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A B S T R A C T   

Reactive transport modeling of subsurface environments plays an important role in addressing critical problems 
of geochemical processes, such as dissolution and precipitation of minerals. Current transport models for porous 
media span various scales, ranging from pore-scale to continuum-scale. In this study, we established an upscaling 
method connecting pore-scale and continuum-scale models by employing a deep learning methodology of 
Convolutional Neural Networks (CNNs). We applied Darcy-Brinkmann-Stokes (DBS) method to simulate the fluid 
flow and reactive transport in pore-scale models, which would act as constituents of a continuum-scale model. 
The datasets of spatial pore distribution of subvolume samples were used as the input for the deep learning 
model, and the continuum (Darcy)-scale parameters such as permeability, effective surface area, and effective 
diffusion coefficient were figured out as outputs (i.e., labels). By applying the trained models of the subvolumes 
in the entire sample volume, we generated the initial field of porosity, permeability, effective diffusion coeffi
cient, and effective surface area for continuum-scale simulation of a mineral dissolution problem. We took an 
acid dissolution case as an example to utilize the outcomes of trained deep learning models as input data in the 
continuum-scale simulation. This work presents a comprehensive upscaling workflow, as bridging the findings of 
microscale simulations to the continuum-scale simulations of a reactive transport problem.   

1. Introduction 

Reactive transport modeling of subsurface systems can help address 
various geochemical processes, such as dissolution and precipitation of 
minerals. However, characteristics of subsurface porous media, such as 
high heterogeneity and intricate and irregular structures, it’s chal
lenging to efficiently and reliably compute the solutions of complex 
problems where reactive transport occurs. In addition, transport models 
of porous media are in different scales spanning from pore-scale to 
continuum-scale and require reliable upscaling techniques to establish 
the connection between these models. 

Diverse numerical methods have been proposed to address reactive 
transport in various scales, including pore network model, capillary tube 
model, continuum (Darcy)-scale model, and pore-scale models (Algive 
et al., 2009; Dormieux and Lemarchand, 2001; Estermann and Scheiner, 
2018; Hung et al., 1989; Lichtner and Kang, 2007; Liu et al., 2013; 
Maheshwari et al., 2013, 2016; Panga et al., 2005; Pivonka et al., 2004; 
Ratnakar et al., 2013). In continuum-scale models, porous media is 
described with continuous and utilizes averaged properties at a 

macroscopic scale. In contrast, pore-scale models aim to capture the 
intricate details of fluid transport processes occurring at the microscale 
level, as separately describing pore zones and minerals. Thus, 
continuum-scale models can be used to capture the long-term behavior 
of fluid in large scale, while pore-scale models can provide the insights 
of fluid-rock interaction in heterogeneous and complex structures of 
pores. There are various numerical discretization methods, which can be 
applied for reactive transport problems, such as Lattice Boltzmann 
Method (LBM), Finite Volume Method (FVM), and Integral Finite Dif
ference (IFD) method. In LBM, fluid is represented by a set of distribu
tion functions defined on a lattice. The distribution functions propagate 
and collide at each lattice point, as simulating the movement and 
interaction of fluid particles. TOUGHREACT, a multiphase reactive 
transport code based on TOUGH2, employs IFD method to solve gov
erning equations of fluid and heat flow and chemical transport in 
sequence, which enables the flexible discretization of macroscale models 
of geologic media (Xu et al., 2004). In the FVM, terms in the conserva
tion equation are turned into face fluxes and evaluated at the finite 
volume faces, as guaranteeing the strict mass conservation in the system 
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(Moukalled et al., 2016). Where, unknow variables are saved in the 
centroid of volume element, which enables the implementation of 
various boundary conditions. Thus, FVM method provides a robust and 
versatile framework for describing complex physical processes in 
various applications (You and Lee, 2021b). Oliveira used FVM method 
to solve the Navier–Stokes equations and the advection-diffusion equa
tion to obtain species’ concentration in the pore-scale model (Oliveira 
et al., 2019). In another study, a combined FVM and LBM method was 
employed to solve the reactive transport in the system with 
multi-minerals and rock heterogeneity (Liu et al., 2017). In their work, 
LBM method and FVM method were used to discretize governing 
equations for fluid flow and species’ concentration, respectively. 
Darcy-Brinkmann-Stokes (DBS)-employed FVM enables the microscale 
investigation of complex phenomena in subsurface porous media, and it 
has been applied to various problems of reactive transport modeling 
(Minto et al., 2019; Molins et al., 2020). Soulaine and Tchelepi (2016) 
applied the DBS method to various subsurface processes, including fluid 
flow in fractured porous media, mineral dissolution, and shale pyrolysis 
(Soulaine and Tchelepi, 2016). Liu and Mostaghimi (2018) applied the 
DBS method to describe carbonate dissolution (Liu and Mostaghimi, 
2018). In their later work, they considered the movement of detached 
particles during the dissolution, which provided an insight into particle 
clogging in the dissolved fractures (Liu et al., 2020). DBS-employed FVM 
models can be benefited from the direct use of digital rock images of 
porous media as the computational domains in pore-scale models, but 
one of its difficulties is the demanding memory and time for computa
tions, especially when high-resolution 3-D images are used. For 
example, model geometries based on X-ray tomograms are often con
sisted of a huge number of voxels (>109) and hence requires massive 
computational cost (Prasianakis et al., 2020). 

Given the above-mentioned difficulties and the multiscale nature of 
porous media, researchers have actively explored the application of 
advanced AI techniques such as Convolutional Neural Networks (CNNs), 
to resolve the challenges of reactive transport modeling problems in 
porous media (Alqahtani et al., 2020; Prasianakis et al., 2020; Röding 
et al., 2020; Wu et al., 2019). Wu et al. predicted the effective diffusion 
coefficient of porous media with 2D digital rock images, by applying the 
LBM method and CNNs modeling capability (Wu et al., 2019). Where, 
the CNNs model provided better prediction of effective diffusion coef
ficient than the empirical Bruggeman equation, especially for the porous 
media with low diffusivity. In another study, the microstructures of 2D 
images of porous media were generated using the quartet structure 
generation set (QSGS) method (Wang et al., 2007). In their study, the 
relationship between fluid permeabilities and a variety of microstruc
tural descriptors was reported. Their training data included a set of 30, 
000 virtual 3-D porous microstructures of various types (Röding et al., 
2020). These studies were based on artificially synthesized pore-scale 
geometric models. On the other hand, several studies investigated the 
application of deep learning technologies on the real digital rock images 
obtained with X-ray or X-ray Computed Tomography (CT) for reactive 
transport problems. Prasianakis et al. trained a shallow neural network 
based on the results of microscopic geochemical reactive transport 
simulations, and integrated it into a continuum-scale reactive transport 
modeling code (Prasianakis et al., 2020). Their study suggested that the 
neural-network-coupled simulation performed better than the full 
speciation reactive transport simulations, both in terms of computa
tional efficiency and memory usage. Alqahtani et al. trained the CNNs 
model by taking micro-CT images as input and computed outputs by 
numerical simulations (Alqahtani et al., 2020). Their trained model 
could be used to predict the physical properties of porous media, such as 
porosity, specific surface area, and average pore size, where, the datasets 
were created from sub-divided tomograms of three different sandstones. 
The datasets were consisted of 5262 training images and 2000 test 
images. 

Besides CNNs, some researchers used other machine learning algo
rithms to investigate the characteristics of porous media. In one study of 

pore-scale reactive transport modeling, effective reaction rates were 
calculated based on the distribution profiles of reactant concentration 
(Liu et al., 2022). Where, pore structural features such as specific surface 
area, pore sphericity, and coordination number were extracted from 
pore-scale modeling. They first used the Random Forest (RF) learning 
model to rank the importance of features and used the first three most 
important features to train an Artificial Neural Network (ANN) model 
and accurately predicted the effective reaction rates. In another study of 
Menke et al., they divided Estaillages limestone into 603 and 1203 

subvolumes of voxels and calculated permeability on these subvolumes 
using DBS method (Menke et al., 2021). The extracted features such as 
porosity, cumulative phase connectivity, and phase volume fraction 
were taken as input data, and the calculated permeability from DBS 
method was taken as output data. They showed the 80 times less 
computational expense through the application of machine learinig 
technologies. 

Heterogeneous and irregular structures of porous media present 
significant challenges for direct simulation, as hindering the formulation 
of universal relationships and equations to accurately describe the fluid 
flow and reactive transport characteristics within them. Conducting 
simulations on high-resolution digital rock images can be both costly 
and time-consuming, as posing challenges when attempting to upscale 
these pore-scale parameters to a larger scale model. Consequently, ac
curate estimation of the intrinsic properties of porous media becomes 
difficult, leading to higher uncertainties in the upscaling processes. As 
abovementioned, however, recent advancements in machine learning 
techniques enable the prediction of these crucial properties without the 
need for time-consuming simulations (Tahmasebi et al., 2020). While 
the training process of machine learning methods can demand a sig
nificant amount of time, they can quickly estimate the properties of 
interest for new samples within multiple seconds, once the training 
process is completed. 

In this study, we apply the DBS method to simulate the fluid flow and 
reactive transport process in pore-scale models, which are to act as 
constituents of a continuum-scale model. The obtained results are to be 
used to train the CNNs deep leaning models. The input features are 
consisted of the spatial distribution and structure of micropores, while 
the outputs for the deep learning models include the permeability, 
effective surface area, and effective diffusion coefficient of subvolume. 
Here, we divide one of the high resolution 3-D digital rock images into 
4096 subvolumes, where each subvolume had a resolution of 50 × 50 ×
50 voxels, and apply the trained models to obtain the outputs, which are 
initialized as input parameters for continuum-scale reactive transport 
modeling. The workflow of this study presents the robust upscaling 
process, as connecting the insights obtained from pore-scale modeling to 
the input parameters of continuum-scale modeling. This paper is orga
nized as follows: Section 2 introduces the mathematical formulations of 
pore-scale and continuum-scale models and the structure of deep 
learning neural network with CNNs. Sections 3 presents the results and 
discussion, and Section 4 presents the conclusion, respectively. 

2. Methodology 

2.1. Pore-scale modeling employing DBS method 

In a Darcy-brinkman-Stokes (DBS) model, the whole computational 
domain is discretized into orthometric cells (Soulaine et al., 2017). Local 
porosity (ε) represents the volume fraction of either pore zone or solid 
zone within a pore-scale model. In the fluid area, εf = 1 and εs = 0; in 
the solid zone, εf = 0 and εs = 1; in the solid-liquid interface, 
0 < εf < 1; as such, each zone satisfies the relationship of εs + εf = 1. In 
the DBS method, Darcy’s law describes the fluid flow at the interface of 
solid and liquid, while the Navier-Stokes equation describes the fluid 
flow in pores. The governing equations are as follows (Soulaine et al., 
2017; Soulaine and Tchelepi, 2016; You and Lee, 2021a, 2021c). 
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(
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)2
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3 (2)  

where, vf is the average velocity; pf is the average pressure; μf is the 
dynamic viscosity; ρf is the fluid density in the system. The last term 
(μf k−1vf ) is the Darcy resistance term by the momentum exchange be
tween fluid and solid phases (Soulaine et al., 2017). k is the local per
meabiliy, which is computed by the Kozeny-Carman relationship, k−1 =

k−1
0

(1−εf )
2

εf 3 . Where, k0 is the initial local permeability, which is assumed to 
be 10−15 m2 in this study. The advection–diffusion equation and mass 
conservation equation are as follows. 

∂εf ρf ωf ,A

∂t
+ ∇ •

(
ρf vf ωf ,A

)
= ∇ •

(
εf ρf D

∗
A∇ωf ,A

)
− ṁA (3)  

ṁA = ρf avrωf ,A (4)  

where, ωf ,A is the concentration of species; in the application in this 
study of acid dissolution, subscript A indicates acid. D∗

A is the effective 
diffusion coefficient of acid; ṁA is the mass change rate of acid by 
mineral dissolution; r is the reaction rate of mineral dissolution; av is the 
effective surface area, which is calculated by av =

⃦
⃦∇εf

⃦
⃦4εf (1 − εf ). We 

take volumetric average to quantify the effective surface area of the 
whole subvolume. 〈av〉 denotes the volumetric average of the effective 
surface area, which is computed as follows. 

〈av〉 =
1

ΔV

∫

ΔV
avdV (5)  

where, ΔV is the control volume. 
Average permeability of a whole pore-scale model (i.e., constituent 

of continuum-scale model), K, is computed by the following equation 
adapted from the Darcy’s Law. 

K = −
〈vf 〉μf

〈∇pf 〉
(6)  

where, the volumetric average velocity of fluid and pressure are calcu
lated from the pore-scale simulation by 〈vf 〉 = 1

ΔV
∫

ΔVvfdV and 〈pf 〉 =

1
ΔVf

∫

ΔVf
pf dV, respectively. Here, ΔV denotes the fluid volume in the 

pore-scale model. 
Based on the abovementioned governing equations, pore–scale 

reactive transport model was developed based on OpenFOAM, an 
open–source Computational Fluid Dynamics (CFD) platform (Weller 
et al., 1998). The governing equations were discretized by the FVM 
method. The initial and boundary conditions were set as follows: 
vf |t=0 = vf0, vf |x=0 = vf0, ∂pf

∂n |x=0 = 0, pf |x=x0 = pout , ωf ,i|x=0 = ωf ,i0, and 
ωf ,i|t=0 = 0. 

2.2. Architecture of deep learning model 

2.2.1. Convolutional Neural Networks (CNNs) 
In ANN architecture, each neuron in one layer is connected to every 

neuron in the subsequent layer. This fully connected structure leads to a 
large number of connections, making it computationally expensive, 
especially when handling the high-dimensional data such as digital rock 
images. In contrast, neurons in CNNs architecture are arranged in a grid- 
like structure, representing the spatial dimensions of the input data. 
Thus, CNNs preserves the spatial relationship between inputs and 
feature maps, and enables the weight reusing which allows the network 
to detect and learn similar features or patterns at different spatial lo
cations (Alqahtani et al., 2020). Thus, CNNs can take advantage of 

effectively capturing local patterns and spatial correlations with the 
reduced number of learning parameters, while improving the ability to 
learn different patterns. Traditionally, CNNs have been used to recog
nize image-driven patterns or dataset by employing high-dimensional 
organization of neurons (Albawi et al., 2017). 

2.2.2. Fully connected layer and convolutional layer 
In a fully connected layer, each neuron in current layer is connected 

to every neuron in the subsequent layer. A fully connected layer is a 
fundamental building block of a Multi-Layer Perceptron (MLP) (Mur
tagh, 1991). It consists of an input layer, hidden layer, and output layer. 
The fully connected layer structure is described in the following equa
tions (Zhang et al., 2021). Here, X represents input matrix; H represents 
the hidden layer; and O represents the output layer. W and b denote 
weight vector and bias vector, respectively. 

H = XW(1) + b(1) (7)  

O = XW(2) + b(2) (8)  

where, superscripts represent the weights and biases at different layers. 
Activation functions introduce non-linear transformations to the 
weighted sum of inputs, allowing the neural network to learn complex 
relationships between the input and output. Activation function is 
applied to the output of each neuron in the output layer. The most 
commonly used activation function is Rectified Linear Unit (ReLU), 
Sigmoid, and Hyperbolic Tangent (tanh) (Sharma et al., 2017). Among 
them, ReLU(f(x) = max (0, x)) stands out due to its advantages in 
calculation efficiency and ability to mitigate the vanishing and explod
ing gradient problems (Sharma et al., 2017). This is because, ReLU 
function introduces non-linearity and prevents gradients from becoming 
significantly small during the backpropagation. The outputs of ReLU are 
all positive values, which can decrease gradient exploding. Instead of 
exponential operation, which has high cost on GPU calculation, ReLU 
function sets all negative values to zero and keeps positive values un
changed, making it highly efficient for the implementation on Graphics 
Processing Units (GPUs). 

In this study, the spatial distributions of pores and grains are 
described in a set of 3-D data with width, height, and depth. If fully 
connected layers are applied to each grid, computational load gets 
enormously large. Thus, instead of applying full-size weights and biases, 
CNNs defines the kernel matrix with dimensions of a × b × c, and applies 
kernel across the entire input space. Thus, the 3-D convolutional layer 
can be expressed as follows (Zhang et al., 2021). 

[H]i,j,k = u +
∑Δ

a=−Δ

∑Δ

b=−Δ

∑Δ

c=−Δ
[V]a,b,c[X]i+a,j+b,k+c (9)  

where, [X]i,j,k and [H]i,j,k represent the local porosity in 3-D space of input 
at location i, j, k and hidden layer, respectively; u is the bias; [V]a,b,c is the 
convolutional kernel, which represents the weights in the convolutional 
layer. The convolutional kernel performs the cross-correlation with 
input matrix, as it moves across the matrix X. The kernel shape and 
moving offsets, which are known as stripes, are hyperparameter in the 
CNNs model. Fig. 1 illustrates how the cross-correlation operation is 
applied to digital rock data in a layer-by-layer manner, to obtain the 
output value. The cross-correlation operation involves multiplying the 
values of the input matrix and the kernel matrix at each position and 
then summing up all the products, while kernel matrix slides through the 
input matrix. Fig. 1 (a) shows the examples of cross-correlation with 
different kernel size. In these examples, the 1 × 1 × 1 kernel with value 2 
multiplies to each value in the input matrix and generates the output 
matrix, while two matrices with the same dimensions generate a scale 
value. As shown in Fig. 1 (b), when the input matrix is multiplied by a 
zero kernel, it results in a matrix of zeros, whereas multiplication with a 
kernel with value 1 preserves the original input matrix. Fig. 1 (c) shows 
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the implementation of cross-correlation between input matrix and 
kernel for several times. The dimension of the input matrix decreases 
gradually as generating the output. Consequently, by sliding the kernel 
and performing cross-correlation, features and patterns within the 
porous media’s structure can be extracted and detected from the input 
data. In this study, this operation was implemented by using a 3-D 
matrix, representing the spatial distribution of microporous media. 
The left-hand side of the input matrix illustrates the extraction of local 
porosity of the digital rock image to a single output value through cross- 
correlation. When applying the CNNs method to train the model, the 
feature information of the digital rock is retained as a part of the con
volutional kernel. 

2.2.3. LeNet-5 
Porous media exhibits spatial variations from the natural formation 

processes or structural variations within the material. Heterogeneity 
influences fluid flow and transport process, leading to preferential flow 
pathways or trapping of fluids within specific regions. In this regard, we 
applied LeNet to establish the model that can capture intricate patterns 
of porous media, efficiently model the complex interactions between 
input and output, and excellently perform on unseen data. LeNet is one 
of the CNN architecture proposed by LeCun et al. (1998). Due to its 
simple structure, LeNet has high efficiency when handling digital rock 
information. The input of LeNet is the spatial distribution of pores, and 
the output is permeability, effective surface area, and effective diffusion 
coefficient, respectively. We trained three LeNet models to predict each 
parameter. We compared several modern CNNs, including Residual 

Networks (ResNet), AlexNet, and LeNet (He et al., 2016; LeCun et al., 
1998). Among them, LeNet-5 is known to have the best performance on 
predicting permeability, effective surface area, and effective diffusion 
coefficient. We adapted LeNet-5, where the network was consisted of 
nine layers, as shown in Fig. 2. The adopted LeNet included CNN layers, 
average pooling layers, and fully connected layers. ReLU activation 
function was used to add non-linearity after every CNN layer. Then, 
average pooling layer was added in the network to reduce the individual 
noisy pixels, leading to a robust representation (Bashivan et al., 2022). 
We used five fully connected layers to extract and aggregate features. 

The LeNet was adapted from PyTorch (Paszke et al., 2019), a ma
chine learning framework based on the Torch library, and the model was 
trained by NVDIA V100 in Research Computing Data Core (RCDC) at 
University of Houston. The deep learning network was trained using the 
Adam optimizer (Kingma and Ba, 2014) to initialize the weights and 
biases for each neuron with the learning rate (i.e., relaxation coefficient) 
of 0.0001 for 500 epochs. The mean squared error (MSE) loss function 
was employed to measure the model’s performance on the validation 
set, where the learning rate scheduler named ReduceLROnPlateau 
(Zaheer et al., 2018) was used to dynamically adjust the learning rate 
during the training procedure based on the validation loss. The training 
process utilized stochastic gradient descent (SGD) (Bottou, 2010) with 
back-propagation to update the model’s parameters in the mini-batches 
of data with the size of 32 for each batch. The training set and test set 
contained three batches and one batch, respectively. 

Fig. 1. The schematic of convolutional kernel performing the cross-correlation. (a) The cross-correlation operation with different kernel sizes; (b) implementation of 
cross-correlation on digital rock sample with zero kernel and one kernel; (c) process of cross-correlation to train kernels and obtain the output. 
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2.3. Upscaling to continuum-scale simulation model 

We utilized LeNet to train three deep learning models to predict the 
effective surface area, permeability, and effective diffusion coefficient, 
respectively, based on the given pore structures. The schematic work
flow is illustrated in Fig. 3. The full-size digital rock, consisting of 800 ×
800 × 800 voxels, was subdivided into 4096 subvolumes, with the in
dividual dimensions of 50 × 50 × 50 voxels. For each subvolume, we 
employed the trained pore-scale models to estimate its averaged effec
tive surface area, permeability, and effective diffusion coefficient. In the 
continuum-scale simulation model, the computational domain was dis
cretized into the grid dimensions of 16 × 16 × 16, where each grid cell 
corresponded to one subvolume within the entire digital rock. 

The governing equations for the continuum-scale simulation is as 
follows. First, fluid flow in porous media is solved by Darcy’s law to 
determine fluid pressure (p) as follows. 

u = −
K
μ (∇p − ρg) (10)  

Second, following continuity equation is solved to determine porosity 
(φ) as follows. 

∂φ
∂t

+ ∇ • u = 0 (11)  

In this work, we used φ to describe the porosity in continuum-scale 
simulation and εf to describe the volume fraction of pore in pore-scale 
simulation. Third, following advection-diffusion equation is solved to 
address the concentration of species (Cf ) as follows. 

∂
(
φCf

)

∂t
+ u • ∇Cf = ∇ •

(
φDe • ∇Cf

)
− avkc

(
Cf − Cs

)
(12)  

where, Cf is the concentration of species of reactants in aqueous phase, 
such as H+ for acid dissolution problem; Cs is the concentration of acid at 
the fluid/solid interface; kc is the coefficient of local mass transfer by 
reaction; av is the effective surface area for the mineral dissolution re
action; De is the effective diffusion coefficient of species. Reaction rate of 
mineral dissolution (R(Cs)) is described as follows. 

R(Cs) = kc
(
Cf − Cs

)
(13)  

In the first order reaction, reaction rate is determined as R(C) = ksCs, 
where ks is the dissolution-rate constant. Cs is described as follows 
(Panga et al., 2005). 

Cs =
Cf

(

1 + ks
kc

) (14) 

By inserting Eq. (14) into Eq. (12), we obtain the following equation. 

∂
(
φCf

)

∂t
+ u • ∇Cf = ∇ •

(
φDe • ∇Cf

)
− avks

Cf(

1 + ks
kc

) (15) 

Finally, the porosity-evolution equation is described as follows under 
the first-order reaction. 

Fig. 2. The schematic of LeNet (LeCun et al., 1998).  

Fig. 3. The schematic of upscaling procedure from pore-scale simulation model to continuum-scale simulation model.  
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∂ε
∂t

=
R(C)avα

ρs
(16)  

where, α is the dissolving power, which is defined as grams of solid 
dissolved per mole of acid reacted (Panga et al., 2005). Here, local mass 
transfer coefficient (kc) is obtained by the following correlation. 

Sh =
2kcl
Dm

= Sh∞ + 0.8Re1/2
p Sc1/3 (17)  

where, Sh is the Sherwood number, which is defined by the ratio of 
convective mass transfer to diffusive mass transfer. Sh∞ is the asymp
totic Sherwood number; Rep is the Reynolds number defined by Rep =

t 2‖u‖l
v ; Sc is the Schmidt number, which is defined by Sc = v

Dm
; Dm is the 

molecular diffusivity; v is the kinematic viscosity; l is the characteristic 
length, which we use pore radius. The pore radius can be quantified by: 

r
r0

=

[
φ(1 − φ0)

φ0(1 − φ)

]β

(18)  

where, r0 is the initial mean pore size; β is the pore structure-relation 
constant. 

In the application to the reactive transport problem, we assumed the 
linear relationship between permeability and effective surface area with 
respect to porosity during the mineral dissolution process as follows. 

K
K0

=
φ
φ0

(19)  

av

av0
=

(
φ
φ0

)−1

(20)  

where, φ0 is the initial porosity, K0 is the initial field permeability, and 
av0 is the initial field effective surface area, respectively. 

3. Results and discussions 

3.1. Pore-scale simulation results 

The pore-scale simulation was implemented on 3-D sandstone digital 
rock images of the tomogram and segmentation of Bentheimer (BHG), 
Castlegate (CG), and Leopard Sandstones (LP) (Cui et al., 2022). Since 
the pore structures were highly heterogeneous, the predictive model 
could result in unsatisfactory results, if the training data was not suffi
ciently representative. Thus, to enhance the diversity of input data, we 
cut subvolumes into different scales for each type of digital rock. The 
subvolumes were selected randomly from the whole digital rock, and the 
subvolumes’ voxels were in the wide range. The segmentation resolution 
was 800 × 800 × 800 voxels; BHG and LP sandstone segmentations had 
the size of 2.15 μm/voxel, while CG had the size of 3.4 μm/voxel. In this 
study, the pore-scale model geometries (i.e., constituents of 
continuum-scale model) were made from the digital rock dataset, with 
three different cases of voxel dimensions of 25 × 25 × 25, 50 × 50 × 50, 
and 100 × 100 × 100. For LP sample, we selected 22, 12, and 6 sub
volumes at each size; for CG sample, we selected 20, 10, and 7 sub
volumes at each dimension; for BHG sample, 19, 7, and 7 subvolumes 
were selected at each dimension. As such, the total subvolume case for 
training set was 110. The generated subvolumes were in high hetero
geneity. Fig. 4 shows the heterogeneity presenting in our various 3-D 
subvolumes, with the examples of subvolumes consisting the full-size 
sample. The Python library netCDF4 (Unidata, 2012) was used to read 
segmentation information and the generated initial conditions for the 
pore-scale numerical simulations. The original segmentation of the 
digital rock image was comprised of five distinct phases: 1 denotes the 
macro-pore space; 2 denotes the clay; 3 denotes the quartz; 4 denotes the 
feldspar; 5 denotes the high-density minerals, respectively (Cui et al., 
2022). In our simulation, we considered pore space filled with fluid 
phase and minerals with solid phase, respectively. The dimensions of the 
computational domain were 0.001 m × 0.001 m × 0.001 m for 25 × 25 
× 25 cases, and 0.002 m × 0.002 m × 0.002 m for 50 × 50 × 50 cases, 
and 0.004 m × 0.004 m × 0.004 m for 100 × 100 × 100 cases, 
respectively. The input parameters for the simulation are listed in 
Table 1. 

Fig. 4. Examples of subvolumes consisting the full-size digital rock.  
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The pore-scale simulation describing the fluid flow and transport 
phenomena was implemented on the subvolumes. Fig. 5 shows the 
simulation results of porosity and effective surface area for each sub
volumes. Porosity and effective surface area within each subvolume 
were computed as the volumetric averages of pore volume fraction and 
effective surface area of discrete grid blocks. The porosity values span
ned a wide range from 0.1 to 0.887. Notably, the subvolume with the 
smallest porosity corresponded to the 25 × 25 × 25-CG case, while the 
largest porosity emerged from the 25 × 25 × 25-BHG case. 25 × 25 × 25 
subvolume cases exhibited a comparatively broader porosity distribu
tion compared to 100 × 100 × 100 subvolume cases. Furthermore, 25 ×
25 × 25 resolution cases displayed a wider distribution of effective 
surface areas. This observation suggests that incorporating a substantial 
number of 25 × 25 × 25 resolution cases in the training set enabled the 
comprehensive coverage of porosity and effective surface area values. 
Thus, the model could achieve convergence more easily while avoiding 
the overfitting by taking the wide range of input datasets. From the 
distribution of porosity and effective surface area, we could observe that 
the effective surface area was relatively small under high (>0.5) and low 
(<0.3) value of porosity. Under the intermediate values of porosity 
(0.3–0.5), the effective surface area was relatively high in the same 
subvolumes. This is because, the effective surface was related not only to 
the porosity, but also to the structure and grain arrangement. Under high 
porosity, there were more voids or interconnection within the media, 
and the solid surface area was relatively low. Under low porosity, the 
media had dense structure, which led to smaller solid surface area. 
However, the relationship between the effective surface area and 
porosity does not necessarily follow a trend. If the porous media has a 
complex, convoluted, or highly branched structure, effective surface 
area can be large despite with low porosity. 

Fig. 6 presents the computed porosity and permeability of simulated 
cases. The permeability ranged from 1.41 × 10−14 m2 1.79 × 10−7 m2. 

The trend was similar with the published relationship of porosity and 
permeability (Bohnsack et al., 2020; Wei et al., 2015). We used 
Kozeny-Carman porosity-permeability relationship to be matched with 
the obtained distribution of porosity and permeability, which has the 
following relationship. 

K = C
φm+1

(1 − φ)
m (21)  

where, C is the Kozeny coefficient, and m is the Archie exponent (Costa, 
2006). The values of C, m, and corresponding R2 are listed in Table 2. 

As such, low values of R2 were observed when Kozeny-Carman 
relationship model was used to be fitted with the computed data of 
porosity and permeability. It shows the difficulty of approximating the 
porosity and permeability relationship with a single function, under the 
complexity of pore structures and significant heterogeneity. Thus, we 
considered an advanced deep learning method to predict the porosity 
and permeability relationship, as taking the pore structure and hetero
geneity into account. Obtained porosity and permeability relationship 
would be used as input data for the continuum-scale modeling. 

To quantify the diffusion behavior of reactant (i.e., acid) within the 
porous media in the continuum-scale model, effective diffusion coeffi
cient was computed through the pore-scale modeling. Fig. 7 shows the 
method of determining the effective diffusion coefficient with pore-scale 
and continuum-scale simulations. To obtain the continuum-scale simu
lation parameter of effective diffusion coefficient, we simulated the acid 
diffusion in 3-D pore-scale model, obtained the breakthrough curve at 
the outlet of the domain, and matched the breakthrough curve with the 
result from pseudo-one-dimensional diffusion. The pseudo-one- 
dimensional diffusion simulation was conducted with the same dimen
sion (i.e., length, height, and width) of computational domain as the 3-D 
pore-scale simulation. We discretized the domain into 35 × 1 × 1 
meshes to conduct pseudo-one-dimensional diffusion simulation. 
Effective diffusion coefficient is a continuum-scale parameter to 
describe the diffusion phenomena as the obstruction in diffusion 

Table 1 
The input parameters for the pore–scale modeling.  

Parameter Value 

Inlet velocity 1 × 10−4 m/s 
Diffusion coefficient of acid (reactant) 1 × 10−9 m2/s 
Fluid density 920 kg/m3 

Fluid viscosity 2.4 × 10−4 Pa • s 
Inlet concentration of acid 0.5 wt%  

Fig. 5. Porosity and effective surface area obtained from the pore-scale simu
lation of fluid transport using various subvolumes. 

Fig. 6. Porosity and permeability obtained from the pore-scale simulation of 
fluid transport using various subvolumes. 

Table 2 
Values of C, m, and R2 of the fitting with Kozeny-Carman relationship.  

Sample C m R2 

LP 1.79 × 10−9 0.94 0.075 
CG 1.91 × 10−8 0.61 0.013 
BHG 2.38 × 10−8 0.31 0.007  
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imposed by porous media’s structures (El Oualid et al., 2017). Thus, by 
matching the breakthrough curve from pore-scale models and the result 
from one-dimensional diffusion simulation (Deng et al., 2021), we could 
find the corresponding effective diffusion coefficient that represented 
the diffusion influenced by the pore-scale structure. 

Here, the governing equation for the tracer experiment on the ideal 
grain pore-scale models is described as follows. 

∂φC
∂t

= ∇ • (φD∇C) (22)  

where, D is the effective diffusion coefficient in pore-scale. The diffusion 
of acid in the continuum-scale model can be described by the following 
Fick’s Law under the transient condition. 

∂C
∂t

= Deff
∂2C
∂x2 (23)  

where, Deff is the effective diffusion coefficient in continuum-scale. In 
order to find Deff of the corresponding pore structure, we needed to 
adjust Deff in continuum-scale simulation to match the breakthrough 
curve with the pore-scale simulation results. To find Deff , we first ob
tained the breakthrough curve from pore-scale simulation. Then, we set 
different Deff in Eq. (23) until the mean squared error (MSE) between 

pore-scale breakthrough curve and continuum-scale breakthrough curve 
was less than the given criteria. Eq. (23) was solved by OpenFOAM 
solver, scalarTransportFoam (Weller et al., 1998). Python library 
PyFoam (Gschaider et al.) provided the application programming 
interface to execute OpenFOAM simulation in Python code. The 
pseudo-one-dimensional diffusion simulation had the same computa
tional domain, grid size, time step, and inlet concentration as the 
pore-scale simulation. The top and bottom walls in the pore-scale model 
were set as coupled cyclic boundary, and the cell value at boundary was 
set equal to the adjacent pair of cyclic patches. To be specific, the 
matching process started from the initial value of Deff , and then added a 
searching step to obtain the concentration (C) distribution. With every 
Deff , breakthrough curve calculated by concentration was compared 
with the pore-scale breakthrough curve until their MSE satisfied the 
criteria of 0.01. When MSE calculated by the concentration at the outlet 
boundary between pore-scale simulation and continuum-scale simula
tion reached the criteria, the effective diffusion coefficient was consid
ered as identified. Otherwise, the search process continued. In this 
study, we searched the effective diffusion coefficient from 5 × 10−12 to 
5 × 10−9 m2/s with the searching step of 2 × 10−13 m2/s. 

Fig. 8 (a) shows the computed results of effective diffusion co
efficients. The scattered dot-curves were obtained from the pore-scale 
diffusion simulation, and the solid lines were continuum-scale break
through curve obtained as the above-mentioned method. The normal
ized concentration was the average concentration at the outlet boundary 
divided by the input concentration. Fig. 8 (b) shows the relationship of 
porosity and effective diffusion coefficient. With the increasing porosity, 
effective diffusion coefficient decreased and exhibited a wide range. 

Fig. 9, Fig. 10, and Fig. 11 show the velocity streamlines, pore 
structure, and distribution of concentration of acid with respect to time, 
respectively. Fig. 9 was obtained with 25 × 25 × 25 resolution case of 
CG_07; Fig. 10 was obtained with 50 × 50 × 50 resolution case of LP_08; 
Fig. 11 was obtained with 100 × 100 × 100 resolution case of BHG_05, 
respectively. Acid flowed into the system through the velocity stream
lines, gradually diffused into the pore space, and its concentration dis
tribution reached the equilibrium status at the time of about 800 s. 

3.2. Deep learning modeling 

We trained the CNNs deep learning model by taking the pore struc
tures as the input data and the pore-scale simulation results as the output 
data, respectively. During the training process, MSE converged to the 
magnitude of 10−4. We trained the models to predict the effective 

Fig. 7. Schematic graph to illustrate the process of finding effective diffusion 
coefficients. 

Fig. 8. (a) Breakthrough curves of comparison between pore-scale simulation (scattered-dots) with 1-D diffusion; (b) relationship between porosity and effective 
diffusion coefficient. 
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surface area, permeability, and effective diffusion coefficient, which 
would be used as the input parameters of continuum-scale modeling of 
mineral dissolution. MSE of training set was provided in Fig. 12. During 
the training process, MSE on training set was smaller than 0.005. The 

model reached convergence within 100 epochs. When we applied the 
model on test set, MSE on test set was less than 0.3. 

Fig. 13 compares the predicted results by the deep learning models 
with the label data (i.e., output data, which is the real values of pore- 

Fig. 9. Pore-scale simulation results of 25 × 25 × 25 of CG_07, (a) velocity distribution; (b) volume fraction of pores; (c) concentration distribution of acid at t = 20, 
100, 200, 300, 500, and 800 s. 

Fig. 10. Pore-scale simulation results of 50 × 50 × 50 case of LP_08, (a) velocity distribution; (b) volume fraction of pore; (c) concentration distribution of acid at t =
20, 100, 200, 300, 800, and 1000 s. 
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scale modeling results), which included the effective surface area, 
permeability, and effective diffusion coefficient. The MSE between the 
predicted values and the real values of effective surface area, perme
ability, and effective diffusion coefficient were 0.23, 0.18, and 0.0076, 

respectively. Among them, effective diffusion coefficient showed lowest 
MSE, which could be caused by the narrow range of the label data. The 
effective surface area and permeability exhibited a broad and evenly 
distributed range, resulting in a representative distribution that 

Fig. 11. Pore-scale simulation results of 100 × 100 × 100 case of BHG_05, (a) velocity distribution; (b) volume fraction of pore; (c) concentration distribution of acid 
at t = 20, 100, 200, 300, 800, and 1000 s. 

Fig. 12. MSE during training.  
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accurately captured the diverse characteristics of the pore structure. 
These distributions of the output parameters reflect a high level of 
variability and provide a reliable representation of the complex nature 
of the pore structures, as allowing us to reliably predict the continuum- 
scale parameters with the given pore structures. 

3.3. Continuum-scale simulation results 

We obtained the porosity (φ0), permeability (K0), effective surface 
area (av0), and effective diffusion coefficient (Deff ) from the full-size 
digital rock volume, and applied them to the continuum-scale simula
tions. The computational domain for the continuum-scale simulation 
had the domain size of 0.016 m × 0.016 m × 0.016 m, with the grid 
number of 16 × 16 × 16. The grid size (i.e., 0.001 m) was equal to the 
domain size of the pore-scale models. The input parameters for the 
continuum-scale simulation of mineral dissolution by acid is listed in 
Table 3. We set the fixed velocity, pressure, and acid concentration at 
the inlet boundary. The outlet boundary for velocity, pressure, and acid 
concentration field was set as zero gradient. The simulation results of the 
profiles of concentration distribution of acid, porosity, and effective 
surface area are presented in Fig. 14. As acid flowed into the domain, the 
dissolution reaction altered the porosity and the pore distributions. The 

dissolution pattern followed the conical dissolution (Fredd and Fogler, 
1999). The initial parameters such as permeability, effective surface 
area, and effective diffusion coefficients were obtained from deep 
learning models, which implied the information of pore structure and 
heterogeneity without the heavy computational expenses. As such, the 
presented upscaling method based on deep learning technology can be 
applied to effectively improve the computational efficiency. 

Fig. 13. Comparison of predicted results by the deep learning models with the real values of pore-scale modeling results. (a) Effective surface area; (b) permeability; 
(c) effective diffusion coefficient. 

Table 3 
Input parameters for the continuum-scale simulations, which were obtained 
with the deep learning models.  

Parameter Symbol Value 

Acid diffusivity Dm 1 × 10−9 m2/s 
Dissolving power α 50 kg/kmol 
Asymptotic Sherwood number Sh∞ 3.66 
Pore-structure-relation constant β 1 
Rock density ρs 2710 kg/m3 

Dynamic viscosity μ 0.001 kg/m⋅s 
Reaction rate constant ks 0.002 m/s 
Inlet velocity u 0.0001 m/s 
Cf Inlet concentration 4 wt%  
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4. Conclusion 

Reactive transport modeling of subsurface systems can help address 
various geochemical processes, such as dissolution and precipitation of 
minerals. Accurate prediction of key reactive transport properties is 
critical in understanding such subsurface phenomena. However, there 
are challenges to efficiently and reliably compute the solutions of 
complex reactive transport problems, due to the high heterogeneity and 
intricate and irregular structures of subsurface porous media. In addi
tion, transport models of porous media are in various scales spanning 
from pore-scale to continuum-scale and require reliable upscaling 
techniques to establish the connection between these models. In this 
regard, we established an upscaling method connecting pore-scale and 
continuum-scale models by employing a deep learning methodology of 
Convolutional Neural Networks (CNNs). In the pore-scale modeling, we 
applied the DBS method to simulate the fluid transport in pore-scale 
models, which acted as the constituents of a continuum-scale model. 
The obtained pore-scale modeling results were used to train the CNNs 
deep leaning models. The input data were consisted of the spatial dis
tributions and structures of micropores, while the output data for the 
deep learning models include the permeability, effective surface area, 
and effective diffusion coefficient of each subvolume. These output data 
of the deep learning model was utilized as the input parameters for the 
continuum-scale reactive transport modeling of mineral dissolution. The 
workflow of this study presents the robust upscaling process, as con
necting the insights obtained from pore-scale modeling to the input 
parameters of continuum-scale modeling. 

CNNs-based upscaling method from pore-scale to continuum-scale 

simulations offers the great computational efficiency and enhanced 
reliability in predicting reactive transport phenomena in porous media. 
The trained model can predict the key parameters immediately, which is 
expected to serve as a robust tool for optimizing reservoir management 
strategies, especially with time-sensitive decision making. Given that 
major limitations of supervised learning models include the unpredict
able performance on unseen data and lengthy computational time for 
data training, the envisioned works will include the establishment of 
generalized database for variety of digital rock images in various re
positories through computationally-efficient training. 
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