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ABSTRACT

Reactive transport modeling of subsurface environments plays an important role in addressing critical problems
of geochemical processes, such as dissolution and precipitation of minerals. Current transport models for porous
media span various scales, ranging from pore-scale to continuum-scale. In this study, we established an upscaling
method connecting pore-scale and continuum-scale models by employing a deep learning methodology of
Convolutional Neural Networks (CNNs). We applied Darcy-Brinkmann-Stokes (DBS) method to simulate the fluid
flow and reactive transport in pore-scale models, which would act as constituents of a continuum-scale model.
The datasets of spatial pore distribution of subvolume samples were used as the input for the deep learning
model, and the continuum (Darcy)-scale parameters such as permeability, effective surface area, and effective
diffusion coefficient were figured out as outputs (i.e., labels). By applying the trained models of the subvolumes
in the entire sample volume, we generated the initial field of porosity, permeability, effective diffusion coeffi-
cient, and effective surface area for continuum-scale simulation of a mineral dissolution problem. We took an
acid dissolution case as an example to utilize the outcomes of trained deep learning models as input data in the
continuum-scale simulation. This work presents a comprehensive upscaling workflow, as bridging the findings of

microscale simulations to the continuum-scale simulations of a reactive transport problem.

1. Introduction

Reactive transport modeling of subsurface systems can help address
various geochemical processes, such as dissolution and precipitation of
minerals. However, characteristics of subsurface porous media, such as
high heterogeneity and intricate and irregular structures, it’s chal-
lenging to efficiently and reliably compute the solutions of complex
problems where reactive transport occurs. In addition, transport models
of porous media are in different scales spanning from pore-scale to
continuum-scale and require reliable upscaling techniques to establish
the connection between these models.

Diverse numerical methods have been proposed to address reactive
transport in various scales, including pore network model, capillary tube
model, continuum (Darcy)-scale model, and pore-scale models (Algive
et al., 2009; Dormieux and Lemarchand, 2001; Estermann and Scheiner,
2018; Hung et al., 1989; Lichtner and Kang, 2007; Liu et al., 2013;
Maheshwari et al., 2013, 2016; Panga et al., 2005; Pivonka et al., 2004;
Ratnakar et al., 2013). In continuum-scale models, porous media is
described with continuous and utilizes averaged properties at a
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macroscopic scale. In contrast, pore-scale models aim to capture the
intricate details of fluid transport processes occurring at the microscale
level, as separately describing pore zones and minerals. Thus,
continuum-scale models can be used to capture the long-term behavior
of fluid in large scale, while pore-scale models can provide the insights
of fluid-rock interaction in heterogeneous and complex structures of
pores. There are various numerical discretization methods, which can be
applied for reactive transport problems, such as Lattice Boltzmann
Method (LBM), Finite Volume Method (FVM), and Integral Finite Dif-
ference (IFD) method. In LBM, fluid is represented by a set of distribu-
tion functions defined on a lattice. The distribution functions propagate
and collide at each lattice point, as simulating the movement and
interaction of fluid particles. TOUGHREACT, a multiphase reactive
transport code based on TOUGH2, employs IFD method to solve gov-
erning equations of fluid and heat flow and chemical transport in
sequence, which enables the flexible discretization of macroscale models
of geologic media (Xu et al., 2004). In the FVM, terms in the conserva-
tion equation are turned into face fluxes and evaluated at the finite
volume faces, as guaranteeing the strict mass conservation in the system
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(Moukalled et al., 2016). Where, unknow variables are saved in the
centroid of volume element, which enables the implementation of
various boundary conditions. Thus, FVM method provides a robust and
versatile framework for describing complex physical processes in
various applications (You and Lee, 2021b). Oliveira used FVM method
to solve the Navier-Stokes equations and the advection-diffusion equa-
tion to obtain species’ concentration in the pore-scale model (Oliveira
et al., 2019). In another study, a combined FVM and LBM method was
employed to solve the reactive transport in the system with
multi-minerals and rock heterogeneity (Liu et al., 2017). In their work,
LBM method and FVM method were used to discretize governing
equations for fluid flow and species’ concentration, respectively.
Darcy-Brinkmann-Stokes (DBS)-employed FVM enables the microscale
investigation of complex phenomena in subsurface porous media, and it
has been applied to various problems of reactive transport modeling
(Minto et al., 2019; Molins et al., 2020). Soulaine and Tchelepi (2016)
applied the DBS method to various subsurface processes, including fluid
flow in fractured porous media, mineral dissolution, and shale pyrolysis
(Soulaine and Tchelepi, 2016). Liu and Mostaghimi (2018) applied the
DBS method to describe carbonate dissolution (Liu and Mostaghimi,
2018). In their later work, they considered the movement of detached
particles during the dissolution, which provided an insight into particle
clogging in the dissolved fractures (Liu et al., 2020). DBS-employed FVM
models can be benefited from the direct use of digital rock images of
porous media as the computational domains in pore-scale models, but
one of its difficulties is the demanding memory and time for computa-
tions, especially when high-resolution 3-D images are used. For
example, model geometries based on X-ray tomograms are often con-
sisted of a huge number of voxels (>10°) and hence requires massive
computational cost (Prasianakis et al., 2020).

Given the above-mentioned difficulties and the multiscale nature of
porous media, researchers have actively explored the application of
advanced AI techniques such as Convolutional Neural Networks (CNNs),
to resolve the challenges of reactive transport modeling problems in
porous media (Algahtani et al., 2020; Prasianakis et al., 2020; Roding
et al., 2020; Wu et al., 2019). Wu et al. predicted the effective diffusion
coefficient of porous media with 2D digital rock images, by applying the
LBM method and CNNs modeling capability (Wu et al., 2019). Where,
the CNNs model provided better prediction of effective diffusion coef-
ficient than the empirical Bruggeman equation, especially for the porous
media with low diffusivity. In another study, the microstructures of 2D
images of porous media were generated using the quartet structure
generation set (QSGS) method (Wang et al., 2007). In their study, the
relationship between fluid permeabilities and a variety of microstruc-
tural descriptors was reported. Their training data included a set of 30,
000 virtual 3-D porous microstructures of various types (Roding et al.,
2020). These studies were based on artificially synthesized pore-scale
geometric models. On the other hand, several studies investigated the
application of deep learning technologies on the real digital rock images
obtained with X-ray or X-ray Computed Tomography (CT) for reactive
transport problems. Prasianakis et al. trained a shallow neural network
based on the results of microscopic geochemical reactive transport
simulations, and integrated it into a continuum-scale reactive transport
modeling code (Prasianakis et al., 2020). Their study suggested that the
neural-network-coupled simulation performed better than the full
speciation reactive transport simulations, both in terms of computa-
tional efficiency and memory usage. Alqahtani et al. trained the CNNs
model by taking micro-CT images as input and computed outputs by
numerical simulations (Algahtani et al., 2020). Their trained model
could be used to predict the physical properties of porous media, such as
porosity, specific surface area, and average pore size, where, the datasets
were created from sub-divided tomograms of three different sandstones.
The datasets were consisted of 5262 training images and 2000 test
images.

Besides CNNs, some researchers used other machine learning algo-
rithms to investigate the characteristics of porous media. In one study of
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pore-scale reactive transport modeling, effective reaction rates were
calculated based on the distribution profiles of reactant concentration
(Liu et al., 2022). Where, pore structural features such as specific surface
area, pore sphericity, and coordination number were extracted from
pore-scale modeling. They first used the Random Forest (RF) learning
model to rank the importance of features and used the first three most
important features to train an Artificial Neural Network (ANN) model
and accurately predicted the effective reaction rates. In another study of
Menke et al., they divided Estaillages limestone into 60° and 1203
subvolumes of voxels and calculated permeability on these subvolumes
using DBS method (Menke et al., 2021). The extracted features such as
porosity, cumulative phase connectivity, and phase volume fraction
were taken as input data, and the calculated permeability from DBS
method was taken as output data. They showed the 80 times less
computational expense through the application of machine learinig
technologies.

Heterogeneous and irregular structures of porous media present
significant challenges for direct simulation, as hindering the formulation
of universal relationships and equations to accurately describe the fluid
flow and reactive transport characteristics within them. Conducting
simulations on high-resolution digital rock images can be both costly
and time-consuming, as posing challenges when attempting to upscale
these pore-scale parameters to a larger scale model. Consequently, ac-
curate estimation of the intrinsic properties of porous media becomes
difficult, leading to higher uncertainties in the upscaling processes. As
abovementioned, however, recent advancements in machine learning
techniques enable the prediction of these crucial properties without the
need for time-consuming simulations (Tahmasebi et al., 2020). While
the training process of machine learning methods can demand a sig-
nificant amount of time, they can quickly estimate the properties of
interest for new samples within multiple seconds, once the training
process is completed.

In this study, we apply the DBS method to simulate the fluid flow and
reactive transport process in pore-scale models, which are to act as
constituents of a continuum-scale model. The obtained results are to be
used to train the CNNs deep leaning models. The input features are
consisted of the spatial distribution and structure of micropores, while
the outputs for the deep learning models include the permeability,
effective surface area, and effective diffusion coefficient of subvolume.
Here, we divide one of the high resolution 3-D digital rock images into
4096 subvolumes, where each subvolume had a resolution of 50 x 50 x
50 voxels, and apply the trained models to obtain the outputs, which are
initialized as input parameters for continuum-scale reactive transport
modeling. The workflow of this study presents the robust upscaling
process, as connecting the insights obtained from pore-scale modeling to
the input parameters of continuum-scale modeling. This paper is orga-
nized as follows: Section 2 introduces the mathematical formulations of
pore-scale and continuum-scale models and the structure of deep
learning neural network with CNNs. Sections 3 presents the results and
discussion, and Section 4 presents the conclusion, respectively.

2. Methodology
2.1. Pore-scale modeling employing DBS method

In a Darcy-brinkman-Stokes (DBS) model, the whole computational
domain is discretized into orthometric cells (Soulaine et al., 2017). Local
porosity (¢) represents the volume fraction of either pore zone or solid
zone within a pore-scale model. In the fluid area, &r = 1 and & = 0; in
the solid zone, & =0 and & = 1; in the solid-liquid interface,
0 < & < 1; as such, each zone satisfies the relationship of &, 4 ¢f = 1. In
the DBS method, Darcy’s law describes the fluid flow at the interface of
solid and liquid, while the Navier-Stokes equation describes the fluid
flow in pores. The governing equations are as follows (Soulaine et al.,
2017; Soulaine and Tchelepi, 2016; You and Lee, 2021a, 2021c).
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where, ¥ is the average velocity; py is the average pressure; yy is the
dynamic viscosity; p; is the fluid density in the system. The last term
(,ufk’lvf) is the Darcy resistance term by the momentum exchange be-
tween fluid and solid phases (Soulaine et al., 2017). k is the local per-
meabiliy, which is computed by the Kozeny-Carman relationship, k™! =

_e)2
ky 1 (15;{ . Where, ky is the initial local permeability, which is assumed to

be 107'° m? in this study. The advection—diffusion equation and mass
conservation equation are as follows.
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where, @y, is the concentration of species; in the application in this
study of acid dissolution, subscript A indicates acid. D}, is the effective
diffusion coefficient of acid; m, is the mass change rate of acid by
mineral dissolution; r is the reaction rate of mineral dissolution; a, is the
effective surface area, which is calculated by a, = ||Ver||4er(1 — ). We
take volumetric average to quantify the effective surface area of the
whole subvolume. (a,) denotes the volumetric average of the effective
surface area, which is computed as follows.

1
{(a,) :A—V/AvavdV %)

where, AV is the control volume.

Average permeability of a whole pore-scale model (i.e., constituent
of continuum-scale model), K, is computed by the following equation
adapted from the Darcy’s Law.

_ (v >.Mf

K= 6
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where, the volumetric average velocity of fluid and pressure are calcu-
lated from the pore-scale simulation by (V) = & [,,VrdV and (5r) =
ﬁf /, Avfﬁde, respectively. Here, AV denotes the fluid volume in the

pore-scale model.

Based on the abovementioned governing equations, pore-scale
reactive transport model was developed based on OpenFOAM, an
open-source Computational Fluid Dynamics (CFD) platform (Weller
et al., 1998). The governing equations were discretized by the FVM
method. The initial and boundary conditions were set as follows:

_ o _ % _ _
Vrli—o = V50> Vrly—o = Vr0s Gilxo = 0, Prlyexo = Pouts @fil,—o = ®f.0, and
wf,i\tzo =0.

2.2. Architecture of deep learning model

2.2.1. Convolutional Neural Networks (CNNs)

In ANN architecture, each neuron in one layer is connected to every
neuron in the subsequent layer. This fully connected structure leads to a
large number of connections, making it computationally expensive,
especially when handling the high-dimensional data such as digital rock
images. In contrast, neurons in CNNs architecture are arranged in a grid-
like structure, representing the spatial dimensions of the input data.
Thus, CNNs preserves the spatial relationship between inputs and
feature maps, and enables the weight reusing which allows the network
to detect and learn similar features or patterns at different spatial lo-
cations (Algahtani et al., 2020). Thus, CNNs can take advantage of

Geoenergy Science and Engineering 238 (2024) 212850

effectively capturing local patterns and spatial correlations with the
reduced number of learning parameters, while improving the ability to
learn different patterns. Traditionally, CNNs have been used to recog-
nize image-driven patterns or dataset by employing high-dimensional
organization of neurons (Albawi et al., 2017).

2.2.2. Fully connected layer and convolutional layer

In a fully connected layer, each neuron in current layer is connected
to every neuron in the subsequent layer. A fully connected layer is a
fundamental building block of a Multi-Layer Perceptron (MLP) (Mur-
tagh, 1991). It consists of an input layer, hidden layer, and output layer.
The fully connected layer structure is described in the following equa-
tions (Zhang et al., 2021). Here, X represents input matrix; H represents
the hidden layer; and O represents the output layer. W and b denote
weight vector and bias vector, respectively.

H=xw" 4+ p" %)
0=xw? 4p? (8)

where, superscripts represent the weights and biases at different layers.
Activation functions introduce non-linear transformations to the
weighted sum of inputs, allowing the neural network to learn complex
relationships between the input and output. Activation function is
applied to the output of each neuron in the output layer. The most
commonly used activation function is Rectified Linear Unit (ReLU),
Sigmoid, and Hyperbolic Tangent (tanh) (Sharma et al., 2017). Among
them, ReLU(f(x) = max (0, x)) stands out due to its advantages in
calculation efficiency and ability to mitigate the vanishing and explod-
ing gradient problems (Sharma et al., 2017). This is because, ReLU
function introduces non-linearity and prevents gradients from becoming
significantly small during the backpropagation. The outputs of ReLU are
all positive values, which can decrease gradient exploding. Instead of
exponential operation, which has high cost on GPU calculation, ReLU
function sets all negative values to zero and keeps positive values un-
changed, making it highly efficient for the implementation on Graphics
Processing Units (GPUs).

In this study, the spatial distributions of pores and grains are
described in a set of 3-D data with width, height, and depth. If fully
connected layers are applied to each grid, computational load gets
enormously large. Thus, instead of applying full-size weights and biases,
CNNs defines the kernel matrix with dimensions of a x b x ¢, and applies
kernel across the entire input space. Thus, the 3-D convolutional layer
can be expressed as follows (Zhang et al., 2021).

[H]i.j,k:”"" Z Z Z [V]a,b.(t [X]i+u.j+b.k+r 9

a=—A b=—A c=—A

where, [X];; and [H];; represent the local porosity in 3-D space of input
at location i, j, k and hidden layer, respectively; u is the bias; [V],, . is the
convolutional kernel, which represents the weights in the convolutional
layer. The convolutional kernel performs the cross-correlation with
input matrix, as it moves across the matrix X. The kernel shape and
moving offsets, which are known as stripes, are hyperparameter in the
CNNs model. Fig. 1 illustrates how the cross-correlation operation is
applied to digital rock data in a layer-by-layer manner, to obtain the
output value. The cross-correlation operation involves multiplying the
values of the input matrix and the kernel matrix at each position and
then summing up all the products, while kernel matrix slides through the
input matrix. Fig. 1 (a) shows the examples of cross-correlation with
different kernel size. In these examples, the 1 x 1 x 1 kernel with value 2
multiplies to each value in the input matrix and generates the output
matrix, while two matrices with the same dimensions generate a scale
value. As shown in Fig. 1 (b), when the input matrix is multiplied by a
zero kernel, it results in a matrix of zeros, whereas multiplication with a
kernel with value 1 preserves the original input matrix. Fig. 1 (c) shows
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Fig. 1. The schematic of convolutional kernel performing the cross-correlation. (a) The cross-correlation operation with different kernel sizes; (b) implementation of
cross-correlation on digital rock sample with zero kernel and one kernel; (c) process of cross-correlation to train kernels and obtain the output.

the implementation of cross-correlation between input matrix and
kernel for several times. The dimension of the input matrix decreases
gradually as generating the output. Consequently, by sliding the kernel
and performing cross-correlation, features and patterns within the
porous media’s structure can be extracted and detected from the input
data. In this study, this operation was implemented by using a 3-D
matrix, representing the spatial distribution of microporous media.
The left-hand side of the input matrix illustrates the extraction of local
porosity of the digital rock image to a single output value through cross-
correlation. When applying the CNNs method to train the model, the
feature information of the digital rock is retained as a part of the con-
volutional kernel.

2.2.3. LeNet-5

Porous media exhibits spatial variations from the natural formation
processes or structural variations within the material. Heterogeneity
influences fluid flow and transport process, leading to preferential flow
pathways or trapping of fluids within specific regions. In this regard, we
applied LeNet to establish the model that can capture intricate patterns
of porous media, efficiently model the complex interactions between
input and output, and excellently perform on unseen data. LeNet is one
of the CNN architecture proposed by LeCun et al. (1998). Due to its
simple structure, LeNet has high efficiency when handling digital rock
information. The input of LeNet is the spatial distribution of pores, and
the output is permeability, effective surface area, and effective diffusion
coefficient, respectively. We trained three LeNet models to predict each
parameter. We compared several modern CNNs, including Residual

Networks (ResNet), AlexNet, and LeNet (He et al., 2016; LeCun et al.,
1998). Among them, LeNet-5 is known to have the best performance on
predicting permeability, effective surface area, and effective diffusion
coefficient. We adapted LeNet-5, where the network was consisted of
nine layers, as shown in Fig. 2. The adopted LeNet included CNN layers,
average pooling layers, and fully connected layers. ReLU activation
function was used to add non-linearity after every CNN layer. Then,
average pooling layer was added in the network to reduce the individual
noisy pixels, leading to a robust representation (Bashivan et al., 2022).
We used five fully connected layers to extract and aggregate features.

The LeNet was adapted from PyTorch (Paszke et al., 2019), a ma-
chine learning framework based on the Torch library, and the model was
trained by NVDIA V100 in Research Computing Data Core (RCDC) at
University of Houston. The deep learning network was trained using the
Adam optimizer (Kingma and Ba, 2014) to initialize the weights and
biases for each neuron with the learning rate (i.e., relaxation coefficient)
of 0.0001 for 500 epochs. The mean squared error (MSE) loss function
was employed to measure the model’s performance on the validation
set, where the learning rate scheduler named ReduceLROnPlateau
(Zaheer et al., 2018) was used to dynamically adjust the learning rate
during the training procedure based on the validation loss. The training
process utilized stochastic gradient descent (SGD) (Bottou, 2010) with
back-propagation to update the model’s parameters in the mini-batches
of data with the size of 32 for each batch. The training set and test set
contained three batches and one batch, respectively.
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Fig. 2. The schematic of LeNet (LeCun et al., 1998).

2.3. Upscaling to continuum-scale simulation model

We utilized LeNet to train three deep learning models to predict the
effective surface area, permeability, and effective diffusion coefficient,
respectively, based on the given pore structures. The schematic work-
flow is illustrated in Fig. 3. The full-size digital rock, consisting of 800 x
800 x 800 voxels, was subdivided into 4096 subvolumes, with the in-
dividual dimensions of 50 x 50 x 50 voxels. For each subvolume, we
employed the trained pore-scale models to estimate its averaged effec-
tive surface area, permeability, and effective diffusion coefficient. In the
continuum-scale simulation model, the computational domain was dis-
cretized into the grid dimensions of 16 x 16 x 16, where each grid cell
corresponded to one subvolume within the entire digital rock.

The governing equations for the continuum-scale simulation is as
follows. First, fluid flow in porous media is solved by Darcy’s law to
determine fluid pressure (p) as follows.

K
u= —;(Vp—ﬂg) 10

Second, following continuity equation is solved to determine porosity
() as follows.

Op

—+V =0 11
otV eu an
In this work, we used ¢ to describe the porosity in continuum-scale
simulation and & to describe the volume fraction of pore in pore-scale
simulation. Third, following advection-diffusion equation is solved to
address the concentration of species (Cy) as follows.
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where, C; is the concentration of species of reactants in aqueous phase,
such as H' for acid dissolution problem; C; is the concentration of acid at
the fluid/solid interface; k. is the coefficient of local mass transfer by
reaction; a, is the effective surface area for the mineral dissolution re-
action; D, is the effective diffusion coefficient of species. Reaction rate of
mineral dissolution (R(C;)) is described as follows.

R(C,)=k.(C; — Cy) 13)
In the first order reaction, reaction rate is determined as R(C) = k;C;,

where k; is the dissolution-rate constant. C; is described as follows
(Panga et al., 2005).

G

(-

By inserting Eq. (14) into Eq. (12), we obtain the following equation.

d(oCr)
ot

C = a4

Fue VG =V e (gD, 0 VC)) — akr T
®

Finally, the porosity-evolution equation is described as follows under
the first-order reaction.

(15)
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| &
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Fig. 3. The schematic of upscaling procedure from pore-scale simulation model to continuum-scale simulation model.
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where, « is the dissolving power, which is defined as grams of solid
dissolved per mole of acid reacted (Panga et al., 2005). Here, local mass
transfer coefficient (k.) is obtained by the following correlation.

2kl
- D,
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where, Sh is the Sherwood number, which is defined by the ratio of
convective mass transfer to diffusive mass transfer. Sh,, is the asymp-
totic Sherwood number; Re, is the Reynolds number defined by Re, =

tw ; Sc is the Schmidt number, which is defined by Sc = Dlm; Dy, is the
molecular diffusivity; v is the kinematic viscosity; [ is the characteristic
length, which we use pore radius. The pore radius can be quantified by:

where, ry is the initial mean pore size; § is the pore structure-relation
constant.

In the application to the reactive transport problem, we assumed the
linear relationship between permeability and effective surface area with
respect to porosity during the mineral dissolution process as follows.
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where, ¢, is the initial porosity, Ky is the initial field permeability, and
ay is the initial field effective surface area, respectively.
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3. Results and discussions
3.1. Pore-scale simulation results

The pore-scale simulation was implemented on 3-D sandstone digital
rock images of the tomogram and segmentation of Bentheimer (BHG),
Castlegate (CG), and Leopard Sandstones (LP) (Cui et al., 2022). Since
the pore structures were highly heterogeneous, the predictive model
could result in unsatisfactory results, if the training data was not suffi-
ciently representative. Thus, to enhance the diversity of input data, we
cut subvolumes into different scales for each type of digital rock. The
subvolumes were selected randomly from the whole digital rock, and the
subvolumes’ voxels were in the wide range. The segmentation resolution
was 800 x 800 x 800 voxels; BHG and LP sandstone segmentations had
the size of 2.15 pm/voxel, while CG had the size of 3.4 pm/voxel. In this
study, the pore-scale model geometries (i.e., constituents of
continuum-scale model) were made from the digital rock dataset, with
three different cases of voxel dimensions of 25 x 25 x 25, 50 x 50 x 50,
and 100 x 100 x 100. For LP sample, we selected 22, 12, and 6 sub-
volumes at each size; for CG sample, we selected 20, 10, and 7 sub-
volumes at each dimension; for BHG sample, 19, 7, and 7 subvolumes
were selected at each dimension. As such, the total subvolume case for
training set was 110. The generated subvolumes were in high hetero-
geneity. Fig. 4 shows the heterogeneity presenting in our various 3-D
subvolumes, with the examples of subvolumes consisting the full-size
sample. The Python library netCDF4 (Unidata, 2012) was used to read
segmentation information and the generated initial conditions for the
pore-scale numerical simulations. The original segmentation of the
digital rock image was comprised of five distinct phases: 1 denotes the
macro-pore space; 2 denotes the clay; 3 denotes the quartz; 4 denotes the
feldspar; 5 denotes the high-density minerals, respectively (Cui et al.,
2022). In our simulation, we considered pore space filled with fluid
phase and minerals with solid phase, respectively. The dimensions of the
computational domain were 0.001 m x 0.001 m x 0.001 m for 25 x 25
x 25 cases, and 0.002 m x 0.002 m x 0.002 m for 50 x 50 x 50 cases,
and 0.004 m x 0.004 m x 0.004 m for 100 x 100 x 100 cases,
respectively. The input parameters for the simulation are listed in
Table 1.

Volume fraction of pore

50x50x50
voxels

100x100x100
voxels

Fig. 4. Examples of subvolumes consisting the full-size digital rock.
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Table 1

The input parameters for the pore-scale modeling.
Parameter Value
Inlet velocity 1x10*m/s
Diffusion coefficient of acid (reactant) 1 x 102 m?/s
Fluid density 920 kg/m>

Fluid viscosity
Inlet concentration of acid

24x10*Paes
0.5 Wt%

The pore-scale simulation describing the fluid flow and transport
phenomena was implemented on the subvolumes. Fig. 5 shows the
simulation results of porosity and effective surface area for each sub-
volumes. Porosity and effective surface area within each subvolume
were computed as the volumetric averages of pore volume fraction and
effective surface area of discrete grid blocks. The porosity values span-
ned a wide range from 0.1 to 0.887. Notably, the subvolume with the
smallest porosity corresponded to the 25 x 25 x 25-CG case, while the
largest porosity emerged from the 25 x 25 x 25-BHG case. 25 x 25 x 25
subvolume cases exhibited a comparatively broader porosity distribu-
tion compared to 100 x 100 x 100 subvolume cases. Furthermore, 25 x
25 x 25 resolution cases displayed a wider distribution of effective
surface areas. This observation suggests that incorporating a substantial
number of 25 x 25 x 25 resolution cases in the training set enabled the
comprehensive coverage of porosity and effective surface area values.
Thus, the model could achieve convergence more easily while avoiding
the overfitting by taking the wide range of input datasets. From the
distribution of porosity and effective surface area, we could observe that
the effective surface area was relatively small under high (>0.5) and low
(<0.3) value of porosity. Under the intermediate values of porosity
(0.3-0.5), the effective surface area was relatively high in the same
subvolumes. This is because, the effective surface was related not only to
the porosity, but also to the structure and grain arrangement. Under high
porosity, there were more voids or interconnection within the media,
and the solid surface area was relatively low. Under low porosity, the
media had dense structure, which led to smaller solid surface area.
However, the relationship between the effective surface area and
porosity does not necessarily follow a trend. If the porous media has a
complex, convoluted, or highly branched structure, effective surface
area can be large despite with low porosity.

Fig. 6 presents the computed porosity and permeability of simulated
cases. The permeability ranged from 1.41 x 107*m?1.79 x 10~ m?.

6000

LP-25*25%25
LP-50*50*50

v LP-100¥100*100
CG-25%25%25
CG-50*50%50
CG-100*100*100
BHG-25*25%25
BHG-50*50*50
BHG-100*100%100

5000 -

4000 1

3000 A y

Effective surface area, m%/m?

2000 4

1000 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Porosity

Fig. 5. Porosity and effective surface area obtained from the pore-scale simu-
lation of fluid transport using various subvolumes.
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10712 4
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Fig. 6. Porosity and permeability obtained from the pore-scale simulation of
fluid transport using various subvolumes.

The trend was similar with the published relationship of porosity and
permeability (Bohnsack et al., 2020; Wei et al., 2015). We used
Kozeny-Carman porosity-permeability relationship to be matched with
the obtained distribution of porosity and permeability, which has the
following relationship.

m+1

k=c-2

—_— 21
(1 _ (p)m ( )

where, C is the Kozeny coefficient, and m is the Archie exponent (Costa,
2006). The values of C, m, and corresponding R? are listed in Table 2.

As such, low values of R? were observed when Kozeny-Carman
relationship model was used to be fitted with the computed data of
porosity and permeability. It shows the difficulty of approximating the
porosity and permeability relationship with a single function, under the
complexity of pore structures and significant heterogeneity. Thus, we
considered an advanced deep learning method to predict the porosity
and permeability relationship, as taking the pore structure and hetero-
geneity into account. Obtained porosity and permeability relationship
would be used as input data for the continuum-scale modeling.

To quantify the diffusion behavior of reactant (i.e., acid) within the
porous media in the continuum-scale model, effective diffusion coeffi-
cient was computed through the pore-scale modeling. Fig. 7 shows the
method of determining the effective diffusion coefficient with pore-scale
and continuum-scale simulations. To obtain the continuum-scale simu-
lation parameter of effective diffusion coefficient, we simulated the acid
diffusion in 3-D pore-scale model, obtained the breakthrough curve at
the outlet of the domain, and matched the breakthrough curve with the
result from pseudo-one-dimensional diffusion. The pseudo-one-
dimensional diffusion simulation was conducted with the same dimen-
sion (i.e., length, height, and width) of computational domain as the 3-D
pore-scale simulation. We discretized the domain into 35 x 1 x 1
meshes to conduct pseudo-one-dimensional diffusion simulation.
Effective diffusion coefficient is a continuum-scale parameter to
describe the diffusion phenomena as the obstruction in diffusion

Table 2

Values of G, m, and R? of the fitting with Kozeny-Carman relationship.
Sample C m R?
LP 1.79 x 107° 0.94 0.075
CG 1.91 x 1078 0.61 0.013
BHG 2.38 x 1078 0.31 0.007
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Fig. 7. Schematic graph to illustrate the process of finding effective diffusion
coefficients.

imposed by porous media’s structures (El Oualid et al., 2017). Thus, by
matching the breakthrough curve from pore-scale models and the result
from one-dimensional diffusion simulation (Deng et al., 2021), we could
find the corresponding effective diffusion coefficient that represented
the diffusion influenced by the pore-scale structure.

Here, the governing equation for the tracer experiment on the ideal
grain pore-scale models is described as follows.

9C _

o V e (pDVC) (22)

where, D is the effective diffusion coefficient in pore-scale. The diffusion
of acid in the continuum-scale model can be described by the following
Fick’s Law under the transient condition.
2

% =Dgyy ZTS (23)
where, Dy is the effective diffusion coefficient in continuum-scale. In
order to find Dy of the corresponding pore structure, we needed to
adjust Dy in continuum-scale simulation to match the breakthrough
curve with the pore-scale simulation results. To find Dy, we first ob-
tained the breakthrough curve from pore-scale simulation. Then, we set
different Dy in Eq. (23) until the mean squared error (MSE) between

0.8 1/

0.61

0.4

Normalized concentration

0.2

0.0

0 50 100 150 200 250 300 350 400

Time, h

@
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pore-scale breakthrough curve and continuum-scale breakthrough curve
was less than the given criteria. Eq. (23) was solved by OpenFOAM
solver, scalarTransportFoam (Weller et al., 1998). Python library
PyFoam (Gschaider et al.) provided the application programming
interface to execute OpenFOAM simulation in Python code. The
pseudo-one-dimensional diffusion simulation had the same computa-
tional domain, grid size, time step, and inlet concentration as the
pore-scale simulation. The top and bottom walls in the pore-scale model
were set as coupled cyclic boundary, and the cell value at boundary was
set equal to the adjacent pair of cyclic patches. To be specific, the
matching process started from the initial value of Dg, and then added a
searching step to obtain the concentration (C) distribution. With every
Dy, breakthrough curve calculated by concentration was compared
with the pore-scale breakthrough curve until their MSE satisfied the
criteria of 0.01. When MSE calculated by the concentration at the outlet
boundary between pore-scale simulation and continuum-scale simula-
tion reached the criteria, the effective diffusion coefficient was consid-
ered as identified. Otherwise, the search process continued. In this
study, we searched the effective diffusion coefficient from 5 x 1072 to
5 x 10~° m?/s with the searching step of 2 x 10713 m?/s.

Fig. 8 (a) shows the computed results of effective diffusion co-
efficients. The scattered dot-curves were obtained from the pore-scale
diffusion simulation, and the solid lines were continuum-scale break-
through curve obtained as the above-mentioned method. The normal-
ized concentration was the average concentration at the outlet boundary
divided by the input concentration. Fig. 8 (b) shows the relationship of
porosity and effective diffusion coefficient. With the increasing porosity,
effective diffusion coefficient decreased and exhibited a wide range.

Fig. 9, Fig. 10, and Fig. 11 show the velocity streamlines, pore
structure, and distribution of concentration of acid with respect to time,
respectively. Fig. 9 was obtained with 25 x 25 x 25 resolution case of
CG_07; Fig. 10 was obtained with 50 x 50 x 50 resolution case of LP_08;
Fig. 11 was obtained with 100 x 100 x 100 resolution case of BHG_05,
respectively. Acid flowed into the system through the velocity stream-
lines, gradually diffused into the pore space, and its concentration dis-
tribution reached the equilibrium status at the time of about 800 s.

3.2. Deep learning modeling

We trained the CNNs deep learning model by taking the pore struc-
tures as the input data and the pore-scale simulation results as the output
data, respectively. During the training process, MSE converged to the
magnitude of 10™% We trained the models to predict the effective
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Fig. 8. (a) Breakthrough curves of comparison between pore-scale simulation (scattered-dots) with 1-D diffusion; (b) relationship between porosity and effective

diffusion coefficient.
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Fig. 9. Pore-scale simulation results of 25 x 25 x 25 of CG_07, (a) velocity distribution; (b) volume fraction of pores; (c) concentration distribution of acid at t = 20,

100, 200, 300, 500, and 800 s.
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Fig. 10. Pore-scale simulation results of 50 x 50 x 50 case of LP_08, (a) velocity distribution; (b) volume fraction of pore; (c) concentration distribution of acid at t =

20, 100, 200, 300, 800, and 1000 s.

surface area, permeability, and effective diffusion coefficient, which
would be used as the input parameters of continuum-scale modeling of
mineral dissolution. MSE of training set was provided in Fig. 12. During
the training process, MSE on training set was smaller than 0.005. The

model reached convergence within 100 epochs. When we applied the
model on test set, MSE on test set was less than 0.3.

Fig. 13 compares the predicted results by the deep learning models
with the label data (i.e., output data, which is the real values of pore-
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Fig. 11. Pore-scale simulation results of 100 x 100 x 100 case of BHG_05, (a) velocity distribution; (b) volume fraction of pore; (c) concentration distribution of acid
at t = 20, 100, 200, 300, 800, and 1000 s.
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scale modeling results), which included the effective surface area, respectively. Among them, effective diffusion coefficient showed lowest
permeability, and effective diffusion coefficient. The MSE between the MSE, which could be caused by the narrow range of the label data. The
predicted values and the real values of effective surface area, perme- effective surface area and permeability exhibited a broad and evenly
ability, and effective diffusion coefficient were 0.23, 0.18, and 0.0076, distributed range, resulting in a representative distribution that
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Fig. 13. Comparison of predicted results by the deep learning models with the real values of pore-scale modeling results. (a) Effective surface area; (b) permeability;

(c) effective diffusion coefficient.

accurately captured the diverse characteristics of the pore structure.
These distributions of the output parameters reflect a high level of
variability and provide a reliable representation of the complex nature
of the pore structures, as allowing us to reliably predict the continuum-
scale parameters with the given pore structures.

3.3. Continuum-scale simulation results

We obtained the porosity (¢,), permeability (Kp), effective surface
area (ay), and effective diffusion coefficient (Dgy) from the full-size
digital rock volume, and applied them to the continuum-scale simula-
tions. The computational domain for the continuum-scale simulation
had the domain size of 0.016 m x 0.016 m x 0.016 m, with the grid
number of 16 x 16 x 16. The grid size (i.e., 0.001 m) was equal to the
domain size of the pore-scale models. The input parameters for the
continuum-scale simulation of mineral dissolution by acid is listed in
Table 3. We set the fixed velocity, pressure, and acid concentration at
the inlet boundary. The outlet boundary for velocity, pressure, and acid
concentration field was set as zero gradient. The simulation results of the
profiles of concentration distribution of acid, porosity, and effective
surface area are presented in Fig. 14. As acid flowed into the domain, the
dissolution reaction altered the porosity and the pore distributions. The
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Table 3
Input parameters for the continuum-scale simulations, which were obtained
with the deep learning models.

Parameter Symbol Value

Acid diffusivity Dn 1x10°m%s
Dissolving power a 50 kg/kmol
Asymptotic Sherwood number She, 3.66
Pore-structure-relation constant p 1

Rock density Ps 2710 kg/m?®
Dynamic viscosity u 0.001 kg/m-s
Reaction rate constant ks 0.002 m/s
Inlet velocity u 0.0001 m/s

Cr Inlet concentration 4 wt%

dissolution pattern followed the conical dissolution (Fredd and Fogler,
1999). The initial parameters such as permeability, effective surface
area, and effective diffusion coefficients were obtained from deep
learning models, which implied the information of pore structure and
heterogeneity without the heavy computational expenses. As such, the
presented upscaling method based on deep learning technology can be
applied to effectively improve the computational efficiency.
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Fig. 14. Continuum-scale simulation results of (a) concentration distribution of acid; (b) porosity; (c) effective surface area.

4. Conclusion

Reactive transport modeling of subsurface systems can help address
various geochemical processes, such as dissolution and precipitation of
minerals. Accurate prediction of key reactive transport properties is
critical in understanding such subsurface phenomena. However, there
are challenges to efficiently and reliably compute the solutions of
complex reactive transport problems, due to the high heterogeneity and
intricate and irregular structures of subsurface porous media. In addi-
tion, transport models of porous media are in various scales spanning
from pore-scale to continuum-scale and require reliable upscaling
techniques to establish the connection between these models. In this
regard, we established an upscaling method connecting pore-scale and
continuum-scale models by employing a deep learning methodology of
Convolutional Neural Networks (CNNs). In the pore-scale modeling, we
applied the DBS method to simulate the fluid transport in pore-scale
models, which acted as the constituents of a continuum-scale model.
The obtained pore-scale modeling results were used to train the CNNs
deep leaning models. The input data were consisted of the spatial dis-
tributions and structures of micropores, while the output data for the
deep learning models include the permeability, effective surface area,
and effective diffusion coefficient of each subvolume. These output data
of the deep learning model was utilized as the input parameters for the
continuum-scale reactive transport modeling of mineral dissolution. The
workflow of this study presents the robust upscaling process, as con-
necting the insights obtained from pore-scale modeling to the input
parameters of continuum-scale modeling.

CNNs-based upscaling method from pore-scale to continuum-scale

12

simulations offers the great computational efficiency and enhanced
reliability in predicting reactive transport phenomena in porous media.
The trained model can predict the key parameters immediately, which is
expected to serve as a robust tool for optimizing reservoir management
strategies, especially with time-sensitive decision making. Given that
major limitations of supervised learning models include the unpredict-
able performance on unseen data and lengthy computational time for
data training, the envisioned works will include the establishment of
generalized database for variety of digital rock images in various re-
positories through computationally-efficient training.
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