence of the above system–bath partition, the sys-
tem keeps its dimension the same as the bare matter part, which has
greatly reduced computational cost compared to the conventional
treatment. Moreover, no truncation approximation for photon Fock
states is explicitly made, and the full Hilbert space of the cavity
subsystem is taken into account.
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C. Model systems
To model how VSC influences chemical reactions, we use the

ground-state proton transfer model. In particular, we are interested
in the one-dimensional double-well (DW) potential,47,48

V(R̂) = −Mω2
b

2
R̂ 2 + M2ω4

b
16Eb

R̂ 4, (20)

where M is the proton mass, ωb is the barrier frequency given as

ωb ≡
����� − 1

M
⋅ d2V

dR2 �
R‡

, (21)

and Eb is the barrier height of the DW potential. Note that Eq. (20)
assumes a symmetric DW potential. Here, we use the parameters
Eb = 2120 cm−1 and ωb = 1000 cm−1.

For this system Hamiltonian [from Eq. (18a)], the corre-
sponding eigenvectors �νi� and eigenenergies Ei are obtained by
numerically solving

ĤS�νi� = � P̂ 2

2M
+V(R̂)��νi� = Ei�νi�, (22)

where V(R̂) is expressed in Eq. (20). These vibrational eigenstates
are obtained using the discrete variable representation (DVR) basis49

with 1001 grid points in the range of −2.0 ≤ R ≤ 2.0. In the quan-
tum dynamics simulations using HEOM, we treat the number of
vibrational eigenstates as a convergence parameter, and we have
included a total of 10 states (from �ν0� to �ν9�). Details (including
the numerical convergence testing results) are provided in Sec. III of
the supplementary material.

To facilitate the rate constant calculation, we diabatize the two
lowest eigenstates as

�νL� = 1√
2
(�ν0� + �ν1�), �νR� = 1√

2
(�ν0� − �ν1�), (23)

which leads to two energetically degenerate diabatic states, denoted
as �νL� and �νR� for states localized in the left and right wells,
respectively, both with degenerated energies of E = (E1 + E0)�2 and
a small tunneling splitting of � = (E1 − E0)�2 ≈ 1.61 cm−1 (where
the energy difference between E1 and E0 is 2�). Similarly, for{�ν2�, �ν3�}, one can diabatize them and obtain the first excited
diabatic vibrational states in the left and right wells as follows:

�ν′L� = 1√
2
(�ν2� + �ν3�); �ν′R� = 1√

2
(�ν2� − �ν3�), (24)

with the degenerate diabatic energy of E ′ = (E3 + E2)�2 and the tun-
neling splitting of �′ = (E3 − E2)�2 ≈ 64.05 cm−1. Note that because�ν2� and �ν3� are very close to the top of the barrier, the diabatic
states �ν′L� and �ν′R� are not as well localized as �νL� and �νR�. Based
on the two diabatic states �νL� and �ν′L� in the left well, we define the
quantum vibration frequency of the reactant as

ω0 ≡ E ′ − E = 1172.2 cm−1, (25)

which is directly related to the quantum transition of �νL�→ �ν′L�. Note that the spectroscopy measurement (IR or transmission
spectra) is also directly related to this frequency.

On the other hand, the classical bottom of the well frequency is
directly related to the curvature of the potential as follows:

ωcl
0 ≡
���� 1

M
⋅ d2V

dR2 �
R0

=√2ωb = 1414 cm−1, (26)

where R0 is the bottom of the well position of V(R). Note that the
top of the barrier frequency, ωb = 1000 cm−1, the classical bottom of
the well frequency, ωcl

0 = 1414 cm−1, and the quantum vibration fre-
quency, ω0 = 1172.2 cm−1, are different. Later, in quantum dynamics
simulations, we find that the cavity-promoted reaction rate constant
is directly related to ω0, and the resonance effect is very sharp in fre-
quency space such that we are sure that it is different from both ωcl

0
and ωb.

Furthermore, the reaction coordinate R̂ is coupled to a har-
monic phonon bath to model the effect of the other vibrational
DOFs, where the system–bath coupling is characterized with a
spectral density taken in the Drude–Lorentz form,

Jν(ω) = 2λνγνω
ω2 + γ2

ν
, (27)

where γν = 200 cm−1 is the bath characteristic frequency and λν
is the reorganization energy. We further introduce the quantity
ην ≡ 2λν�(Mγνωb) to characterize the bath friction strength.48 For
the results presented in the main text, we use ην = 0.1, which corre-
sponds to the Kramers under-damped regime (or energy diffusion-
limited regime) for the model molecular system we considered here.
Detailed discussions can be found in Sec. VI of the supplementary
material.

The absorption spectra of the bare-molecule system outside the
cavity can be described by the Lorentzian line shape,50

Aν(ω) = 1
π

Γν(ω − ω0)2 + Γ2
ν

, (28)

where Γν is the linewidth and ω0 is the peak position [the same
as Eq. (25)]. The infrared (IR) spectra of the bare-molecule sys-
tem are numerically calculated by HEOM, in which Γν ≈ 30 cm−1

[see Fig. 3(d)]. Details on the calculation of IR spectra using HEOM
are presented in Sec. I-D of the supplementary material. In recent
studies of VSC rate enhancement, the bare molecular absorption
has a linewidth of 25–30 cm−1 [see Fig. 3(c) of Ref. 4 or Fig. 4 of
Ref. 5]. Note that this linewidth includes both homogeneous [cap-
tured by Jν(ω)] and inhomogeneous broadenings (static disorder,
not modeled here). As such, the choice of the parameter for Jν(ω)
is in line with what was observed in experiments, even though the
phonon bath friction ην for the molecule is in the energy diffusion-
limited regime. We must emphasize that it is currently unknown
in which regime VSC reactions7 operate. It could be either the spa-
tial or energy diffusion-limited regime or some intermediate regime.
Chemical reactions in the liquid phase are typically expected to take
place in the spatial diffusion-limited regime (with strong solvent
friction, also known as the plateau regime or the Kramers over-
damped regime), whereas those in the gas phase are expected to
take place in the energy diffusion-limited regime (with weak solvent
friction, also known as the Kramers underdamped regime). How-
ever, the energy diffusion-limited regime is more prevalent than is
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commonly assumed23 for chemical kinetics in liquid solvents.51–54

It is also possible for chemical reactions to be energy diffusion-
limited even if the solvent friction is large, as long as the bath
DOFs are slow.20,55 To answer this question, one can perform a
direct molecular dynamics simulation to extract the solvent spectral
density.56

Because all VSC experiments use a cavity that has a finite life-
time τc, we need to briefly discuss the connection between the cavity
loss rate Γc and the photon bath spectral density Jc(ω). We assume
Jc(ω) to be the Drude–Lorentz form as follows [cf. Eq. (13)]:

Jc(ω) = 2λcγcω
ω2 + γ2

c
.

Under the Markovian limit (γc →∞), the absorption line
shape of the cavity mode57 is [cf. Eqs. (14) and (15)]

Ac(ω)∝ αω
(ω2

c − ω2)2 + α2ω2 . (29)

Experimentally, one can directly read the full width at half maxi-
mum (FWHM) of the optical spectra Γc. Here, based on Eq. (29), the
FWHM is

Γc = α = 2λc�γc. (30)

More generally, for the non-Markovian case, one can derive the loss
rate Γc as25

Γc = Jc(ωc)
ωc(1 − e−βωc) , (31)

where β ≡ 1�(kBT) is the inverse temperature and kB is the Boltz-
mann constant. Equation (31) will reduce to the Markovian limit
[Eq. (30)] when γc →∞ and βωc � 1. A simple derivation of
Eq. (31) is provided in Appendix D.

The cavity lifetime τc and the cavity quality factor Q are related
to the cavity loss rate Γc as follows:

FIG. 1. Schematic illustration of the ground state chemical reaction model and the
environmental spectral density functions. (a) Potential energy surface for the DW
model used in this work, with the plot of the first few states. The red arrows account
for cavity modification effects. The ground state population of the left well state �νL�
is pumped to the �ν′L� state, then transits to �ν′R� via the tunneling splitting �′, and
is de-excited to the right well �νR�. (b) Plot of the molecular phonon bath spectral
density function Jν(ω) (dark blue curve), plus the effective spectral density Jeff(ω)
(red curve), which corresponds to the cavity and its associated loss. Parameters
are taken as ηc = 0.05, ωc = 1172 cm−1 (in resonance), and τc = 100 fs. The
corresponding rate for this τc will be presented in Fig. 4 (violet curve).

τc = 1
Γc

; Q = ωc

Γc
= ωcτc. (32)

For the recent VSC experiment by Thomas et al.,6 the typical val-
ues for these parameters are τc ≈ 100 fs and Γc ≈ 53 cm−1. If the
cavity frequency is ωc = ω0 = 1172.2 cm−1, then the quality factor
is Q ≈ 22.1. For a different VSC experiment by Xiang et al.,58 the
cavity lifetime was τc ≈ 1–5 ps, translating to a quality factor of
Q ≈ 221–1105 for ωc = 1172.2 cm−1. In our numerical simulations,
we first fix τc (or equivalently, Γc = 1�τc) and then determine λc
using Eq. (31) with specified γc.

Figure 1 provides a schematic illustration of the ground state
chemical reaction model and the environmental spectral density
functions outside and inside the cavity, respectively. Figure 1(a) rep-
resents the first few vibrational states of the DW model, denoted as�νL�, �νR�, �ν′L�, �ν′R�, �ν4�, and �ν5�. The red arrows indicate the poten-
tial effect of the cavity modifying vibrational state transitions, and
the blue arrow right above the barrier denotes the fast dissipative

FIG. 2. Population dynamics of the lowest six states, {�νL�, �νR�, �ν′L�,�ν′R�, �ν4�, �ν5�}, inside a resonant cavity (solid lines) and outside the cavity
(dashed lines). The parameters are taken as ηc = 0.1, ωc = ω0 = 1172 cm−1 (at
resonance), γc →∞, and τc = 200 fs. (a) Population dynamics of �νL�; (b) pop-
ulation dynamics of �νR� (blue), �ν2� (red), �ν3� (green), �ν4� (dark gray), and �ν5�
(light gray). The short-time dynamics are highlighted in (b).
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FIG. 3. Effect of the light–matter coupling strength ηc as well as cavity frequency ωc on the forward rate constant. Fixed parameters are τc = 100 fs and γc →∞. (a) The
time-dependent rate constants k(t) [see Eq. (37) and discussions below] inside the resonant cavity (ωc = ω0 = 1172 cm−1). (b) Effect of ηc on the resonance peak. The
FWHM of the rate profiles is around 140 cm−1. (c) The rate constant enhancement factor k�k0 (red) at resonance (ωc = ω0 = 1172 cm−1) vs the light–matter coupling
strength ηc. The red circles are obtained from the HEOM simulations in (b), and the red curve is a polynomial fitting using the first five data points. The change of the effective
free energy barrier height �(�G‡) (blue circles, obtained from red circles) that backed out from k�k0, suggesting a scaling relation of �(�G‡)∝ − ln (1 + C ⋅ η2

c) (blue
line, obtained from red line). (d) The rate profile [blue curve, same as the brown curve in (b) with ηc = 0.1] and IR spectra of the bare-molecule system (red curve).

tunneling process from �ν′L� to �ν′R�. Figure 1(b) shows the molecu-
lar phonon bath spectral density Jν(ω) (dark blue) and the effective
spectral density Jeff(ω) (red), which has the Brownian oscillator
spectral density [Eq. (14)]. Later, through the quantum dynamics
simulations, we find that the spectral density, Jeff(ω), can accelerate
the state-to-state quantum transitions �νL�→ �ν′L� and �νR�→ �ν′R�
[as indicated by the red arrows in Fig. 1(a)] when its peak frequency
is in resonance with the quantum vibration frequency ω0, causing
resonance enhancement effects. Detailed discussions can be found
in the results of Figs. 2 and 3.

D. Quantum dynamics simulations of the rate
constant

In this work, we use the numerically exact hierarchical equa-
tions of motion (HEOM) approach59–62 to propagate the quantum
dynamics of this VSC model. For a practical calculation, truncation
has to be made upon the number of matter states, restricting the

dynamics in a relatively low-energy subspace while ensuring numer-
ical accuracy. Here, we use the lowest F = 10 vibrational eigenstates
to construct the matter Hilbert subspace (see Sec. II C.) For the
model Hamiltonian in Eq. (18), the quantum subsystem is consid-
ered as ĤS + Ĥren, projected in the Hilbert subspace spanned by{�ν0�, . . . , �ν9�} (vibrational eigenstates of ĤS), whereas ĥeff

B is treated
as bath DOFs and propagated implicitly based on the HEOM for-
malism. The theoretical details of the HEOM approach we used in
this work are provided in Sec. I-A of the supplementary material.
For HEOM propagation, there are several convergence control para-
meters, including (1) the number of bath terms obtained from the
decomposition of the bare environment time-correlation function
(TCF), (2) the time step for integration, (3) the depth of the EOMs
(or the number of tiers), and (4) on-the-fly filtering63 error tol-
erance. We have carefully checked all of the above convergence
parameters. More specifically, we use the fourth-order Runge–Kutta
(RK-4) integrator with a time step of 0.025 fs, together with the on-
the-fly filtering algorithm63 with an error tolerance of 1 × 10−7. More
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details about the bath TCF decomposition schemes and numerical
calculations using HEOM are provided in Secs. I-B and I-C of the
supplementary material.

The HEOM method requires a factorizable initial condition
between the system and the bath subspaces. Note that the choice of
a particular initial condition will not influence the rate dynamics or
rate constant.48,64 We thus assume a factorizable initial full density
matrix as

ρ̂(0) = �νL��νL�⊗ e−βĥ eff
B

ZB
, (33)

where ZB ≡ TrB[e−βĥ eff
B ] is the bath partition function, which is con-

venient to construct since the reduced system part is a pure state.65

We adopt the initial condition of Eq. (33) in all of our numerical
simulations with HEOM. The reduced density matrix of the system,
on the other hand, is defined as

ρ̂S(t) = TrB[ρ̂(t)] = TrxTrX̃[ρ̂(t)], (34)

where ρ̂(t) is the full density matrix of the system and the trace Trx
and TrX̃ are performed on the phonon bath {xj} and the effective
photon bath {X̃ j}, respectively [see Eq. (18)].

In order to evaluate the forward rate constant, we follow the
previous work25,48,66 by defining the time-dependent reactant (R)
and product state (P) populations as

PR(t) = TrS�(1 − ĥ)ρ̂S(t)�, (35a)

PP(t) = 1 − PR(t), (35b)

where the trace TrS in Eq. (35a) is performed along the system DOF
(which is the reaction coordinate R for the model considered here).
In Eq. (35), ĥ = h(R̂ − R‡) is the Heaviside operator that projects
onto the product states, where h(R) = 1 for R > R‡ (in the prod-
uct region) and h(R) = 0 for R < R‡ (in the reaction region); R‡ is
the dividing surface. For the symmetric DW model considered here,
we use R‡ = 0. Under the system’s eigen-representation {�νi�} in the
truncated F-dimensional Hilbert subspace, it can be evaluated as

PR(t) = F�
j=1
�ν j �(1 − ĥ)ρ̂S(t)�ν j�

= F�
i, j=1
�ν j �(1 − ĥ)�νi� ⋅ [ρ̂S]i j(t), (36)

where [ρ̂S]i j(t) = �νi�ρ̂S(t)�ν j� is the system reduced density matrix
element and �ν j �(1 − ĥ)�νi� is evaluated as

�ν j �(1 − ĥ)�νi� = � +∞
−∞ dR ψ∗j (R)[1 − h(R − R‡)]ψi(R)

= � R‡

−∞ dR ψ∗j (R)ψi(R),
where ψi(R) = �R�νi� and ψ∗j (R) = �ν j �R� are the eigenfunctions of
the vibrational eigenstates in the position representation (obtained
using the DVR grid-based method).

The forward rate constant is then evaluated via43,48,66,67

k = − lim
t→tp

ṖR(t)
PR(t) + χeq ⋅ [PR(t) − 1] , (37)

where χeq ≡ �PR���PP� denotes the ratio of equilibrium population
between the reactant and product. The time derivative ṖR(t) is eval-
uated numerically. A simple derivation is provided in Appendix B.
For the symmetric DW potential model [Eq. (20)] considered in this
work, χeq = 1, and for more general cases, it can be obtained either
by path-integral Monte Carlo approaches68 or by the imaginary time
evolution of HEOM.69 The limit t → tp represents that the dynamics
have already entered into the rate process regime (linear response
regime) and tp represents the “plateau” time of the time-dependent
rate (which is equivalent to a flux-side time correlation function
formalism48,70,71). A detailed discussion is provided in Appendix B.
Without taking the limit t → tp, one can view Eq. (37) as the flux-
side correlation function that provides the time-dependent rate
constant k(t), which captures both the initial transient dynamics
[the oscillatory behaviors of k(t)] and the longer time rate process
[plateau of k(t)]. An example of this k(t) is provided in Fig. 3(a).
With the above preparations, we applied HEOM to solve the quan-
tum dynamics and compute the rate constants. The bare reaction
kinetics and VSC “resonance effect” under the influence of various
parameters are investigated.

III. RESULTS AND DISCUSSIONS
A. Quantum dynamics of the VSC-enhanced reaction

Figure 2 represents the population dynamics of the vibrational
states outside the cavity (dashed lines) and coupled to a resonant
cavity for ωc = ω0 = 1172 cm−1 (solid lines). The temperature is
T = 300 K, the light–matter coupling strength is ηc = 0.1, the charac-
teristic frequency of the photon-loss bath is γc →∞, and the cavity
lifetime is set to be τc = 200 fs (in line with the cavity used in the typi-
cal VCS experiments6). The initial condition is described in Eq. (33),
which corresponds to a thermally activated process of the system by
the environment. The populations of the six lowest vibrational states
are presented, including �νL� (golden) in Fig. 2(a), as well as �νR�
(blue), �ν′L� (red), �ν′R� (green), �ν4� (dark gray), and �ν5� (light gray)
in Fig. 2(b). Figure 2(a) represents the population dynamics of the�νL� state (the initially populated state). One can clearly see that when
the resonant cavity mode (ωc = ω0 = 1172 cm−1) is coupled to the
molecular vibrations (solid line), the population of �νL� decays much
faster than the cavity-free case (dashed line). Figure 2(b) shows the
population dynamics of the other five vibrational states, with the
lower panel zooming into the short-time dynamics.

We first examine the reaction mechanism for the molecule
outside the cavity (dashed lines). By looking into the short-time
dynamics (t ∈ [0, 1.5] ps), as shown in the bottom panel of Fig. 2,
one can clearly see the rise of the �ν′L� population (red) during the
first 1 ps, which then reaches a steady state. The rise of the �ν′R�
population (green) follows the rise of the �ν′L� population due to its
diabatic coupling with �ν′L� through �′ (tunneling splitting between�ν2� and �ν3�) and then reaches a steady population after 1 ps. Finally,
the increase in �νR� population (blue) follows the increase in �ν′R�
population. The high-lying excited vibrational states �ν4� and �ν5�
are less populated (for both cavity-free and cavity-coupling cases),
indicating a less important role in this system reaction dynamics at
T = 300 K, due to their higher energy. As such, a qualitative under-
standing of the basic reaction mechanism for the molecule outside
the cavity is �νL�→ �ν′L� due to the phonon coupling [mediated by
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the Ĥν term in Eq. (4)], then �ν′L�→ �ν′R� through the vibrationally
excited states tunneling splitting �′, and finally �ν′R�→ �νR� through
vibration relaxation (again mediated by Ĥν).

When coupling molecular vibration to the resonant cavity
(solid lines), the populations of �νR� (blue) increase significantly
compared to the cavity-free case (dashed lines). Note that the popu-
lation of �νR� has a steady accumulation for both inside cavity (solid)
and outside cavity (dashed) situations, indicating a well-defined
rate process. On the other hand, this enhancement of population
growth is not very significant for higher-energy vibrational states,
such as �ν4� (dark gray) and �ν5� (light gray), indicating their less
important role in the VSC process at T = 300 K. When coupled
to a resonant cavity (solid), the steady-state populations of �ν′L�
and �ν′R� for the cavity-coupling case are slightly larger than the
cavity-free case. In other words, the steady-state populations of
those low-lying vibrational excited states are enhanced due to the
presence of a cavity mode (and its associated loss described by a
photon bath), when it is in resonance with the quantum vibration
frequency ω0.

The enhancement of the �ν′L� population is very sensitive to
the cavity frequency ωc, which needs to match the quantum vibra-
tion frequency ω0 (i.e., the transition frequency of �νL�→ �ν′L�). A
small deviation of ωc away from ω0 will cause a much less significant
enhancement of the �ν′L� population and thus the �ν′R� or �νR� pop-
ulations [see Fig. 3(b)]. Furthermore, when looking at the transient
behaviors of population dynamics, one finds that when ωc = ω0, the�ν′L� and �ν′R� states have faster population gain than the cavity-free
case. This is because the cavity mode promotes the �νL�→ �ν′L� tran-
sition. This mechanism for the VSC-enhanced reactions has been
previously discussed in the context of “RPV mode,”48 in which it
was found that an additional nuclear vibration mode can promote
the proton transfer reaction rate constant. Here, our observation
suggests that the cavity photon coordinate q̂c acts just like a “RPV
mode.”48 The only difference is that the cavity mode q̂c has a fre-
quency ωc that can be easily (and continuously) tuned, whereas the
frequency of RPV modes is not very easy to tune without doing
chemical modifications.

B. Analytic theory for the resonant VSC effect
In order to qualitatively (or even semi-quantitatively) under-

stand the behavior of the VSC-modified rate constants, we develop
an analytic theory to explain the observed dynamics. Our starting
point is based on the quantum dynamics we have seen in Fig. 2. The
basic kinetics can be summarized as follows:

�νL� k1��→ �ν′L� k2��→ �ν′R� k3��→ �νR�, (38)

where k1 and k3 are dominated by the phonon or photon-mediated
population transfer and k2 is dominated by excited state tunneling
splitting �′. Here, we explicitly ignored other high-lying vibrational
states �ν4� and �ν5� due to their negligible population (see Fig. 2), as
well as the vibrational ground state tunneling pathway �νL�→ �νR�
due to the small tunneling splitting �. Based on the observation of
the population dynamics in Fig. 2, it seems that both populations
of �ν′L� and �ν′R� reach steady states. As such, the dynamics of our
model systems (both inside and outside the cavity) are classic text-
book examples of steady-state kinetics. This means that the product

population under the steady-state limit can be approximated as (see
details in Appendix B)

[νR(t)] = [νL(0)] ⋅ (1 − e−k1t), (39)

where [νR](t) denotes the time-dependent population of the prod-
uct well state �νR� under the steady-state approximation and [νL(0)]
denotes the initial population of �νL�. Equation (39) indicates that
under the steady-state limit, the reaction rate constant is described
by the growth of the �νR� population, with the apparent rate constant
k1. As such, under the steady-state approximation for �ν′L� and �ν′R�,
the forward rate constant of the reaction is approximate as the rate
constant of the �νL�→ �ν′L� transition, which is true for both inside
the cavity and outside the cavity situations because both cases exhibit
steady-state behavior for the populations of the �ν′L� and �ν′R� states.
This means

k ≈ k1 = k0 + kVSC. (40)

In the second equality in Eq. (40), we further decompose the rate
constant into two parts, where k0 is the outside cavity rate constant
and kVSC denotes the cavity modification part.

To analytically express the net enhancement in the rate
constant for the �νL�→ �ν′L� transition, denoted as kVSC, we use
Fermi’s Golden Rule (FGR) with the detailed derivation provided
in Appendix A. For a given ωc, the result accounting for VSC effects
on rate constant is50

kVSC = � ∞
0

dω κ(ω)G(ω − ω0), (41)

which is a convolution between κ(ω) and G(ω − ω0). Here, κ(ω) is
the FGR rate constant for the transition �νL�→ �ν′L� (with a frequency
ω), reading as

κ(ω) = 2��x�2 ⋅ Jeff(ω) ⋅ n(ω), (42)

where �x = �ν′L�R̂�νL� is the transition dipole matrix element and
n(ω) = 1�(eβω − 1) is the Bose–Einstein distribution function. Note
that Jeff(ω) explicitly contains ωc, thus giving the ωc dependence of
kVSC. Furthermore, the term G(ω − ω0) in Eq. (41) is an inhomoge-
neous broadening function for the quantum vibration frequency ω0,
with a variance of [cf. Eq. (A6)]

σ2 = �2
z ⋅ 1

π�
∞

0
dω Jν(ω) coth (βω�2),

where �z = �ν′L�R̂�ν′L� − �νL�R̂�νL�. This broadening is due to the
molecular phonon bath Jν(ω).

Note that the rate expression in Eq. (41) explicitly depends
on both the cavity frequency ωc from Jeff(ω) in Eq. (11) and the
quantum vibration frequency ω0 from G(ω − ω0) in Eq. (A10) In
principle, one can use the convolution theorem to evaluate the
expression in Eq. (41); the detailed discussions are provided in
Appendix A. Unfortunately, a closed analytic formalism is not avail-
able. Instead, we numerically evaluate the expression in Eq. (A21)
using a spectral density discretization procedure outlined in Ref. 56.
However, we find that in two special cases, analytic expressions for
the approximate evaluation of kVSC in Eq. (41) are available. For
both cases, we assume the Markovian limit for the effective spectral
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density Jeff(ω) [Eq. (14)]. Similar expressions can be derived for the
non-Markovian case.

First, under the lossless limit (τc →∞), the effective spec-
tral density function will reduce to a single δ-function, Jeff(ω)≈ πη2

cω2
cδ(ω − ωc). As a result, the broadening is fully dictated by

the variance of the Gaussian,

kVSC ≈ 2��x�2 ⋅ πη2
cω2

c� ∞
0

dω δ(ω − ωc)G(ω − ω0)n(ω)
= 2π��x�2η2

cω2
c G(ωc − ω0) ⋅ n(ωc). (43)

The rate profile described in Eq. (43) is a Gaussian function cen-
tered at ω0 with respect to cavity frequency ωc. The numerical value
of these broadening factors at T = 300 K is72 σ = 30.83 cm−1. As a
comparison, α = 5.3 cm−1 when τc = 1 ps.

Second, under the limit when the broadening caused by Jν(ω)
is much smaller than the one caused by Jeff(ω), which means that
α� σ (for example, when τc → 0 or α→∞), the Gaussian function
is much narrower than Jeff(ω) such that we can approximate G(ω− ω0) as a single δ-function, G(ω − ω0) ≈ δ(ω − ω0). Then, the kVSC
expression in Eq. (41) becomes

kVSC ≈ κ(ω0) = 2��x�2 ⋅ Jeff(ω0) ⋅ n(ω0)
≈ 2��x�2 ⋅ 2αη2

cω3
cω0(ω2

c − ω2
0)2 + α2ω2

0
⋅ e−βω0 (44)

such that the cavity-related width α = τ−1
c [see Eq. (30)] dominates

the rate profile. For the model parameter considered here (ω0 = 1172
cm−1, kBT ≈ 200 cm−1), we have βω0 � 1 and thus n(ω0) ≈ e−βω0 , as
we explicitly used in the second line of Eq. (44), indicating the ther-
mal Boltzmann probability of occupying the �ν′L� state. For larger
τc, it is necessary to use the full FGR expression in Eq. (41) (with
convolution), while the approximate expression in Eq. (44) provides
a much simpler analytic form for us to analyze basic scaling rela-
tions of kVSC. In particular, the resonant behavior can be readily seen
because kVSC will reach its maximum when ωc = ω0. The broadening
of the VSC-modified rate profile in Eq. (44) is dictated by the para-
meter α [see the expression in Eq. (15)], which is the width of Jeff(ω)
in Eq. (14). Furthermore, when α is much larger than ωc, the Brow-
nian line shape will gradually become the familiar Drude–Lorentz
line shape.39 The more general expression in Eq. (41) will predict
the same resonant condition if Jeff(ω) takes the Markovian limit
[Eq. (14)] because the function G(ω − ω0) in Eq. (A10) only provides
additional broadening.

The VSC-modified rate constant kVSC, expressed in Eq. (41),
and its approximate versions in Eqs. (43) and (44) are the
key theoretical results of this work. The approximate expression in
Eq. (44), although less accurate, readily provides an intuitive under-
standing of the VSC modifications on the rate constant. Under the
limit of Jeff(ω0)→ 0, kVSC → 0, the effect of the cavity will diminish,
and the rate constant [Eq. (40)] will be reduced back to the situation
of the outside cavity. This limit can be achieved by three possible sce-
narios: (1) the light–matter coupling strength ηc → 0 (a trivial limit);
(2) for non-negligible ηc, one still has Jeff(ω0)→ 0 if there is a large
frequency difference between ωc and ω0 [see Eq. (14)]; and (3) when
α→∞ or the cavity lifetime τc → 0 [see Eq. (32)], meaning either
λc →∞ or γc → 0, both of which correspond to an extremely lossy

cavity. We will revisit this simple rate expression when further ana-
lyzing the numerical results of the VSC-modified rate constant later
in Sec. III E.

Finally, before moving on to the numerical results, we want to
comment on the isotropic disorder of the dipole relative to the field
polarization direction. It is believed that the dipole orientation inside
the cavity should have been isotropically disordered such that

χ ⋅ �(R̂) = χ ⋅ �̂ cos φ, (45)

where φ is the angle between the dipole operator �̂ and the field
polarization direction ê, which has a uniform distribution in [0, 2π).
One can replace the definition of ηc in Eq. (7) as follows:

ηc =
�

1
2�0ωcV

cos φ. (46)

We expect that the rotation of the dipole will be much slower than
that of the dynamics processes, which can be treated as a static dis-
order and averaged out. Because all the FGR expressions depend on
ηc quadratically inside Jeff(ω), the factor cos φ will show up. Upon
statistical averaging, the FGR rate in Eq. (41) will be modified as

kVSC = �cos2 φ� ⋅� ∞
0

dω κ(ω)G(ω − ω0), (47)

where �cos2φ� = 1/3 for a fully isotropic case. As a result, all of the
approximate FGR rate expressions, including Eqs. (43) and (44), will
be modified by multiplying a factor of �cos2φ� = 1/3. Note that this
is a unique feature of the quantum FGR theory, in which the η2

c fea-
ture is the key to surviving the isotropic averaging. Previous classical
GH theory22 will not survive isotropic averaging and will give zero
modification of the rate constant.

C. VSC rate modifications by changing ωc and ηc

Figure 3 represents the VSC-modified rate profile as a func-
tion of the cavity frequency ωc. Here, the light–matter coupling
strength ηc and the cavity frequency ωc are variables. The tem-
perature is set to be T = 300 K, the characteristic frequency of
the photon-loss bath is γc →∞, and the cavity lifetime is cho-
sen to be τc = 100 fs. Figure 3(a) represents the time-dependent
rate constant k(t) [see discussions below Eq. (37)] inside a reso-
nant cavity (with ωc = ω0 = 1172 cm−1). As one gradually increases
the light–matter coupling strength ηc [see the legend in Fig. 3(a)]
from 0 (black, outside the cavity) to 0.0125 (violet), 0.018 75 (blue),
0.025 (cyan), 0.0375 (green), 0.05 (orange), 0.075 (red), and 0.1
(brown), there is always a well-defined plateau value that provides
a rate constant (associated with a rate process), with the plateau
time tp ≈ 2 ps.

Figure 3(b) represents the resonance effect of the VSC-modified
rate constant when a molecular vibration is coupled to a cavity.
A resonantly enhanced sharp peak of the rate constant is exhib-
ited when ωc = ω0. To characterize cavity modification effects, we
present the rate constant enhancement factor k�k0 from Fig. 3(a),
after reaching the dynamic plateau time. As ηc increases, the reso-
nance peak intensity also becomes stronger. This sharp resonance
enhancement of the rate constant has been observed in recent VSC
experiments, such as Fig. 3(d) of Ref. 4 or Fig. 4 of Ref. 5. How-
ever, we need to remind the reader that in experiments,4,5 there are
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at least 106 molecules collectively coupled to the cavity, whereas the
current studies only considered a single molecule strongly coupled
to the cavity mode. Furthermore, in that experiment,4,5 the cavity
mode is tuned to be resonant with solvent vibrations, while in our
model system, the cavity frequency is tuned to match the �νL�→ �ν′L�
transition for the reactant well. Future studies will be needed that
will be based on a model system that more accurately reflects the
experimental setup.22 Note that because there is a clear frequency
separation between the quantum transition frequency ω0 [Eq. (25)]
and the classical bottom of the well frequency ωcl

0 [all of which are
labeled as the vertical dashed lines in Fig. 3(b)], the results clearly
demonstrate that the VSC rate enhancement is only related to ω0

[Eq. (25)], rather than ωcl
0 [Eq. (26)] or ωb [Eq. (21)]. Interestingly,

experimental observation always suggests that the VSC-modified
rate profile and the transmission spectra of the bare molecule peak
at ω0 (e.g., Fig. 3 of Ref. 4 and Fig. 4 of Ref. 5). This is because,
in the spectral measurements, the laser field causes the transition�νL�→ �ν′L�, resulting in a maximum intensity of the signal at the
transition frequency ω0. For the VSC-modified rate profile, the cav-
ity mode q̂c will promote the transition �νL�→ �ν′L�, which reaches
its highest magnitude when ωc = ω0. This explains why the molec-
ular transmission spectra always show the same peak position as
the VSC-modified rate profile.25 This resonance structure is also
predicted and explained by the FGR expression in Eq. (44), where
the VSC-modified rate profile will peak at ωc = ω0. The rate profile
should also have a finite width around ω0, including both contribu-
tions from both α in Jeff(ω) and G(ω − ω0). We will return to the
quantitative comparison of kVSC using the full expression in Eq. (41)
and the HEOM results at the end of this paper.

Figure 3(c) represents the value of k�k0 (red open circles) when
ωc = ω0, as a function of the light–matter coupling strength ηc. The
data points obtained from the exact HEOM simulations are depicted
with circles, and the solid line provides a fitting curve using the
first five data points (for the range of ηc < 0.05). The fitting suggests
that k�k0 has an almost perfect quadratic dependence on ηc for the
range of ηc < 0.05 such that k�k0 ∝ 1 + C ⋅ η2

c , where C = 4��x�2ω0τc
[see Eq. (44)]. This scaling relation can also be intuitively under-
stood using the FGR expression in Eq. (41). Note that ηc influences
the intensity of the effective spectral density through Jeff(ω0)∝ η2

c .
As such, the cavity enhances the transition of �νL�→ �ν′L�, hence
enhancing the rate constant with a scaling relation of η2

c . One can
also use the Rabi splitting, �R ≡ 2χ�LL′ = 2ηcωc ⋅ �LL′ [cf. Eq. (E3)],
to describe the rate constant. Here, the transition dipole moment
�LL′ = �νL��(R̂)�ν′L�. See Appendix E for details. As such,

k�k0 ∝ 1 + C ′ ⋅ (�R�2ωc)2, (48)

where C
′ = 4ω0τc. Both our numerical results and analytic anal-

ysis suggest that the VSC-enhanced reaction rate constant scales
with (�R�2ωc)2 for a relatively small light–matter coupling strength
(when �R � kBT). Although there are not many results available
in the literature to confirm this trend, existing data points [such as
Fig. 4(b) of Ref. 4] do that clearly deviate from a linear fit of �R�2ωc.
However, it is difficult to conclude whether these four experimen-
tal data points confirm a (�R�2ωc)2 scaling. Further experimental
investigations on these existing reactions4 will be needed to test the
scaling relation between k�k0 and �R to confirm or disprove the
current theoretical prediction in Eq. (48).

Figure 3(c) further represents the change of the effective free
energy barrier �(�G‡), directly calculated from the rate constant
ratio k�k0 obtained from HEOM simulations. To account for the
“effective change” of the Gibbs free energy barrier �(�G‡), we con-
sider the simple rate equation k = A ⋅ exp(−β�G‡), with the outside
the cavity case as k0 = A ⋅ exp (−β�G‡

0), as is commonly assumed by
experimental analysis.3,4 The prefactor A is assumed to be the same
with or without the cavity.3,4 The change of the effective free energy
barrier compared to the bare molecular reaction (with k0 and �G‡

0)
is then given by

�(�G‡) = �G‡ − �G‡
0 = −kBT ln (k�k0). (49)

Note that this is not an actual change in the free-energy barrier, but
rather, a purely kinetic effect. Based on our Eq. (48), we predict that

�(�G‡)∝ −kBT ln �1 + C ′ ⋅ (�R�2ωc)2�, (50)

which is also supported by the HEOM results (blue open circles). If
one hypothesizes that an unknown mechanism forces the upper or
lower vibrational polariton states to be a “gateway of VSC polari-
tonic chemical reactions,”73 then the activation free energy change
should shift linearly16 with �R. On the other hand, the experimen-
tal results demonstrate the nonlinearity of the reaction barrier.3,4

Our current theory [Eq. (41)] indicates that the nonlinear increase
of “effective �(�G‡)” in Eq. (50) when increasing �R is due to the
cavity promotion of the �νL�→ �ν′L� transition, and more specifically,
the effective �(�G‡) scales with −kBT ln �1 + C ′ ⋅ (�R�2ωc)2�. Fur-
thermore, in Ref. 7, it was pointed out that a very small Rabi splitting
observed in optical spectra can lead to much larger changes in activa-
tion free energy such that �(�G‡) > �R, which seems to be a general
trend in most VSC experiments.3 However, this phenomenon lacks
a theoretical explanation. Here, we attempt to provide one, with
k∝ η2

c , which significantly influences the rate and, correspondingly,
the effective free energy barrier.

Figure 3(d) represents the rate profile (blue), which is the same
as the brown curve in Fig. 3(b) (with ηc = 0.1), as well as the IR spec-
tra calculated by HEOM (red). Details about the IR spectral calcu-
lation using HEOM are presented in Sec. I-D of the supplementary
material. The IR spectra have a FWHM of about 60 cm−1 and a peak
position of ωc = ω0. The VSC modified rate profile has a FWHM of
140 cm−1. The same peak position strongly indicates its common
origin associated with the �νL�→ �ν′L� transition. The optical transi-
tion is caused by −�̂ ⋅ E(t), where �̂ is the transition dipole operator
and E(t) is the classical laser field, whereas the molecule–cavity cou-
pling is caused by �̂(â † + â)∝ �̂ ⋅ q̂c, where q̂c =�1�(2ωc)(â † + â)
is the photonic coordinate that is proportional to the displacement
field intensity inside the cavity.

D. VSC rate modifications by changing τc

Figure 4 represents the VSC-modified reaction rate constant
under the influence of the cavity lifetime τc, with a fixed ηc = 0.05.
The τc parameter determines the shape and intensity of the effective
spectral density function Jeff(ω). We consider the Markovian loss
by setting γc →∞, which means that the effective spectral density
Jeff(ω) becomes the Brownian form in Eq. (14).

Figure 4(a) represents Jeff(ω) under different cavity lifetimes,
where we fix ωc = ω0 = 1172 cm−1. One can observe that Jeff(ω)
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exhibits a sharp peak when there is a relatively long τc. It will reduce
to a Dirac δ-function at the lossless limit (τc →∞), whose bare-
bath TCF is discussed in Sec. I-B of the supplementary material.
Decreasing τc leads to weakening and broadening of Jeff(ω). The
dependence of τc on the VSC rate constant profile resonance peak
is dictated by the shape of Jeff(ω), as shown in Fig. 4(b). Under
the lossless limit (τc →∞), there is no apparent cavity modifica-
tion effect, as discussed in the previous work in Ref. 25. When
the cavity lifetime is gradually decreased, the resonance structure
in the rate profile shows up and the VSC modifications gradually
increase. This trend is in line with the results in Ref. 25 using a sim-
ilar model, where the cavity mode qc was included in the quantum
subsystem system description using Fock states. The rate constant
enhancement reaches a maximum intensity when τc ≈ 200 fs, in
which the rate constant is enhanced by 1.35 times. Further decreas-
ing τc leads to a decreased and broadened rate constant profile. The

FIG. 4. Effect of cavity lifetime τc on the VSC-modified rate profile under the
Markovian limit of the photon bath. The light–matter coupling strength is fixed as
ηc = 0.005. (a) Plots of Jeff(ω) under different τc, while fixing the cavity frequency
ωc = ω0 = 1172 cm−1. (b) Effect of τc on the value of k�k0. Note that the cavity
modification effects become smaller when τc is reduced, and the cavity effect van-
ishes under the heavy loss limit (τc → 0). (c) The peak value of k�k0 (at ωc = ω0)
as a function of cavity lifetime τc.

cavity modification effect gradually disappears at the heavy loss limit
τc → 0.

Figure 4(c) further represents the peak value of k�k0 (at ωc= ω0) as a function of cavity lifetime τc. One can see that k�k0 first
increase as τc increase and then decrease, giving rise to a turnover
phenomenon. For τc > 200 fs (toward the lossless limit of τc →∞),
the cavity modification effects gradually diminish, agreeing with the
previous results in Ref. 25. The trend of k�k0 increases as τc increase
for τc ∈ [0, 100] fs was not discussed in the previous literature.25 The
current results bring a more complete picture of how k�k0 depends
on τc.

Using the FGR theory in Eq. (41), we can try to understand the
basic scaling relation of the VSC-modified rate constant with respect
to the cavity lifetime τc near the lossy limit for τc ∈ [0, 200] fs. Under
the resonance condition ωc = ω0 and the Markovian limit [Eq. (14)],
the Jeff(ω0) term becomes

Jeff(ω0) = 2η2
cω2

0τc, (51)

which will be the predominant part of τc-dependence in the FGR
rate of Eq. (44). This means that

k�k0 ∝ 1 + 4��x�2η2
cω2

0τc ⋅ e−βω0�k0. (52)

The above expression correctly predicts that under the τc → 0 limit,
k�k0 → 1, as we observed in HEOM simulations. It also correctly
predicts the trend that k�k0 increases as τc increases. However, this
expression will break down when τc > 200 fs, as is shown in HEOM
simulations [see Fig. 5(d)].

For the non-Markovian photon-loss bath,25 the basic trend will
be similar. In this case, as τc decreases, a blue shift will appear
in Jeff(ω) due to a non-negligible R̃(ω) [Eq. (12)]. The FGR rate
[Eq. (41)], on the other hand, will have a profile dictated by

Jeff(ω0) = 2η2
cω3

cJc(ω0)[ω2
c − ω2

0 + R̃(ω0)]2 + [Jc(ω0)]2 ,

which peaks at ωc =�ω2
0 − R̃(ω0). Thus, the peak of the rate profile

will have a redshift, with the magnitude

�ω = ω0 ⋅ �1 −�1 − R̃(ω0)�ω2
0�. (53)

Intuitively, this is because the peak of Jeff(ω) should match the quan-
tum transition frequency ω0 to maximally enhance the �νL�→ �ν′L�
transition. Since the non-Markovian spectral density is blue-shifted
compared to the Markovian case, one should expect ωc < ω0 in order
to have the peak of Jeff(ω) showing up at ω0. Thus, the resonance
condition is red-shifted as ωc =�ω2

0 − R̃(ω0). Note that this shift is
purely due to the non-Markovian behavior of the photon-loss bath
[which has nonzero R̃(ω0)]. The numerical simulation with the non-
Markovian photon-loss bath can, in principle, be performed using
the recently developed time-domain Prony fitting decomposition
scheme.74

E. Numerical behavior of kVSC in Eq. (41)
So far, we have used the FGR theory in Eq. (44) to qualitatively

interpret the VSC rate constant modifications and explain the reso-
nance condition ωc = ω0, the basic scaling rule of k�k0 ∝ 1 + C ⋅ η2

c ,
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FIG. 5. Comparison between the numerically exact HEOM rate constants (open circles) and the FGR rate using Eq. (41) (solid lines) for the VSC effect on k�k0. The FGR rate
was multiplied by a factor of 0.4. (a) Resonance effect of VSC when changing the cavity frequency ωc at various light–matter coupling strengths ηc. (b) k�k0 with increasing
ηc, with the results obtained from HEOM (red open circles) and FGR (golden curve). The rest of the parameters are identical to those in Fig. 3, and the red dashed line is
the fitting of the HEOM data for ηc < 0.05. (c) Resonance effect of VSC when changing the cavity frequency ωc at various cavity lifetimes τc. (d) k�k0 with an increasing τc,
obtained from HEOM (blue open circles) and FGR (golden line).

and the τc dependence of k�k0. Here, we assess the quantitative
accuracy of the FGR rate constant in Eq. (41). Note that we are
less interested in how to compute the rate outside the cavity k0,
as there are many accurate theories to describe it in theoretical
chemistry.19,47,52,75 Rather, we want to focus on the performance
of kVSC in Eq. (41). As such, we only report the value of k�k0= 1 + kVSC�k0, where we numerically integrate out dω in Eq. (41)
to obtain kVSC, and we directly use the numerical result of
k0 = 1.2672 × 10−7 a.u.−1 obtained from the HEOM simulation [out-
side cavity case in Fig. 3(a)]. We used Eq. (A21) to evaluate the
convolution integral in Eq. (41) and compare the FGR rate constant
with the HEOM results. We found that the simple FGR rate constant
overestimates the results by 2.5 times compared to the numerically
exact results obtained from HEOM and will breakdown for large ηc
and τc. Nevertheless, this simple FGR theory captures the basic trend
of the VSC modified rate constant when ηc < 0.05 (or �R < 25 cm−1)
and τc < 100 fs, as shown in Fig. 5.

Figure 5(a) represents the cavity frequency dependence of
the VSC-modified rate profile, with the same parameters used in

Fig. 3(b). The open circles and the guiding thin lines are results
obtained from the HEOM simulations [identical to those presented
in Fig. 3(b)], and the thick solid lines are the results obtained from
the FGR expression using Eq. (41) scaled by a factor of 0.4. Although
not in perfect agreement, the FGR rate exactly predicted the resonant
behavior at ωc = ω0, and provided semiquantitative estimations for
the peak height and width of the rate profile, when the light–matter
coupling strength ηc < 0.05 (or �R < 25 cm−1). For ηc > 0.05, the
FGR expression still provides the resonant behavior but is further
deviating from the HEOM results in terms of the magnitude due to
the breakdown of FGR.

Figure 5(b) represents the scaling relation between k�k0 (at ωc= ω0, resonant condition) and the light–matter coupling strength ηc.
The red open circles represent the results obtained from the HEOM
simulations [identical to Fig. 3(c)]. The red curve is a fitting line for
data points when ηc < 0.05 (or �R < 25 cm−1). The results obtained
from FGR [Eq. (41)] are presented with a gold solid line. The FGR
rate, not surprisingly, correctly predicted k�k0 ∝ η2

c when ηc < 0.05
(or �R < 25 cm−1). Further increasing ηc leads to a breakdown of
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the FGR because it is only valid when �R � kBT, where the Rabi
splitting �R [Eq. (E3)] is the energy coupling term in the FGR [see
Eq. (E4)]. For the current model system, when �R < 25 cm−1 (ηc< 0.05), FGR provides an accurate description of the basic scaling of
k�k0. With a further increase of �R, the FGR prediction will deviate
from the HEOM results. Experimentally, the typical range1,4 of �R
is within 100 cm−1 and will likely show a non-linear scaling relation
between k�k0 and ηc. Our HEOM results also suggest that a further
increase in the light–matter coupling strength ηc will eventually lead
to a saturation in the enhancement, in agreement with the previous
study.25

Figure 5(c) represents the VSC-modified rate profile as a func-
tion of ωc by varying cavity lifetime τc using the same parameters
as in Fig. 4. The open circles (and the guiding thin lines) represent
the results obtained from HEOM simulations [identical to those in
Fig. 4(b)], whereas the thick solid lines are results obtained from
FGR [Eq. (41)]. Note that the FGR results are also scaled by a factor
of 0.4 to provide a convenient comparison with the HEOM results.
Although not perfectly reproducing the numerically exact results,
the FGR rate, indeed, captured the basic trend of the rate profile as
one gradually increases τc for τc < 100 fs.

Figure 5(d) represents k�k0 at the resonant condition ωc = ω0
as a function of the cavity lifetime τc. The convolved FGR expres-
sion [Eq. (41)] correctly captures the linear dependence of k�k0 at
small τc (<100 fs) [as also predicted by Eq. (52)]. When we further
increase τc, the current FGR theory predicts that the rate profile
gradually converges to a Gaussian line shape with a variance of σ2

[see Eq. (43)], resulting in a sigmoid dependence of k�k0 as increas-
ing τc (golden curve). The numerical simulations from HEOM (blue
open circles), on the other hand, show a turnover behavior and
start to deviate FGR for τc > 100 fs, indicating the breakdown of
the current FGR theory. This is because under the lossless limit,
the cavity loss no longer plays the role of a simple (homogeneous)
broadening factor, but rather the photon number excitation (see
Appendix E for details). Near the lossless limit, decreasing τc induces
a stronger cavity mode-photon loss coupling [see Eq. (13)], thus a
faster �0�→ �1� transition (for the cavity Fock states). As a result,
the resonance enhancement is magnified. Under the lossy limit,
the cavity mode thermalizes very fast with the photon-loss bath,
being in accordance with the FGR description (that the environ-
ment part is always at equilibrium). On the other hand, under the
lossless limit, the rate-limiting step is photonic excitation via the
photon-loss bath that discussed above. As a result, the environ-
ment part (cavity plus the photon-loss bath) cannot be regarded
as always at equilibrium so that FGR no longer works. Rate the-
ories that describe this interesting behavior remain to be further
developed.

As such, we conclude that the FGR expressions in Eq. (41)
[as well as the small τc limit in Eq. (44)] are theoretically valuable
because they predict the correct scaling relations and semiquantita-
tively predict the accurate VSC-modified rate constants. Neverthe-
less, the numerical behavior of the FGR expression is not perfect,
as one can see that it will overestimate the rate by 2.5 times for
the model system we studied when FGR is valid and will even-
tually breakdown for large light–matter coupling strength ηc and
large cavity lifetime τc. That said, when FGR is valid, the rate
expression provides a nearly perfect trend when changing ωc, ηc,
and τc.

IV. CONCLUDING REMARKS
A. Computational approaches and novelty

We performed numerically exact simulations using hierarchical
equations of motion (HEOM) to investigate the effect of vibrational
strong coupling (VSC) on the reaction rate constant. With harmonic
analysis for the equations of motion, an effective spectral density
function was derived to describe the cavity and its associated loss.
In the HEOM simulations, only the system’s vibrational states were
described as the quantum subsystem, whereas the influence of the
molecular phonon bath, the cavity mode, and its associated photon-
loss bath was described implicitly using spectral density functions.
Compared to recent work that treats the photon coordinate q̂c inside
the quantum subsystem and using Fock state description, the cur-
rent approach describes the cavity mode using an effective spectral
density and thus significantly reduces the computational cost due
to a much smaller number of states in the quantum subsystem.
On the other hand, including q̂c in the quantum subsystem using
Fock states does require truncation of the Fock states, while the
current approach that treats q̂c inside the spectral density descrip-
tion does not explicitly involve any Fock state truncation. With this
new description, it becomes possible to extend numerical exact sim-
ulations to multimode cases and polymeric systems with arbitrary
types of bath TCF, even though in this work we are still under the
single-molecule case. Another interesting direction of applying the
current approach is to explore the quantum dynamics of a hybrid
plasmonic-photonic structure that has few-mode field quantization
with structured spectral densities.76

B. Origin of the resonance condition
Our numerical simulations confirm the results in a recent

study,25 which also performs exact quantum dynamics, suggesting
that in the energy diffusion-limited regime of chemical reactions, the
cavity mode acts like a “rate-promoting vibration (RPV) mode.”48

This “rate-promoting” cavity mode promotes the transition from
the reactant ground vibrational state �νL� to the reactant excited
vibrational state �ν′L�, then follows by tunneling to the product vibra-
tional excited state �ν′R�, and eventually relaxes to the product ground
vibrational state �νR�. Our exact quantum dynamics results (Fig. 2)
suggest that the presence of a resonant cavity mode whose frequency
ωc matches the quantum transition frequency ω0 (corresponding to
the �νL�→ �ν′L� transition) will significantly enhance the steady-state
populations of the �ν′L� and �ν′R� states, thus promoting the forward
rate constant.

The VSC-modified rate profile scanned as a function of the cav-
ity frequency ωc also shows a very sharp resonant feature [Fig. 3(b)],
similar to the absorption spectra of the molecule outside the cav-
ity [Fig. 3(d)].4,25 This is because both profiles originate from the
same type of transition �νL�→ �ν′L�. In optical absorption spectra,
the laser frequency must match ω0 to generate the optical exci-
tation �νL�→ �ν′L�, whereas in VSC-modified reactions, the cavity
frequency ωc must match ω0 to efficiently promote the �νL�→ �ν′L�
transition (under thermal condition).

Note that this quantum frequency ω0 [Eq. (25)] is different
from the classical bottom of the well frequency ωcl

0 [Eq. (26)] or top
of the barrier frequency ωb [Eq. (21)] for an anharmonic potential.
Previous work that uses classical rate theory to study VSC effects
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cannot find the resonance behavior of ωc = ω0 because these theories
rely on the classical description of the system (such as trajecto-
ries), which are sensitive to the classical frequencies of the potential.
More detailed discussions of these previous classical rate theories for
VSC can be found in Appendix E. In this sense, the proper descrip-
tion of the VSC resonance effect needs a quantum description that
provides the quantum frequency information ω0 (by providing the
eigenenergies of the vibrational states).

C. Behavior of the VSC-modified rate constants
We further explored how the VSC-modified rate constant

would be influenced by the light–matter coupling strength ηc
[Eq. (7)] and by the cavity lifetime τc [Eq. (32)]. Our numeri-
cal results suggested that as ηc increased, the VSC-modified rate
constant also increased, and a numerical fitting suggested that the
rate constant enhances quadratically with ηc when ηc < 0.05 [or �R< 25 cm−1, red curve in Fig. 3(c)]. Using this observation, we also
find that the modification of the free energy barrier does not scale
linearly with the Rabi splitting �R, but rather exhibits a logarith-
mic scaling of �R [blue curve in Fig. 3(c)]. This numerical behavior
exhibits the essential feature of the nonlinear relationship between
�R and the modification of the free energy barrier.3,4,7 Although
there are not many experimental studies on the relationship between
VSC-modified rate constants and light–matter coupling strength,
there is experimental evidence, suggesting a nonlinear relation
between the rate constant and the light–matter coupling strength
(Rabi splitting) in Ref. 4. Further experimental efforts are needed
to investigate the scaling relation between the VSC rate constant and
the light–matter coupling strength.

Furthermore, we explored how the cavity loss or the cavity life-
time, τc, influences the VSC effects. We find that the VSC modified
rate constant in Fig. 4 exhibits a turnover profile from the lossless
limit (τc →∞) to the lossy limit (τc → 0), and the rate constant
peaks at a particular τc. To the best of our knowledge, there is no
previous experimental work that reports how VSC-modified rate
constant changes as a function of τc. There is an interesting exper-
iment that measures the exciton-polariton diffusion rate constant
with changing τc, suggesting that a decrease in τc will diminish the
diffusion rate constant.77 Thus, future experiments on checking how
VSC-modified rate constant changes with respect to the quality fac-
tor of cavities will be highly valuable, even for those reactions that
are already reported.1,4,5

D. Analytic theory of VSC rate constant
Noting the steady-state behavior of the population dynamics

for �ν′L� and �ν′R� (red and green curves in Fig. 2), we apply the steady-
state approximation to the kinetics [Eq. (38)] and concluded that the
overall forward rate constant is identical to the rate constant of the�νL�→ �ν′L� transition. Using Fermi’s Golden Rule (FGR) to evaluate
this rate, we arrived at an analytical expression of the VSC-modified
rate constant for the system investigated in this work [cf. Eq. (41)],

kVSC = 2��x�2� ∞
0

dω Jeff(ω) ⋅G(ω − ω0) ⋅ n(ω). (54)

On the other hand, a less accurate but more intuitive expres-
sion of kVSC is available under the zero-phonon broadening limit

G(ω − ω0)→ δ(ω − ω0) and the Markovian limit for Jeff(ω) [see
Eq. (14)], resulting in [cf. Eq. (44)]

kVSC ≈ 2��x�2 ⋅ 2αη2
cω3

cω0(ω2
c − ω2

0)2 + α2ω2
0
⋅ n(ω0). (55)

The above FGR expression, although quantitatively less accurate,
can already be used to qualitatively understand the resonant behav-
ior of the VSC-modified rate profiles in Figs. 3(b) and 4(b), which
gives rise to a maximum rate enhancement when ωc = ω0. With this
simple FGR rate, we can also understand the observed scaling rela-
tion of kVSC ∝ η2

c [Fig. 3(c)], as well as the basic trend that kVSC → 0
when τc = 1�α→ 0. As such, the FGR expression in Eq. (54) and its
simpler limit in Eq. (55) provide a resonant VSC theory that can
explain most of the numerical results in our work. To the best of
our knowledge, this is the first analytic theory that is able to explain
the sharp resonance behavior of the VSC rate constant profile for
an electronically adiabatic reaction.10 Despite its success in terms of
explaining all basic trends of the VSC-modified rate constant (as
shown in Fig. 5), the current expression overestimates the abso-
lute rate constant by a factor of 2.5 for ηc < 0.05 (corresponding to
�R < 25 cm−1) and even more for ηc > 0.05. Furthermore, the FGR
theory cannot predict the correct turnover behavior after τc = 200 fs
(see Fig. 5). For the experimental context,1,6 the typical values of the
cavity lifetime and the Rabi splittings are τc ≈ 100 fs and �R ≤ 100
cm−1 (for ω0 = 1000 cm−1). Future work is needed to develop a more
quantitatively accurate rate theory for VSC-modified chemistry that
is valid for the stronger light–matter coupling regime (ηc > 0.05)
and for the lossless case (τc > 200 fs).
E. Summary of key predictions

Based on current numerical results and the analytic FGR rate
constant expression, we provide the following predictions. All these,
of course, are limited to the single molecule coupled to the cavity.

(1) The current work predicts that the VSC-enhanced rate
effect should scale as k�k0 ∝ 1 + C ⋅ (�R�2ωc)2, i.e., increas-
ing Rabi splitting �R will quadratically enhance the
VSC-modified rate constant. As a corollary, the effec-
tive free energy barrier change scales as �(�G‡)∝ −kBT
ln �1 + C ⋅ (�R�2ωc)2�, which is a nonlinear function of �R,
consistent with the recent experimental observation.4

(2) kVSC for isotropic dipole orientation [see Eq. (47)] is
three times smaller than kVSC in Eq. (41) for the fully
aligned case. In general, if one can experimentally control
the distribution of the orientation of the dipole,78,79 then
the general scaling should be kVSC ∝ �cos2φ� due to the
FGR theory that depends on the coupling squared matrix
[see Eq. (47)].

(3) The FWHM of the rate profile is controlled by a convolu-
tion of Jeff(ω) and a broadening function, whose FWHMs
are α = 2λc�γc [Eq. (30)] and σ2 ∝ ∫ ∞0 dω Jν(ω) coth (βω�2)
[Eq. (A6)], respectively. This is almost in perfect agreement
with the numerical results [see Fig. 5(c)] for a small cavity
lifetime when τc < 100 fs (see Fig. 5).

(4) The current numerically exact results predict that there will
be a turnover of the rate constant as one increases the cavity
lifetime τc. As the cavity lifetime τc increases, the VSC effect
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will increase first, which agrees with the analytic FGR theory.
When further increasing τc, the numerically exact simulation
suggests that the cavity modification effects decay to zero,25

and the analytic FGR theory failed to predict this trend.
On the other hand, both numerical results and the analytic
FGR theory predict that the cavity effect will diminish when
τc → 0 for a very lossy cavity.

(5) The VSC enhancing effect will saturate with an increasing
light–matter coupling strength ηc (or Rabi splitting �R) such
that k1 � k2, k3, which breaks the mechanistic assumption
based on steady-state approximation. This agrees with the
numerical results in Ref. 25 as well as our HEOM results in
Fig. 3. Related to this, for two chemically similar reactions,
if one satisfies k1 � k2, k3 but the other does not, then the
current theory predicts that there will be a VSC effect for the
first reaction but not for the second one. As such, the negative
results of the VSC experiments80 could be valuable to further
elucidate the fundamental mechanism of the VSC-modified
rate constant.

We hope that the current theory and predictions can offer valu-
able insights into the fundamental mechanism of vibrational polari-
ton chemistry, be useful for near future experimental measurements
to carefully check how the VSC-modified rate constant changes by
varying different parameters, even for those VSC-modified chemical
reactions1,4,5 that have already been reported.

F. Limitation and future directions
Despite several initial successes of the FGR theory [Eq. (41)]

and the quantum dynamics simulations, obviously, there are several
limitations in the current work.

(1) The current theory and simulation assume that a single
molecule is coupled to the cavity. On the other hand, the VSC
experiments operate under a collective coupling regime such
that estimated N = 106–1010 molecules are collectively cou-
pled to the Fabry–Pérot cavity for each cavity mode.10,11,14,81

This means that the light–matter coupling strength ηc is
really weak between individual molecules and the cavity,
and the experimentally observed Rabi splitting will be �R∝√Nηc. Furthermore, under the collective coupling regime,
it is expected that the molecular orientations are isotropi-
cally distributed. Note that by considering fully isotropically
distributed dipoles, classical rate theory predicts that there
are no VSC effects.14,22 The future theoretical development is
needed to understand the collective effect when considering
the isotropic dipole distribution.

(2) The current theory assumes only one cavity mode, whereas in
the Fabry–Pérot cavity, there are many cavity modes.12,82,83

For a k� mode that satisfies mirror boundaries, there will
be continuous choices of k� such that the photon energy is
ωk ∝�k2� + k2�. Experimentally, only when ωk = ω0 at k� = 0
is satisfied can one observe VSC modification on the rate con-
stant. For a given finite k�, it is possible for ωk = ω0, but there
will be no apparent VSC effect.6,7,81

(3) The current work focuses on the VSC enhancement
effect4,5 where the reaction is originally in the energy

diffusion-limited regime (low friction regime before the
Kramers turnover19). Although we have not discussed VSC-
suppressed reactivity, the cavity-suppressed steady-state
population and the rate constant k1 have been observed in
classical and quantum simulations,21,26,84,85 when the molec-
ular system is originally under the high friction limit (after
Kramers turnover19,86 or the so-called spatial diffusion-
limited regime). We anticipate that the current theory and
simulations will also likely be able to produce the resonance
suppression effect if the reaction is originally sitting in the
spatial diffusion-limited regime.

As summarized in a recent review,10 no existing theory can
simultaneously explain the resonance effect (ωc = ω0), the collec-
tive effect (limitation 1), and the k� = 0 condition (limitation 2) and
survive under the isotropic orientation of dipoles (limitation 1). In
the future, we aim to generalize the current observation and the rate
theory to explicitly address these above-mentioned limitations and
provide a microscopic theory to successfully explain all observed
VSC phenomena.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional information on
the theoretical details of Hierarchical equations of motion; details of
computing infrared spectra of the bare-molecule system; summary
of parameters; and matter subspace construction and convergence
test.
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APPENDIX A: DERIVATION OF THE FGR RATE
CONSTANT IN EQ. (41)

We want to provide a quantitative evaluation of the FGR
rate constant in Eq. (41), which requires to explicitly evaluate the
coupling term �ν′L�Ĥ�νL�.

We begin by writing down the coupling term using the total
Hamiltonian in Eqs. (17) and (18), leading to

�ν′L�Ĥ�νL� = (λν + λeff) ⋅ �ν′L�R̂ 2�νL� + �ν′L�R̂�νL� ⋅ (F̂ν + F̂eff), (A1)

where �ν′L�ĤS�νL� = 0 (because of the orthogonality of {�ν0�, �ν1�}
and {�ν2�, �ν3�} subspaces) and �ν′L�ĥeff

B �νL� = 0 (due to no R̂ operator
in this term). The first term in Eq. (A1) originates from the reor-
ganization energy term Ĥren, and the second term originates from
ĤSB. Details about the matrix representation of the relevant terms
can be found in Sec. II of the supplementary material. Here, we aim
to establish a rate expression for the coupling terms described in
Eq. (A1).

With this, we focus on the subspace spanned by {�νL�, �ν′L�};
the total Hamiltonian Ĥ [Eq. (18)] in this projected subspace
P̂ = �νL��νL� + �ν′L��ν′L� is Ĥ = P̂ĤP̂, which is expressed as

Ĥ = ω0�ν′L��ν′L� + Ĥren + ĥeff
B

+ RLL′(�νL��ν′L� + �ν′L��νL�)⊗ (F̂ν + F̂eff)
+ (RLL�νL��νL� + RL′L′ �ν′L��ν′L�)⊗ (F̂ν + F̂eff), (A2)

where Ĥren and ĥeff
B are defined in Eq. (18), F̂ν and F̂eff are defined

in Eq. (19), and we have subtracted out zero point energy E. The
numerical values of the matrix elements for our current model
are RLL′ = �νL�R̂�ν′L� = 0.214 a.u., RLL = �νL�R̂�νL� = −0.933 a.u., and
RL′L′ = �ν′L�R̂�ν′L� = −0.702 a.u., and we have found numerically that
λeff � λν for all light–matter coupling strength ηc that we have con-
sidered in this work (see Sec. II of the supplementary material), and
we thus explicitly set λeff = 0 in our following analysis. In Eq. (A2),
the second line describes the Peierls-type of system–bath coupling
(off-diagonal couplings), which includes both the phonon and the
photon fluctuations, in which the term

RLL′(�νL��ν′L� + �ν′L��νL�)⊗ F̂eff (A3)

should be responsible for the VSC resonance enhancement effects,
and will be treated by FGR rate theory. The third line in Eq. (A2)
describes the Holstein-type of system–bath coupling (diagonal
coupling), in which the term

(RLL�νL��νL� + RL′L′ �ν′L��ν′L�)⊗ F̂ν (A4)

is mainly responsible for the inhomogeneous broadening effect
in spectra. The other terms, among which Ĥren, RLL′(�νL��ν′L�

+ �ν′L��νL�)⊗ F̂ν simply does not belong to the definition of net rate
enhancement (kVSC) and (RLL�νL��νL� + RL′L′ �ν′L��ν′L�)⊗ F̂eff is less
important due to its much smaller magnitude, are thus discarded
from our following discussions.

Consequently, Eq. (A2) can be simplified and written in the
pseudo-spin representation as

Ĥ = ω0
σ̂z

2
+ P̂⊗ F̂eff + ĥeff

B + �xσ̂x ⊗ F̂eff + �z
σ̂z

2
⊗ F̂ν, (A5)

where σ̂z = �ν′L��ν′L� − �νL��νL�, and σ̂x = �νL��ν′L� + �ν′L��νL�. Further-
more, �x = RLL′ = 0.214 a.u. and �z = RL′L′ − RLL = 0.231 a.u. The
first three terms of Eq. (A5) does not involve the light–matter cou-
pling, and the last two terms of Eq. (A5) is the one responsible for
cavity modification effects. Note that the light–matter coupling term
F̂eff explicitly shows up in the coupling between the �νL� and �ν′L�,
which is not a constant.

The coupling term (�zσ̂z�2)⊗ F̂ν will fluctuate the energy dif-
ference between �νL� and �ν′L�. We account for this additional fluctu-
ation as the static disorder (inhomogeneous broadening) because of
the low phonon frequencies of Ĥν. The variance of this fluctuation
is87–89

σ2 = �2
z ⋅ 1

π�
∞

0
dω Jν(ω) coth (βω�2), (A6)

which has a numerical value of σ ≈ 30.83 cm−1 for our model under
T = 300 K, calculated via numerical integration (see Ref. 72 for
details).

With the above analysis, the rate constant is ready to be written
down as50

kVSC = � ∞
0

dω κ(ω)G(ω − ω0), (A7)

where κ(ω) is the FGR rate constant for the �νL�→ �ν′L� transition at
a given cavity frequency ωc, expressed as90

κ(ω) = 2π�
j
�
neff

b, j

��νL, neff
b, j + 1��xσ̂x ⊗ F̂eff�ν′L, neff

b, j��2

× e−(neff
b, j+1)β�̃ j

Z
eff
b

δ(ω − �̃ j)
= 2π��x�2�

j

C̃2
j

2�̃ j
δ(ω − �̃ j)�

neff
b, j

e−(neff
b, j+1)β�̃ j

Z
eff
b

(neff
b, j + 1)

= 2��x�2 ⋅ Jeff(ω) ⋅ n(ω), (A8)

where we have defined the Bose–Einstein distribution function as
follows:

n(ω) =�
neff

b, j

e−(neff
b, j+1)β�̃ j

Z
eff
b

(neff
b, j + 1) = 1

eβω − 1
. (A9)

In the last line of Eq. (A8), we used the definition of the effec-
tive spectral density function [Eq. (11)], which is in the discrete
form. The broadening function G(ω − ω0) is a Gaussian distribution
centered around ω0, defined as

G(ω − ω0) = 1�
2πσ2

exp �−(ω − ω0)2

2σ2 �. (A10)

J. Chem. Phys. 159, 084104 (2023); doi: 10.1063/5.0159791 159, 084104-17

Published under an exclusive license by AIP Publishing

 23 August 2023 13:42:36

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

In principle, one can use the convolution theorem to evaluate
the expression in Eq. (41). As such, one just have to separately eval-
uate the Fourier transform of both κ and G, then multiply them
together, and inverse Fourier transform them to get the analytic
answer of kVSC. Here, both κ(ω) and G(ω) are square-integrable
functions; we can extend the integral to −∞ by analytical contin-
uation of κ(ω) and G(ω) and replace ω0 with a variable ω, resulting
in

kVSC(ω) = � ∞
−∞ dω′ κ(ω′)G(ω − ω′) = κ(ω)∗G(ω), (A11)

where � denotes convolution. According to the convolution
theorem,

F
−1[κ(ω)∗G(ω)] = 2πF −1[κ(ω)] ⋅ F −1[G(ω)], (A12)

where F
−1 denotes the inverse Fourier transform. It is easy to get

F
−1[G(ω)] = 1

2π�
∞
−∞ dω G(ω)e−iωt = 1

2π
e− σ2 t2

2 . (A13)

On the other hand,

F
−1[κ(ω)] = ��x�2

π � ∞
−∞ dω

Jeff(ω)
eβω − 1

e−iωt ≡ ��x�2Ceff(t), (A14)

where Ceff(t) is the effective TCF according to the bosonic
fluctuation–dissipation theorem.46 Unfortunately, we do not have
a closed analytic form for F

−1[κ(ω)]. Nevertheless, one can still
evaluate it numerically. Being in line with the HEOM formalism
(see Sec. I of the supplementary material), if we assume that the
effective TCF can be decomposed into a series of exponential decay
basis,

Ceff(t) =�
k

ηke−γkt. (A15)

This decomposition can usually be achieved by Matsubara spec-
tral decomposition (MSD)46 and Padé spectral decomposition
(PSD)91–93 or directly by various least-square fitting schemes.74,94–97

Then,

2πF −1[κ(ω)] ⋅ F −1[G(ω)] = ��x�2�
k

ηke− σ2 t2
2 −γkt , (A16)

whose Fourier transform reads as

κ(ω)∗G(ω) = ��x�2�
k

ηk� ∞
−∞ dt e− σ2 t2

2 −(γk−iω)t

= 2π��x�2�
k

ηk�
2πσ2

e
(γk−iω)2

2σ2 . (A17)

The VSC-modified rate profile takes the real part of Eq. (A17), and
ω = ω0.

As a special example to do the decomposition in Eq. (A15),
direct discretization of the spectral density function will be a most
convenient and accurate way to numerically evaluate Eq. (A14) and
then the VSC rate of Eq. (41). Using the discrete definition of spectral
density [cf. Eq. (11)],

Jeff(ω) = π
2�j

C̃2
j

�̃ j
δ(ω − �̃ j),

Eq. (A14) is evaluated as

F
−1[κ(ω)] = ��x�2

2 �
j

(C̃2
j��̃ j)

1 − e−β�̃ j
e−i�̃ j t. (A18)

Denoting

ηk = (C̃2
k��̃k)

2(1 − e−β�̃ k) , γk = i�̃k, (A19)

and plugging them into Eq. (A17), one obtains

κ(ω)∗G(ω) = π��x�2�
j

(C̃2
j��̃ j)

1 − e−β�̃ j
G(�̃ j − ω), (A20)

which is purely real. As such,

kVSC = π��x�2�
j

(C̃2
j��̃ j)

1 − e−β�̃ j
G(�̃ j − ω0). (A21)

The above expression in Eq. (A21) is equivalent to plugging the

discrete spectral density expression Jeff(ω) = π
2∑ j

C̃2
j

�̃ j
δ(ω − �̃ j) into

Eq. (A7) and then explicitly evaluating the integral, which is not sur-
prising. Instead of just using evenly distributed grid points in ω to
evaluate the integral,40 the integral converges faster if one can effi-
ciently sample the distribution of the frequencies {�̃ j} and coupling
coefficients {C̃ j} in the spectral density [Eq. (11)] using strategies in
Ref. 98 (or related earlier approaches in Refs. 47 and 99).

APPENDIX B: REACTION RATE CONSTANT ANALYSIS

The rate constant expression in Eq. (37) can be derived based
on simple rate equations with the detailed balance relation between
the forward and backward rate constants. Here, we briefly sketch
the derivation following the work of Ref. 100. For a unimolecular
reaction (reactant to product) that is reversible and governed by rate
kinetics, one has

d
dt

PR(t) = − d
dt

PP(t) = −k f PR(t) + kbPP(t), (B1)

where PR(t) and PP(t) are the populations of the reactant and
product regions at time t, while k f and kb are the forward and
backward reaction rate constants, respectively. When the reaction
reaches equilibrium, PR(t) and PP(t) do not depend on time,

d
dt

PR(t) = − d
dt

PP(t) = 0, (B2)

such that kb�k f = �PR���PP� ≡ χeq, where �PR� and �PP� denote
equilibrium populations of the reactant and product. We also
assume that the reactant and product regions can be described using
the projection operators 1 − ĥ and ĥ such that

�PR� = 1
Z

Tr [e−βĤ (1 − ĥ)], (B3a)

�PP� = 1
Z

Tr [e−βĤ ĥ], (B3b)
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where Ĥ is the total Hamiltonian and Z = Tr [e−βĤ ] is the overall
partition function. Equation (B1) can be rewritten as

d
dt

PR(t) = −k f PR(t) + k f χeq[1 − PR(t)]. (B4)

Equation (B4) holds for the rate dynamics at a sufficient long time,
entering into the rate process regime (linear response regime), i.e.,
t → tp where tp represents the “plateau” time of the time-dependent
rate. As a result, the forward rate constant can be expressed as

k f = − lim
t→tp

ṖR(t)
PR(t) + χeq ⋅ [PR(t) − 1] , (B5)

giving rise to Eq. (37) of the main text. More generally, the non-
equilibrium population at time t can be expressed as [cf. Eq. (35)]

PR(t) = TrS�eiĤ t(1 − ĥ)e−iĤ t ρ̂S(0)�, (B6a)

PP(t) = TrS�eiĤ t ĥe−iĤ t ρ̂S(0)�. (B6b)

Then, ṖR(t) can be evaluated from Eq. (B6a) as

d
dt

PR(t) = d
dt

TrS�eiĤ t(1 − ĥ)e−iĤ t ρ̂S(0)�
= −TrS�eiĤ t F̂e−iĤ t ρ̂S(0)�, (B7)

where F̂ is the flux operator defined as

F̂ = i[Ĥ, ĥ]. (B8)

We further define the reactive flux correlation function C f (t) as

C f (t) = − d
dt

PR(t) = TrS�eiĤ t F̂e−iĤ t ρ̂S(0)�. (B9)

Then, k f in Eq. (B5) is recast as

k f = lim
t→tp

C f (t)
PR(t) + χeq ⋅ [PR(t) − 1] . (B10)

In addition, we want to show the expression of the population
of �νR� in Eq. (39) under the steady-state approximation. Follow-
ing the standard textbook derivation, we have the differential rate
expression for the reaction scheme in Eq. (38) as follows:

d
dt
[νL] = −k1[νL], (B11a)

d
dt
[ν′L] = k1[νL] − k2[ν′L], (B11b)

d
dt
[ν′R] = k2[ν′L] − k3[ν′R], (B11c)

d
dt
[νR] = k3[ν′R]. (B11d)

The observed population dynamics in Fig. 2 indicates that both �ν′L�
and �ν′R� states reach a steady-state during the dynamics, meaning
that to a good approximation,

d
dt
[ν′L] = d

dt
[ν′R] = 0 (B12)

for the majority of the dynamics (e.g., t > 3 ps for inside cavity case
and t > 0.1 ps for outside cavity case), where the growth of popula-
tion in �νR� also reaches a rate process. Equation (B12) is commonly
referred to as the steady-state (ss) approximation, which allows us
to set the time derivative of all intermediate states as 0. Using this
approximation for [ν′L] and Eq. (B11b), one has

[ν′L] = k1

k2
⋅ [νL] = k1

k2
⋅ [νL(0)] ⋅ e−k1t , (B13)

where the last equality is a result of integrating Eq. (B11a) with the
initial condition [νL(0)] ≠ 0 and all the rest of populations equal
to 0. The corresponding expression for [ν′R] under the steady-state
approximation is

[ν′R] = k2

k3
⋅ [ν′L] = k1

k3
⋅ [νL(0)] ⋅ e−k1t. (B14)

Finally, plugging Eq. (B14) into Eq. (B11d), one has

d
dt
[νR] = k3[ν′R] = k1 ⋅ [νL(0)] ⋅ e−k1t. (B15)

Integrating the above equation results in the well-known results in
Eq. (39).

APPENDIX C: DERIVATION OF THE EFFECTIVE
SPECTRAL DENSITY

In this section, we follow the approach proposed by Leggett44

and Garg et al.38 to derive the expression of effective spectral density
function. The linear system–bath interaction mediated by a discrete
boson can be described by the Hamiltonian as follows:

Ĥ = p̂2
s

2Ms
+V(q̂s) + p̂2

c

2
+ 1

2
ω2

c(q̂ c + ζq̂ s)2

+ 1
2�j

������
ˆ̃p2

j + ω̃2
j� ˆ̃q j − ξc̃ j

ω̃ 2
j

q̂ c�2������, (C1)

where q̂s, p̂s are the conjugated coordinate-momentum pair of
the system DOF; q̂c, p̂c represent the discrete boson DOF whose
frequency is ωc; ζ is the coupling constant; and the last term charac-
terizes the bath DOF (with conjugated coordinate-momentum pairs
ˆ̃q j , ˆ̃p j) interacting with the discrete boson; ξ is a homogeneous coef-
ficient. We also assume that the bath and its interaction with the
discrete boson can be described by the spectral density function
defined as follows:36

Jc(ω) = π
2�j

c̃2
j

ω̃ j
δ(ω − ω̃ j). (C2)

Denoting V′(qs) = @V(qs)�@qs, the classical equations of motion
with respect to the Hamiltonian in Eq. (C1) read as

Msq̈s = −V′(qs) − ω2
cζ(qc + ζqs), (C3a)
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q̈c = −ω2
c(qc + ζqs) +�

j
�ξc̃ j q̃ j − qc

ξ2c̃2
j

ω̃2
j
�, (C3b)

q̈ j = −ω̃2
j q̃ j + ξc̃ jqc. (C3c)

Applying the Fourier transform to Eq. (C3) leads to

(−Msω2 + ω2
cζ2)qs(ω) + ω2

cζqc(ω) = −V′ω(qs), (C4a)

������(ω
2
c − ω2) +�

j

ξ2c̃2
j

ω̃2
j

������qc(ω) −�
j

ξc̃ j q̃ j(ω) + ω2
cζqs(ω) = 0,

(C4b)

(ω̃2
j − ω2)q̃ j(ω) − ξc̃ jqc(ω) = 0, (C4c)

where V′ω(qs) is the Fourier transform of V′(qs). Plugging Eq. (C4c)
into Eq. (C4b) to cancel the q̃ j(ω) terms, one obtains

������(ω
2
c − ω2) − ω2�

j

ξ2c̃2
j

ω̃2
j(ω̃2

j − ω2)
������qc(ω) + ω2

cζqs(ω) = 0. (C5)

Further define

L(ω) = −ω2
������1 +�j

ξ2c̃2
j

ω̃2
j(ω̃2

j − ω2)
������. (C6)

Equation (C5) becomes

qc(ω) = −ω2
cζqs(ω)

ω2
c + L(ω) . (C7)

Plugging Eq. (C7) into Eq. (C4a), one obtains

K(ω)qs(ω) ≡ �−Msω2 + ω2
cζ2 L(ω)

ω2
c + L(ω)�qs(ω) = −V′ω(qs). (C8)

Note that Eq. (C6) can be re-expressed as

L(ω) = −ω2
�������

1 + ξ2� ∞
0

ds
∑ j

c̃2
j

ω̃ j
δ(s − ω̃ j)

s(s2 − ω2)
�������

= −ω2�1 + 2ξ2

π �
∞

0
ds

Jc(s)
s(s2 − ω2)�, (C9)

where Eq. (C2) defines the loss spectral density function. The effec-
tive spectral density function is given by the branch cut of K(z) on
the complex plane, reading as

Jeff(ω) = lim
�→0+

Im[K(ω − i�)], (C10)

which leads to39,43

Jeff(ω) ≡ π
2�j

C̃2
j

�̃ j
δ(ω − �̃ j)

= ζ2ξ2ω4
cJc(ω)

�ω2
c − ω2 + R̃(ω)�2 + [ξ2Jc(ω)]2 , (C11)

where

R̃(ω) = 2ξ2ω2

π
P� ∞

0
ds

Jc(s)
s(ω2 − s2) . (C12)

For the light–matter interaction Hamiltonian of Eq. (2) in the main
text, one has ξ = 1 and ζ =�2η2

c�ωc; then, Eqs. (11) and (12)
are recovered. The effective Hamiltonian can be derived via direct
normal mode transformation.39,40

APPENDIX D: DERIVATION OF THE τc
EXPRESSION IN EQ. (31)

The loss Hamiltonian is written as [cf. Eq. (5)]

Ĥc = 1
2�j

������
ˆ̃p2

j + ω̃2
j� ˆ̃x j − c̃ j

ω̃ 2
j
q̂ c�2������,

where the interaction term between the cavity and the photon-loss
bath in the Hamiltonian above reads as

Ĥint = q̂c ⊗ F̂c, F̂c ≡�
j

c̃ j ˆ̃x j. (D1)

In the second-quantization representation, Eq. (D1) is expressed as

Ĥint = 1√
2ωc
(â + â †)⊗�

j

c̃ j�
2ω̃ j
(ˆ̃b j + ˆ̃b†

j), (D2)

where ˆ̃x j = (1��2ω̃ j)(ˆ̃b j + ˆ̃b†
j).

Here, we take the photon number nph = 1 such that�nph�â †�nph − 1� = 1. We further define the Bose–Einstein distribu-
tion functions nb, j(ω̃ j) as follows:

�
nb, j

e−nb, j βω̃ j

Zb
(nb, j + 1) ≡ nb, j(ω̃ j) + 1 = 1�(1 − e−βω̃ j),

where nb,j denotes the phonon number of the jth bath mode and Zb
is the partition function of the photon-loss bath. According to FGR,
the photon loss rate can be expressed as

Γc = 2π�
j
�
nb, j

e−nb, j βω̃ j

Zb
⋅ ��nph, nb, j �Ĥint�nph − 1, nb, j + 1��2

⋅ δ(ω̃ j − ωc)
= 2π × 1

2ωc
�

j
�
nb, j

e−nb, j βω̃j

Zb

⋅ c̃2
j

2ω̃ j
��nph, nb, j �â † ˆ̃b j �nph − 1, nb, j + 1��2 ⋅ δ(ω̃ j − ωc)

= 1
ωc
⋅ π

2�j

c̃2
j

ω̃ j
δ(ω̃ j − ωc) ⋅�

nb, j

e−nb, j βω̃j

Zb
(nb, j + 1)

= Jc(ωc)
ωc(1 − e−βωc) , (D3)

where we have used the definition of the loss spectral density func-
tion [Eq. (6b)]. Equation (D3) is the result of Eq. (31) in the main
text. This rate also coincides with the Redfield rate constant for
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state-to-state transitions.88,90,101,102 On the other hand, under the
condition that R̃(ω) is relatively small [cf. Eq. (11)],

Jeff(ω) ≈ 2η2
cω3

cΓc(ω)ω
�ω2

c − ω2�2 + Γ2
c(ω)ω2

, (D4)

where Γc(ω) = Jc(ω)�ω, coinciding with the friction kernel
definition in the frequency domain in quantum Langevin dynam-
ics.50 Comparing Eq. (D4) to Eq. (14), we further assume that γc is
large such that Γc(ω)�ωc does not change drastically in frequency so
that it can be approximated via Γc(ω→ ωc), plus the detailed balance
relation; then, Eq. (D3) is also recovered.

APPENDIX E: RABI-SPLITTING AND THE FOCK
STATE DESCRIPTION

Denote �νL� as the ground vibrational state of the reactant (left
well) and �ν′L� as the first excited vibrational state of the reactant (see
Sec. II C for details of these states) and �0� and �1� as the Fock state
of the cavity. The light–matter interaction term is expressed as17,103

ĤLM =√2ωcχq̂c�(R̂)
=√2ωcχ ⋅

�
1

2ωc
(â + â †) ⋅ �LL′(�νL��ν′L� + �ν′L��νL�)

= χ�LL′(â + â †) ⋅ (σ̂ − + σ̂ +), (E1)

where we have defined the raising and lowering operators as
σ̂ − = �νL��ν′L� and σ̂ + = �ν′L��νL�. The transition dipole matrix ele-
ment is defined as �LL′ = �νL��(R̂)�ν′L�. For the model system,
we have assumed the linear dipole approximation �̂(R̂) ≈ R̂ (see
Appendix A), which means �LL′ = �x [see Eq. (A5)]. At the res-
onant condition of ωc = ω0, one can make the rotating wave
approximation (by ignoring counter rotating wave terms â †σ̂ + and
âσ̂ −) in Eq. (E1), and the light–matter interaction becomes ĤLM= χ�LL′(â †σ̂ − + âσ̂ +). The photon-vibration interaction couples the
photon-dressed states �νL�⊗ �1� (photonic excitation) and �ν′L�⊗ �0�
(vibrational excitation), leading to two polariton states,

�±� = 1√
2
[�νL�⊗ �1� ± �ν′L�⊗ �0�], (E2)

which are often referred to as the upper polariton �+� and lower
polariton �−� states (which are light–matter entangled states). The
energy splitting between these two polariton states is referred to as
the Rabi splitting �R, expressed as follows:17,103

�R = 2χ�LL′ = 2ηcωc�LL′ ≡ 2ωc ⋅ η, (E3)

where the normalized coupling strength η = χ�LL′�ωc character-
izes the light–matter coupling strength. The Rabi splitting is often
measured from the experimental transmission spectra of molecular
vibrations.1,4 Note that the above relation between �R and η only
holds under the linear approximation of the dipole operator and
breaks down for the ultra-strong coupling (USC) regime104,105 when
η > 0.1.

The Rabi splitting with respect to the model we considered
here can also be evaluated via Eq. (E3), e.g., for the largest coupling
strength ηc = 0.1 and under resonance condition (ωc = ω0), �R

= 2ηcωc�LL′ ≈ 50.2 cm−1, which is a typical experimental value.1,4 In
terms of the Rabi splitting, the FGR expression in Eq. (44) can be
expressed as follows:

kVSC ≈ �2
R ⋅ αωcω0(ω2

c − ω2
0)2 + α2ω2

0
⋅ n(ω0). (E4)

Note that the energy unit of the coupling in the above expression is
�R. The regime for the FGR to be valid is often when �R � kBT due
to the perturbative nature of FGR.

In Ref. 25, both R̂ and q̂c have been treated as the quantum
subsystem and only Ĥν and Ĥc are described as the environment.
Because the subsystem has both vibrational and photonic DOF,
one can also interpret the mechanism from the photon-dressed
vibrational basis,25 in which there are mainly three types of states
involved: �νL�⊗ �0� (the ground vibrational state with 0 photon),�νL�⊗ �1� (the ground vibrational state with 1 photon), and �ν′L�⊗ �0�
(the excited vibrational state with 0 photon) and, accordingly, the
photon dressed states for the right well. Inside the cavity, the
thermal fluctuation of the cavity mode can promote the �νL�⊗ �0�→ �νL�⊗ �1� transition (gaining thermal photon population).
Then, a transition �νL�⊗ �1�→ �ν′L�⊗ �0� will occur through the
light–matter coupling term [Eq. (E1)], which will happen efficiently
if and only if the energy of these two states is resonant, explaining
both resonance effects of the rate profile and the resonance condition
for observing Rabi splitting [Eq. (E3)]. Then, through the tunneling
splitting �′, the transition �ν′L�⊗ �0�→ �ν′R�⊗ �0� will occur, eventu-
ally leading to a faster population grown of �νR�⊗ �0�. In this work,
we view the photonic DOF q̂c to play a similar role as the “RPV
mode” such that it enhances the activation process of �νL�→ �ν′L�,
which eventually leads to the enhanced product population PP(t).
Because the cavity mode frequency ωc needs to match the �νL�→ �ν′L�
transition, the rate enhancement will be very sensitive to ωc, explain-
ing the resonance effect of the VSC experiments. Because both the
work in Ref. 25 and the current work use exact quantum dynamics
simulations, the different treatments can be viewed as representation
differences and, indeed, will lead to identical physics (if the sim-
ulations are converged). Note that there is an interesting fact that
because the cavity mode is purely harmonic [Eq. (2)], the frequency
ωc appeared in the Hamiltonian is identical to the frequency for the
photonic state transition �0�→ �1�. This is in contrast to the molec-
ular system, where the quantum transition frequency ω0 [Eq. (25)]
is not identical to the classical bottom-well frequency ωcl

0 [Eq. (26)]
when the potential is anharmonic.
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