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Fig. 1. We introduce the formulation of reparameterized differential path integrals for physics-based differentiable rendering. Our formulation can be efficiently
estimated using advanced methods like bidirectional path tracing without requiring explicit sampling of discontinuity boundaries. In this example, we show
several glass and metal chess pieces lit by an area light. The derivatives (obtained with our bidirectional estimator) are w.r.t. the position of the light.

Physics-based differentiable rendering is becoming increasingly crucial for
tasks in inverse rendering and machine learning pipelines. To address dis-
continuities caused by geometric boundaries and occlusion, two classes of
methods have been proposed: 1) the edge-sampling methods that directly
sample light paths at the scene discontinuity boundaries, which require
nontrivial data structures and precomputation to select the edges, and 2)
the reparameterization methods that avoid discontinuity sampling but are
currently limited to hemispherical integrals and unidirectional path tracing.

We introduce a new mathematical formulation that enjoys the benefits
of both classes of methods. Unlike previous reparameterization work that
focused on hemispherical integral, we derive the reparameterization in the
path space. As a result, to estimate derivatives using our formulation, we can
apply advanced Monte Carlo rendering methods, such as bidirectional path
tracing, while avoiding explicit sampling of discontinuity boundaries. We
show differentiable rendering and inverse rendering results to demonstrate
the effectiveness of our method.
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1 INTRODUCTION
Physics-based differentiable rendering is the task of numerically
computing derivatives of radiometric measurements with respect to
arbitrary scene parameters such as object shapes and optical prop-
erties. Such scene derivatives not only can enable gradient-based
optimization for solving inverse rendering problems (e.g., [Azinović
et al. 2019; Luan et al. 2021]), but also are a key ingredient for inte-
grating physics-based rendering into probabilistic-inferences and
machine-learning pipelines (e.g., [Che et al. 2020]).
A key challenge for developing general-purpose differentiable

rendering techniques is the differentiation with respect to scene
geometries (such as the pose of an object or the position of a mesh
vertex). This is because such geometries affect visibility and, if not
handled properly, can lead to severely biased derivative estimates—
which has been demonstrated by many prior works (e.g., [Li et al.
2018; Loubet et al. 2019; Zhang et al. 2019]).

To address this problem, two categories of techniques have been
introduced. The first category directly samples discontinuity bound-
aries [Li et al. 2018; Zhang et al. 2019, 2020, 2021b], and the state of
the art is Zhang et al.’s [2020] differential path integral formulation
which tracks and handles discontinuities at the path level. The sec-
ond category, on the other hand, reparameterizes rendering integrals
to avoid explicit handling of discontinuities altogether [Loubet et al.
2019; Bangaru et al. 2020], with the state of the art being Bangaru
et al.’s [2020] warped-area reparameterization.
In practice, Zhang et al.’s differential path integrals offer the

flexibility to develop advanced Monte Carlo estimators, such as
bidirectional path tracing, but require nontrivial data structures and
precomputation [Yan et al. 2022] to efficiently sample discontinuity
boundaries. Bangaru et al.’s warped-area reparameterization, on the
other hand, enjoys the convenience of not needing explicit tracking
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of discontinuties but has been limited to hemispherical integrals
and unidirectional path tracing.
In this paper, we introduce a new formulation that enjoys the

benefits of both these methods. Specifically, we adopt Bangaru
et al.’s [2020] technique to reparameterize Zhang et al.’s [2020]
differential path integrals. Our resulting formulation can be esti-
mated using advanced methods (e.g., bidirectional path tracing)
without explicit sampling of discontinuity boundaries.

Concretely, our contributions include:

• Introducing a new formulation for differential one-bounce light
transport by applying Bangaru et al.’s [2020] warped-area method
on top of Zhang et al.’s [2020] material-form reparameterization
(§3).

• Establishing the formulation of reparameterized differential path
integrals by generalizing the one-bounce result in §3 to handle
full path integrals (§4).

• Developing Monte Carlo estimators leveraging unidirectional
and bidirectional path sampling methods for our reparameterized
differential path integrals (§5).

We validate our technique by comparing derivative estimates ob-
tained using finite difference (FD) and ourmethods with high sample
counts (Figure 11). Further, we show differentiable rendering (Fig-
ures 12, 13, 15 and 18) and inverse rendering (Figures 12–17) results
to demonstrate the effectiveness of our technique.

2 RELATED WORK
Recently, great progresses have been made in the field of physics-
based differentiable rendering. In what follows, we discuss most
relevant techniques. For a more comprehensive overview, please
refer to online course materials, e.g., [Zhao et al. 2020].

Handling discontinuities. A main challenge toward developing
general-purpose differentiable rendering engines has been the differ-
entiation with respect to scene geometry, which generally requires
calculating additional boundary integrals.

To address this problem, two classes of techniques have been in-
troduced. The first class directly samples discontinuity boundaries.
Specifically, Li et al. [2018] introduced Monte Carlo edge sampling—
the first technique in this class—by differentiating Kajiya’s [1986]
rendering equation. Zhang et al. [2019] later generalized this tech-
nique to differentiate the radiative transfer equation [Chandrasekhar
1960] for volumetric light transport. Further, Zhang et al. [2020;
2021b] have recently introduced the formulation of differential path
integrals where discontinuities are tracked and handled at the path
level, leading to significantly better performance.

The second class of methods reparameterize boundary integrals
and avoid explicit handling of discontinuity boundaries altogether.
The first approach of this category was biased and introduced by
Loubet et al. [2019]. This method was later extended by Bangaru
et al.’s [2020] warped-area reparameterization—which is capable of
offering unbiased and consistent derivative estimates.
In §3, we will derive a new formulation by applying Bangaru

et al.’s warped-area technique on top of Zhang et al.’s material-form
reparameterization to differentiate one-bounce light transport. This

result will then be generalized in §4 to produce reparameterized
differential path integrals—the main result of this paper.

Efficient sampling and differentiation. Previously, differentiable
rendering algorithms have been largely repurposing Monte Carlo
methods developed for forward rendering to sample light paths.
Recently, several sampling methods have been developed specifi-
cally for differentiable rendering [Zeltner et al. 2021; Zhang et al.
2021a; Nimier-David et al. 2022; Yan et al. 2022; Yu et al. 2022]. Our
technique is largely complementary to these methods, although we
consider developing new Monte Carlo techniques specific to our
formulation an important topic for future research.
Additionally, several approaches have been proposed to allow

differentiable renderers scaling out to complex scenes with large
numbers of parameters [Nimier-David et al. 2020; Vicini et al. 2021].
Our mathematical formulation is largely orthogonal to these tech-
niques. Practically, our unidirectional estimator is compatible with
these techniques. On the other hand, how these methods can be
used with bidirectional path-sampling techniques (including our
bidirectional estimator) remains an open problem.

3 DIFFERENTIATING ONE-BOUNCE LIGHT
TRANSPORT WITH EVOLVING EMITTERS

We introduce in this section a simple form of our technique that
differentiates one-bounce light transport with evolving area lights.

Specifically, we revisit thematerial-form reparameterization intro-
duced by Zhang et al. [2020] in §3.1 before introducing our method
that further reparameterizes the material-form result using the
warped-area technique developed by Bangaru et al. [2020] in §3.2.

Problem specification. Under one-bounce light transport (aka. di-
rect illumination), the scattered (i.e., reflected or refracted) radiance
leaving a surface point 𝒚 toward some point 𝒚′ can be expressed as
an integral over the surfaceMe of all emitters:

𝐼dir (𝒚�𝒚′) =
∫
Me

𝐿e (𝒙�𝒚) 𝑓s (𝒙�𝒚�𝒚′)𝐺 (𝒙 ↔ 𝒚) d𝐴(𝒙), (1)

where 𝐿e denotes the source emission, 𝑓s indicates the bidirec-
tional scattering distribution function (BSDF),𝐺 is the (visibility-
aware) geometric term, and 𝐴 is the area measure.

In what follows, we focus on the configuration where the emitter
surface Me evolves with some parameter 𝜃 ∈ R while all other
surfaces—as well as 𝒚 and 𝒚′ on the right-hand side of Eq. (1)—are
static (i.e., independent of 𝜃 ). Under this setting, we consider the
problem of differentiating the outgoing radiance 𝐼dir with respect
to 𝜃 . We summarize commonly used symbols and their definitions
in Table 1.

3.1 Preliminary: Material-Form Reparameterization
To facilitate the differentiation of 𝐼dir, Zhang et al. [2020] propose to
rewrite the integral as one over some fixed reference surface Be.
This can be achieved using a differentiable one-to-one mapping (aka.
a deformation) X(·, 𝜃 ) that transforms the fixed reference surface
Be to the evolving oneMe (𝜃 ). To distinguish points on the fixed
Be and the evolvingMe (𝜃 ), we call any 𝒑 ∈ Be a material point
and 𝒙 ∈ Me (𝜃 ) a spatial point.
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Fig. 2. Material-form reparameterization: This example involves a sim-
ple configuration with a fixed occluder and an emitter over an evolving
surface Me (𝜃 ) . Leveraging Zhang et al.’s [2020] material-form reparam-
eterization, one can use a constant reference surface Be coupled with a
differentiable motion X such that, for any 𝜃 , X( ·, 𝜃 ) is a differentiable one-
to-one mapping (i.e., a deformation) from Be to Me (𝜃 ) . We note that,
although the reference surface Be is fixed, the discontinuity curves ΔBe
capturing visibility boundaries with respect to the surface point 𝒚 generally
depends on the parameter 𝜃 .

Applying a change of variable 𝒙 := X(𝒑, 𝜃 ) to the original surface
integral (1) produces a material-form1 variant:

𝐼dir =

∫
Be
𝐿e (𝒙�𝒚) 𝑓s (𝒙�𝒚�𝒚′)𝐺 (𝒙 ↔ 𝒚) 𝐽 (𝒑, 𝜃 )︸                                                  ︷︷                                                  ︸

=: 𝐹dir (𝒑)

d𝐴(𝒑), (2)

where

𝐽 (𝒑, 𝜃 ) :=




 d𝐴(𝒙)d𝐴(𝒑)





 , (3)

is the Jacobian determinant resulting from the change of variable. In
Eqs. (2) and (3), we consider 𝒙 = X(𝒑, 𝜃 ) a function of the material
point 𝒑 ∈ Be and the parameter 𝜃 . Also, we omit the dependency
of the integrand 𝐹dir on the parameter 𝜃 for notational simplicity.

Fundamentally, the material-form reparameterization has moved
the derivative contribution from the evolution of the domainMe
into the new integrand 𝐹dir—whose derivative is easier to compute
due to fewer types of discontinuities that requires handling.

Choice of reference surfaces. When estimating derivatives at𝜃 = 𝜃0
(for some fixed 𝜃0), the reference surface is usually set to Be =

Me (𝜃0). Under this configuration, the mapping X(·, 𝜃0) becomes
the identity map, causing the corresponding Jacobian determinant
𝐽 (𝒑, 𝜃0) to reduce to one. We note that, the derivative of 𝐽 (𝒑, 𝜃 )
with respect to 𝜃 is generally nonzero—even at 𝜃 = 𝜃0.

Differential direct-illumination integral. In general, differentiating
Eq. (2) using Reynolds transport theorem [1903; 1973] produces
material-form differential integrals:

d𝐼dir
d𝜃

=

interior∫
Be

d𝐹dir (𝒑)
d𝜃

d𝐴(𝒑) +

boundary∫
ΔBe

Δ𝐹dir (𝒑)𝑉 (𝒑) dℓ (𝒑) , (4)

where ℓ denotes the curve-length measure, and the interior compo-
nent is a surface integral identical to Eq. (1) except for having the

1The term “material form” originates in continuum mechanics where reparameteriza-
tions like Eq. (2) are common.

Table 1. Commonly used symbols in §3. The right-most column indicates
𝜃 -dependency.

Symbol Definition 𝜃 -dep.

Me Emitter surface evolving with some parameter 𝜃 Yes
Be Reference surface No

X( ·, 𝜃 ) Differentiable one-to-one mapping Yes(aka. deformation) from Be toMe (𝜃 )

𝐼dir Radiance 𝐿 (𝒚�𝒚′ ) with fixed 𝒚 and 𝒚′ Yes
𝐹dir Integrand of the material-form integral (2) Yes

ΔBe Curves comprising jump discontinuities of 𝐹dir Yes

Bwa
e

Regions on the reference surface Be comprising Yespoints 𝒑 such that X(𝒑, 𝜃 ) is visible to 𝒚

𝜕Bwa
e Boundary of Bwa

e (and a superset of ΔBe) Yes
𝒏𝜕 Unit-normal field associated with ΔBe Yes

𝒗𝜕 Velocity field over ΔBe (and later extended to 𝜕Bwa
e ) Yes

𝒗dis Discontinuous velocity field over Be Yes
𝒗 Continuous velocity field obtained by convolving 𝒗dis Yes
w Spatially varying kernel for convolving 𝒗dis No

integrand 𝐹dir differentiated. The boundary component in Eq. (4)—
which we will define and discuss in §3.1.1 and §3.1.2 below—is a
line integral that is unique to differentiable rendering.

3.1.1 Discontinuities. The boundary integral in Eq. (4) is over a set
of curves ΔBe comprising jump-discontinuity points of the inte-
grand 𝐹dir (with respect to 𝒑). We note that, although the reference
surface Be is fixed, the discontinuity curves ΔBe typically depend
on the parameter 𝜃 . Also, thanks to the material-form reparame-
terization, the discontinuity curves do not contain the topological
boundary 𝜕Be of the reference surface Be (when Be is open) since
𝜕Be does not depend on the parameter 𝜃 . Additionally, for any
discontinuity point 𝒑 ∈ ΔBe, Δ𝐹dir captures the difference in 𝐹dir
across the boundary.
In this paper, we assume the emitted radiance 𝐿e and BSDF 𝑓s

to be 𝐶0-continuous. Under this assumption, the discontinuities
emerge solely from the mutual visibility between 𝒙 and 𝒚—a factor
of the geometric term 𝐺 in Eqs. (1) and (2). Precisely, for any 𝜃 ∈ R,
the discontinuity curves ΔBe consist of material points 𝒑 whose
spatial representations 𝒙 = X(𝒑, 𝜃 ) are jump discontinuities of the
mutual visibility V(𝒙 ↔ 𝒚) (with 𝒚 fixed), as illustrated in Figure 2.
Further, we assume without loss of generality that the curve normal
𝒏𝜕 (𝒑) points toward the occluded side for all 𝒑 (see Figure 3). Then,
it holds that

Δ𝐹dir (𝒑) = 𝐹dir (𝒑), (5)

where Δ𝐹dir denotes the difference in 𝐹dir across a discontinuties
boundary

3.1.2 Scalar normal velocity. In Eq. (4), another key component of
the boundary integral is the scalar normal velocity 𝑉 capturing
how fast the discontinuity boundary ΔBe evolves (with respect to
the parameter 𝜃 ) along the curve normal 𝒏𝜕 . Precisely, this term is
defined as

𝑉 (𝒑) = 𝒏𝜕 (𝒑) · 𝒗𝜕 (𝒑), (6)
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Fig. 3. In this paper, we assume without loss of generality that, at any
point 𝒑 on the discontinuity boundary ΔBe, the curve normal 𝒏𝜕 (𝒑) al-
ways points toward the occluded side of the boundary. This implies that
Δ𝐹dir (𝒑) = 𝐹dir (𝒑) .

where 𝒗𝜕 (𝒑) is the (vector-valued) boundary velocity indicating
the change rate (with respect to 𝜃 ) of the discontinuity point 𝒑.
In practice, according to Zhang et al. [2020], 𝒗𝜕 (𝒑) can be com-

puted as follows. For any discontinuity point 𝒑 ∈ ΔBe, the (spatial)
line segment 𝒚𝒙 with 𝒙 = X(𝒑, 𝜃 ) must intersect some occluder at
one point 𝒚B (see the red point in Figure 2). Let

𝒛 = rayIntersect(𝒚�𝒚B, Me) (7)

be the intersection between the ray 𝒚 � 𝒚B and the emitter sur-
faceMe. Although 𝒛 and 𝒙 are both points on the emitter, their
derivatives are different: d𝒛/d𝜃 is given by differentiating the ray-
intersection computation in Eq. (7); d𝒙/d𝜃 , on the other hand, is
obtained by differentiating the deformation X(𝒑, 𝜃 ).
Lastly, with the intersection point 𝒛 computed, we define the

boundary velocity at 𝒑 as

𝒗𝜕 (𝒑) = d
d𝜃

X−1 (𝒛, 𝜃 ), (8)

where X−1 (·, 𝜃 ) is the inverse of the mapping X(·, 𝜃 ) and transforms
the emitter surfaceMe (𝜃 ) back to the reference Be.

3.2 Warped-Area Reparameterization of
Boundary Line Integrals

Bangaru et al. [2020] have proposed to rewrite boundary integrals
as interior ones using the divergence theorem. Let Ω be a closed 2D
domain and 𝜕Ω be the domain boundary associated with outward
normal field 𝒏𝜕 . Then, the divergence theorem states that, for any
continuous vector-valued function 𝑭 , it holds that∫

𝜕Ω
𝑭 · 𝒏𝜕 dℓ =

∫
Ω
∇ · 𝑭 d𝐴. (9)

By letting 𝑭 (𝒑) := 𝐹dir (𝒑) 𝒗𝜕 (𝒑) in Eq. (9), we aim to reparame-
terize the boundary component of Eq. (4) via

boundary∫
ΔBe

(
𝐹dir 𝒗

𝜕
)
· 𝒏𝜕 dℓ =

interior∫
Bwa
e

∇ · (𝐹dir 𝒗) d𝐴 , (10)

where Bwa
e is some 2D region within the reference surface Be (see

Figure 5). To realize this reparameterization, we still need to over-
come the following obstacles:

Fig. 4. Open curves: The discontinuity curves ΔBe may be open, making
it nontrivial to apply the divergence theorem in Eq. (9). This can happen, as
illustrated in this example, when the visibility boundaries are clipped by the
edge of the emitter surface. To address this problem, we define Bwa

e ⊆ Be
(the green region on the right) as the material representation of the spatial
region visible to 𝒚 (the green region on the left). Then, the boundary 𝜕Bwa

e
of Bwa

e (illustrated in magenta) is a superset of the discontinuity curves
ΔBe.

• The discontinuity curves ΔBe may not be closed (see Figure 4),
making it nontrivial to define the domain Bwa

e of the reparame-
terized interior integral.

• The normal velocity 𝒗𝜕 is defined on the discontinuity boundaries
ΔBe only and needs to be extended continuously to some vector
field 𝒗 over the interior of the domain Bwa

e .
To address these problems, we adopt Bangaru et al.’s [2020]

scheme by introducing a two-stage process:
S.1 Extending the discontinuity curves ΔBe to a set of closed curves

𝜕Bwa
e ⊃ ΔBe with a well-defined interior Bwa

e . This will allow
us to treat the left-hand side of Eq. (10) as an integral over 𝜕Bwa

e
(where the integrand is set to zero for all points𝒑 ∈ 𝜕Bwa

e \ΔBe).

S.2 Smoothly interpolating 𝒗𝜕 from the boundary 𝜕Bwa
e to the in-

terior Bwa
e , making the right-hand side of Eq. (10) well defined.

After establishing Eq. (10), we will be able to rewrite the full
material-form differential integral (4) as one interior integral:

d𝐼dir
d𝜃

=

interior∫
Be

(
d𝐹dir (𝒑)

d𝜃
+ [∇ · (𝐹dir 𝒗)] (𝒑)

)
d𝐴(𝒑) . (11)

In the following, we detail Stages S.1 and S.2, respectively, in
§3.2.1 and §3.2.2 before completing the derivation of Eq. (11) in
§3.2.3.

3.2.1 Extending discontinuity boundaries. As presented in §3.1.1,
the discontinuity curves ΔBe emerge from visibility boundaries of
𝒙 when 𝒚 is fixed. Let Bwa

e be a subset of the reference surface Be
containing all material points 𝒑 whose spatial representations 𝒙 =

X(𝒑, 𝜃 ) are visible to 𝒚. That is,

Bwa
e := {𝒑 ∈ Be : V(X(𝒑, 𝜃 ) ↔ 𝒚) = 1}. (12)

Based on this definition, as illustrated in Figures 4 and 5, the
boundary 𝜕Bwa

e of Bwa
e consists of material points 𝒑 whose spatial
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Fig. 5. We define Bwa
e ⊂ Be as the set of all material points 𝒑 whose

spatial representations 𝒙 = X(𝒑, 𝜃 ) are visible to 𝒚 . This example shows a
spherical emitter with no topological boundary. In this case, the boundary
𝜕Bwa

e (illustrated in magenta) equals the union of visibility boundary ΔBe
(illustrated in black) caused by the small occluder and the silhouette (illus-
trated in gray) of the sphere with respect to 𝒚 .

representations 𝒙 = X(𝒑, 𝜃 ) belong to one of the following cate-
gories:
C.1 Topological boundary of the emitter surfaceMe (𝜃 );

C.2 Silhouette of the emitter (with respect to 𝒚) comprising spatial
points 𝒙 satisfying 𝒏(𝒙) · −→𝒙𝒚 = 0;

C.3 Visibility boundaries resulting from occlusion.
It follows that the discontinuity boundary ΔBe—which corresponds
only points from the last category (C.3)—is a subset of 𝜕Bwa

e . This
allows us to rewrite the left-hand side of Eq. (10) as∫

𝜕Bwa
e

(
𝐹dir (𝒑) 𝒗𝜕 (𝒑)

)
· 𝒏𝜕 (𝒑) dℓ (𝒑), (13)

where the normal velocity 𝒗𝜕 (𝒑) is set to zero for all 𝒑 beyond the
ordinary discontinuity boundaries ΔBe.

3.2.2 Interpolating 𝒗𝜕 . Our objective of this stage is to specify a
continuous velocity field 𝒗 in the interior of the domain Bwa

e such
that 𝒗 agrees with 𝒗𝜕 on the domain boundary 𝜕Bwa

e . To this end,
we adopt Bangaru et al.’s [2020] warped-area approach and employ
a two-step process: we first define a discontinuous velocity field
𝒗dis and then smooth it to make it continuous. In the following, we
detail each of the two steps.

Step 1. In the first step, we define a discontinuous velocity field
𝒗dis over the entire reference surface Be (see Figure 6).

For any material point 𝒑, when its spatial representation 𝒙 =

X(𝒑, 𝜃 ) is invisible to 𝒚 or resides on a visibility boundary (i.e.,
𝒑 ∉ Bwa

e ), we define 𝒗dis (𝒑) in a similar fashion as the boundary
velocity 𝒗𝜕 (𝒑) described in §3.1.2. Precisely, let𝒚O be an intersection
of the open line segment 𝒚𝒙 and the scene geometry. Then, by
substituting 𝒚B with 𝒚O in Eq. (7), we define 𝒗dis (𝒑) using Eq. (8).
Based on this construction, it is easy to verify that 𝒗dis (𝒑) = 𝒗𝜕 (𝒑)
for any point 𝒑 on the boundary 𝜕Bwa

e .
On the other hand, when 𝒙 is visible to 𝒚 (i.e., 𝒑 ∈ Bwa

e ), there is
no occluder between 𝒙 and𝒚. In this case, we simply set 𝒗dis (𝒑) = 0.

Fig. 6. Discontinuous velocity 𝒗dis: For each material point 𝒑 ∈ Be, if
its spatial representation 𝒙 = X(𝒑, 𝜃 ) is visible to 𝒚 , we set 𝒗dis (𝒑) = 0.
Otherwise, there must exist an intersection 𝒚O (illustrated as the red point)
between the open line segment 𝒚𝒙 and some occluder. We compute 𝒛 =

rayIntersect(𝒚�𝒚O,Me ) and set the velocity 𝒗dis (𝒑) = d
d𝜃 X
−1 (𝒛, 𝜃 ) .

Step 2. With the discontinuous velocity field 𝒗dis defined, we con-
struct the continuous velocity field 𝒗 by smoothing 𝒗dis. Specifically,
for any 𝒑, we set

𝒗 (𝒑) :=

∫
Be w(𝒒;𝒑) 𝒗

dis (𝒒) d𝐴(𝒒)∫
Be w(𝒒;𝒑) d𝐴(𝒒)

, (14)

where w is a spatially varying kernel.
To ensure that the resulting 𝒗 agrees with 𝒗dis (and, in turn, 𝒗𝜕)

at the boundary 𝜕Bwa
e , we need w(·,𝒑) to behave like Dirac delta

distributions for all 𝒑 ∈ 𝜕Bwa
e on the boundary, while having a

smooth falloff when 𝒑 moves away from the boundary. We follow
Bangaru et al. [2020] and use:

w(𝒒;𝒑) := (D(𝒒;𝒑) + B(𝒒))−1, (15)

where D(𝒒;𝒑) is the distance function that must approach zero
when 𝒒 approaches 𝒑, and B(𝒒) is the boundary-test function
that should approach zero when 𝒒 approach the boundary 𝜕Bwa

e .
We note that, since the kernel w is used solely for smoothing 𝒗dis,
we consider w independent of the parameter 𝜃 (i.e., “detached”).

In the following, we express our choices of the distance and the
boundary-test functions.

Distance function. Bangaru et al. [2020] have introduced a dis-
tance function, but we found it non-robust—which we will demon-
strate in §6.2. To address this problem, we choose a different distance
function by letting

D(𝒒;𝒑) :=
(
1
𝜎

(
1 − exp

(
−𝑟

2

𝜎

)))𝑎
, (16)

where
𝑟 := ∥𝒒 − 𝒑∥/𝑟0, 𝜎 := 𝜎0/𝑟0, (17)

with 𝑟0 := ∥𝒙 −𝒚∥ being a normalization factor that makes 𝑟 and 𝜎
invariant of global scaling of the scene. In Eqs. (16) and (17), 𝑎 and
𝜎0 are user-specified hyperparameters—for which we use 𝑎 = 3 and
𝜎0 = 0.006 in practice which work well in all our experiments.
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Fig. 7. Boundary-test function B: For any material point 𝒒, we set B(𝒒)
based on its spatial representation 𝒙′ = X(𝒒, 𝜃 ) . In (a), we set B(𝒒) to
𝑟𝜕 (𝒙′′ )—the shortest distance from 𝒙′′ to the edge of the occluder. In (b),
𝒙′ resides on the emitter surface that has no topological boundary. In this

case, we set B(𝒒) to
���−−→𝒙′𝒚 · 𝒏(𝒙′ ) ���.

Boundary-test function. The last remaining ingredient for com-
pleting the kernel (15) and, in turn, the convolution in Eq. (14) is
the boundary-test function B. For all 𝒒 on the boundary 𝜕Bwa

e , we
set B(𝒒) = 0. For each 𝒒 ∈ Bwa

e , we have 𝒗dis (𝒒) ≡ 0 (as discussed
in Step 1 above), and the value of w(𝒒;𝒑) does not matter (as long
as it is finite). Thus, we set B(𝒒) = 1.
We now focus on the last case where 𝒒 ∈ Be \ (Bwa

e ∪ 𝜕Bwa
e ).

According to the definition of Bwa
e in Eq. (12), this implies that the

spatial representation 𝒙′ = X(𝒒, 𝜃 ) is (strictly) invisible to 𝒚 (i.e.,
V(𝒙′ ↔ 𝒚) = 0). In this case, to facilitate the specification of B(𝒒),
we first define a boundary-distance function Bdist for any spatial
point 𝒙 as

Bdist (𝒙) := min
(��−→𝒙𝒚 · 𝒏(𝒙)�� , 𝑟 𝜕 (𝒙)) , (18)

where −→𝒙𝒚 denotes the unit vector pointing from 𝒙 to 𝒚, and 𝑟 𝜕 (𝒙)
equals the shortest distance from 𝒙 to an open boundary of the
surface that contains 𝒙 and +∞ if the surface containing 𝒙 is closed
(and, thus, has no topological boundary). Based on this construction,
it is easy to verify that, when 𝒙 approaches a visibility boundary
with respect to 𝒚, Bdist (𝒙) approaches zero.

With the boundary-distance function Bdist specified, we define
the boundary-test function B(𝒒) based on the surface normal 𝒏(𝒙′)
at the spatial representation 𝒙′ = X(𝒒, 𝜃 ) as follows.

• When 𝒏(𝒙′) ·
−−→
𝒙′𝒚 > 0, 𝒙′ lies on a “front-facing” surface with

respect to 𝒚 (see Figure 7-a), and the open line segment 𝒚𝒙′ must
intersect an occluder at 𝒙′′. We set B(𝒒) = Bdist (𝒙′′).

• When 𝒏(𝒙′) ·
−−→
𝒙′𝒚 < 0, 𝒙′ is located on a “back-facing” surface

with respect to 𝒚 (see Figure 7-b). We set B(𝒒) = Bdist (𝒙′).

3.2.3 Completing the derivation. After constructing the continuous
vector field 𝒗 in §3.2.2, the right-hand side of Eq. (10) becomes well
defined.

Lastly, according to the definition of the domain Bwa
e in Eq. (12),

the spatial representation 𝒙 = X(𝒑, 𝜃 ) of any material point 𝒑 ∉ Bwa
e

must be invisible to𝒚 (i.e.,V(𝒙 ↔ 𝒚) = 0). Since themutual visibility
V(𝒙 ↔ 𝒚) is a factor of 𝐹dir (𝒑), it follows that that 𝐹dir (𝒑) = 0 and,
in turn,

[∇ · (𝐹dir 𝒗)] (𝒑) = 0, for all 𝒑 ∉ Bwa
e . (19)

This allows us to extend the domain of the integral on the right-hand
side of Eq. (10) from Bwa

e to the full reference surface Be:∫
Bwa
e

∇ · (𝐹dir 𝒗) d𝐴 =

∫
Be
∇ · (𝐹dir 𝒗) d𝐴, (20)

which, when substituted into Eq. (4), yields Eq. (11)—our main result
for this section.

Discussion. The original warped-area method has been applied to
the boundary integral over spherical curves (obtained by differen-
tiating spherical rendering integrals). We will discuss the relation
of our result and Bangaru et al.’s [2020] warped-area method in
Appendix A.

4 WARPED-AREA REPARAMETERIZATION OF
DIFFERENTIAL PATH INTEGRALS

In what follows, we first provide a brief recap of differential path
integrals [Zhang et al. 2020, 2021b] in §4.1 and then introduce the
general form of our technique—the main result of this paper—in
§4.2.
We summarize the important symbols used in this section in

Table 2.

4.1 Preliminary: Differential Path Integrals
4.1.1 Path integrals for forward rendering. At the foundation of
many, if not most, advanced forward rendering techniques is the
formulation that expresses the response 𝐼 of a radiometric detector
as a path integral [Veach 1997]:

𝐼 =

∫
𝛀

𝑓 (𝒙̄) d𝜇 (𝒙̄), (21)

where 𝒙̄ = (𝒙0, . . . , 𝒙𝑁 ) denotes a light transport path (with 𝒙0
on an emitter and 𝒙𝑁 on a detector), 𝛀 =

⋃∞
𝑁=1M

𝑁+1 is the path
space (with M is the union of all object surfaces), and 𝜇 is the
corresponding area-product measure.
The integrand of the path integral is themeasurement contri-

bution function 𝑓 given by

𝑓 (𝒙̄) := 𝐿e (𝒙0�𝒙1)𝑊e (𝒙𝑁−1�𝒙𝑁 )[
𝑁−1∏
𝑛=1

𝑓s (𝒙𝑛−1�𝒙𝑛�𝒙𝑛+1)
] [

𝑁∏
𝑛=1

𝐺 (𝒙𝑛−1 ↔ 𝒙𝑛)
]
, (22)

where 𝐿e and𝑊e are the source emission and detector importance
(or response), 𝑓s is the bidirectional scattering distribution function
(BSDF), and 𝐺 is the geometric term.

Material-form path integrals. When the scene geometryM evolves
with some parameter 𝜃 , using the material-form reparameterization
described in §3.1, one can capture the evolution ofM using a fixed
reference surface B coupled with a deformation X(·, 𝜃 ) that maps
B toM(𝜃 ) for any 𝜃 .
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Let 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ) be a material light path with each vertex
𝒑𝑛 on a reference surface B. Applying the mapping X(·, 𝜃 ) to each
vertex of 𝒑̄ produces a spatial light path 𝒙̄ = (𝒙0, . . . , 𝒙𝑁 ) where
𝒙𝑛 = X(𝒑𝑛, 𝜃 ) for all 𝑛 = 0, 1, . . . , 𝑁 .

Then, by changing the variable of integration from spatial light
paths 𝒙̄ to material ones 𝒑̄, the path integral of Eq. (21) can be
rewritten in material form as:

𝐼 =

∫
𝛀̂

𝑓 (𝒑̄) d𝜇 (𝒑̄), (23)

where the domain of integration is the material path space

𝛀̂ :=
⋃∞
𝑁=1 B

𝑁+1, (24)

comprising material paths (of finite lengths). Additionally, the in-
tegrand of Eq. (23) is the material measurement contribution
𝑓 that equals the product of the original measurement contribu-
tion 𝑓 defined in Eq. (22) and the ratio of the two integral elements
d𝜇 (𝒙̄ )/d𝜇 (𝒑̄)=∏𝑁

𝑛=0 𝐽 (𝒑𝑛,𝜃 ):

𝑓 (𝒑̄) := 𝑓 (𝒙̄)∏𝑁
𝑛=0 𝐽 (𝒑𝑛, 𝜃 ) , (25)

where 𝐽 follows the definition in Eq. (3).

4.1.2 Differential path integrals. Zhang et al. [2020] have derived
using Reynolds transport theorem [1903] derivatives of the material-
form path integral (23) with respect to arbitrary parameter 𝜃 . The
result can generally be expressed asmaterial-form differential
path integrals:

d𝐼
d𝜃

=

interior∫
𝛀̂

d𝑓 (𝒑̄)
d𝜃

d𝜇 (𝒑̄) +

boundary∫
𝜕𝛀̂

Δ𝑓𝐾 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) , (26)

where the interior and boundary components are, respectively, over
continuous regions of 𝑓 and the discontinuous boundaries sepa-
rating these regions. In what follows, we explain the boundary
component in more details.

Domain of integration, discontinuity curves. The boundary integral
in Eq. (26) is over the material boundary path space 𝜕𝛀̂. They
contain paths where one of the path segment goes through the scene
boundary (see Figure 8 left). The space equals the union of disjoint
subspaces 𝜕𝛀̂𝑁,𝐾 :

𝜕𝛀̂ =

∞⋃
𝑁=1

𝑁−1⋃
𝐾=0

𝜕𝛀̂𝑁,𝐾 . (27)

Each subspace 𝜕𝛀̂𝑁,𝐾 comprises material boundary paths 𝒑̄ =

(𝒑0,𝒑1, . . . ,𝒑𝑁 ) where 𝒑𝑛 ∈ B for all 𝑛 ≠ 𝐾 and 𝒑𝐾 is constrained
over a set of curves ΔB𝐾 ⊂ B such that 𝒑𝐾 ’s spatial representation
𝒙𝐾 = X(𝒑𝐾 , 𝜃 ) resides on a visibility boundary with respect to 𝒙𝐾+1.
We call the spatial line segment 𝒙𝐾 𝒙𝐾+1—which intersects the scene
geometryM(𝜃 ) at a single point 𝒙B—a boundary segment (see
Figure 8).

Similar to ΔBe for one-bounce light transport (see §3), the discon-
tinuity curves ΔB𝐾 generally depend on the parameter 𝜃 . In fact,
ΔBe are essentially ΔB0 (with 𝑁 = 2).

Fig. 8. The spatial representation of a material boundary path that is an
element of the subspace 𝜕𝛀̂3,1 and has the boundary segment 𝒙1 𝒙2 that
intersects the scene at exactly one point 𝒙B. Every path form this subspace
contain four vertices 𝒑0, 𝒑1, 𝒑2, 𝒑3 with 𝒑1 constrained to a set of curves
ΔB1 comprising points whose spatial representations beside on visibility
boundaries with respect to 𝒙2. To simplify the illustration, we only show part
of the reference surface B that corresponds to the vertical plane containing
the constrained 𝒙1.

Lastly, the measure ¤𝜇 associated with the material boundary path
space 𝜕𝛀̂ satisfies that

d ¤𝜇 (𝒑̄) = dℓ (𝒑𝐾 )
∏
𝑛≠𝐾 d𝐴(𝒑𝑛). (28)

Difference in measurement contribution. The term Δ𝑓𝐾 (𝒑̄) cap-
tures the difference in material measurement contribution 𝑓 when
the vertex 𝒑𝐾 crosses the discontinuity boundary ΔB𝐾 (with all the
other vertices fixed).

As stated in §3.1.1, we assume without loss of generality that the
boundary ΔB𝐾 ’s normal 𝒏𝜕

𝐾
points toward the occluded side (as

shown on the right of Figure 8). Then, it holds that

Δ𝑓𝐾 (𝒑̄) = 𝑓 (𝒑̄) . (29)

Boundary velocity. The term𝑉𝐾 (𝒑𝐾 ) is the scalar normal velocity
defined as

𝑉𝐾 (𝒑𝐾 ) = 𝒗𝜕
𝐾
(𝒑𝐾 ) · 𝒏𝜕𝐾 (𝒑𝐾 ), (30)

where 𝒗𝜕
𝐾
(𝒑𝐾 ) is the boundary velocity of the discontinuity point𝒑𝐾

and can be computed using the process described by Eqs. (7) and (8)
in §3.1.2.
In this case, the spatial point 𝒛 (that coincides 𝒙𝐾 ) in Eq. (7)

should be computed by intersecting the ray 𝒙𝐾+1�𝒙B and the scene
geometryM(𝜃 ). When differentiating this ray-intersection process,
the derivatives d𝒙𝐾+1/d𝜃 and d𝒙B/d𝜃 are computed by differentiating
the mappings X(𝒑𝐾+1, 𝜃 ) and X(𝒑B, 𝜃 ), respectively. For the latter,
𝒑B := detach[X−1 (𝒙B, 𝜃 )] is the “detached” material representation
of the point 𝒙B.

4.2 Warped-Area Reparameterization of
Boundary Path Integrals

We now generalize our one-bounce result derived in §3.2 to reparam-
eterize the boundary component of the material-form differential
path integrals in Eq. (26).

Derivation outline. To this end, our derivation will involve the
following three main steps:
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Table 2. Commonly used symbols in §4. The right-most column indicates
𝜃 -dependency.

Symbol Definition 𝜃 -dep.

M The union of all surfaces in the scene Yes
B Reference surface No

X( ·, 𝜃 ) Differentiable one-to-one mapping Yes(aka. deformation) transforming B toM(𝜃 )

𝛀̂ material path space defined in Eq. (24) No
𝜕𝛀̂ material boundary path space defined in Eq. (27) Yes
𝑓 material measurement distribution defined in Eq. (25) Yes

𝑓𝐾
Equals 𝑓 but treats the vertex 𝒑𝐾 as the only variable Yes(and considers all the other vertices fixed)

ΔB𝐾 Jump discontinuities of 𝑓𝐾 with respect to 𝒑𝐾 Yes

Bwa
𝐾

Regions on the reference surface B comprising Yespoints 𝒑𝐾 such that X(𝒑𝐾 , 𝜃 ) is visible to 𝒙𝐾+1
𝒏𝜕
𝐾

Unit-normal field associated with ΔB𝐾 Yes

𝒗𝜕
𝐾

Boundary velocity over ΔB𝐾 Yes

𝒗𝐾
Continuous velocity field over B Yesthat agrees with 𝒗𝜕

𝐾
on the boundary ΔB𝐾

(1) Expanding the boundary path integral in Eq. (26) as nested in-
tegrals of individual path vertices {𝒑𝑛 : 𝑛 = 0, 1, . . . , 𝑁 }. This
allows us to isolate the integral with respect to 𝒑𝐾 over discon-
tinuity curves ΔB𝐾 .

(2) Reparameterizing the isolated line integral as an integral over
the reference surfaceB using the warped-area method discussed
in §3.2.

(3) Rewriting the nested integrals with the reparameterized surface
integral with respect to 𝒑𝐾 as a new interior path integral which,
in turn, is merged with the interior component of Eq. (26) to
produce our reparameterized differential path integral in Eq. (38).

In the following, we detail each of these steps.

Step 1. We first express the boundary path integral as a sum of
integrals over the subspaces 𝜕𝛀̂𝑁,𝐾 defined below Eq. (27):∫
𝜕𝛀̂

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) =
∞∑︁
𝑁=1

𝑁−1∑︁
𝐾=0

∫
𝜕𝛀̂𝑁,𝐾

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) .

(31)
For all 𝑁 , 𝐾 , the integral on the right-hand side of Eq. (31) can be
further rewritten as nested integrals of individual vertices of the
material path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ):∫

𝜕𝛀̂𝑁,𝐾

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇 (𝒑̄)

=

∫
B𝑁

(∫
ΔB𝐾

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) dℓ (𝒑𝐾 )
) ∏
𝑛≠𝐾

d𝐴(𝒑𝑛) .
(32)

On the right-hand side of this equation, the inner integral—which
depends on 𝒑𝑛 for all 𝑛 ≠ 𝐾—is with respect to the vertex 𝒑𝐾 and

over the discontinuity curves ΔB𝐾 :

𝐼 (𝒑𝑛 : 𝑛 ≠ 𝐾) :=
∫
ΔB𝐾

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) dℓ (𝒑𝐾 )

=

∫
ΔB𝐾

(
𝑓 (𝒑̄) 𝒗𝜕

𝐾
(𝒑𝐾 )

)
· 𝒏𝜕
𝐾
(𝒑𝐾 ) dℓ (𝒑𝐾 ).

(33)

Step 2. Eq. (33) is essentially identical to the one-bounce boundary
integral on the left-hand side of Eq. (10). Therefore, we can apply
our warped-area reparameterization given by Eq. (10) to rewrite
Eq. (33) as a surface integral:

𝐼 (𝒑𝑛 : 𝑛 ≠ 𝐾) =
∫
Bwa
𝐾

[
∇ ·

(
𝑓𝐾 𝒗𝐾

)]
(𝒑𝐾 ) d𝐴(𝒑𝐾 ). (34)

In this equation:

• The domain of integration Bwa
𝐾

follows the definition in Eq. (12)
and comprises all material points 𝒑 whose spatial representa-
tions 𝒙𝐾 = X(𝒑𝐾 , 𝜃 ) are visible to the (spatial) vertex 𝒙𝐾+1 =

X(𝒑𝐾+1, 𝜃 ). That is, Bwa
𝐾

= {𝒑𝐾 ∈ B : V(𝒙𝐾 ↔ 𝒙𝐾+1) = 1}.

• The vector field 𝒗𝐾 is obtained using the process presented in
§3.2.2 (that smoothly extends the velocity 𝒗𝜕

𝐾
(𝒑𝐾 ) defined on the

boundary ΔB𝐾 into the interior of Bwa
𝐾

).

Additionally, the term 𝑓𝐾 in Eq. (34) equals the material measure-
ment contribution 𝑓 but considers 𝒑𝐾 the only variable and all the
other vertices {𝒑𝑛 : 𝑛 ≠ 𝐾} constants. Specifically, let 𝑔𝐾 (𝒑𝐾 ) be
the product of all factors of 𝑓 that depend on 𝒑𝐾 :2

𝑔𝐾 (𝒑𝐾 ) := 𝐺 (𝒙𝐾−1 ↔ 𝒙𝐾 )𝐺 (𝒙𝐾 ↔ 𝒙𝐾+1)
𝑓s (𝒙𝐾−2�𝒙𝐾−1�𝒙𝐾 ) 𝑓s (𝒙𝐾−1�𝒙𝐾 �𝒙𝐾+1)

𝑓s (𝒙𝐾 �𝒙𝐾+1�𝒙𝐾+2) 𝐽 (𝒑𝐾 ), (35)

where 𝒙𝑛 = X(𝒑𝑛, 𝜃 ) is spatial representation of material point 𝒑𝑛
for 𝑛 = 𝐾 − 1, 𝐾, 𝐾 + 1. Then, it holds that

𝑓𝐾 (𝒑̄) = 𝑔𝐾 (𝒑𝐾 ) detach
(
𝑓 (𝒑̄)

𝑔𝐾 (𝒑𝐾 )

)
. (36)

We note that 𝑓𝐾 (𝒑̄) will be differentiated only with respect to
the point 𝒑𝐾 (and not the scene parameter 𝜃 ) when evaluating the
divergence ∇ · (𝑓𝐾 𝒗𝐾 )—which we will discuss in §5.1.

Step 3. As shown in §3.2.3, the divergence [∇ · (𝑓𝐾 𝒗𝐾 )] (𝒑𝐾 ) = 0
for all 𝒑𝐾 ∉ Bwa

𝐾
because the mutual visibility V(𝒙𝐾 ↔ 𝒙𝐾+1) = 0

by definition. This allows us to extend the domain of the reparam-
eterized surface integral in Eq. (34) from Bwa

𝐾
to the full reference

surface B. Then, substituting the extended Eq. (34) into Eqs. (31)

2We omit the dependency of 𝑔𝐾 on the points 𝒑𝐾−1 and 𝒑𝐾+1 (that are considered
constants) for notational simplicity.
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and (32) produces∫
𝜕𝛀̂

𝑓 (𝒑̄)𝑉𝐾 (𝒑𝐾 ) d ¤𝜇 (𝒑̄)

=

∞∑︁
𝑁=1

𝑁−1∑︁
𝐾=0

∫
B𝑁 +1

[
∇ ·

(
𝑓𝐾 𝒗𝐾

)]
(𝒑𝐾 ) d𝜇 (𝒑̄)

=

∫
𝛀̂

[
𝑁−1∑︁
𝐾=0

[
∇ ·

(
𝑓𝐾 𝒗𝐾

)]
(𝒑𝐾 )

]
d𝜇 (𝒑̄),

(37)

where the second equality is obtained by: (i) exchanging inner sum-
mation and the integration; and (ii) rewriting the sum of integrals
over B𝑁+1 for all 𝑁 as one integral over the material path space 𝜕𝛀̂.
Lastly, substituting Eq. (37) into the material-form differential

path integrals (26) yields the main result of this paper—the repa-
rameterized differential path integral:

d𝐼
d𝜃

=

interior∫
𝛀̂

(
d𝑓 (𝒑̄)
d𝜃

+
𝑁−1∑︁
𝐾=0

[
∇ ·

(
𝑓𝐾 𝒗𝐾

)]
(𝒑𝐾 )

)
d𝜇 (𝒑̄) , (38)

where 𝑁 indicates the length (i.e., number of segments) of the ma-
terial light path 𝒑̄.

5 OUR MONTE CARLO ESTIMATORS
We now introduce Monte Carlo estimators for our reparameterized
differential path integral expressed in Eq. (38). Specifically, we first
discuss in §5.1 the estimation of the divergence term ∇ · (𝑓𝐾 𝒗𝐾 ).
Then, in §5.2, we introduce our path-space Monte Carlo estimators
and how do we cache values along paths to increase computational
efficiency.

5.1 Estimating Divergence
A key component of our reparameterized differential path integral
of Eq. (38) is the divergence

∇ ·
(
𝑓𝐾 𝒗𝐾

)
=

(
∇𝑓𝐾

)
· 𝒗𝐾 + 𝑓𝐾 (∇ · 𝒗𝐾 ) , (39)

at some vertex 𝒑𝐾 of a given material path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ). In the
following, we discuss the estimation of 𝑓𝐾 and ∇𝑓𝐾 in §5.1.1 as well
as 𝒗𝐾 and ∇ · 𝒗𝐾 in §5.1.2.

5.1.1 Measurement contribution. The right-hand side of Eq. (39) in-
volves the term 𝑓𝐾 and its gradient ∇𝑓𝐾 . We recall that, as defined in
Eq. (36), 𝑓𝐾 (𝒑̄) equals the material measurement contribution 𝑓 (𝒑̄)
except for treating 𝒑𝐾 as the only variable and all other vertices
{𝒑𝑛 : 𝑛 ≠ 𝐾} as constants. Therefore, we have 𝑓𝐾 (𝒑̄) = 𝑓 (𝒑̄), and:[

∇𝑓𝐾
]
(𝒑̄) =

[
𝜕𝑓𝐾

𝜕𝒑𝐾

]
(𝒑̄) = [∇𝑔𝐾 ] (𝒑𝐾 )

𝑓 (𝒑̄)
𝑔𝐾 (𝒑𝐾 )

, (40)

where 𝑔𝐾 is defined in Eq. (35) and the gradient ∇𝑔𝐾 := 𝜕𝑔𝐾/𝜕𝒑𝐾
can be computed using automatic differentiation.

5.1.2 Continuous velocity. The remaining terms on the right-hand
side of Eq. (39) are the continuous velocity 𝒗𝐾 (𝒑𝐾 ) and its diver-
gence [∇ · 𝒗𝐾 ] (𝒑𝐾 ) (given the neighboring vertex 𝒑𝐾+1 that is
considered fixed). We outline this process in Algorithm 1.

Fig. 9. Discontinuous velocity 𝒗dis1 : Let 𝒑2 ∈ B be a fixed material
point 𝒑2 ∈ B with the spatial representation 𝒙2 = X(𝒑2, 𝜃 ) . For each point
𝒑1, we set the discontinuous velocity 𝒗dis1 (𝒑1 ) to zero if 𝒑1’s the spatial
counterpart 𝒙1 = X(𝒑1, 𝜃 ) is visible to 𝒙2. Otherwise, there must exist an
intersection 𝒙O (illustrated as the red square) between the open line segment
𝒙1𝒙2 and some occluder. We compute 𝒛1 = rayIntersect(𝒙2�𝒙O,M) and
set the velocity as 𝒗dis1 (𝒑1 ) =

d
d𝜃 X
−1 (𝒛1, 𝜃 ) .

Fig. 10. We sample points {𝒒𝑖 𝑗 } near a point 𝒑𝐾 by drawing points 𝒒′
𝑖
in

the tangent plane of 𝒑𝐾 (from a Gaussian distribution centered at 𝒑𝐾 ) and
finding all projections of 𝒒′

𝑖
on the reference B along the surface normal

𝒏(𝒑𝐾 ) .

According to the definition in Eq. (14), we express the continuous
velocity 𝒗𝐾 (𝒑𝐾 ) as

𝒗𝐾 (𝒑𝐾 ) = 𝒗̃𝐾 (𝒑𝐾 )
/
𝑊 (𝒑𝐾 ) . (41)

On the right-hand of this equation, the denominator is the normal-
ization term𝑊 given by

𝑊 (𝒑𝐾 ) :=
∫
B
w(𝒒;𝒑𝐾 ) d𝐴(𝒒), (42)

and the numerator is the convolved velocity 𝒗̃𝐾 defined as

𝒗̃𝐾 (𝒑𝐾 ) :=
∫
B
w(𝒒;𝒑𝐾 ) 𝒗dis𝐾 (𝒒) d𝐴(𝒒) . (43)

In Eq. (43), 𝒗dis
𝐾

is the discontinuous vector field that agrees with
the boundary velocity 𝒗𝜕

𝐾
and can be constructed (conditioned on

the vertex 𝒑𝐾+1) using the process described in Step 1 of §3.2.2 (see
Figure 9).

Sampling 𝒒. Estimating the continuous velocity 𝒗𝐾 and its diver-
gence (∇·𝒗𝐾 ) based on Eqs. (42) and (43) requires sampling material
points 𝒒 from the reference surface B.
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ALGORITHM 1: Consistent estimator for the velocity 𝒗𝐾 and its
divergence ∇ · 𝒗𝐾
1 Estimate_Velocity(𝒑𝐾 , 𝒑𝐾+1)
Input: Two vertices 𝒑𝐾 and 𝒑𝐾+1 of a material path
Output: 𝒗𝐾 (𝒑𝐾 ) and [∇ · 𝒗𝐾 ] (𝒑𝐾 )

2 begin
/* Estimate 𝑊 and 𝒗̃𝐾 (unbiased and consistent) */

3 𝑊 ← 0; ∇𝑊 ← 0;
4 𝒗̃𝐾 ← 0; ∇ · 𝒗̃𝐾 ← 0;
5 for 𝑖 = 1 to 𝑁𝒒 do
6 Sample point 𝒒′

𝑖
from the tangent plane of 𝒑𝐾 with

probability pdf (𝒒′
𝑖
) ;

7 Compute projections {𝒒𝑖 𝑗 : 𝑗 = 1, 2, . . .} of 𝒒′
𝑖
on the

reference surface B;
8 foreach projection 𝒒𝑖 𝑗 of 𝒒

′
𝑖
do

9 w← w(𝒒𝑖 𝑗 ;𝒑𝐾 ) ;
10 ∇w← [∇w( ·;𝒑𝐾 ) ] (𝒒𝑖 𝑗 ) ;
11 pdf ← pdf (𝒒′

𝑖
) |𝒏(𝒑𝐾 ) · 𝒏(𝒒𝑖 𝑗 ) |;

12 Compute 𝒗dis = 𝒗dis
𝐾
(𝒒𝑖 𝑗 ) and ∇ · 𝒗dis (using AD)

conditioned on 𝒑𝐾+1 ; // §3.2.2, Step 1

13 𝑊 += w/pdf ; // Eq. (44)
14 ∇𝑊 += ∇w/pdf ; // Eq. (60)
15 𝒗̃𝐾 += (w 𝒗dis )/pdf ; // Eq. (45)
16 ∇ · 𝒗̃𝐾 += (∇w · 𝒗dis +w (∇ · 𝒗dis ) )/pdf ; // Eq. (61)
17 end
18 end

/* Estimate 𝒗𝐾 and ∇ · 𝒗𝐾 (biased but consistent) */

19 𝒗𝐾 ← 𝒗̃𝐾 /𝑊 ; // Eq. (47)
20 ∇ · 𝒗𝐾 ← (∇ · 𝒗̃𝐾 )/𝑊 − (∇𝑊 · 𝒗̃𝐾 )/𝑊 2 ; // Eq. (62)
21 return 𝒗𝐾 , ∇ · 𝒗𝐾 ;
22 end

To this end, we employ a process similar to the sampling of
outgoing locations for bidirectional subsurface scattering distribution
functions (BSSRDFs) as follows. As illustrated in Figure 10, we first
draw a point 𝒒′ inside the tangent plane of 𝒑𝐾 from a 2D (isotropic)
Gaussian distribution centered at 𝒑𝐾 . Then, we project 𝒒′ onto the
reference surface B along the surface normal 𝒏(𝒑𝐾 ) and return all
resulting projections B ∩ {𝒒′ + 𝑡 𝒏(𝒑𝐾 ) : 𝑡 ∈ R} as samples of 𝒒.

Estimating 𝒗𝐾 . Leveraging the same point sampling method de-
scribed above, we estimate the normalization term𝑊 and the con-
volved velocity 𝒗̃𝐾 in an unbiased and consistent fashion as follows.
First, we draw 𝑁𝒒 samples {𝒒′

𝑖
: 𝑖 = 1, 2, . . . , 𝑁𝒒} of 𝒒 from the

tangent plane of 𝒑𝐾 . Let the probability for drawing 𝒒′
𝑖
be pdf (𝒒′

𝑖
).

Then, unbiased estimators of𝑊 and 𝒗̃𝐾 can be obtained via〈
𝑊 (𝒑𝐾 )

〉
=

𝑁𝒒∑︁
𝑖=1

∑︁
𝑗

w(𝒒𝑖 𝑗 ;𝒑𝐾 )
pdf (𝒒𝑖 𝑗 )

, (44)

〈
𝒗̃𝐾 (𝒑𝐾 )

〉
=

𝑁𝒒∑︁
𝑖=1

∑︁
𝑗

w(𝒒𝑖 𝑗 ;𝒑𝐾 ) 𝒗dis𝐾 (𝒒𝑖 𝑗 )
pdf (𝒒𝑖 𝑗 )

, (45)

where {𝒒𝑖 𝑗 : 𝑗 = 1, 2, . . .} are the projections of 𝒒′
𝑖
on B, and

pdf (𝒒𝑖 𝑗 ) = pdf (𝒒′𝑖 )
��𝒏(𝒑𝐾 ) · 𝒏(𝒒𝑖 𝑗 )��. (46)

ALGORITHM 2: Our unidirectional estimator for the reparameter-
ized differential path integral of Eq. (38).

1 Path_Tracing()

// We use 𝒙D
𝑛 and 𝒙S

𝑛 to denote, respectively, the

spatial representations of 𝒑D𝑛 and 𝒑S𝑛 for all 𝑛

2 begin
/* Initialize detector subpath */

3 Sample camera ray 𝒑D0 �𝒑D1 with probability pdf ;
4 𝑓 ←𝑊e (𝒙D

1 �𝒙D
0 )𝐺 (𝒙D

1 ↔ 𝒙D
0 ) 𝐽 (𝒑D0 ) 𝐽 (𝒑D1 ) ;

5 𝐻D ← 0; d𝐼 ← 0;
6 for 𝑛 = 1, 2, . . . do

/* Sample light vertex 𝒑S𝑛 */

7 Sample 𝒑S𝑛 on the emitter with probability pdfNEE𝑛 ;

/* Compute 𝑓 NEE = 𝑓 (𝒑S𝑛, 𝒑D𝑛 , . . . , 𝒑D0 ) and d𝑓 NEE/d𝜃 */

8 𝑓 NEE ← 𝑓 · 𝑓s (𝒙S
𝑛�𝒙D

𝑛 �𝒙D
𝑛−1 )𝐺 (𝒙S

𝑛 ↔ 𝒙D
𝑛 ) 𝐽 (𝒑S𝑛 ) ;

9 𝑓 NEE ∗= 𝐿e (𝒙S
𝑛�𝒙D

𝑛 ) ;
10 Compute d𝑓 NEE := d𝑓 NEE/d𝜃 using AD;

/* Compute the sum of divergences via Eq. (49) */

11 Σdiv ← 𝑓 NEE
(
𝐻D + ℎ (𝒑D𝑛 ;𝒑S𝑛, 𝒑D𝑛−1 ) + ℎ (𝒑S𝑛 ;𝒑D𝑛 )

)
;

/* Accumulate path contribution */

12 d𝐼 += (d𝑓 NEE + Σdiv )/(pdf · pdfNEE𝑛 ) ;

/* Sample next vertex 𝒑D
𝑛+1 */

13 Sample 𝒑D
𝑛+1 with probability pdf𝑛+1;

14 pdf ∗= pdf𝑛+1;

/* Update measurement contribution */

15 𝑓 ∗= 𝑓s (𝒙D
𝑛+1�𝒙D

𝑛 �𝒙D
𝑛−1 )𝐺 (𝒙D

𝑛+1 ↔ 𝒙D
𝑛 ) 𝐽 (𝒑D𝑛+1 ) ;

/* Update pre-fix sum based on Eq. (50) */

16 𝐻D += ℎ (𝒑D𝑛 ;𝒑D𝑛+1, 𝒑D𝑛−1 ) ;
17 end
18 return d𝐼 ;
19 end

Lastly, given Eq. (41), a biased-but-consistent estimator of the
continuous velocity 𝒗𝐾 can be obtained using the unbiased estima-
tions of the normalization term𝑊 and the convolved velocity 𝒗̃𝐾
given by Eqs. (44) and (45), respectively:〈

𝒗𝐾 (𝒑𝐾 )
〉
=

〈
𝒗̃𝐾 (𝒑𝐾 )

〉/〈
𝑊 (𝒑𝐾 )

〉
. (47)

Further, the estimation of the divergence ∇ · 𝒗𝐾 can be accom-
plished in a similar fashion using unbiased estimates of the gradient
∇w of the normalization term𝑊 and the divergence ∇ · 𝒗̃𝐾 of the
convolved velocity 𝒗̃𝐾 . We provide more details of this process in
Appendix B.

Debiasing. Bangaru et al. [2020] have introduced a process based
on Russian roulette to debias estimators of 𝒗𝐾 (𝒑𝐾 ) and [∇·𝒗𝐾 ] (𝒑𝐾 ).
On the other hand, achieving full unbiasedness requires the distance
and boundary-test functions to satisfy specific conditions, which
can be nontrivial to obtain (please see their work for more details).
We consider the debiasing of our estimators a future research topic.

ACM Trans. Graph., Vol. 42, No. 6, Article 213. Publication date: December 2023.



Warped-Area Reparameterization of Differential Path Integrals • 213:11

5.2 Path-Space Estimators
Our reparameterized differential path integral of Eq. (38) allows the
development of path-space Monte Carlo estimators of the form:〈

d𝐼
d𝜃

〉
=

1
pdf (𝒑̄)

(
d𝑓 (𝒑̄)
d𝜃

+
𝑁−1∑︁
𝐾=0

[
∇ ·

(
𝑓𝐾 𝒗𝐾

)]
(𝒑𝐾 )

)
, (48)

where pdf (𝒑̄) denotes any probability density for sampling the
material light path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ), and the divergence term
∇ · (𝑓𝐾 𝒗𝐾 ) is computed using estimators presented in §5.1.

We introduce an unidirectional (§5.2.1) and a bidirectional estima-
tor (§5.2.2) that, respectively, apply unidirectional path tracing (PT)
with next-event estimation (NEE) and bidirectional path tracing
(BDPT) to sample the material path 𝒑̄.

Time complexity of naïve implementation. Given a material path 𝒑̄
with𝑁 segments, evaluating Eq. (48) naïvely takes𝑂 (𝑁 2) time since
computing the divergence ∇ · (𝑓𝐾 𝒗𝐾 )—which involves computing
and differentiating material measurement contribution 𝑓𝐾 (𝒑̄) (with
respect to 𝒑𝐾 )—takes 𝑂 (𝑁 ) time for each 𝐾 .
The time complexity becomes even higher when using PT with

NEE and BDPT: For the former, each NEE effectively produces one
full path, causing the cost for tracing one path to be𝑂 (𝑁 3); For the
latter, since 𝑂 (𝑁 2) paths are created3 using one pair of source and
detector subpaths, the total complexity becomes 𝑂 (𝑁 4).
In what follows, we address this challenge by developing new

techniques to estimate the divergence ∇ · (𝑓𝐾 𝒗𝐾 ) efficiently for our
unidirectional and bidirectional estimators.

5.2.1 Our unidirectional estimator. We now detail our unidirectional
estimator—which we outline in Algorithm 2.

For any material path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ), according to Eq. (40) and
the fact that 𝑓𝐾 (𝒑̄) = 𝑓 (𝒑̄), we can rewrite the sum of divergence
Σdiv (𝒑̄) :=

∑
𝐾 [∇ · (𝑓𝐾 𝒗𝐾 )] (𝒑𝐾 ) by factoring out the material

measurement contribution 𝑓 (𝒑̄). That is,

Σdiv (𝒑̄) :=
𝑁−1∑︁
𝐾=0

[
∇ · (𝑓𝐾 𝒗𝐾 )

]
(𝒑𝐾 )

= 𝑓 (𝒑̄)
𝑁−1∑︁
𝐾=0

( [∇𝑔𝐾 ] (𝒑𝐾 )
𝑔𝐾 (𝒑𝐾 )

· 𝒗𝐾 (𝒑𝐾 ) + [∇ · 𝒗𝐾 ] (𝒑𝐾 )︸                                              ︷︷                                              ︸
=:ℎ (𝒑𝐾 ; 𝒑𝐾−1, 𝒑𝐾+1 )

)
.

(49)

In this equation, the term𝑔𝐾—which is a function of 𝒑𝐾 conditioned
on 𝒑𝐾−1 and 𝒑𝐾+1—is defined in Eq. (35), and the velocity 𝒗𝐾 (𝒑𝐾 )
and its divergence [∇ ·𝒗𝐾 ] (𝒑𝐾 ) can be estimated using Algorithm 1
from §5.1.2.
We now make an important observation that Eq. (49) can be

computed in 𝑂 (𝑁 ) time since the term ℎ(𝒑𝐾 ;𝒑𝐾−1,𝒑𝐾+1) on the
right-hand side is essentially a function of one point 𝒑𝐾 and, thus,
can be computed in 𝑂 (1) time.

3In this paper, we focus on standard bidirectional path tracing (BDPT) that connects all
pairs of vertices between the source and the detector subpaths.

C
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on

Teapot Bunny

(a) Ordinary (b) FD reference (c) Ours

Teapot

Bunny

Fig. 11. We validate our techniques by comparing derivative images (visu-
alized using the same color mapping as Figure 1) estimated by our method
(c) to finite-difference (FD) references (b). Our “teapot” and “bunny” results
are generated, respectively, using our unidirectional and bidirectional esti-
mators. The derivatives are visualized using the same color map as Figure 1.

Based on Eq. (49), we introduce a unidirectional estimator that
uses next-event estimation (NEE) that works as follows. When trac-
ing a detector subpath (𝒑D

0 ,𝒑
D
1 , . . .), we maintain the prefix sum

𝐻D
𝑛 :=

𝑛−1∑︁
𝑚=1

ℎ

(
𝒑D
𝑚 ;𝒑D

𝑚+1,𝒑
D
𝑚−1

)
= 𝐻D

𝑛−1 + ℎ
(
𝒑D
𝑛−1;𝒑

D
𝑛 ,𝒑

D
𝑛−2

)
,

(50)
for each vertex 𝒑D

𝑛 . After performing NEE at this vertex using a light
sample point 𝒑S

𝑛 , we obtain a full path 𝒑̄𝑛 := (𝒑S
𝑛,𝒑

D
𝑛 , . . . ,𝒑

D
1 ,𝒑

D
0 ).

Leveraging the prefix sum 𝐻𝑛 , we can compute the sum of diver-
gences Σdiv (𝒑̄𝑛) defined in Eq. (49) using 𝑂 (1) time via:

Σdiv (𝒑̄𝑛) = 𝑓 (𝒑̄𝑛)
(
𝐻D
𝑛 + ℎ

(
𝒑D
𝑛 ;𝒑

S
𝑛,𝒑

D
𝑛−1

)
+ ℎ

(
𝒑S
𝑛 ;𝒑

D
𝑛

))
, (51)

where the material measurement contribution 𝑓 (𝒑̄) is computed
in 𝑂 (1) the same way as (forward-rendering) unidirectional path
tracing (see Algorithm 2).

5.2.2 Our bidirectional estimator. In addition to the unidirectional
estimator, we also introduce a bidirectional one capable of handling
challenging light-transport effects such as caustics.

Our bidirectional estimator samples paths the sameway as forward-
rendering bidirectional path tracing (BDPT) [Veach and Guibas 1995;
Lafortune and Willems 1996]. Specifically, it generates a source sub-
path 𝒑̄S = (𝒑S

0,𝒑
S
1, . . .) and a detector subpath 𝒑̄D = (𝒑D

0 ,𝒑
D
1 , . . .).
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Configuration Ordinary FD reference Ours Redner_WAS
Star emitterStar emitter Equal-sampleEqual-sample Equal-sampleEqual-sample

Initial Target Opt. (our unidir.) Errors (our unidir.) Opt. (Redner_WAS) Errors (Redner_WAS)

ForwardForward 0 100 200 300
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Img. Loss 

0 100 200 300
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Img. Loss 

Config.Config. 0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Param. RMSE 
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Fig. 12. Equal-sample comparisons between our unidirectional estimator with Redner_WAS [Bangaru et al. 2020]. This example involves a lucy lit by a
star-shaped area light. (top) We compare derivatives with respect to the horizontal displacement of the light; (bottom) We compare inverse-rendering results
where we infer the location and the pose of the light by minimizing the 𝐿2 loss between the target and rendered images shown in the row marked as “forward”.
The configuration visualizations and parameter RMSE plots in the bottom row are used only for evaluation (and not for optimization).

Table 3. Performance statistics for our inverse-rendering results where
“time” measures per-iteration optimization time (in seconds) on an Amazon
EC2 c6a.8xlarge instance with 32 VCPUs. Additionally, “# img.” indicates
the number of images used for inverse rendering, and “# param.” the number
of scene parameters being optimized.

Scene Time # img. # param.

Star emitter (Fig. 12) 3.8 1 3
Chess (Fig. 13) 4.5 40 30 000
Bunny in glass (Fig. 14) 22.5 50 20 000
Lamp (Fig. 15) 7.0 40 30 000
Dodoco (Fig. 16) 8.4 40 30 000
Caustics (Fig. 17) 21.3 1 12

Then, by connecting each 𝒑S
𝑚 and 𝒑D

𝑛 (for any𝑚 and 𝑛), we obtain
a complete path sample 𝒑̄𝑚,𝑛 := (𝒑S

0, . . . ,𝒑
S
𝑚,𝒑

D
𝑛 , . . . ,𝒑

D
0 ).

For efficient computation of the sum
∑
𝐾 ∇· (𝑓𝐾 𝒗𝐾 ) for each path

𝒑̄𝑚,𝑛 , we extend the process described in §5.2.1 by maintaining two
prefix sums (𝐻S

𝑚 : 𝑚 = 0, 1, . . .) and (𝐻D
𝑛 : 𝑛 = 0, 1, . . .) where the

former equals

𝐻S
𝑚 = 𝐻S

𝑚−1 + ℎ
(
𝒑S
𝑚−1;𝒑

S
𝑚−2,𝒑

S
𝑚

)
, (52)

and the latter follows Eq. (50).

With both pre-fix sums, we can compute the sum of divergences
in Eq. (49) in 𝑂 (1) time using

Σdiv (𝒑̄𝑚,𝑛) = 𝑓 (𝒑̄𝑚,𝑛) ·(
𝐻D
𝑛 + 𝐻S

𝑚 + ℎ
(
𝒑S
𝑚 ;𝒑S

𝑚−1,𝒑
D
𝑛

)
+ ℎ

(
𝒑D
𝑛 ;𝒑

S
𝑚,𝒑

D
𝑛−1

))
, (53)

resulting in the following bidirectional estimator〈
d𝐼
d𝜃

〉
bidir

=
∑︁
𝑚,𝑛

𝑤MIS (𝒑̄𝑚,𝑛)
pdf (𝒑̄𝑚,𝑛)

(
d
d𝜃
𝑓 (𝒑̄𝑚,𝑛) + Σdiv (𝒑̄𝑚,𝑛)

)
. (54)

In this equation, for each𝑚 and 𝑛, the material measurement contri-
bution 𝑓 (𝒑̄𝑚,𝑛), the probability density pdf (𝒑̄𝑚,𝑛), and the multiple
importance sampling (MIS) weight𝑤MIS (𝒑̄𝑚,𝑛) can all be computed
in𝑂 (1) time (with𝑂 (𝑁 ) precomputations) the sameway as forward-
rendering BDPT.

6 RESULTS
We implement our unidirectional and bidirectional estimators (intro-
duced in §5.2.1 and §5.2.2, respectively) based on the differentiable
renderer released by Yu et al. [2022]. This system is CPU-based and
uses the Enzyme automatic differentiation framework [Moses and
Churavy 2020].
In what follows, we first validate our estimators using several

differentiable-rendering experiments in §6.1. Then, we compare
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Configuration Ordinary FD reference (a1) Ours (a2) Ours (b1) Redner_WAS (b2) Redner_WAS
(new dist. func) (old dist. func) (new dist. func) (old dist. func)

ChessChess Equal-sampleEqual-sample Equal-sampleEqual-sample Equal-sampleEqual-sample Equal-sampleEqual-sample

Initial (as inset) (a1) Opt.: ours (a2) Opt.: ours (b1) Opt: Redner_WAS (b2) Opt.: Redner_WAS Errors& target (new dist. func) (old dist. func) (new dist. func) (old dist. func)

ForwardForward 0 200 400 600 800 1000

10−2

10−1

Img. Loss

ours (new)

redner_was (old)

ours (old)

redner_was (new)

Shape vis.Shape vis. 0 200 400 600 800 1000
10−4

10−3

10−2

10−1

100
Mesh. Error

ours (new)

redner_was (old)

ours (old)

redner_was (new)

Fig. 13. We compare differentiable- and inverse-rendering results generated with: (a1) our unidirectional estimator with the new distance function in
Eq. (16); (a2) our unidirectional estimator with Redner_WAS’s distance function in Eq. (57); (b1, b2) Redner_WAS with the two distance functions, respectively.
The differentiable-rendering results (top) are computed with respect to the displacement of the chess piece. For inverse rendering (bottom), we optimize the
shape of the chess piece by only looking at its cast shadow on the ground. We use 40 images among which the object has varying known poses and show one
in the row marked “forward”. The mesh error information (plotted on the bottom right) is used for evaluation only.

our estimators to two main baselines—Bangaru et al.’s [2020] (indi-
cated as Redner_WAS) and Zhang et al.’s [2020] (indicated as PSDR)
methods—in §6.2 and §6.3, respectively. Lastly, we show additional
inverse-rendering results in §6.4.

Please refer to Table 3 for performance statistics and the supple-
ment for animated versions of our inverse-rendering results.

6.1 Validation
In Figure 11, we validate our technique by comparing derivative
estimates generated using our method and finite differences (FD).
The “Teapot” example shows the cast shadow of a teapot lit by an
area light (with the configuration shown as inset), and the deriva-
tives are with respect to the displacement of the teapot. The “Bunny”
scene involves a diffuse bunny inside a Cornell box with an area
light facing the ceiling, creating an indirect-illumination dominated
configuration. For this example, we differentiate the ordinary ren-
dering (a) with respect to the displacement of the bunny. In both
examples, the derivative estimates produced by our estimators (c)
closely match the FD references (b).

6.2 Comparisons with Redner_WAS
As discussed in Appendix A, although both our unidirectional esti-
mator and Bangaru et al.’s [2020] method (indicated as Redner_WAS)
apply unidirectional path tracing, the two methods differ signifi-
cantly. We now demonstrate the practical advantages of our unidi-
rectional estimator over Redner_WAS using several differentiable-
and inverse-rendering examples.

We conduct all comparisons with Redner_WAS using equal sample
(instead of equal time) due to the significant differences between
the two codebases.

Material form. The first advantage of our estimator is the use
of the material-form reparameterization (described in §3.1). This
allows our warped-area reparameterization to handle fewer types
of discontinuities compared with Redner_WAS, leading to overall
less variance and bias.

To demonstrate this, we compare derivatives estimated with our
unidirectional estimator and Redner_WAS on the top of Figure 12.
This example uses a “Star emitter” scene involving a Lucy lit by
a star-shaped area emitter under direct illumination. We estimate

ACM Trans. Graph., Vol. 42, No. 6, Article 213. Publication date: December 2023.



213:14 • Xu, Bangaru, Li, and Zhao

(a) Initial (b) Target (c) Opt. (our bidir.) (d) Opt. (PSDR) (e) Opt. (PSDR_aq) Error
Bunny in glassBunny in glass

ForwardForward 0 500 1000 1500

10−1

3×10−2
4×10−2

6×10−2

2×10−1
Img. Loss

ours_bidir

psdr_grid

psdr_aq

Shape vis.Shape vis. 0 500 1000 1500

10−2

10−1

100
Mesh. Error

ours_bidir

psdr_grid

psdr_aq

Fig. 14. We compare inverse-rendering performance of bidirectional estimators from our technique (c), PSDR [Zhang et al. 2020] (d), and PSDR_aq [Yan
et al. 2022] (e). In this example, we optimize the shape of a diffuse object inside a rough-glass cube using 50 multi-view images (with one shown on the
top). We use a multi-stage setup for the optimization, where each stage uses varying sample counts and learning rates. We visualize the initial, target, and
optimized shapes on the bottom. Without guiding, our method outperforms PSDR and offers a similar level of performance as PSDR_aq (at equal time). The
mesh error information (plotted on the bottom right) is used for evaluation only.

derivatives with respect to the horizontal displacement of the emit-
ter. At equal sample, our unidirectional estimator produces deriva-
tives with significantly less variance. This is becuase topological
boundaries of the emitter—namely the edges of the star shape—do
not need to be reparameterized by our method since they are fixed
under the reference configuration. Redner_WAS, on the other hand,
has to reparameterize these boundaries and, thus, produces higher
variance.

Based on this configuration, we further show an inverse-rendering
comparison on the bottom of Figure 12. For this example, we opti-
mize the position and orientation of the star-shaped emitter without
directly looking at it. Under identical optimization settings (includ-
ing initializations and learning rates), our unidirectional estimator
allows the optimization to converge nicely to the groundtruth. At
equal sample, Redner_WAS suffers from much higher variance and
causes the optimization to stuck.

Distance function. Another difference between our unidirectional
and Redner_WAS—as detailed in Appendix A—is the choice of dis-
tance function D expressed in Eq. (16).
We demonstrate the effectiveness of our new distance function

using differentiable- and inverse-rendering comparisons in Figure 13.
This figure uses a “Chess” scene where a chess piece is lit by a small
area light, resulting in a cast shadow on the ground.
The differentiable-rendering results indicate that, at equal time,

our new distance function is crucial for fast convergence of deriva-
tive estimates.
For the inverse-rendering comparison, we use multiple shadow

images with the object having varying known poses (with one
shown in the figure) and optimize the shape (expressed as per-vertex
positions) of the object. With our “new” distance function defined in
Eq. (16), both our unidirectional estimator and Redner_WAS lead to

reasonable reconstruction results. Our method slightly outperforms
Redner_WAS in this case due to the use of material-form reparame-
terization. In contrast, with the “old” distance function introduced
by Bangaru et al. [2020], both methods produce severely biased
gradient estimates, yielding low-quality shape reconstructions.

6.3 Comparisons with PSDR
We now compare our bidirectional estimator with the bidirectional
one introduced by Zhang et al. [2020] (indicated as PSDR) as well
as an improved variant (indicated as PSDR_aq) by Yan et al. [2022].
When estimating the material-form differential path integrals, both
methods handle the boundary component by directly samplingmate-
rial boundary paths. To improve efficiency, both PSDR and PSDR_aq
perform primary-sample-space guiding where the former relies on
regular grids and the latter leverages adaptive gridding. For all com-
parisons, we set the sample counts for all methods so that they take
approximately equal time to estimate the gradients.

In Figure 14, we show a “bunny in glass” scene that was originally
modeled by Yan et al. [2022] and contains a diffuse bunny inside
a rough-glass cube. Using 50 multi-view images, we optimize the
shape of the bunny. Further, we configure all optimizations to use
identical initializations (i.e., a sphere) and learning rates as well as
approximately equal time per iteration.

The complexity of this scene causes the optimization using PSDR
to converge slowly (as shown in Figure 14-d). On the other hand,
PSDR_aq’s guiding improves the rate of convergence considerably
(see Figure 14-e). Without using any precomputation or guiding, our
method is capable of offering a similar level of performance as
PSDR_aq (see Figure 14-b).

Figure 15 shows another comparison with PSDR_aq. This exam-
ple uses a “Lamp” scene where an object is lit by a desk lamp and
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Configuration Ordinary FD reference Ours (bidir.) PSDR_aq

Equal-timeEqual-time Equal-timeEqual-time

Initial Target Opt. (our bidir.) Opt. (PSDR_aq) Error

ForwardForward 0 200 400 600 800

100

3×10−1

4×10−1

6×10−1

Img. Loss

ours_bidir

psdr_aq

Shape vis.Shape vis. 0 200 400 600 800

10−2

10−1

Mesh. Error

ours_bidir

psdr_aq

Fig. 15. We compare differentiable- and inverse-rendering performance of bidirectional estimators given by our technique and PSDR_aq [Yan et al. 2022].
The differentiable-rendering results (top) are computed with respect to the horizontal displacement of the object. For inverse rendering (bottom), we optimize
the shape of the occluder by only looking at its cast shadow. We use 40 shadow images with the occluder having varying known poses (with one image shown).
Without guiding, our method outperforms PSDR_aq at equal time. The mesh error information (plotted on the bottom right) is used for evaluation only.

casts a shadow on the desktop. Further, the area emitter is encap-
sulated within a glass bulb with low surface roughness, creating a
very challenging situation for primary-sample-space guiding (since
the high-value region is extremely small). This greatly reduces the
effectiveness of guiding, causing PSDR_aq to producemore noisy de-
rivative estimates, as demonstrated by the differentiable-rendering
results (shown on the top of the figure).
For the inverse-rendering comparison (shown on the bottom),

we use 40 images of the cast shadow with the object having multi-
ple known poses (with one shown in the figure) and optimize the
shape of the object. Using identical optimization configurations and
equal time, our method outperforms PSDR_aq without the need of
precomputation or guiding.

6.4 Additional Inverse-Rendering Results
We now show additional synthetic inverse-rendering results to
demonstrate the usefulness of our bidirectional estimator.
Figure 16 uses a “Dodoco” scene that contains a diffuse object

inside the Cornell box. The object is lit indirectly by a small area
light facing the ceiling (similar to the “Bunny” scene in Figure 11).
Using 40 images (with one shown in the figure), we optimize the
shape of the object.

Additionally, Figure 17 use a “Caustics” scene with a glass bunny
inside the Cornell box. We optimize the vertex positions of a cubical
control cage by only looking at the ground.
Since both scenes involve complex light transport effects, Red-

ner_WAS and our unidirectional estimator—both of which rely on
unidirectional path tracing—perform poorly. On the contrary, our
bidirectional estimator—which is enabled by our reparameterized
differential path integral of Eq. (38)—offers the robustness and ef-
ficiency to simulate light transport in both scenes, allowing the
optimizations to converge nicely.

7 DISCUSSION AND CONCLUSION
Limitations and future work. Our reparameterized differential

path integral neglects volumetric light transport. Generalizing it to
reparameterize Zhang et al.’s [2021b] generalized differential path
integrals is an important future topic.
Also, our Monte Carlo estimators still mostly rely on unidirec-

tional and bidirectional path tracing—techniques developed for for-
ward rendering—to sample light paths. In the future, more efficient
sampling schemes using, for instance, guiding, can be helpful.
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(a) Initial (b) Target (c1) Opt. (our bidir.) (c2) Opt. (our unidir.) (d) Opt. (Redner_WAS) Error

DodocoDodoco

ForwardForward 0 200 400

10−1

100

Img. Loss

ours_bidir

ours_unidir

redner_was

Shape vis.Shape vis. 0 200 400

10−3

10−2

10−1

100
Mesh. Error

ours_bidir

ours_unidir

redner_was

Fig. 16. We compare inverse-rendering performance of our bidirectional and unidirectional estimators as well as Redner_WAS [Bangaru et al. 2020]. To
ensure fairness, we use equal time between our bidirectional and unidirectional estimators, and equal sample between our unidirectional estimator and
Redner_WAS.

Lastly, adapting our method to support differentiable rendering
of implicit geometries [Vicini et al. 2022; Bangaru et al. 2022] is
worth investigating.

Conclusion. In this paper, we bridge the gap in physics-based dif-
ferentiable rendering techniques between the warped-area sampling
methods and the path-space methods, by introducing the formula-
tion of reparameterized differential path integral to reparameterize
boundary components of material-form differential path integrals.
Our resulting formulation enjoys the advantages of both differential
path integrals—by enabling advanced Monte Carlo estimators (such
as bidirectional path tracing)—andwarped-area reparameterization—
by not requiring explicit handling of discontinuity boundaries.

We validated our technique and evaluated its effectiveness using
several differentiable rendering and inverse rendering examples.
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A RELATION WITH ORIGINAL WARPED-AREA
REPARAMETERIZATION

In the following, we discuss the relation between our unidirectional
method and Redner_WAS—the original warped-area technique intro-
duced by Bangaru et al. [2020]. For simplicity, we use the one-bounce
setting discussed in §3.2.

When expressing one-bounce scattered radiance leaving a surface
point𝒚 in the direction 𝝎o, Redner_WAS uses the spherical-integral
formulation:

𝐼dir =

∫
S2
𝐿e,i (𝒚,𝝎i) 𝑓s (𝒚,𝝎i,𝝎o) |𝒏(𝒚) · 𝝎i |︸                                       ︷︷                                       ︸

=: 𝐹𝜎dir (𝝎 i )

d𝜎 (𝝎i), (55)

where 𝐿e,i (𝒚,𝝎i) indicates emitted radiance entering 𝒚 from the
incident direction 𝝎i, 𝒏(𝒚) denotes the (unit-length) surface normal
at 𝒚, and 𝜎 is the solid-angle measure.
Differentiating Eq. (55) with respect to some scene parameter 𝜃

yields

d𝐼dir
d𝜃

=

interior∫
S2

d𝐹𝜎dir (𝝎i)
d𝜃

d𝜎 (𝝎i) +

boundary∫
ΔS2

Δ𝐹𝜎dir (𝝎i)𝑉 (𝝎i) dℓ (𝝎i) ,

(56)
where:

• 𝐹𝜎dir is the integrand defined in Eq. (55);

• ΔS2 are spherical curves comprising jump discontinuities of 𝐹𝜎dir;

• 𝑉 (𝝎i) = 𝒏𝜕 (𝝎i) · d𝝎 i
d𝜃 is the scalar velocity capturing how fast

the curves ΔS2 evolves with respect to the parameter 𝜃 .
Mathematically, Redner_WAS reparameterizes the boundary com-

ponent of Eq. (56) that differs from our boundary integral in Eq. (4)
in several significant ways as follows.

First, since the material-form reparameterization (§3.1) is not used
in Eq. (56), the discontinuity curves ΔS2 need to include topological
boundaries and discontinuities of surface normals (see Figure 18)
of the emitter surface. As demonstrated in Fig. 12, this makes their
method much less efficient than ours when handling emitters with
complex geometries.

Second, the scalar velocity 𝑉 (𝝎i) is computed differently: (i) the
curve normal 𝒏𝜕 (𝝎i) is defined with respect to spherical curves over
S2 (as opposed to general curves over the reference surface Be);
and (ii) the velocity d𝝎 i/d𝜃 is computed with respect to direction 𝝎i
and without differentiating the deformation’s inverse X−1 (·, 𝜃 ) as
in Eq. (8).

At a more technical level, Redner_WAS uses a different distance
function given by:

Dwas (
𝝎′i ;𝝎i

)
:= exp

(
1 −

〈
𝝎i,𝝎

′
i
〉)
− 1. (57)

When handling challenging scenes containing complicated ge-
ometries, small area lights, or intersecting discontinuity boundaries
(with different velocities), the convergence of the consistent estima-
tor ⟨𝒗𝐾 ⟩ of the continuous velocity 𝒗𝐾 in Eq. (47) is known to be
sensitive to the choice of distance functions [Bangaru et al. 2022].
In practice, our distance function expressed in Eq. (16) behaves well
in all our experiments (including the example shown in Figure 13)
with 𝑁𝒒 = 8 auxiliary samples. The one in Eq. (57) used by Red-
ner_WAS, on the other hand, can lead to convergence issues even
with significantly greater 𝑁𝒒 .
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Configuration Ordinary
Cube emitter

(a) FD reference (b) Ours (c) Redner_WAS
Equal-sampleEqual-sample Equal-sampleEqual-sample

Fig. 18. Equal-sample comparison between our unidirectional estimator
and Redner_WAS [Bangaru et al. 2020]. This example uses a scene with a lucy
model lit by a cube-shaped area light. The formulation used by Redner_WAS
requires the cube edges (where surface normals are discontinuous) to be
handled by warped-area reparameterization. However, the public imple-
mentation of Redner_WAS [Li 2023] neglects this case and, thus, produces
noisy and highly biased gradients (c). Our technique uses the material-form
reparameterization (§3.1) and does not need to reparameterize the cube
edges (as they are fixed on the reference surface). This allows our estimator
to produce clean gradients (b) that closely match the reference (a).

B MONTE CARLO ESTIMATION OF PER-VERTEX
DIVERGENCE

Provided a material path 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ) and an index 0 ≤ 𝐾 < 𝑁 ,
we now descirbe the estimation of the divergence [∇ · 𝒗𝐾 ] (𝒑𝐾 ) of
the continuous velocity 𝒗𝐾 defined in Eq. (41).

Estimating ∇𝑊 and ∇ · 𝒗̃𝐾 . It is easy verify that our kernel w
defined in Eq. (15) and the discontinuous vector field 𝒗dis

𝐾
are differen-

tiable everywhere except at their zero-measure jump discontinuities
(that are fixed with respect to 𝒑𝐾 ). Thus, provided Eqs. (42) and (43),
we have

[∇𝑊 ] (𝒑𝐾 ) =
∫
B
∇wd𝐴, (58)

[∇ · 𝒗̃𝐾 ] (𝒑𝐾 ) =
∫
B

(
(∇w) · 𝒗dis𝐾 +w

(
∇ · 𝒗dis𝐾

))
d𝐴. (59)

Using the point-sampling process described in §5.1.2, we estimate
∇𝑊 and ∇ · 𝒗̃𝐾 in an unbiased and consistent fashion via〈

[∇𝑊 ] (𝒑𝐾 )
〉
=

𝑁𝒒∑︁
𝑖=1

∑︁
𝑗

∇w(𝒒𝑖 𝑗 ;𝒑𝐾 )
pdf (𝒒𝑖 𝑗 )

, (60)

and〈
[∇ · 𝒗̃𝐾 ] (𝒑𝐾 )

〉
=

𝑁𝒒∑︁
𝑖=1

∑︁
𝑗

∇w(𝒒𝑖 𝑗 ;𝒑𝐾 ) · 𝒗dis𝐾 (𝒒𝑖 𝑗 ) +w(𝒒𝑖 𝑗 ;𝒑𝐾 )
[
∇ · 𝒗dis

𝐾

]
(𝒒𝑖 𝑗 )

pdf (𝒒𝑖 𝑗 )
,

(61)

where the gradient ∇w of the kernel w and the divergence ∇ ·
𝒗dis
𝐾

of the discontinuous velocity 𝒗dis
𝐾

can both be computed using
automatic differentiation.

Estimating ∇ · 𝒗𝐾 . Finally, because
∇ · 𝒗𝐾 = (∇ · 𝒗̃𝐾 )/𝑊 − ((∇𝑊 ) · 𝒗̃𝐾 )/𝑊 2,

we obtain a biased-but-consistent estimator of the divergence ∇ ·𝒗𝐾
using Eqs. (60) and (61):〈

[∇ · 𝒗𝐾 ] (𝒑𝐾 )
〉

=

〈
[∇ · 𝒗̃𝐾 ] (𝒑𝐾 )

〉〈
𝑊 (𝒑𝐾 )

〉 −
〈
[∇𝑊 ] (𝒑𝐾 )

〉
·
〈
𝒗̃𝐾 (𝒑𝐾 )

〉〈
𝑊 (𝒑𝐾 )

〉2 ,
(62)

where {𝒒𝑖 𝑗 } are samples of 𝒒 drawn with the procedure explained
in §5.1.2.

ACM Trans. Graph., Vol. 42, No. 6, Article 213. Publication date: December 2023.


	Abstract
	1 Introduction
	2 Related Work
	3 Differentiating One-Bounce Light Transport With Evolving Emitters
	3.1 Preliminary: Material-Form Reparameterization
	3.2 Warped-Area Reparameterization of Boundary Line Integrals

	4 Warped-Area Reparameterization of Differential Path Integrals
	4.1 Preliminary: Differential Path Integrals
	4.2 Warped-Area Reparameterization of Boundary Path Integrals

	5 Our Monte Carlo Estimators
	5.1 Estimating Divergence
	5.2 Path-Space Estimators

	6 Results
	6.1 Validation
	6.2 Comparisons with Redner
	6.3 Comparisons with PSDR
	6.4 Additional Inverse-Rendering Results

	7 Discussion and Conclusion
	Acknowledgments
	References
	A Relation With Original Warped-Area Reparameterization
	B Monte Carlo Estimation of Per-Vertex Divergence

