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Fig. 1. We introduce the formulation of reparameterized differential path integrals for physics-based differentiable rendering. Our formulation can be efficiently
estimated using advanced methods like bidirectional path tracing without requiring explicit sampling of discontinuity boundaries. In this example, we show
several glass and metal chess pieces lit by an area light. The derivatives (obtained with our bidirectional estimator) are w.r.t. the position of the light.

Physics-based differentiable rendering is becoming increasingly crucial for
tasks in inverse rendering and machine learning pipelines. To address dis-
continuities caused by geometric boundaries and occlusion, two classes of
methods have been proposed: 1) the edge-sampling methods that directly
sample light paths at the scene discontinuity boundaries, which require
nontrivial data structures and precomputation to select the edges, and 2)
the reparameterization methods that avoid discontinuity sampling but are
currently limited to hemispherical integrals and unidirectional path tracing.

We introduce a new mathematical formulation that enjoys the benefits
of both classes of methods. Unlike previous reparameterization work that
focused on hemispherical integral, we derive the reparameterization in the
path space. As a result, to estimate derivatives using our formulation, we can
apply advanced Monte Carlo rendering methods, such as bidirectional path
tracing, while avoiding explicit sampling of discontinuity boundaries. We
show differentiable rendering and inverse rendering results to demonstrate
the effectiveness of our method.
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1 INTRODUCTION

Physics-based differentiable rendering is the task of numerically
computing derivatives of radiometric measurements with respect to
arbitrary scene parameters such as object shapes and optical prop-
erties. Such scene derivatives not only can enable gradient-based
optimization for solving inverse rendering problems (e.g., [Azinovi¢
et al. 2019; Luan et al. 2021]), but also are a key ingredient for inte-
grating physics-based rendering into probabilistic-inferences and
machine-learning pipelines (e.g., [Che et al. 2020]).

A key challenge for developing general-purpose differentiable
rendering techniques is the differentiation with respect to scene
geometries (such as the pose of an object or the position of a mesh
vertex). This is because such geometries affect visibility and, if not
handled properly, can lead to severely biased derivative estimates—
which has been demonstrated by many prior works (e.g., [Li et al.
2018; Loubet et al. 2019; Zhang et al. 2019]).

To address this problem, two categories of techniques have been
introduced. The first category directly samples discontinuity bound-
aries [Li et al. 2018; Zhang et al. 2019, 2020, 2021b], and the state of
the art is Zhang et al.’s [2020] differential path integral formulation
which tracks and handles discontinuities at the path level. The sec-
ond category, on the other hand, reparameterizes rendering integrals
to avoid explicit handling of discontinuities altogether [Loubet et al.
2019; Bangaru et al. 2020], with the state of the art being Bangaru
et al.’s [2020] warped-area reparameterization.

In practice, Zhang et al.’s differential path integrals offer the
flexibility to develop advanced Monte Carlo estimators, such as
bidirectional path tracing, but require nontrivial data structures and
precomputation [Yan et al. 2022] to efficiently sample discontinuity
boundaries. Bangaru et al.’s warped-area reparameterization, on the
other hand, enjoys the convenience of not needing explicit tracking
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of discontinuties but has been limited to hemispherical integrals
and unidirectional path tracing.

In this paper, we introduce a new formulation that enjoys the
benefits of both these methods. Specifically, we adopt Bangaru
et al’s [2020] technique to reparameterize Zhang et al.’s [2020]
differential path integrals. Our resulting formulation can be esti-
mated using advanced methods (e.g., bidirectional path tracing)
without explicit sampling of discontinuity boundaries.

Concretely, our contributions include:

e Introducing a new formulation for differential one-bounce light
transport by applying Bangaru et al.’s [2020] warped-area method
on top of Zhang et al.’s [2020] material-form reparameterization

(§3).

o Establishing the formulation of reparameterized differential path
integrals by generalizing the one-bounce result in §3 to handle
full path integrals (§4).

e Developing Monte Carlo estimators leveraging unidirectional
and bidirectional path sampling methods for our reparameterized
differential path integrals (§5).

We validate our technique by comparing derivative estimates ob-
tained using finite difference (FD) and our methods with high sample
counts (Figure 11). Further, we show differentiable rendering (Fig-
ures 12, 13, 15 and 18) and inverse rendering (Figures 12—17) results
to demonstrate the effectiveness of our technique.

2 RELATED WORK

Recently, great progresses have been made in the field of physics-
based differentiable rendering. In what follows, we discuss most
relevant techniques. For a more comprehensive overview, please
refer to online course materials, e.g., [Zhao et al. 2020].

Handling discontinuities. A main challenge toward developing
general-purpose differentiable rendering engines has been the differ-
entiation with respect to scene geometry, which generally requires
calculating additional boundary integrals.

To address this problem, two classes of techniques have been in-
troduced. The first class directly samples discontinuity boundaries.
Specifically, Li et al. [2018] introduced Monte Carlo edge sampling—
the first technique in this class—by differentiating Kajiya’s [1986]
rendering equation. Zhang et al. [2019] later generalized this tech-
nique to differentiate the radiative transfer equation [Chandrasekhar
1960] for volumetric light transport. Further, Zhang et al. [2020;
2021b] have recently introduced the formulation of differential path
integrals where discontinuities are tracked and handled at the path
level, leading to significantly better performance.

The second class of methods reparameterize boundary integrals
and avoid explicit handling of discontinuity boundaries altogether.
The first approach of this category was biased and introduced by
Loubet et al. [2019]. This method was later extended by Bangaru
et al.’s [2020] warped-area reparameterization—which is capable of
offering unbiased and consistent derivative estimates.

In §3, we will derive a new formulation by applying Bangaru
et al.’s warped-area technique on top of Zhang et al.’s material-form
reparameterization to differentiate one-bounce light transport. This
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result will then be generalized in §4 to produce reparameterized
differential path integrals—the main result of this paper.

Efficient sampling and differentiation. Previously, differentiable
rendering algorithms have been largely repurposing Monte Carlo
methods developed for forward rendering to sample light paths.
Recently, several sampling methods have been developed specifi-
cally for differentiable rendering [Zeltner et al. 2021; Zhang et al.
2021a; Nimier-David et al. 2022; Yan et al. 2022; Yu et al. 2022]. Our
technique is largely complementary to these methods, although we
consider developing new Monte Carlo techniques specific to our
formulation an important topic for future research.

Additionally, several approaches have been proposed to allow
differentiable renderers scaling out to complex scenes with large
numbers of parameters [Nimier-David et al. 2020; Vicini et al. 2021].
Our mathematical formulation is largely orthogonal to these tech-
niques. Practically, our unidirectional estimator is compatible with
these techniques. On the other hand, how these methods can be
used with bidirectional path-sampling techniques (including our
bidirectional estimator) remains an open problem.

3 DIFFERENTIATING ONE-BOUNCE LIGHT
TRANSPORT WITH EVOLVING EMITTERS

We introduce in this section a simple form of our technique that
differentiates one-bounce light transport with evolving area lights.
Specifically, we revisit the material-form reparameterization intro-
duced by Zhang et al. [2020] in §3.1 before introducing our method
that further reparameterizes the material-form result using the
warped-area technique developed by Bangaru et al. [2020] in §3.2.

Problem specification. Under one-bounce light transport (aka. di-
rect illumination), the scattered (i.e., reflected or refracted) radiance
leaving a surface point y toward some point y’ can be expressed as
an integral over the surface M. of all emitters:

L (y—y) = /M Le(x—y) i(x=y—y) G(x & y) dA(), (1)

where L. denotes the source emission, f; indicates the bidirec-
tional scattering distribution function (BSDF), G is the (visibility-
aware) geometric term, and A is the area measure.

In what follows, we focus on the configuration where the emitter
surface M. evolves with some parameter € R while all other
surfaces—as well as y and y’ on the right-hand side of Eq. (1)—are
static (i.e., independent of 6). Under this setting, we consider the
problem of differentiating the outgoing radiance Iy;, with respect
to 6. We summarize commonly used symbols and their definitions
in Table 1.

3.1 Preliminary: Material-Form Reparameterization

To facilitate the differentiation of I;,, Zhang et al. [2020] propose to
rewrite the integral as one over some fixed reference surface B..
This can be achieved using a differentiable one-to-one mapping (aka.
a deformation) X(-, #) that transforms the fixed reference surface
Be to the evolving one M. (). To distinguish points on the fixed
B and the evolving M.(8), we call any p € B, a material point
and x € M. (0) a spatial point.
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Fig. 2. Material-form reparameterization: This example involves a sim-
ple configuration with a fixed occluder and an emitter over an evolving
surface M. (0). Leveraging Zhang et al.’s [2020] material-form reparam-
eterization, one can use a constant reference surface B, coupled with a
differentiable motion X such that, for any 0, X(-, 0) is a differentiable one-
to-one mapping (i.e., a deformation) from B to Me(0). We note that,
although the reference surface B, is fixed, the discontinuity curves AB,
capturing visibility boundaries with respect to the surface point y generally
depends on the parameter 6.

Applying a change of variable x := X(p, 6) to the original surface
integral (1) produces a material-form! variant:

s = /B Le(x~y) f(x—=y—3) G(x & y) J(p.6) dA(p), (2)

= Fair (P)

where
__||dA(x)
J0.0 = |G| )

is the Jacobian determinant resulting from the change of variable. In
Egs. (2) and (3), we consider x = X(p, 0) a function of the material
point p € B, and the parameter 6. Also, we omit the dependency
of the integrand Fg;, on the parameter 6 for notational simplicity.

Fundamentally, the material-form reparameterization has moved
the derivative contribution from the evolution of the domain M,
into the new integrand Fy;,—whose derivative is easier to compute
due to fewer types of discontinuities that requires handling.

Choice of reference surfaces. When estimating derivatives at 8 = 6
(for some fixed 6), the reference surface is usually set to B, =
Me(6p). Under this configuration, the mapping X(-, 6y) becomes
the identity map, causing the corresponding Jacobian determinant
J(p, 6p) to reduce to one. We note that, the derivative of J(p, 0)
with respect to 0 is generally nonzero—even at 6 = 6.

Differential direct-illumination integral. In general, differentiating
Eq. (2) using Reynolds transport theorem [1903; 1973] produces
material-form differential integrals:

interior boundary

dl+ dF
lair _ / Fair(P) 44 ) |+ /A , NP V(p)dl(p) | ()

do do

where ¢ denotes the curve-length measure, and the interior compo-
nent is a surface integral identical to Eq. (1) except for having the

The term “material form” originates in continuum mechanics where reparameteriza-
tions like Eq. (2) are common.
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Table 1. Commonly used symbols in §3. The right-most column indicates
0-dependency.

Symbol Definition 0-dep.
M. Emitter surface evolving with some parameter Yes
Be Reference surface No

X(-,0) Differentiable f)ne-to—one mapping Yes

(aka. deformation) from B, to M. (0)
Tir Radiance L(y —y’) with fixed y and y’ Yes
Fg;  Integrand of the material-form integral (2) Yes
AB.  Curves comprising jump discontinuities of Fg;, Yes
wa  Regions on the reference surface 8, comprising
B . L Yes
points p such that X(p, 6) is visible to y

98BY*  Boundary of B (and a superset of AB.) Yes
n? Unit-normal field associated with A B, Yes
v? Velocity field over AB. (and later extended to 0BY?) Yes
o8 Discontinuous velocity field over B, Yes
v Continuous velocity field obtained by convolving o4 Yes
w Spatially varying kernel for convolving o4 No

integrand Fy;, differentiated. The boundary component in Eq. (4)—
which we will define and discuss in §3.1.1 and §3.1.2 below—is a
line integral that is unique to differentiable rendering.

3.1.1  Discontinuities. The boundary integral in Eq. (4) is over a set
of curves AB. comprising jump-discontinuity points of the inte-
grand Fy;, (with respect to p). We note that, although the reference
surface B, is fixed, the discontinuity curves A8, typically depend
on the parameter 6. Also, thanks to the material-form reparame-
terization, the discontinuity curves do not contain the topological
boundary 98, of the reference surface 8. (when B, is open) since
98B, does not depend on the parameter 6. Additionally, for any
discontinuity point p € ABe, AFg;, captures the difference in Fg;,
across the boundary.

In this paper, we assume the emitted radiance L. and BSDF f;
to be CY-continuous. Under this assumption, the discontinuities
emerge solely from the mutual visibility between x and y—a factor
of the geometric term G in Egs. (1) and (2). Precisely, for any 0 € R,
the discontinuity curves A8, consist of material points p whose
spatial representations x = X(p, 0) are jump discontinuities of the
mutual visibility V(x < y) (with y fixed), as illustrated in Figure 2.
Further, we assume without loss of generality that the curve normal
n?(p) points toward the occluded side for all p (see Figure 3). Then,
it holds that

AFgi (p) = Fair (p), (5

where AFy;, denotes the difference in Fg;, across a discontinuties
boundary

3.1.2  Scalar normal velocity. In Eq. (4), another key component of
the boundary integral is the scalar normal velocity V capturing
how fast the discontinuity boundary AB. evolves (with respect to
the parameter 6) along the curve normal n?. Precisely, this term is
defined as

V(p) =n’(p) - v°(p). (6)
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Fig. 3. In this paper, we assume without loss of generality that, at any
point p on the discontinuity boundary A8, the curve normal n®(p) al-
ways points toward the occluded side of the boundary. This implies that

AFgi (p) = Fau (p)-

where v9(p) is the (vector-valued) boundary velocity indicating
the change rate (with respect to ) of the discontinuity point p.

In practice, according to Zhang et al. [2020], v?(p) can be com-
puted as follows. For any discontinuity point p € A8, the (spatial)
line segment yx with x = X(p, 0) must intersect some occluder at
one point yP (see the red point in Figure 2). Let

z= raylntersect(yﬁyB, Me) 7)

be the intersection between the ray y — y® and the emitter sur-
face M.. Although z and x are both points on the emitter, their
derivatives are different: dz/d¢ is given by differentiating the ray-
intersection computation in Eq. (7); dx/d@, on the other hand, is
obtained by differentiating the deformation X(p, ).

Lastly, with the intersection point z computed, we define the
boundary velocity at p as

d
07(p) = 35X '(2,0), ®)

where X~1(-, ) is the inverse of the mapping X(-, 8) and transforms
the emitter surface M. (6) back to the reference Be.

3.2 Warped-Area Reparameterization of

Boundary Line Integrals
Bangaru et al. [2020] have proposed to rewrite boundary integrals
as interior ones using the divergence theorem. Let Q be a closed 2D
domain and 9Q be the domain boundary associated with outward
normal field n?. Then, the divergence theorem states that, for any
continuous vector-valued function F, it holds that

/ F-nadt’:/V-FdA. )
2Q Q

By letting F(p) = Fgi;(p) v®(p) in Eq. (9), we aim to reparame-
terize the boundary component of Eq. (4) via

boundary interior
[ (raeo?)-nae =| [ v wortal. o)
AB. Bya

where B is some 2D region within the reference surface 8. (see
Figure 5). To realize this reparameterization, we still need to over-
come the following obstacles:
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Fig. 4. Open curves: The discontinuity curves AB. may be open, making
it nontrivial to apply the divergence theorem in Eq. (9). This can happen, as
illustrated in this example, when the visibility boundaries are clipped by the
edge of the emitter surface. To address this problem, we define 8y C B,
(the green region on the right) as the material representation of the spatial
region visible to y (the green region on the left). Then, the boundary 08"
of B (illustrated in magenta) is a superset of the discontinuity curves
ABe.

e The discontinuity curves AB, may not be closed (see Figure 4),
making it nontrivial to define the domain BY? of the reparame-
terized interior integral.

e The normal velocity 9 is defined on the discontinuity boundaries
AB. only and needs to be extended continuously to some vector
field v over the interior of the domain BY2.

To address these problems, we adopt Bangaru et al.’s [2020]
scheme by introducing a two-stage process:

S.1 Extending the discontinuity curves AB, to a set of closed curves

IBY? O AB. with a well-defined interior BY2. This will allow

us to treat the left-hand side of Eq. (10) as an integral over 982

(where the integrand is set to zero for all points p € 9B\ AB,).

S.2 Smoothly interpolating 2 from the boundary 9B to the in-
terior BY'?, making the right-hand side of Eq. (10) well defined.

After establishing Eq. (10), we will be able to rewrite the full
material-form differential integral (4) as one interior integral:

interior

% - _/8( Fdérg(P) + [V (Fgieo)](p)|dA(p) |- (11)

In the following, we detail Stages S.1 and S.2, respectively, in
§3.2.1 and §3.2.2 before completing the derivation of Eq. (11) in
§3.2.3.

3.2.1 Extending discontinuity boundaries. As presented in §3.1.1,
the discontinuity curves ABe emerge from visibility boundaries of
x when y is fixed. Let B2 be a subset of the reference surface Be
containing all material points p whose spatial representations x =
X(p, 0) are visible to y. That is,

Bl ={pe B : V(X(p,0) & y) =1}. (12)

Based on this definition, as illustrated in Figures 4 and 5, the
boundary 982 of BY? consists of material points p whose spatial
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Fig. 5. We define B8Y* C B, as the set of all material points p whose
spatial representations x = X(p, 0) are visible to y. This example shows a
spherical emitter with no topological boundary. In this case, the boundary
dBY? (illustrated in magenta) equals the union of visibility boundary A B,
(illustrated in black) caused by the small occluder and the silhouette (illus-
trated in gray) of the sphere with respect to y.

representations x = X(p, ) belong to one of the following cate-
gories:

C.1 Topological boundary of the emitter surface Me(6);

C.2 Silhouette of the emitter (with respect to y) comprising spatial
points x satisfying n(x) - x_g)/ =0;

C.3 Visibility boundaries resulting from occlusion.

It follows that the discontinuity boundary AB.—which corresponds
only points from the last category (C.3)—is a subset of 9By?. This
allows us to rewrite the left-hand side of Eq. (10) as

/agwa (Fdir(P) va(p)) -n%(p)de(p), (13)

where the normal velocity »2(p) is set to zero for all p beyond the
ordinary discontinuity boundaries ABe.

3.2.2 Interpolating v®. Our objective of this stage is to specify a
continuous velocity field v in the interior of the domain 8 such
that v agrees with #° on the domain boundary 98Y. To this end,
we adopt Bangaru et al.’s [2020] warped-area approach and employ
a two-step process: we first define a discontinuous velocity field
0498 and then smooth it to make it continuous. In the following, we
detail each of the two steps.

Step 1. In the first step, we define a discontinuous velocity field
o418 over the entire reference surface Be (see Figure 6).

For any material point p, when its spatial representation x =
X(p, 0) is invisible to y or resides on a visibility boundary (i.e.,
p ¢ BY?), we define 0%5(p) in a similar fashion as the boundary
velocity 0 (p) described in §3.1.2. Precisely, let y© be an intersection

of the open line segment yx and the scene geometry. Then, by

substituting y® with y© in Eq. (7), we define 095 (p) using Eq. (8).

Based on this construction, it is easy to verify that o%5(p) = 2?(p)
for any point p on the boundary 0By
On the other hand, when x is visible to y (i.e, p € By'?), there is

no occluder between x and y. In this case, we simply set odis( p) =0

Warped-Area Reparameterization of Differential Path Integrals + 213:5

z = raylntersect . d
v5(p) = 2 X7 (2,0)
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Y di.
1S —
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Fig. 6. Discontinuous velocity 2%5: For each material point p € B,, if
its spatial representation x = X(p, 0) is visible to y, we set 295(p) = 0.
Otherwise, there must exist an intersection yo (illustrated as the red point)
between the open line segment yx and some occluder. We compute z =
raylntersect(y — y°, M.) and set the velocity pdis (p) = %X’l (z,0).

Step 2. With the discontinuous velocity field 99 defined, we con-
struct the continuous velocity field » by smoothing 0%, Specifically,
for any p, we set

[ w(g: p)v¥=(q) dA(q)
v(p) = —
s, w(g: p) dA(g)

where w is a spatially varying kernel.

To ensure that the resulting v agrees with % (and, in turn, v%)
at the boundary 082, we need w(-, p) to behave like Dirac delta
distributions for all p € dBY? on the boundary, while having a
smooth falloff when p moves away from the boundary. We follow
Bangaru et al. [2020] and use:

w(g; p) = (D(g; p) +B(q) ", (15)

where D(q; p) is the distance function that must approach zero
when q approaches p, and B(q) is the boundary-test function
that should approach zero when g approach the boundary 9B2.
We note that, since the kernel w is used solely for smoothing vdis,
we consider w independent of the parameter 0 (i.e., “detached”).
In the following, we express our choices of the distance and the

boundary-test functions.

, (14)

dis (

Distance function. Bangaru et al. [2020] have introduced a dis-
tance function, but we found it non-robust—which we will demon-
strate in §6.2. To address this problem, we choose a different distance
function by letting

1 r? .
D(q; p) = (— (1—exp (——))) , (16)
o o
where
r:=|lg-pll/ro, o:=00/ro, (17)
with rg := ||x — y|| being a normalization factor that makes r and o

invariant of global scaling of the scene. In Egs. (16) and (17), a and
o0y are user-specified hyperparameters—for which we use a = 3 and
oo = 0.006 in practice which work well in all our experiments.
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Fig. 7. Boundary-test function B: For any material point g, we set B(q)
based on its spatial representation x’ = X(q, 0). In (a), we set B(q) to
r?(x")—the shortest distance from x”’ to the edge of the occluder. In (b),
x’ resides on the emitter surface that has no topological boundary. In this

—
case, we set B(q) to ‘x’y . n(x’)‘A

Boundary-test function. The last remaining ingredient for com-
pleting the kernel (15) and, in turn, the convolution in Eq. (14) is
the boundary-test function B. For all g on the boundary 0B8y?, we
set B(q) = 0. For each q € BY?, we have udis(q) = 0 (as discussed
in Step 1 above), and the value of w(q; p) does not matter (as long
as it is finite). Thus, we set B(q) = 1.

We now focus on the last case where g € B, \ (B U aBY?).
According to the definition of 8y in Eq. (12), this implies that the
spatial representation x” = X(g, 0) is (strictly) invisible to y (i.e.,
V(x’ < y) = 0). In this case, to facilitate the specification of B(q),
we first define a boundary-distance function Bdist for any spatial
point x as

BY! (x) o= min (| - n(x)

@) (18)

where x7) denotes the unit vector pointing from x to y, and r?(x)
equals the shortest distance from x to an open boundary of the
surface that contains x and +oo if the surface containing x is closed
(and, thus, has no topological boundary). Based on this construction,
it is easy to verify that, when x approaches a visibility boundary
with respect to y, B4t (x) approaches zero.

With the boundary-distance function pdist specified, we define
the boundary-test function B(q) based on the surface normal n(x")
at the spatial representation x” = X(q, 0) as follows.

—

e When n(x’) - x’y > 0, x’ lies on a “front-facing” surface with
respect to y (see Figure 7-a), and the open line segment yx’ must
intersect an occluder at x”’. We set B(g) = Bdist(x"’).

—
e When n(x’) - x’y < 0, x’ is located on a “back-facing” surface
with respect to y (see Figure 7-b). We set B(q) = Bdist (x").

3.2.3 Completing the derivation. After constructing the continuous
vector field v in §3.2.2, the right-hand side of Eq. (10) becomes well
defined.
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Lastly, according to the definition of the domain By in Eq. (12),
the spatial representation x = X(p, 0) of any material point p ¢ By 2
must be invisible to y (i.e., V(x < y) = 0). Since the mutual visibility
V(x & y) is a factor of Fg;,(p), it follows that that Fy;.(p) = 0 and,
in turn,

[V (Far0)](p) =0, forall p¢ B (19)
This allows us to extend the domain of the integral on the right-hand
side of Eq. (10) from B2 to the full reference surface Be:

[ v Gaoaa= [ votuoia e

which, when substituted into Eq. (4), yields Eq. (11)—our main result
for this section.

Discussion. The original warped-area method has been applied to
the boundary integral over spherical curves (obtained by differen-
tiating spherical rendering integrals). We will discuss the relation
of our result and Bangaru et al.’s [2020] warped-area method in
Appendix A.

4 WARPED-AREA REPARAMETERIZATION OF
DIFFERENTIAL PATH INTEGRALS

In what follows, we first provide a brief recap of differential path
integrals [Zhang et al. 2020, 2021b] in §4.1 and then introduce the
general form of our technique—the main result of this paper—in
§4.2.

We summarize the important symbols used in this section in
Table 2.

4.1 Preliminary: Differential Path Integrals

4.1.1 Path integrals for forward rendering. At the foundation of
many, if not most, advanced forward rendering techniques is the
formulation that expresses the response I of a radiometric detector
as a path integral [Veach 1997]:

1= [ 1@ duc), (21)

where X = (xo, ...,xn) denotes a light transport path (with x
on an emitter and xy on a detector), Q@ = UY_, MN+1 s the path
space (with M is the union of all object surfaces), and y is the
corresponding area-product measure.

The integrand of the path integral is the measurement contri-
bution function f given by

f(X) = Le(xo = x1) We(xN-1—XN)

N-1
l—[ fs(xn—l —Xn _>xn+1)
n=1

N
1_[ G(xp-1 & xn)} . (22)
n=1

where L. and W, are the source emission and detector importance
(or response), f; is the bidirectional scattering distribution function
(BSDF), and G is the geometric term.

Material-form path integrals. When the scene geometry M evolves
with some parameter 6, using the material-form reparameterization
described in §3.1, one can capture the evolution of M using a fixed
reference surface B coupled with a deformation X(-, #) that maps
B to M(0) for any 6.



Let p = (py, ..., py) be a material light path with each vertex
P, on a reference surface 8. Applying the mapping X(-, 0) to each
vertex of p produces a spatial light path x = (xo, ..., xx) where
xp =X(p,,0) foralln=0,1,...,N.

Then, by changing the variable of integration from spatial light
paths X to material ones p, the path integral of Eq. (21) can be
rewritten in material form as:

1= [ o ducp 3
where the domain of integration is the material path space
Q= Uy, 8N, (24)

comprising material paths (of finite lengths). Additionally, the in-
tegrand of Eq. (23) is the material measurement contribution
f that equals the product of the original measurement contribu-
tion f defined in Eq. (22) and the ratio of the two integral elements
du(x)/du(p)=TT3L J (o)

f®) = f® TR T (Pn6), (25)
where J follows the definition in Eq. (3).

4.1.2  Differential path integrals. Zhang et al. [2020] have derived
using Reynolds transport theorem [1903] derivatives of the material-
form path integral (23) with respect to arbitrary parameter 6. The
result can generally be expressed as material-form differential
path integrals:

interior boundary
dr df(p -
B ./Q%d,u(p) + /a'g} Afx(P) Vk(pg) dp(p) . (26)

where the interior and boundary components are, respectively, over
continuous regions of f and the discontinuous boundaries sepa-
rating these regions. In what follows, we explain the boundary
component in more details.

Domain of integration, discontinuity curves. The boundary integral
in Eq. (26) is over the material boundary path space Q. They
contain paths where one of the path segment goes through the scene
boundary (see Figure 8 left). The space equals the union of disjoint
subspaces asz,K:

oo N-1
o = U WON K. 27)
N=1 K=0
Each subspace aQ N,k comprises material boundary paths p =
(Po> P1s---» PN) Where p, € Bforall n # K and py is constrained
over a set of curves ABg C B such that py’s spatial representation
xg = X(pg, 0) resides on a visibility boundary with respect to xg41.
We call the spatial line segment xg xg+;—which intersects the scene
geometry M(8) at a single point x®—a boundary segment (see
Figure 8).
Similar to AB, for one-bounce light transport (see §3), the discon-
tinuity curves ABk generally depend on the parameter 6. In fact,

AB, are essentially ABy (with N = 2).
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X0
\ 4B, (6)
f>0
AN $ : X=X@0) P
\ 4 =X"1(x,0) 8f,(P)
7 Occluded |P ! =f®)
\/‘\ Boundary visible
X2 Segment M6)
B
Spatial Material

Fig. 8. The spatial representation of a material boundary path that is an
element of the subspace 35}3,1 and has the boundary segment x7 x; that
intersects the scene at exactly one point x®. Every path form this subspace
contain four vertices p, py, p,, p3 With p; constrained to a set of curves
AB; comprising points whose spatial representations beside on visibility
boundaries with respect to x5. To simplify the illustration, we only show part
of the reference surface B that corresponds to the vertical plane containing
the constrained x;.

Lastly, the measure /i associated with the material boundary path
space Q2 satisfies that

dii(p) = de(pg) [Tnzx dA(py). (28)

Difference in measurement contribution. The term AfK([)) cap-
tures the difference in material measurement contribution f when
the vertex py crosses the discontinuity boundary ABg (with all the
other vertices fixed).

As stated in §3.1.1, we assume without loss of generality that the
boundary ABg’s normal n?( points toward the occluded side (as
shown on the right of Figure 8). Then, it holds that

Ax(P) = f(P). (29)

Boundary velocity. The term Vi (pg) is the scalar normal velocity

defined as

Vi (pk) = 0}3(171() : "}9((17]()’ (30)
where vIa( (pk) is the boundary velocity of the discontinuity point py
and can be computed using the process described by Egs. (7) and (8)
in §3.1.2.

In this case, the spatial point z (that coincides xg) in Eq. (7)
should be computed by intersecting the ray xx4; — x> and the scene
geometry M(6). When differentiating this ray-intersection process,
the derivatives dxx+1/d6 and dx®/d6 are computed by differentiating
the mappings X(py1, 6) and X(p®, 8), respectively. For the latter,
pP = detach[X~1(xB, 0)] is the “detached” material representation
of the point xB.

4.2 Warped-Area Reparameterization of

Boundary Path Integrals
We now generalize our one-bounce result derived in §3.2 to reparam-
eterize the boundary component of the material-form differential
path integrals in Eq. (26).

Derivation outline. To this end, our derivation will involve the
following three main steps:
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Table 2. Commonly used symbols in §4. The right-most column indicates
0-dependency.

Symbol Definition 6-dep.
M The union of all surfaces in the scene Yes
B Reference surface No

X(-,0) Differentiable onejto-one mapping Yes
(aka. deformation) transforming 8B to M (0)
Q material path space defined in Eq. (24) No
9Q  material boundary path space defined in Eq. (27) Yes
f material measurement distribution defined in Eq. (25)  Yes
A Equals f but treats the vertex py as the only variable Yes
f (and considers all the other vertices fixed)
ABg  Jump discontinuities of fK with respect to pg Yes
wa  Regions on the reference surface 8 comprising
BY . L. Yes
points pg- such that X(pg, 0) is visible to xx1
n[a( Unit-normal field associated with A Bg Yes
01‘9( Boundary velocity over A Bx Yes
Continuous velocity field over 8
UK Yes

that agrees with ula( on the boundary ABg

(1) Expanding the boundary path integral in Eq. (26) as nested in-
tegrals of individual path vertices {p,, : n=0,1,...,N}. This
allows us to isolate the integral with respect to py- over discon-
tinuity curves ABg.

(2) Reparameterizing the isolated line integral as an integral over
the reference surface 8B using the warped-area method discussed
in §3.2.

(3) Rewriting the nested integrals with the reparameterized surface
integral with respect to pg- as a new interior path integral which,
in turn, is merged with the interior component of Eq. (26) to
produce our reparameterized differential path integral in Eq. (38).

In the following, we detail each of these steps.

Step 1. We first express the boundary path integral as a sum of
integrals over the subspaces QN g defined below Eq. (27):

co N-1

[ foveoam =Y Y [ o SV (P,

N=1 k=0
(1)

For all N, K, the integral on the right-hand side of Eq. (31) can be
further rewritten as nested integrals of individual vertices of the

material path p = (py, ..., pN):

/ )
QN K

- /. ( S 2 Vit dt’(pK)) [ a0

n#K

(32)

On the right-hand side of this equation, the inner integral—which
depends on p,, for all n # K—is with respect to the vertex py and

ACM Trans. Graph., Vol. 42, No. 6, Article 213. Publication date: December 2023.

over the discontinuity curves ABg:

I(p, : n#K):= /AB f(j)) Vi (pr) d¢(pg)
) (33)
= ~/ABK (f(P) U?((PK)) 'n?((pK) de(py)-

Step 2. Eq. (33) is essentially identical to the one-bounce boundary
integral on the left-hand side of Eq. (10). Therefore, we can apply
our warped-area reparameterization given by Eq. (10) to rewrite
Eq. (33) as a surface integral:

I(p, : n#K)= V- (fkok)| (pr) dA(px). | (39)
S [+ (o)

K

In this equation:

e The domain of integration Bg? follows the definition in Eq. (12)
and comprises all material points p whose spatial representa-
tions xg = X(pg,0) are visible to the (spatial) vertex xx.1 =

X(Pg4150)- Thatis, BY? = {px € B : V(xg & xg41) = 1}

o The vector field v is obtained using the process presented in
§3.2.2 (that smoothly extends the velocity vIa( (px) defined on the
boundary A8k into the interior of B?).

Additionally, the term fK in Eq. (34) equals the material measure-
ment contribution f but considers pg- the only variable and all the
other vertices {p,, : n # K} constants. Specifically, let gk (pg) be
the product of all factors of f that depend on i’

gx(pg) = G(xk-1 © xK) G(xg © xK41)
fslxx—2 = xK-1—=xK) fs(xK -1~ XK = XK41)
fs(xg = xk41 = xK42) J(Pr),  (35)

where x, = X(p,,, 0) is spatial representation of material point p,,
for n = K — 1,K, K + 1. Then, it holds that

(36)

P f(®)
fx(P) = gx (py) detach (gA—K(PK)) .

We note that fK( p) will be differentiated only with respect to
the point pg- (and not the scene parameter ) when evaluating the
divergence V - ( fK vk )—which we will discuss in §5.1.

Step 3. As shown in §3.2.3, the divergence [V - (fK o)) (pg) =0
for all py ¢ Bga because the mutual visibility V(xg < xg4+1) =0
by definition. This allows us to extend the domain of the reparam-
eterized surface integral in Eq. (34) from Bi® to the full reference
surface B. Then, substituting the extended Eq. (34) into Eqs. (31)

2We omit the dependency of jx on the points py_; and py.,, (that are considered
constants) for notational simplicity.



and (32) produces
/ f(P) Vi (px) dir(p)
oo N-1 .
S L el oosn

N-1
LA 17 lieox)| oo | aut
2 | k=0

where the second equality is obtained by: (i) exchanging inner sum-
mation and the integration; and (ii) rewriting the sum of integrals
over BN*! for all N as one integral over the material path space 9.

Lastly, substituting Eq. (37) into the material-form differential
path integrals (26) yields the main result of this paper—the repa-
rameterized differential path integral:

a_ i df(p) Z[ (KUK)](pK))dp<p>, (38)

where N indicates the length (i.e., number of segments) of the ma-
terial light path p.

5 OUR MONTE CARLO ESTIMATORS

We now introduce Monte Carlo estimators for our reparameterized
differential path integral expressed in Eq. (38). Specifically, we first
discuss in §5.1 the estimation of the divergence term V - (fK vK).
Then, in §5.2, we introduce our path-space Monte Carlo estimators
and how do we cache values along paths to increase computational
efficiency.

5.1 Estimating Divergence

A key component of our reparameterized differential path integral
of Eq. (38) is the divergence

V- (fK ”K) = (VfK) ok + fi (V- 0g), (39)

., Pn)-Inthe
following, we discuss the estimation of fx and V fx in §5.1.1 as well
asovg and V - vk in §5.1.2.

at some vertex py of a given material path p = (p,, ..

5.1.1 Measurement contribution. The right-hand side of Eq. (39) in-
volves the term fK and its gradient V fK. We recall that, as defined in
Eq. (36), fK (p) equals the material measurement contribution f (P
except for treating py as the only variable and all other vertices
{p, : n # K} as constants. Therefore, we have fK(j)) = f(f)), and:

f _ f
[V ()= | 5 | 0= Vaxio0 55 0
where g is defined in Eq. (35) and the gradient Vjg := 9dx/ap

can be computed using automatic differentiation.

5.1.2  Continuous velocity. The remaining terms on the right-hand
side of Eq. (39) are the continuous velocity vg (pg) and its diver-
gence [V - vg](pg) (given the neighboring vertex pg-,; that is
considered fixed). We outline this process in Algorithm 1.
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z; = raylntersect

(32 = x°, M () '

AB,(6)
X(,0)

; d
— v (1) = 75X 71(21,0)

/X/6 e
el € viis = visible | B

s —~—Jm®

Spatial Material

Fig. 9. Discontinuous velocity v‘lﬁsz Let p, € B be a fixed material
point p, € B with the spatial representation x3 = X(p,, 8). For each point
P1, we set the discontinuous velocity viﬁs (p;) to zero if p,’s the spatial
counterpart x; = X(p;, €) is visible to x,. Otherwise, there must exist an
intersection x© (illustrated as the red square) between the open line segment
x1x2 and some occluder. We compute z; = raylntersect(xz — x°, M) and
set the velocity as v?is (py) = %X_l (z1,0).

Q22 Tangent plane
atpg

Fig. 10. We sample points {q;;} near a point py by drawing points g; in
the tangent plane of pg- (from a Gaussian distribution centered at pg) and
finding all projections of g on the reference 8 along the surface normal
n(pg)-

According to the definition in Eq. (14), we express the continuous
velocity vg (pg) as

ok (pr) = ok (pr) /W (pK) - (41)

On the right-hand of this equation, the denominator is the normal-
ization term W given by

W(pg) = /3 w(q: px) dA(q), (42)

and the numerator is the convolved velocity vk defined as
ok (pr) = /B w(gs pi) 0 (9) dA(q). (43)

In Eq. (43), U?és is the discontinuous vector field that agrees with
the boundary velocity 013< and can be constructed (conditioned on
the vertex pg-, ) using the process described in Step 1 of §3.2.2 (see
Figure 9).

Sampling q. Estimating the continuous velocity vg and its diver-
gence (V-vg) based on Egs. (42) and (43) requires sampling material
points q from the reference surface 8.
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ALGORITHM 1: Consistent estimator for the velocity vx and its
divergence V - v

ALGORITHM 2: Our unidirectional estimator for the reparameter-
ized differential path integral of Eq. (38).

1 Estimate_Velocity(pg, Pry1)
Input: Two vertices pg- and pg-,, of a material path
Output: vg (pg) and [V - ok ] (px)
2 begin
/* Estimate W and og (unbiased and consistent) %/
3 W« 0; VW « 0;

4 oK — 0; V-0 « 0;

5 fori=11toNg do

6 Sample point g} from the tangent plane of py with
probability pdf(q;);

7 Compute projections {q;; : j = 1,2,...} of g on the
reference surface B;

8 foreach projection q;; of q; do

9 W‘_W(qij;PK)Q

10 Vw [VW(~;pK)](qij);

1 pdf « pdf(q;) In(pk) - n(q;;)l;

12 Compute o5 = U?(ls(qi ;) and V- 0% (using AD)

conditioned on pg,; ; // 83.2.2, Step 1

13 W +=w/pdf ; // Eq. (44)

14 VW += Vw/pdf ; // Eq. (60)

15 ok += (wolls) /pdf ; // Eq. (45)

16 V-og += (Vw - o® +w (V- 0%)) /pdf; // Eq. (61)

17 end

18 end

/* Estimate vg and V -ovg (biased but consistent) */

19 oK — o |/W; // Eq. (47)
20 V.-og — (V-og)/W - (VW - oK) /W?; // Eq. (62)
21 return vg, V - vg;

22 end

To this end, we employ a process similar to the sampling of
outgoing locations for bidirectional subsurface scattering distribution
functions (BSSRDFs) as follows. As illustrated in Figure 10, we first
draw a point ¢’ inside the tangent plane of py from a 2D (isotropic)
Gaussian distribution centered at pg. Then, we project ¢’ onto the
reference surface B along the surface normal n(pg) and return all
resulting projections 8 N {q’ + tn(pg) : t € R} as samples of q.

Estimating vg. Leveraging the same point sampling method de-
scribed above, we estimate the normalization term W and the con-
volved velocity Dk in an unbiased and consistent fashion as follows.

First, we draw Ng samples {q} : i =1,2,..., N4} of q from the
tangent plane of py. Let the probability for drawing q; be pdf(q;).
Then, unbiased estimators of W and og can be obtained via

W(qU’PK)
W(pg)) (44)
(Wie Z ; pdf(q;;)
W(‘IijiPK) U?QS(qij)
v ) , 45
(5 (px Z Z biar) (45)
where {q;; : j=1,2,...} are the projections of ¢; on B, and
pdf(;)) = pdf(g}) |n(px) - n(qy). (46)
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1 Path Tracing()
// We use x and xS to denote, respectively, the
spatial representations of pD and pf for all n
2 begin
/* Initialize detector subpath */
3 Sample camera ray pIOD - p]l) with probability pdf;

i | feWexR>xD) GO o D) J(pD) T (PP):

5 HP —0; dI<o;
6 forn=1,2,...do

/* Sample light vertex p‘z */
7 Sample pi on the emitter with probability pdiEE'

/* Compute fNEE:f(pi,pg,i..,po) and dfN/ag %/

s SNE = f R xn xR ) Glxy o xD) T(p5):
9 fN]ZE *= Le(xiax],)l);
10 Compute dfNFE := dfNEE/4g using AD;

/* Compute the sum of divergences via Eq. (49) */
u Saiv « SN (HP + h(pRs ooy Po_y) + h(py: p1));

/* Accumulate path contribution */
12 dI += (dfNEE 4 5 4:) / (pdf - pdfNFE);

/% Sample next vertex pBH */
13 Sample pB .1 With probability pdf,,,;
14 pdf = pdf,,,;

/* Update measurement contribution */
15 fo= iy = xp = xh_ ) G,y © x0) J(PR,,):

/* Update pre-fix sum based on Eq. (50) */
16 HD 4= h(pg;p13+1,p]371);
17 end
18 return dI;
19 end

Lastly, given Eq. (41), a biased-but-consistent estimator of the
continuous velocity vg can be obtained using the unbiased estima-
tions of the normalization term W and the convolved velocity og
given by Egs. (44) and (45), respectively:

(ox(pK)) = (ox () /(W (pK)) - (47)

Further, the estimation of the divergence V - vk can be accom-
plished in a similar fashion using unbiased estimates of the gradient
Vw of the normalization term W and the divergence V - 9 of the
convolved velocity 0. We provide more details of this process in
Appendix B.

Debiasing. Bangaru et al. [2020] have introduced a process based
on Russian roulette to debias estimators of v (pg-) and [V-ox ] (pg)-
On the other hand, achieving full unbiasedness requires the distance
and boundary-test functions to satisfy specific conditions, which
can be nontrivial to obtain (please see their work for more details).
We consider the debiasing of our estimators a future research topic.



5.2 Path-Space Estimators

Our reparameterized differential path integral of Eq. (38) allows the
development of path-space Monte Carlo estimators of the form:

dI 1 () N (s
<@> ~ pdf(p) (d_ep * ;6 [V' (vaK)] (pK)), (48)

where pdf(p) denotes any probability density for sampling the
material light path p = (p,,..., py), and the divergence term

V-( f}( vk) is computed using estimators presented in §5.1.

We introduce an unidirectional (§5.2.1) and a bidirectional estima-
tor (§5.2.2) that, respectively, apply unidirectional path tracing (PT)
with next-event estimation (NEE) and bidirectional path tracing
(BDPT) to sample the material path p.

Time complexity of naive implementation. Given a material path p
with N segments, evaluating Eq. (48) naively takes O(N?) time since
computing the divergence V - ( f}( vk )—which involves computing
and differentiating material measurement contribution fK (p) (with
respect to pg-)—takes O(N) time for each K.

The time complexity becomes even higher when using PT with
NEE and BDPT: For the former, each NEE effectively produces one
full path, causing the cost for tracing one path to be O(N?); For the
latter, since O(N?) paths are created® using one pair of source and
detector subpaths, the total complexity becomes O(N*).

In what follows, we address this challenge by developing new
techniques to estimate the divergence V - (fx v) efficiently for our
unidirectional and bidirectional estimators.

5.2.1 Our unidirectional estimator. We now detail our unidirectional
estimator—which we outline in Algorithm 2.

For any material path p = (p,, ..., py), according to Eq. (40) and
the fact that fK (p) = f (p), we can rewrite the sum of divergence
Sav(P) = XklV - (fK vk)](pg) by factoring out the material
measurement contribution f (p)- That is,

N-1
Zdiv(P) = Z [V - (fx vK)] (Px)

v (49)
KZ( ggliffP)K) ok (Px) + [V okl (Pg) |-

=h(pg: Px-1 PK+1)

In this equation, the term g —which is a function of py conditioned
on pg_; and pg,;—is defined in Eq. (35), and the velocity v (pg)
and its divergence [V vk ](pg) can be estimated using Algorithm 1
from §5.1.2.

We now make an important observation that Eq. (49) can be
computed in O(N) time since the term h(pg; px_1, Px41) on the
right-hand side is essentially a function of one point py and, thus,
can be computed in O(1) time.

3In this paper, we focus on standard bidirectional path tracing (BDPT) that connects all
pairs of vertices between the source and the detector subpaths.
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Configuration

Teapot

(a) Ordinary (b) FD reference (c) Ours

Fig. 11.  We validate our techniques by comparing derivative images (visu-
alized using the same color mapping as Figure 1) estimated by our method
(c) to finite-difference (FD) references (b). Our “teapot” and “bunny” results
are generated, respectively, using our unidirectional and bidirectional esti-
mators. The derivatives are visualized using the same color map as Figure 1.

Based on Eq. (49), we introduce a unidirectional estimator that
uses next-event estimation (NEE) that works as follows. When trac-
ing a detector subpath ( Po , p1 ,...), we maintain the prefix sum

n-1
HY = 3 b (P Prs Pics) = Hiy + b (p_yi PR 1)
m=1
(50)
for each vertex p],?. After performing NEE at this vertex using a light
sample point py, we obtain a full path p,, := (p, po, .. ,p1 . P D).
Leveraging the prefix sum H,, we can compute the sum of diver-
gences gy (p,,) defined in Eq. (49) using O(1) time via:

Saiv(Pa) = f(By) (H + 1 (925 05 22y ) + 1 (p5:6D)). (5D

where the material measurement contribution f (p) is computed
in O(1) the same way as (forward-rendering) unidirectional path
tracing (see Algorithm 2).

5.2.2  Our bidirectional estimator. In addition to the unidirectional
estimator, we also introduce a bidirectional one capable of handling
challenging light-transport effects such as caustics.

Our bidirectional estimator samples paths the same way as forward-
rendering bidirectional path tracing (BDPT) [Veach and Guibas 1995;
Lafortune and Willems 1996]. Specifically, it generates a source sub-

path pb = (po,pl,. .) and a detector subpath pP = (Po ,p1 yeel)
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Configuration Ordinary

Star emitter

Initial Target Opt. (our unidir.)

‘

Forward!

FD reference

Ours Redner_ WAS
Equalisample Equalzsample

Errors (our unidir.) Opt. (Redner_WAS) Errors (Redner_WAS)

007 Img. Loss . 00 Img. Loss
0.06 0.06
0.05 0.05
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Fig. 12. Equal-sample comparisons between our unidirectional estimator with Redner_WAS [Bangaru et al. 2020]. This example involves a lucy lit by a
star-shaped area light. (top) We compare derivatives with respect to the horizontal displacement of the light; (bottom) We compare inverse-rendering results
where we infer the location and the pose of the light by minimizing the L? loss between the target and rendered images shown in the row marked as “forward”.
The configuration visualizations and parameter RMSE plots in the bottom row are used only for evaluation (and not for optimization).

Table 3.
“time” measures per-iteration optimization time (in seconds) on an Amazon
EC2 c6a.8xlarge instance with 32 VCPUs. Additionally, “# img”” indicates
the number of images used for inverse rendering, and “# param.” the number
of scene parameters being optimized.

Performance statistics for our inverse-rendering results where

Scene Time #img. # param.
Star emitter (Fig. 12) 3.8 1 3
Chess (Fig. 13) 45 40 30 000
Bunny in glass  (Fig. 14) 22,5 50 20 000
Lamp (Fig. 15) 7.0 40 30 000
Dodoco (Fig. 16) 8.4 40 30 000
Caustics (Fig. 17) 213 1 12

Then, by connecting each p3, and pL (for any m and n), we obtain
P PR PD):

For efficient computation of the sum Y g V- ( fK v ) for each path
DPm.n» We extend the process described in §5.2.1 by maintaining two
prefix sums (H,Sn :m=0,1,...) and (H,],D :n=0,1,...) where the
former equals

a complete path sample p,, ,, := (pg, e

Hy =HS_ +h (p;c’n_l;pfn_z, pfn) , (52)

and the latter follows Eq. (50).
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With both pre-fix sums, we can compute the sum of divergences
in Eq. (49) in O(1) time using

2div(l_’m,n) = f(pmn) !
(HR + 3, + b (93 95 8 + 1 (PR 95 P2_1) ) 53)

resulting in the following bidirectional estimator

dI WMIS(pm,n) d s _
<£>bidir = ; P rn) (@f(Pm,n) + zcrw(Pm,n)) . (54)

In this equation, for each m and n, the material measurement contri-
bution f (Pm,n), the probability density pdf(p,, ,,), and the multiple
importance sampling (MIS) weight wniis (P, ,) can all be computed
in O(1) time (with O(N) precomputations) the same way as forward-
rendering BDPT.

6 RESULTS

We implement our unidirectional and bidirectional estimators (intro-
duced in §5.2.1 and §5.2.2, respectively) based on the differentiable
renderer released by Yu et al. [2022]. This system is CPU-based and
uses the Enzyme automatic differentiation framework [Moses and
Churavy 2020].

In what follows, we first validate our estimators using several
differentiable-rendering experiments in §6.1. Then, we compare
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Fig. 13. We compare differentiable- and inverse-rendering results generated with: (a1) our unidirectional estimator with the new distance function in
Eq. (16); (a2) our unidirectional estimator with Redner_WAS’s distance function in Eq. (57); (b1, b2) Redner_WAS with the two distance functions, respectively.
The differentiable-rendering results (top) are computed with respect to the displacement of the chess piece. For inverse rendering (bottom), we optimize the
shape of the chess piece by only looking at its cast shadow on the ground. We use 40 images among which the object has varying known poses and show one

in the row marked “forward”. The mesh error information (plotted on the bottom right) is used for evaluation only.

our estimators to two main baselines—Bangaru et al.’s [2020] (indi-
cated as Redner_WAS) and Zhang et al.’s [2020] (indicated as PSDR)
methods—in §6.2 and §6.3, respectively. Lastly, we show additional
inverse-rendering results in §6.4.

Please refer to Table 3 for performance statistics and the supple-
ment for animated versions of our inverse-rendering results.

6.1 Validation

In Figure 11, we validate our technique by comparing derivative
estimates generated using our method and finite differences (FD).
The “Teapot” example shows the cast shadow of a teapot lit by an
area light (with the configuration shown as inset), and the deriva-
tives are with respect to the displacement of the teapot. The “Bunny”
scene involves a diffuse bunny inside a Cornell box with an area
light facing the ceiling, creating an indirect-illumination dominated
configuration. For this example, we differentiate the ordinary ren-
dering (a) with respect to the displacement of the bunny. In both
examples, the derivative estimates produced by our estimators (c)
closely match the FD references (b).

6.2 Comparisons with Redner_WAS

As discussed in Appendix A, although both our unidirectional esti-
mator and Bangaru et al.’s [2020] method (indicated as Redner_WAS)
apply unidirectional path tracing, the two methods differ signifi-
cantly. We now demonstrate the practical advantages of our unidi-
rectional estimator over Redner_WAS using several differentiable-
and inverse-rendering examples.

We conduct all comparisons with Redner_WAS using equal sample
(instead of equal time) due to the significant differences between
the two codebases.

Material form. The first advantage of our estimator is the use
of the material-form reparameterization (described in §3.1). This
allows our warped-area reparameterization to handle fewer types
of discontinuities compared with Redner_WAS, leading to overall
less variance and bias.

To demonstrate this, we compare derivatives estimated with our
unidirectional estimator and Redner_WAS on the top of Figure 12.
This example uses a “Star emitter” scene involving a Lucy lit by
a star-shaped area emitter under direct illumination. We estimate
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Fig. 14. We compare inverse-rendering performance of bidirectional estimators from our technique (c), PSDR [Zhang et al. 2020] (d), and PSDR_aq [Yan
et al. 2022] (e). In this example, we optimize the shape of a diffuse object inside a rough-glass cube using 50 multi-view images (with one shown on the
top). We use a multi-stage setup for the optimization, where each stage uses varying sample counts and learning rates. We visualize the initial, target, and
optimized shapes on the bottom. Without guiding, our method outperforms PSDR and offers a similar level of performance as PSDR_aq (at equal time). The

mesh error information (plotted on the bottom right) is used for evaluation only.

derivatives with respect to the horizontal displacement of the emit-
ter. At equal sample, our unidirectional estimator produces deriva-
tives with significantly less variance. This is becuase topological
boundaries of the emitter—namely the edges of the star shape—do
not need to be reparameterized by our method since they are fixed
under the reference configuration. Redner_WAS, on the other hand,
has to reparameterize these boundaries and, thus, produces higher
variance.

Based on this configuration, we further show an inverse-rendering
comparison on the bottom of Figure 12. For this example, we opti-
mize the position and orientation of the star-shaped emitter without
directly looking at it. Under identical optimization settings (includ-
ing initializations and learning rates), our unidirectional estimator
allows the optimization to converge nicely to the groundtruth. At
equal sample, Redner_WAS suffers from much higher variance and
causes the optimization to stuck.

Distance function. Another difference between our unidirectional
and Redner_WAS—as detailed in Appendix A—is the choice of dis-
tance function D expressed in Eq. (16).

We demonstrate the effectiveness of our new distance function
using differentiable- and inverse-rendering comparisons in Figure 13.
This figure uses a “Chess” scene where a chess piece is lit by a small
area light, resulting in a cast shadow on the ground.

The differentiable-rendering results indicate that, at equal time,
our new distance function is crucial for fast convergence of deriva-
tive estimates.

For the inverse-rendering comparison, we use multiple shadow
images with the object having varying known poses (with one
shown in the figure) and optimize the shape (expressed as per-vertex
positions) of the object. With our “new” distance function defined in
Eq. (16), both our unidirectional estimator and Redner_WAS lead to
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reasonable reconstruction results. Our method slightly outperforms
Redner_WAS in this case due to the use of material-form reparame-
terization. In contrast, with the “old” distance function introduced
by Bangaru et al. [2020], both methods produce severely biased
gradient estimates, yielding low-quality shape reconstructions.

6.3 Comparisons with PSDR

We now compare our bidirectional estimator with the bidirectional
one introduced by Zhang et al. [2020] (indicated as PSDR) as well
as an improved variant (indicated as PSDR_aq) by Yan et al. [2022].
When estimating the material-form differential path integrals, both
methods handle the boundary component by directly sampling mate-
rial boundary paths. To improve efficiency, both PSDR and PSDR_aq
perform primary-sample-space guiding where the former relies on
regular grids and the latter leverages adaptive gridding. For all com-
parisons, we set the sample counts for all methods so that they take
approximately equal time to estimate the gradients.

In Figure 14, we show a “bunny in glass” scene that was originally
modeled by Yan et al. [2022] and contains a diffuse bunny inside
a rough-glass cube. Using 50 multi-view images, we optimize the
shape of the bunny. Further, we configure all optimizations to use
identical initializations (i.e., a sphere) and learning rates as well as
approximately equal time per iteration.

The complexity of this scene causes the optimization using PSDR
to converge slowly (as shown in Figure 14-d). On the other hand,
PSDR_aq’s guiding improves the rate of convergence considerably
(see Figure 14-e). Without using any precomputation or guiding, our
method is capable of offering a similar level of performance as
PSDR_agq (see Figure 14-b).

Figure 15 shows another comparison with PSDR_aq. This exam-
ple uses a “Lamp” scene where an object is lit by a desk lamp and
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Fig. 15. We compare differentiable- and inverse-rendering performance of bidirectional estimators given by our technique and PSDR_aq [Yan et al. 2022].
The differentiable-rendering results (top) are computed with respect to the horizontal displacement of the object. For inverse rendering (bottom), we optimize
the shape of the occluder by only looking at its cast shadow. We use 40 shadow images with the occluder having varying known poses (with one image shown).
Without guiding, our method outperforms PSDR_aq at equal time. The mesh error information (plotted on the bottom right) is used for evaluation only.

casts a shadow on the desktop. Further, the area emitter is encap-
sulated within a glass bulb with low surface roughness, creating a
very challenging situation for primary-sample-space guiding (since
the high-value region is extremely small). This greatly reduces the
effectiveness of guiding, causing PSDR_aq to produce more noisy de-
rivative estimates, as demonstrated by the differentiable-rendering
results (shown on the top of the figure).

For the inverse-rendering comparison (shown on the bottom),
we use 40 images of the cast shadow with the object having multi-
ple known poses (with one shown in the figure) and optimize the
shape of the object. Using identical optimization configurations and
equal time, our method outperforms PSDR_aq without the need of
precomputation or guiding.

6.4 Additional Inverse-Rendering Results

We now show additional synthetic inverse-rendering results to
demonstrate the usefulness of our bidirectional estimator.

Figure 16 uses a “Dodoco” scene that contains a diffuse object
inside the Cornell box. The object is lit indirectly by a small area
light facing the ceiling (similar to the “Bunny” scene in Figure 11).
Using 40 images (with one shown in the figure), we optimize the
shape of the object.

Additionally, Figure 17 use a “Caustics” scene with a glass bunny
inside the Cornell box. We optimize the vertex positions of a cubical
control cage by only looking at the ground.

Since both scenes involve complex light transport effects, Red-
ner_WAS and our unidirectional estimator—both of which rely on
unidirectional path tracing—perform poorly. On the contrary, our
bidirectional estimator—which is enabled by our reparameterized
differential path integral of Eq. (38)—offers the robustness and ef-
ficiency to simulate light transport in both scenes, allowing the
optimizations to converge nicely.

7 DISCUSSION AND CONCLUSION

Limitations and future work. Our reparameterized differential
path integral neglects volumetric light transport. Generalizing it to
reparameterize Zhang et al.’s [2021b] generalized differential path
integrals is an important future topic.

Also, our Monte Carlo estimators still mostly rely on unidirec-
tional and bidirectional path tracing—techniques developed for for-
ward rendering—to sample light paths. In the future, more efficient
sampling schemes using, for instance, guiding, can be helpful.
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Fig. 16. We compare inverse-rendering performance of our bidirectional and unidirectional estimators as well as Redner_WAS [Bangaru et al. 2020]. To
ensure fairness, we use equal time between our bidirectional and unidirectional estimators, and equal sample between our unidirectional estimator and

Redner_WAS.

Lastly, adapting our method to support differentiable rendering
of implicit geometries [Vicini et al. 2022; Bangaru et al. 2022] is
worth investigating.

Conclusion. In this paper, we bridge the gap in physics-based dif-
ferentiable rendering techniques between the warped-area sampling
methods and the path-space methods, by introducing the formula-
tion of reparameterized differential path integral to reparameterize
boundary components of material-form differential path integrals.
Our resulting formulation enjoys the advantages of both differential
path integrals—by enabling advanced Monte Carlo estimators (such
as bidirectional path tracing)—and warped-area reparameterization—
by not requiring explicit handling of discontinuity boundaries.

We validated our technique and evaluated its effectiveness using
several differentiable rendering and inverse rendering examples.
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A RELATION WITH ORIGINAL WARPED-AREA
REPARAMETERIZATION

In the following, we discuss the relation between our unidirectional
method and Redner_WAS—the original warped-area technique intro-
duced by Bangaru et al. [2020]. For simplicity, we use the one-bounce
setting discussed in §3.2.

When expressing one-bounce scattered radiance leaving a surface
point y in the direction w,, Redner_WAS uses the spherical-integral
formulation:

Lgir = /S , Lei(y. i) fs(y @i, @0) In(y) - wi] do(wy),  (55)

= Fg (wi)

where L¢;(y, w;) indicates emitted radiance entering y from the
incident direction wj, n(y) denotes the (unit-length) surface normal
at y, and o is the solid-angle measure.

Differentiating Eq. (55) with respect to some scene parameter 6
yields

interior boundary

dId‘ dF:; wi)
d_elr = _éz 3—9 do(wi) |+ ‘/AS AF(ir(wi) V(wi) df(w;)

(56)
where:

e Fg is the integrand defined in Eq. (55);
o AS? are spherical curves comprising jump discontinuities of F&Tir;

o V(wj) = n(w;) -
the curves AS? evolves with respect to the parameter 6.

de is the scalar velocity capturing how fast

Mathematically, Redner_WAS reparameterizes the boundary com-
ponent of Eq. (56) that differs from our boundary integral in Eq. (4)
in several significant ways as follows.

First, since the material-form reparameterization (§3.1) is not used
in Eq. (56), the discontinuity curves AS? need to include topological
boundaries and discontinuities of surface normals (see Figure 18)
of the emitter surface. As demonstrated in Fig. 12, this makes their
method much less efficient than ours when handling emitters with
complex geometries.

Second, the scalar velocity V(wj) is computed differently: (i) the
curve normal n?(w;) is defined with respect to spherical curves over
S? (as opposed to general curves over the reference surface Be);
and (ii) the velocity dwi/d6 is computed with respect to direction w;
and without differentiating the deformation’s inverse X~1(-, §) as
in Eq. (8).

At a more technical level, Redner_ WAS uses a different distance
function given by:

DY (w!;wi) = exp (1 - (wj, @])) — 1. (57)

When handling challenging scenes containing complicated ge-
ometries, small area lights, or intersecting discontinuity boundaries
(with different velocities), the convergence of the consistent estima-
tor (vk) of the continuous velocity vg in Eq. (47) is known to be
sensitive to the choice of distance functions [Bangaru et al. 2022].
In practice, our distance function expressed in Eq. (16) behaves well
in all our experiments (including the example shown in Figure 13)
with Ng = 8 auxiliary samples. The one in Eq. (57) used by Red-
ner_WAS, on the other hand, can lead to convergence issues even
with significantly greater Ng.
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Fig. 18. Equal-sample comparison between our unidirectional estimator
and Redner_WAS [Bangaru et al. 2020]. This example uses a scene with a lucy
model lit by a cube-shaped area light. The formulation used by Redner_WAS
requires the cube edges (where surface normals are discontinuous) to be
handled by warped-area reparameterization. However, the public imple-
mentation of Redner_WAS [Li 2023] neglects this case and, thus, produces
noisy and highly biased gradients (c). Our technique uses the material-form
reparameterization (§3.1) and does not need to reparameterize the cube
edges (as they are fixed on the reference surface). This allows our estimator
to produce clean gradients (b) that closely match the reference (a).

B  MONTE CARLO ESTIMATION OF PER-VERTEX
DIVERGENCE

Provided a material path p = (py, ..., py) andanindex 0 < K < N,

we now descirbe the estimation of the divergence [V - vk ](pg) of

the continuous velocity vg defined in Eq. (41).
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Estimating VW and V - 0. It is easy verify that our kernel w
defined in Eq. (15) and the discontinuous vector field vdls are differen-
tiable everywhere except at their zero-measure jump d1scontinuities
(that are fixed with respect to pg-). Thus, provided Eqgs. (42) and (43),
we have

(VW] (p) = /3 Vwda, (58)

(V- 5x] (pK)=/B((vw).o?gS+w(v.o‘}gS))dA. (59)

Using the point-sampling process described in §5.1.2, we estimate
VW and V - 0k in an unbiased and consistent fashion via

VW(ql ’PK)
ZZ e (©0)

i=1 j

([VW1 (pk))

and

([V-ok] (p)) =

Na _ Vwi(q;j: pr) - 035 (q;;) + w(q,j: pr) [V : ”?(is] (q;7)

pdf(q;;) ’
(61)

where the gradient Vw of the kernel w and the divergence V -

vd‘s of the discontinuous velocity vdls can both be computed using
automatlc differentiation.

Estimating V - vg. Finally, because
V-og = (V-85)/W = (VW) - 55) /W?,

we obtain a biased-but-consistent estimator of the divergence V -vg
using Egs. (60) and (61):

(IV - ox]1(pK))
_ (IV-ok] (pg)) B (IVW] (px)) - {0k (pK)) (62)
(W(pg)) (W(pg)*

where {g;;} are samples of q drawn with the procedure explained
in §5.1.2.
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