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ABSTRACT: When molecules are coupled to an optical cavity, new light−matter hybrid
states, so-called polaritons, are formed due to quantum light−matter interactions. With the
experimental demonstrations of modifying chemical reactivities by forming polaritons under
strong light−matter interactions, theorists have been encouraged to develop new methods to
simulate these systems and discover new strategies to tune and control reactions. This review
summarizes some of these exciting theoretical advances in polariton chemistry, in methods
ranging from the fundamental framework to computational techniques and applications
spanning from photochemistry to vibrational strong coupling. Even though the theory of
quantum light−matter interactions goes back to the midtwentieth century, the gaps in the
knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We
review recent advances made in resolving gauge ambiguities, the correct form of di%erent QED
Hamiltonians under di%erent gauges, and their connections to various quantum optics models.
Then, we review recently developed ab initio QED approaches which can accurately describe
polariton states in a realistic molecule−cavity hybrid system. We then discuss applications using these method advancements. We
review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular
nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular
vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic
principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent
advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to
a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental
results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of
polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
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1. INTRODUCTION

Coupling matter (atoms, molecules, or solid-state materials) to
the quantized electromagnetic field inside an optical cavity
creates a set of new photon−matter hybrid states, so-called
polariton states.1−3 These polariton states have delocalized
excitations among molecules and the cavity mode, which have
been shown to facilitate new chemical reactivities.1,3,4

Theoretical investigations play a crucial role in understanding
new principles in this emerging field and have suggested
interesting reaction mechanisms enabled by cavity quantum
electrodynamics (QED).5−14

Unlike the traditional coherent control strategies,15,16

polariton chemistry does not rely on fragile electronic
coherence15,16 and is robust to decoherence.10 Compared to
the classical laser−matter interactions which operate with a
large number of photons, cavity QED enables the hybrid
system to initiate chemical reactions even without photons
initially present in the cavity.3 Thus, polariton chemistry
provides a new strategy to control chemical reactivity in a
general way by tuning the fundamental properties of photons
and provides a new paradigm for enabling chemical trans-
formations that can profoundly impact catalysis, energy
production, and the field of chemistry at large.

Recent experimental demonstrations1,3,4,17,18 of this mod-
ification of chemical reactivity, however, are not well
understood and in some cases not reproducible.19,20 Since
these polaritonic systems often require a quantum mechanical
description of the photonic modes, existing physical chemistry
theories for chemical reactions are no longer directly applicable
to these hybrid systems, requiring a more exact QED approach.
While the fundamental theories of QED has been known for
decades (see Section 2.2), directly translating this knowledge
to explain measurements of polariton chemistry remains as a
major challenge in both theoretical chemistry and quantum
optics. Namely, the mechanism behind the strong coupling of a
mesoscopic scale ensemble of molecules to a single optical
cavity is still not fully understood (see Section 6). The basic
theory for describing the modes in di%erent types of cavity is
also briefly discussed in Section 2.6. Additionally, simulating
the time-dependent polariton quantum dynamics of the hybrid
matter-field systems is often a necessary and essential task, as
these polariton photochemical reactions often involve a
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complex dynamical interplay among the electronic, nuclear,
and photonic degrees of freedom (DOFs). However,
accurately simulating the polaritonic quantum dynamics
remains a challenging task and is beyond the paradigm of
traditional photochemistry, which does not include quantized
photons, and quantum optics which does not have a well-
defined theory to include the influence of nuclear degrees of
freedom to describe reactivity nor properly account for
molecular structures.21 Over the past years, enormous progress
has been made to address this interdisciplinary challenge. We
have witnessed how electronic structure theory (Section 3),
nonadiabatic quantum dynamics (Section 4), and statistical
mechanics (rate constant theory, in particular, Section 5) have
actively participated in this exciting field in the past few years.

Polariton chemistry has become a fast-growing community,
with exciting progress occurring daily. We feel this is the right
time to review this exciting progress and encourage more
people from both chemistry and quantum optics to
continuously contribute to this ever-growing field. In this
review, we will focus our discussion on the extensive theoretical
advances in polariton chemistry. As such, we will not review, in
detail, many experimental works, except briefly mention them
in Section 4 and Section 5. For those readers interested in the
details of the experimental works, there are a number of
excellent reviews available that discuss the experimental
progress and challenges of polariton chemistry.1,2,22−24 We
hope that this review will serve as a useful tool for anyone who
wants to become familiar with the recent theoretical advances
in polariton chemistry and molecular cavity QED and will
significantly benefit the entire community.

1.1. Jaynes-Cummings Model in Cavity QED

In quantum optics, atoms/molecules (modeled as two-level
systems) coupled to a single mode in an optical cavity are a
well-studied subject. This study has led to well-known model
Hamiltonians, such as the Jaynes-Cummings model25 and the
Tavis-Cummings model.26 Since these two models are also
widely used in recent investigations of polariton chemistry,
here we briefly discuss them and the intuitive insights they
provide. We would like to emphasize that the JC and TC
models are good qualitative pictures, but their accuracy
becomes questionable at best for realistic molecular systems
(see Section 2).

We consider a single emitter with two electronic states |g⟩
and |e⟩ with the following matter Hamiltonian

= | | + | |E g g E e eg eM (1)

where Eg and Ee are the ground and excited state energy. The
well-known Jaynes-Cummings (JC) Model25 is used to
describe the single emitter-cavity hybrid systems and has the
following form

= + + + +
† † †i

k

jjj
y

{

zzza a g a a
1

2
( )JC M c c (2)

where σ
† = |e⟩⟨g| and σ = |g⟩⟨e| are the creation and

annihilation operators for the molecular excitation, respec-
tively, and a ̂† and a ̂ are raising and lowering operators of the
cavity field, respectively, with the cavity frequency ωc. The

term +
†( )a ac

1

2
describes the cavity field (under the single

mode approximation); its eigenstate |n⟩ describes the number
of photons inside the empty cavity (without the presence of
the emitter), where n=⟨n|a ̂†a|̂n⟩. Lastly, gc is the coupling

strength between the matter and the cavity field, which is often
expressed as

= ·g e

2
egc

c

(3)

where μeg is the transition dipole vector between the |g⟩ and |e⟩
states, e ̂ is the cavity field polarization direction (with the hat
indicating its status as a unit vector), ϵ is the permittivity inside
the cavity (for vacuum, ϵ = ϵ0), and is the e%ective cavity
quantization volume. A rigorous derivation of the JC model
Hamiltonian from the minimal coupling Hamiltonian (eq 35)
can be found in Section 2.5. Experimentally, such single
emitter-cavity strongly coupled systems can be realized in
plasmonic cavity setups27 as shown schematically in Figure 1a.
This Jaynes-Cummings Hamiltonian is used ubiquitously
across the field of quantum optics, from quantum computing28

applications to fundamental physics experiments.29,30

The eigenstates of the JC Hamiltonian can be obtained
analytically, using a convenient basis of matter and photon
states, |g⟩⊗|n⟩ ≡|g,n⟩ and |e⟩⊗|n⟩ ≡|e,n⟩ for n = 0, 1,···. The
polariton ground state of the hybrid system is |g,0⟩, and the nth
excited upper polariton state (|+,n⟩) and the nth excited lower
polariton state (|−,n⟩) are

| + = | + | +n e n g n, cos , sin , 1 (4a)

| = | + | +n e n g n, sin , cos , 1 (4b)

Figure 1. Schematic illustrations of commonly used optical cavities in
molecular polariton research. (a) Plasmonic cavity: A single molecule
coupled to a plasmonic field. (b) Fabry−Peŕot cavity: An ensemble of
molecules coupled to a quantized vacuum radiation field. In both
panels, the arrows and e ̂ indicate the dominant cavity field
polarization directions that matter couple to. Panels (c) and (d)
depict the polariton spectrum for a single molecule coupled to cavity
(depicted in panel a) and N molecules collectively coupled to a cavity
(depicted in panel b). (e) Molecular absorption, and (f) the Polariton
absorption. For a single molecule case, there is no dark state (see
panel c), but for the N-molecule collective coupling case, one can
observe the dark states due to their nearly zero transition dipole.
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where = [ + ]g n Etan 2 1 /( )
1

2

1

c c is the mixing

angle, and ΔE = Ee − Eg is the energy di%erence between the
ground and excited states. The eigenenergies of the polariton
states are

= + + +

± +

±
E n E E n

E

( )
1

2
( ) ( 1)

1

2
( ) ,

g e

n

c

c
2 2 2

(5)

where = +g n2 1
n c

is the nth Rabi frequency (which is the

Rabi splitting under the resonant condition when ΔE − ℏωc =
0). Note that when the light−matter detuning (ΔE − ℏωc) is
zero, = =sin cos 1/ 2 , and E± (n) = Eg + ℏωc (n + 3/
2) ± Ωn/2. This is the resonance case, which is schematically
depicted in Figure 1c for the n = 0 case. A full diagram of JC
polariton eigenstates with all n is commonly referred to as the
Jaynes-Cummings ladder (e.g., see Figure 1 in ref 21). In the
JC model, the di%erence in energy between the upper and
lower polariton states is called the “Rabi splitting”

= +
+

n E n E n E( ) ( ) ( ) ( )
nR c

2 2
(6)

For a resonant light−matter coupling, ΔE − ℏωc = 0,
= = +n g n( ) 2 1

nR c
, which scales linearly with the

coupling strength gc and the square root of the “photon
number” n, providing a simple and intuitive way to consider
how a system changes as a function of coupling strength.
Figure 1c depicts the situation for n = 0.

The JC Hamiltonian in eq 2 and its eigenenergies (eq 5)
correspond to the ideal cavity situation where the cavity
photon loss and the matter de-excitation process (e.g., due to
the nonradiative decay) are not considered. In a realistic
experimental setup, the cavity photon only has a finite lifetime
before it leaks outside the cavity. The condition to achieve
strong coupling, (i.e., where one can observe the Rabi splitting
in absorption spectra) depends on the relation between the
excitation lifetimes in the cavity and the coupling strength gc.

One can phenomenologically introduce di%erent sources of
dissipation that lead to a spectroscopic broadening of the
light−matter eigenspectrum. Let us denote the loss rate for the
cavity photon as κ, and the decay rate of the matter excitation
as γ (see Figure 14a for a schematic illustration). For the
Markovian dissipation at zero temperature, the cavity−matter
density matrix for the JC model is given with the quantum

Liouville equation = [ ] + +, ( ) ( )
i

aJC 2 2

where =
† † †

a a a a a a( ) 2
a

is the dissipative part
based on the Lindblad jump operator a ̂ with a similar
expression with the matter DOFs for ( ). For the JC model,
the approximate evolution of the density matrix under such
dissipation can be captured by defining an e%ective
Hamiltonian

=
† †

i a a i

2 2
JC JC (7)

such that
†

( )
i

JC JC when ignoring the 2aρ̂̂a ̂†

and 2σ̂ρ̂σ̂
† terms in ( )

a
and ( )

a
. Similar to the JC model

Hamiltonian, when including dissipation, JC is block-

diagonalized within the {|e, n⟩, |g, n + 1⟩} subspace and the

matrix elements of JC within this subspace are written as

=

+ + +

+

+ +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

i

k

jjj
y

{

zzz

E i n g n

g n E i

n

( 1)
2

1

1
2

1

2
,

g

e

JC

c c

c

c
(8)

where = | | + | |g g e e, 1 , 1 , 0 , 0 is the identity operator
(in this electronic−photonic subspace). The complex

eigenvalues of JC are obtained by diagonalizing the above

2 × 2 matrix as,31−35

= + + +
+ +

±
+

+

±

i

k

jjjj

y

{

zzzz

E n E E n i
n

E i
n

( )
1

2
( ) ( 1)

( 1)

4

1

2

( 1)

2
,

g e

n

c

c

2
2

(9)

where the real parts of E±(n) are energies of the states |±,n⟩
and the imaginary parts yield their broadening. In resonance,
when E g + ℏ ω c = E e , t h e Rab i - s p l i t t i n g i s

=
+

n( )
n

n

R
2 ( ( 1) )

4

2

. Thus, to observe the Rabi-

Splitting at n = 0, we require Ωn ≫ κ or γ which defines the
strong coupling regime.

To get an intuitive understanding of the cavity-modified
photochemistry, consider the Hamiltonian in the |e, 0⟩ (the
molecule in the excited state with 0 photons in the cavity) and
|g, 1⟩ (the molecule in the ground state with 1 photon in the
cavity) subspace. This is the most common treatment of the
Jaynes-Cummings Hamiltonian, and further details on it can be
seen in refs 6, 36. The polariton Hamiltonian within this
subspace is expressed as follows

=

+

+

Ä

Ç

Å
Å
Å
Å
Å
Å
Å
Å
Å
Å
Å
Å

É

Ö

Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ

H
E g

g E

R

R

( )

( )

1

2

g

e

pl

c c

c

c

(10)

where 1

2 c
is the zero point energy of the quantized photon

mode inside the cavity. Here we have made the replacement
Eg/e → Eg/e(R) such that the ground and excited state potential
energies depend on molecular nuclear configuration R, that is
Eg(R) and Ee(R) are the molecular potential energy surfaces
(PES).

The polariton potential energy surfaces can be obtained by
diagonalizing 2 × 2 matrix given in eq 10 and are given as

= + +

± +

±
E E E

E E

R R R

R R

( )
1

2
( ( ) ( ))

1

2
( ( ) ( ) ) .

g e

e g

c

c
2

R
2

(11)

These light−matter hybrid PESs E±(R), so-called polaritonic
PESs, adapt their curvature from both the ground and the
excited state PESs and depend on the light−matter coupling
strength ℏgc and the cavity photon frequency ℏωc. Therefore,
the excited state potential energy landscape, and consequently
the photochemistry of the cavity-molecule system, is modified
with ℏgc and ℏωc acting as tuning knobs to control the
molecular excited state dynamics. Note that within the
approximated JC model, the |g, 0⟩ state has the PES
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+E R( )g 2

c which is the same as the molecular ground state

|g⟩ other than the irrelevant zero-point energy shift of
2

c . This

change of PES landscape is the central idea of polariton
photochemistry (in the single molecule coupled to a single
radiation mode limit) which will be discussed in detail in
Sections 3 and 4. Details of the rigorous light−matter
Hamiltonian, as well as various approximate ones (such as
the JC model), and their applicability are discussed in Section
2.

1.2. Tavis-Cummings Model and Collective Light−Matter
Coupling

Most of the recent molecular cavity QED experi-
ments,3,34,37−40 however, use the setup illustrated in Figure
1b, where many molecules are collectively coupled to the
quantized electromagnetic field inside a Fabry−Peŕot optical
cavity (formed by reflecting mirrors). To describe this
collective regime of light−matter coupling, the Tavis-
Cummings (TC) model Hamiltonian26 is used as an analog
to the JC Hamiltonian with many molecules. This model is
under the same level of approximation (mainly the rotating
wave approximation) as the JC model but with many
molecules, taking the following form

= + + + +

= + + + +

†

=

† †

† † †

i

k

jjj
y

{

zzz

i

k

jjj
y

{

zzz

a a g a a

a a N g a a

1

2
( )

1

2
( ),

J

N

J J

N N

TC M c

1
c

M c c

(12)

where J is the index of the two-level atoms/molecules in the
cavity (and there are a total of N of them e%ectively coupled to
the cavity), with corresponding exciton creation operator, σ̂J

†=|
eJ⟩⟨gJ|, and annihilation operator, σ̂J = |gJ⟩⟨eJ|. Further, due to
the model’s symmetry, one can introduce the collective

excitation operator = | |
†

e gN N J J J

1 and collective de-

excitation operator = | |g eN N J J J
1 . Similar to the JC

model, the TC model also has analytical solutions to its
eigenstates and eigenenergies in the first excitation subspace.
The total ground state is |G, 0⟩ = |g1⟩ ⊗···|gJ⟩··· ⊗|gN⟩ ⊗|0⟩,
the photon dressed ground state is |G, 1⟩, where all the
emitters are in the ground state with one photon in the cavity,
and the state where the all the molecules are in the ground
state except for the Jth molecule in the excited state is |EJ, 0⟩ = |
g1⟩ ⊗···|eJ⟩··· ⊗|gN⟩ ⊗|0⟩. In the single excitation manifold, the
collective “bright state” of the matter is

| = |

=
N

EB, 0
1

, 0

J

N

J

1 (13)

which will explicitly couple to the |G, 1⟩ state, resulting in the
polariton states | ± ⟩ (which have nonzero transition dipoles
from the |G, 0⟩ states) as follows

| + = | + |Gcos B, 0 sin , 1
N N (14a)

| = | + |Gsin B, 0 cos , 1
N N (14b)

where = [ ]g N Etan (2 )/( ) /2N
1

c c is the mixing

angle under the collective coupling regime, and ΔE = Ee − Eg is
the energy di%erence between the bright state |B, 0⟩ (as well as

the singly excited manifold) and ground state |G, 0⟩. Through
the collective coupling to the cavity, the polariton states are
delocalized across all N molecules in the cavity and should be
viewed as mesoscopic quantum states that involve N molecules
and a single cavity mode. When N = 1 (single molecule), the |
±⟩ states in eq 14 reduces back to the |±,0⟩ states of the JC
model in eq 4.

The eigenenergies of the upper and lower polariton states
also di%er from the single-molecule picture because their Rabi
splitting now scales with N as

= + + ± +
±
E E E E Ng

1

2
( )

1

2
( ) 4g e c c

2

c

2

(15)

where the collective Rabi splitting is defined as

= +
+
E E E Ng( ) 4R c

2

c

2
(16)

which scales as N . Figure 1d shows a schematic of an energy
level diagram for this system at the resonance condition (when
ΔE − ℏωc = 0), and the Rabi splitting is written as

= = · ·Ng
N

e2
2

egR c

c

0 (17)

This is a typical example of the collective e%ect,
demonstrating how many molecules collectively coupled to
the cavity can enhance the e%ective coupling strength by N ,
or collectively enhance the Rabi splitting with the concen-
tration N/ of the molecules inside the cavity.39,41,42

The rest of the N − 1 eigenstates (in the single excitation
manifold) of the TC model are referred to as the “dark”
states9,40,43 (labeled by α) which are expressed as follows

| = |D c E, 0 , 0

J

J J

(18)

where ∑J cJ
α = 0 for all dark states α. These states are

superpositions of the N matter states {|EJ, 0⟩}, and thus are
also delocalized across N molecules (one should note their
di%erence compared to the individual localized excited state |
EJ, 0⟩). Energetically, they are the same as the original single-
molecule excitation, Ee, and are depicted as the gray states in
Figure 1d. These dark states do not mix with the photon-
dressed state |G, 1⟩ and do not contain any photonic excitation
component under the TC model consideration. These dark
states are also optically dark from the ground state |G, 0⟩ due
to the net zero transition dipole ⟨Dα,0|∑J μ̂J |G,0⟩ = μeg ∑JCJ

α

= 0 if we assume ⟨e|μ̂J |g⟩ = μeg for all J ∈ [1, N] emitters.
Optically, one will see no significant absorption in between two
polariton absorption peaks (when ignoring disorder). It should
be noted that this treatment of the “dark” states is only valid in
the Tavis-Cummings level of theory (when considering
identical, noninteracting emitters without any disorder). In
real molecular systems, there are dynamical fluctuations in the
molecules due to phonon fluctuations (electron−nuclear
interactions) such that even states that are “dark” in the TC
level of theory have some nonzero photonic character40 (See
Section 2.6 and Section 6 for more information on when the
TC picture breaks down and recent theoretical advances in
modeling collective systems). Considering intermolecular
interactions will also break the degeneracy of the dark states,
as shown in ref 44. In some of the recent molecular polariton
experiments, it has been theoretically estimated (assuming a
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simple TC model Hamiltonian) that there are N ∼ 106 − 1011

organic molecules e%ectively coupled to the cavity mode.45,46

For CdSe nanoplatelets coupled to a Fabry−Peŕot cavity,40 it
was estimated that there are N ∼ 103 emitters per cavity mode.

1.3. Theoretical Challenges

In quantum optics, coupling strengths can be classified as
weak, strong, ultrastrong, and deep strong.47 The classification
between weak and strong is governed by the relationship
between the coupling strength, g N

c

, and the loss rate

(whether cavity or molecule energy loss), γ. The coupling is
considered weak for <g N / 1

c
and strong for >g N / 1

c
.

The classification between ultrastrong and deep strong,
however, depends on the ratio gc/ωc, with the ultrastrong
regime being < <g N0.1 / 1

c c , and the deep strong regime

being >g N / 1
c c .

While the Jaynes-Cummings and Tavis-Cummings models
provide valuable, intuitive insights into how light couples with
matter inside optical cavities, these models are subject to many
approximations: the rotating wave approximation, the dipole
approximation, the two-level approximation, and also the
absence of permanent dipole and dipole self-energy. As
coupling strengths increase, these approximations begin to
break down,47,48 and more rigorous Hamiltonians should be
used (such as those discussed in Section 2). In the ultrastrong
and deep coupling regimes, the JC and TC models fail to
accurately capture the results of more rigorous methods.

The necessity of using more rigorous models is substantiated
by the recent progress of experimentation in recent years. For
example, the Ebbesen group in ref 49 achieved ultrastrong
light−matter coupling in a Fabry−Peŕot cavity with an
e%ective =g N / 0.16

c c . Additionally, for single molecules

in plasmonic cavities, the Baumberg group in ref 27
demonstrates strong coupling that was nearly in the ultrastrong
regime. These seminal experiments cannot be accurately
described with the simple JC and TC models. In this manner,
there has been a significant push in recent years to advance the
theoretical understanding and simulations for these systems to
explain current experiments and predict future ones.50

1.4. Outline of the Review

This review summarizes recent theoretical advances in
polariton chemistry, and it is organized as follows. Section 2
discusses the fundamental theoretical framework behind light−
matter interactions. Starting from the most rigorous Hamil-
tonian, it discusses how and when to perform various
approximations to reduce the computational complexity
while keeping the relevant physics. Section 3 discusses how
to apply the fundamental framework of the previous section to
realistic systems with ab initio electronic structure methods.
This section reviews di%erent methods of marrying electronic
structure methods to these hybrid light−matter systems to
model complicated polariton systems. Section 4 applies the
methods of Sections 2 and 3 to photochemistry, showing how
simple chemical reactions such as photoisomerization or
charge transfer reactions can be altered by strongly coupling
electronic transitions to a cavity. Section 5, similarly,
summarizes recent progress in understanding vibrational
strong coupling (VSC), where the nuclear vibrational states
are strongly coupled to the cavity, leading to changes of the
ground state chemical kinetics. This section further shows how
the fundamentals of statistical mechanics like rate constant

theory can be used to understand these reactions. Section 6
goes on to present recent theoretical explanations of
experiments in the collective coupling regime, a regime that
is largely mysterious since direct modeling of experimentally
relevant numbers of molecules is typically impossible, and
simple models like the TC model break down for
experimentally realizable coupling strengths. This section also
discusses various recent theoretical hypotheses to explain the
experimentally observed suppression or enhancement of the
reaction rate constant under the collective vibrational strong
coupling regime.

2. FUNDAMENTAL THEORY OF LIGHT−MATTER
INTERACTIONS

While the Jaynes-Cummings and Tavis-Cummings models
discussed in the Introduction provide an intuitive under-
standing of light−matter interactions, these simplified models
break down for many systems that cannot be thought of as
two-level systems or have permanent dipole.51 For most
molecular systems, a more rigorous framework is needed to
provide even qualitatively accurate results. With this in mind,
this section discusses the various theoretical representations
that go beyond simple quantum optics models like the Jaynes-
Cummings model.

Going beyond the framework discussed in the Introduction,
this section outlines the fundamental theory of cavity QED.
Section 2.1 starts o% by reviewing the formulation of molecular
Hamiltonians. Section 2.2 similarly reviews quantum electro-
dynamics (QED). Section 2.3 discusses the most common
cavity QED Hamiltonians as they are represented in the full
Hilbert space. Section 2.4 then goes on to show recent
advances and controversies on how to accurately represent
these QED Hamiltonians in a truncated Hilbert space. Section
2.6 discusses a further extension of the typical QED
Hamiltonians to models which include many molecules and
many photonic modes in a single cavity.

We also recommend to readers the following resources for
further reading: ref 47 provides an excellent review on di%erent
coupling regimes of light−matter interactions, including the
ultrastrong and deep-strong couplings; ref 52 provides an
extensive discussion on gauge ambiguities in a broader
perspective; ref 53 provides a thorough review on recent
progress in molecular cavity QED; refs 54−58 provide
fundamental discussions on QED and cavity QED; and lastly,
refs 57 and 59 provide an excellent introduction to quantum
optics.

2.1. A Review of Molecular Hamiltonians

Here, we briefly review some basic knowledge of the molecular
Hamiltonian, which will be useful for our discussions of
molecular cavity QED. We begin by defining the matter
Hamiltonian as follows

= + = +H V
m

VT x p x( )
1

2
( )

j j
j jM
2

(19)

where j is the index of the jth charged particle (including all
electrons and nuclei), with the corresponding mass, mj, and
canonical momentum, p̂j = -iℏ∇j. We denote electronic
coordinate with r,̂ and nuclear coordinate with R̂, and use
xĵ∈{rj,Rj} to represent either the electron or nucleus, with x ̂
being the coordinate operator for all charged particles. Further,
T̂ = T̂R + T̂r is the kinetic energy operator for all charged
particles, where T̂R and T̂r represent the kinetic energy
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operator for nuclei and for electrons, respectively. Further,
V̂(x ̂) is the potential operator that describes the Coulombic
interactions among the electrons and nuclei. The electronic
Hamiltonian is often defined as

= = +H H VT T x( )
rRel M (20)

which includes the kinetic energy of electrons, electron−
electron interactions, electron−nuclear interactions, and
nuclear−nuclear interactions. The essential task of the
electronic structure community is focused on solving the
eigenstates of Ĥel at a particular nuclear configuration R as
follows

| = |H ER R R( ) ( ) ( )el (21)

where Eα(R) is commonly referred to as the αth potential
energy surface (PES) or adiabatic energy, and |ψα(R)⟩ is
commonly referred to as the αth adiabatic electronic state.

In the adiabatic electronic basis {|ψα(R)⟩}, the matter
Hamiltonian can be expressed as60,61

= | | + | |

i

k

jjjjjjj

y

{

zzzzzzz
H i E

M
p d R

1

2
( )M

2

(22)

where P̂ is the nuclear momentum operator, M is the tensor of
nuclear masses, and we have used the shorthand notation |ψα⟩
≡|ψα(R)⟩, and dαβ is the derivative coupling expressed as

= | |d R R( ) ( )
R (23)

Note that the above equation is equivalent60,61 to the
commonly used form of the vibronic Hamiltonian

= [ + · + ]| |

+ | |

H D

E

M
d

R

2
2

( ) ,

R RM

2
2

where Dαβ = ⟨ψα (R)|∇R
2 |ψβ (R)⟩ is the second derivative

coupling. A simple proof can be found in ref 51.
Later, we will see that the dipole operator plays an important

role in describing light−matter interactions, so let us spend a
bit of time to discuss the molecular dipole operator. The total
dipole operator of the entire molecule is

= z x

j

j j

(24)

where zj is the charge for the jth charged particle. The matrix
elements of the total dipole operators can be obtained using
the adiabatic states as

= | |R R R( ) ( ) ( ) (25)

For α ≠ β, μαβ (R) is referred to as the transition dipole
between state |ψα⟩ and |ψβ⟩, while μαα (R) is commonly
referred to as the permanent dipole for state |ψα⟩.

It is often diOcult to get accurate electronic states for highly
excited adiabatic states. It is thus ideal to consider a Hilbert
subspace of the electronic Hamiltonian. Considering a finite
subset of electronic states {|ψα⟩} (see eq 21) where there is a
total of matter states, one can define the following
projection operator

= | |

=

R R( ) ( )
1 (26)

which defines the truncation of the full electronic Hilbert space

= +
r

which has an infinite basis, to a subspace that

contains a total of states, where
r
is the identity operator in

the electronic Hilbert subspace (the subspace containing all of

the electron DOF) and =
r

is the subspace being
projected out.

Using the projection operator, one can define the projected
matter Hamiltonian (or the truncated matter Hamiltonian) as
follows

= = +H VT x( )M M (27)

Throughout this review, we use calligraphic symbols (such

as
M
) to indicate operators in the truncated Hilbert space,

which we have already started in eq 1 of the Introduction.
One can also explicitly write the dipole operator in the

truncated Hilbert space as follows

= | |

+ | |

=

R R R

R R R

( ) ( ) ( )

( ) ( ) ( ) .

1

(28)

In the same truncated electronic subspace as defined by
(eq 26), we can diagonalize the dipole matrix in eq 28 to
obtain

= | |R( )
(29)

where |ϕν⟩ is the eigenstate of the projected dipole operator

with

| = |c R R( ) ( )
(30)

and cα
ν (R) = ⟨ψα (R)|ϕν⟩. An example of the dipoles for LiF is

provided in Figure 6(b).
The projection operator in eq 26 can also be expressed as

= | |

=1 (31)

which is simply a unitary transform of eq 26 (from the
|ψα(R)⟩-representation to the |ϕν⟩-representation).

In the literature, the eigenstates of , {|ϕν⟩}, are referred
to as the Mulliken-Hush (MH) diabatic states,62−66 which are
commonly used as approximate diabatic states that are defined
based on their characters. They are approximate diabatic states
in the sense that

| | 0
R (32)

hence, we drop the R-dependence in |ϕν⟩. Constructing
rigorous diabatic states (where the derivative coupling is
rigorously zero for all possible nuclear configurations) in a
finite set of electronic Hilbert spaces is generally impossible,
except for diatomic molecules. Recent theoretical progress on
diabatization can be found in refs 67−69.
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In the electronic subspace defined within the MH diabatic

subspace using (eq 31), Ĥel (eq 20) has o%-diagonal (or
“diabatic”) coupling terms

= | | = | |
*

V H c c HR R R( ) ( ) ( )el el
(33)

We can explicitly express the matter state projected

= + | | + | |T V VR R( ) ( )
RM

(34)

This is also the molecular Hamiltonian for any diabatic
representation.

2.2. A Review of Quantum Electrodynamics

We provide a quick review of quantum electrodynamics
(QED).48,53 We begin by writing the electric field as Ê(r) =
Ê∥(r) + Ê⊥(r), with its longitudinal part Ê∥(r) that is curl free
(irrotational), ∇ × Ê∥(r) = 0, and the transverse part, Ê⊥(r),
that is divergence-free (solenoidal), ∇· Ê⊥(r) = 0. The
magnetic field is purely transverse B̂ (r) = B̂⊥ (r), because it is
divergence-free ∇· B̂ (r) = 0. These fields have spatial
dependence, with spatial coordinate r (not to be confused with
the electronic coordinate operator, r)̂.

In the context of cavity QED, most simulations are
performed in one of two gauges, either the Coulomb gauge54

or the dipole gauge (or equivalently the Poincare/multipolar
gauge under the dipole approximation54),5,13,70 where the term
“gauge” refers to the specific representation of the vector
potential Â. Expressing Â = Â∥ + Â⊥, with its longitudinal part
Â∥ that is curl free ∇ × Â∥ = 0, and the transverse part Â⊥ that
is divergence-free ∇· A⊥ = 0. In principle, one can do gauge
transformations that change the longitudinal part Â∥, because
the physically observed quantities will not change, (e.g., the
magnetic field, since B̂ = ∇ × Â = ∇ × Â⊥). One often refers to
fixing a gauge by choosing the value of ∇ Â, and the gauge
transformation as a unitary transformation that is e%ectively
adding an additional ∇χ component to Â∥, which is purely
longitudinal because when χ is a scalar function in space, and
∇χ is curl-free (∇ × ∇χ = 0).

When deriving QED from first-principles, one often uses the
minimal coupling Hamiltonian in the Coulomb gauge71 (see
eq 45). From there, the electric-dipole Hamiltonian can be
found via a gauge transformation. The commonly used Pauli-
Fierz (PF) QED Hamiltonian48,53,72 (see eq 56) in recent
studies of polariton chemistry can be obtained by applying
another gauge transformation on the electric-dipole Hamil-
tonian. We will further discuss the consequence of matter state
truncation on gauge invariance, the connection with the
commonly used quantum optics model Hamiltonians, and
when they will break down in molecular QED.

When fixing a specific gauge, one defines the gauge-
dependent vector and scalar potentials for the electromagnetic
field. By choosing the Coulomb Gauge (i.e., by enforcing ∇ · A
= 0) which makes the vector potential purely transverse, Â =
Â⊥, the Hamiltonian of point charge particles (including both
electrons and nuclei) interacting with the electromagnetic field
can be written as follows54

= +

+ [ + ]

H
m

q dr

dr c

p A r E r

e r B r

1

2
( ( ))

2
( )

2
( ) ( ) ,

j

N

j
j j j

2 0 3 2

0 3 2 2 2

(35)

where the sum includes both the nuclear and electronic DOFs,
rj and pj are the position and momentum of the charged
particle j, with the charge qj and mass mj. Further, A⊥(r),
E⊥(r), and B⊥(r) are the transverse vector potential, electric
field, and magnetic field, respectively. The energy associated
with E∥(r) (the second term in eq 35) is given by

= +
| |

= +

dr

q dk

k

q q

V V

E r

x x

x x

2
( )

2 (2 )

1

8

( ) ( ).

j

j

i j

i j

i j

j

j

0 3 2

2

0
3

3

2
0

(36)

Here, the first term ∑j ϵj
∞ in the third line of eq 36 is a time-

independent infinite quantity that is referred to as the self-
energy (not to be confused with the dipole self-energy), which
can be regarded as a shift of the zero-point energy57 and is
dropped in the last line of the above equation. It should be
noted that eq 36 is for the free space situation; when a system
is placed inside an optical cavity, the integral over k in eq 36
should be replaced by a discrete sum due to the cavity’s spacial
confinement.57 Nevertheless, one often ignores these {ϵj

∞}
terms as they only contribute to the zero-point energy of the
field. In short, the Coulomb potential Vcoul (x̂) ≡ V(x̂) emerges
from the longitudinal electric field. The last term in eq 35 is the
energy associated with the transverse fields Ê⊥(r) and B̂⊥(r).
The general expressions for Â⊥(r), Ê⊥(r), and B̂⊥(r) are54

= +
· † ·

a e aA r
e

( )
2

( e )i i

k

k

k

k

k

k r

k

k r

0 (37a)

=
· † ·

i a e aE r e( )
2

( e )i i

k

k

k

k

k r

k

k r

0 (37b)

=
× · † ·

i a e aB r
k e

( )
2

( e )i i

k

k

k

k

k

k r

k

k r

0 (37c)

where ak̂
† and ak̂ are the raising and lowering operator of the

mode that has a wavevector of k ≡ (kx, ky, kz), and they satisfy
the canonical commutation relation54

[ ] = ·
†

a a,
k k k k k, (38)

ak̂
† and ak̂ are the creation and annihilation operators of the

photon, respectively, δk,k′ is the Kronecker delta, and the
frequency of mode k is ωj = c| k|. Here k = | k| k̂ aligns in the
direction of the unit vector k̂ and ek̂⊥k̂ is the polarization unit
vector for Ê⊥(r) and Â⊥ (r). The polarization of the photonic
field can be written as a linear combination of the transverse
electric (TE) polarization, ek̂,TE, and the transverse magnetic
(TM) polarization, ek̂,TM, in relation to a given interface
(where TE and TM must be defined relative to a surface) and
propagation direction (defined by k). The TE mode’s
polarization, ek̂,TE, is defined as being perpendicular to the
propagation direction and parallel to the interface defining the
polarization coordinate system. The TM mode’s polarization,
ek̂,TM, is defined as being perpendicular to both the
propagation direction and the TE polarization. For a given
polarization, ek̂, the transverse electric field is along ek̂ and the
magnetic field is along the k̂ × ek̂ direction. For example, for
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the TM mode, the transverse electric field polarization is along
ek̂,TE and the transverse magnetic field polarization is along
-ek̂,TM. It should be noted that the quantization scheme in eq
37a is general but not unique (such as the sine mode functions
used in ref73, 74.); however, it is a very common framework
and is particularly salient for the purposes of this review.

When considering a planar Fabry-Peŕot (FP) microcavity,
Â⊥(r), Ê⊥(r), and B̂⊥(r) satisfy the boundary conditions and
thus the wavevector k becomes quantized.54,57 For cavity
mirrors imposing a boundary condition along z direction (see
Figure 4), the z component of the wavevector =k nz L

z

with n

= 1, 2, 3··· as a positive integer. Note that kx and ky still remain
quasi-continuous variables. These are discussed in details in
Section 2.6.

Using the above expressions, the energy of the transverse
fields, i.e., the last term in eq 35 is quantized as follows

[ + ] = +
†i

k

jjj
y

{

zzzdr c a aE r B r
2

( ) ( )
1

2
k

k k k

0 3 2 2 2

(39)

where the spatial integral dr3 is done within the e%ective
quantized volume of the cavity. Thus, eq 35 is quantized as

= +

+ +

·

†i

k

jjj
y

{

zzz

H
m

z V

a a

p A x x
1

2
( ( )) ( )

1

2
.

j

N

j
j j j

k

k k k

p A
2

(40)

This is commonly referred to as the “p·A” or the minimal
coupling QED Hamiltonian, in the sense that the light and
matter coupling is only carried through the matter momentum
and the vector potential of the field. The minimal coupling
structure in eq 45 comes naturally due to the local U(1)
symmetry of the EM field, which is an Abelian gauge field.

Assuming that the size of the molecular system is much
smaller than the length of the cavity in the quantized direction,
which is commonly referred to as the long wavelength
approximation, the transverse fields can be treated as spatially
uniform, i.e., eik· r ≈ 1, such that

= +
†

a aA r A
e

( )
2

( )
k

k

k

k

k k

0 (41)

2.3. Cavity QED Hamiltonians

In cavity QED, one often considers only a single mode of the
radiation field along the e ̂ direction. This is commonly referred
to as the single mode approximation in cavity QED, with the
frequency ωc = πc/L (c is the speed of the light, and ωc

represents the single mode frequency of the cavity), and the
corresponding photonic creation and annihilation operators a ̂†

and a ̂ (where we have dropped the label of k for a single
mode.) While it is convenient to discuss and learn cavity QED
under this approximation, real experiments have many modes
present inside the cavity, so this approximation may not hold
when considering realistic systems. With that in mind, we first
introduce the formalism of cavity QED for a single photonic
mode and then we generalize this for many modes in Section
2.6. Additionally, progress has been made on resolving
ambiguities of mode truncation between di%erent gauges.75

The single mode cavity photon field Hamiltonian, which is
eq 39 under the single mode assumption, is then expressed as

= + = +
†i

k

jjj
y

{

zzzH a a p q
1

2

1

2
( )ph c c

2
c
2

c
2

(42)

where

= + =
† †

q a a p i a a/2 ( ); /2 ( )
c c c c (43)

are the photonic coordinate and momentum operators,
respectively.

Under the single mode approximation, the vector potential
(under the long wavelength approximation) in eq 41 can be
expressed as

= + =
†

a a qA A A( ) 2 /0 0 c c (44)

where =A e
0

2
c 0

is the vector field for a cavity. Note that

we have also dropped the “⊥” symbol for the vector potential
because it is purely transverse.
2.3.1. The Minimal Coupling Hamiltonian. Under the

long wavelength and single mode approximation, the “p·A”
minimal coupling QED Hamiltonian (in the Coulomb gauge)
in eq 40 is expressed as

= + +
·

H
m

z V Hp A x
1

2
( ) ( )

j j
j jp A

2
ph

(45)

where p̂j = −iℏ∇j is the canonical momentum operator. Upon a
gauge transformation
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(46)

where χ is a scalar function of position, and the gauge
transformed p·A Hamiltonian is Ĥχ= Ûχ ĤCÛχ

†, or more
explicitly, expressed as follows

= + +H
m

z V Hp A x x
1

2
( ( )) ( )

j j
j j j

2
ph

(47)

where Âχ (xj) = Â + ∇j χ(x̂j) is the gauge transformed vector
potential that provides the same physical f ield, because ∇j × ∇j

χ(x ̂j) = 0.
We further introduce the Power-Zienau-Woolley (PZW)

gauge transformation operator54,76,77 as
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or equivalently, with the following expressions
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Recall that a momentum boost operator53,78,79 =U e
i p q

p
/

0

displaces p̂ by the amount of p0, such that ÛpÔ(p̂)Ûp
† = Ô (p̂ +

p0). Hence, Û is a momentum boost operator for both the

photonic momentum p̂c by the amount of A2 /c 0, as well
as for the matter momentum p̂j by the amount of zjÂ. The
PZW gauge operator (eq 48) is a special case of Ûχ, such that χ

= −x̂j · , where χ now also explicitly dependents on Â (as
appose to a pure function of matter coordinates). More
detailed discussion related to the PZW gauge transformation

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00855
Chem. Rev. XXXX, XXX, XXX−XXX

I

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


can be found in section DIV.1 of ref 54 as well as the original
paper by Woolley.77

Using Û† to boost the matter momentum, one can re-express
Ĥp·A in eq 45 as

= +·

†
H U H U Hp A M ph (49)

hence Ĥp·A can be obtained80 by a momentum boost with the
amount of -zj Â for p̂j, then adding Ĥph. This result was first
introduced in ref 76. This expression is general even beyond
the long-wavelength approximation.
2.3.2. The Dipole Gauge Hamiltonian. The QED

Hamiltonian in the electric-dipole “d ·E” form76,77,81 (or so-
called dipole gauge) can be obtained by performing the PZW
transformation on Ĥp·A as follows

= = +

= + + + · + ·

· ·

† † † †

† †i

k

jjj
y

{

zzz

H UH U UU H UU UH U

H a a i a aA A
1

2
( ) ( ) ,

d E p A M ph

M c c 0
c

0
2

(50)

where we have used eq 49 to express Ĥp·A, and the last three
terms of the above equation are the results of ÛĤphU ̂ †.

Using q̂c and p̂c (as defined in eq 43), one can equivalently
express eq 50 as

= + + +
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(51)

This can also be understood as the PZW operator boosting

the photonic momentum p̂c by 2 / Ac 0.
The “d·E” Hamiltonian can also be viewed as e%ectively

using the Poincare ́ gauge,54 where the vector potential under
the Coulomb gauge upon PZW transformation gives the new
vector potential A′∥(r) = −∇∫ 0

1du r·A⊥ (u r) and A′⊥(r) =
A⊥(r). Note that in this new gauge, the vector potential is no
longer purely transverse.54 This choice of the vector potential54

makes r·A′(r) = 0. Thus, the Poincare ́ gauge enforces the
vector potential to be perpendicular to the r vector everywhere
(where the radial component of the vector potential is forced
to be zero). The “d·E” Hamiltonian is often referred to as the
dipole gauge80 (where beyond the dipole approximation
should be referred to as the multipolar gauge54) or the
length-gauge53 due to μ̂ linearly depending on position.

The last term in eq 50 is commonly referred to as the dipole
self-energy (DSE)54

= ·E A( )DSE
c

0
2

(52)

which can be intuitively understood as the matter dipole
polarizing the cavity field, and then the polarized cavity field
acting back on the matter dipole, causing additional energy.
Note that the DSE is di%erent than the quadratic terms zj

2Â2/
2mj in Ĥp·A (eq 45), which is commonly referred to as the Â2

term or diamagnetic term. Mathematically, the PZW gauge
transformation operator shifts away (along the matter
momentum direction) the Â2 terms in the p·A Hamiltonian,
and causes a new shift (along the photonic momentum
direction) that results in the DSE term in Ĥd·E. Thus, the DSE
is an essential component to make sure that Ĥd·E (eq 50) and
Ĥp·A (eq 45) are gauge invariant. However, for small coupling
strengths (gc ≪ ωc or (Ee − Eg)/ℏ), ignoring the DSE term will
not cause significant numerical errors, but will break the gauge

invariance.82 This result depends on the proper truncation of
modes such that when the Hamiltonian is truncated to a given
set of modes, the DSE contribution only comes from those
modes.75 For this section, we are only concerned with
Hamiltonians under the single-mode approximation. The
many modes scenario and the corresponding DSE expressions
can be found in Section 2.6 and eq 101.

In the strong and ultrastrong coupling regimes, ignoring the
DSE can cause an unstable ground state, especially under the
long-wavelength approximation.48 As discussed at length in ref
48, the loss of the DSE term causes the ground state to be
unbounded from below. Additionally, without the DSE term,
the Maxwell equations in matter are no longer satisfied.48 In
this manner, it is essential to include the DSE term in the
strong and ultrastrong coupling regimes to accurately capture
the physics of the system.

Under the classical limit, the d·E Hamiltonian can be
obtained by applying the classical version of Û (eq 48), which
is the Göppert-Mayer gauge transformation, on the classical p·
A Hamiltonian in eq 35. The details can be found in ref 56
(page 73) or ref 57 (page 53). Interestingly, the classical
version of the d·E Hamiltonian does not contain the dipole
self-energy term. This is because the DSE arises as a
consequence of the quantum commutation relation among
field operators.56 In the semiclassical picture, the electric and
magnetic fields are time-dependent potentials that commute
with the semiclassical PZW operator
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U t
i

tA( ) exp ( )sc (53)

This Ûsc commutes with the electromagnetic fields, causing
no boost of the photonic DOFs. By using the time-dependent
Schrödinger equation, the linear d·E term forms due to the
time dependence of Ûsc (t); however, since [Ûsc (t),A (t)] = 0,
there is no DSE term in the semiclassical picture for the light−
matter interactions. This has also been extensively discussed in
ref 56 with a derivation for this semiclassical case starting on
page 73. Additionaly, on page 231 of ref 56, Milonni states, “A
di%erence between the classical or semiclassical derivations of
the electric dipole form of the Hamiltonian from the minimal
coupling form, compared to the approach here where the field
is quantized, is worth noting: the [self-polarization] term···
does not appear in classical or semi-classical derivations. It
does not appear for the simple reason that the commutation
relation between the vector potential and the transverse
electric field is responsible for the appearance of [the self-
polarization term]···If the field is not quantized, there is no
such (non-vanishing) field commutator because the field
variables are then c-numbers, not operators.”56

2.3.3. The Pauli-Fierz QED Hamiltonian. The widely
used Pauli-Fierz (PF) QED Hamiltonian (in the dipole
gauge)48,53,72 in recent studies of polariton chemistry can be
obtained by applying another unitary operator Û0 on Ĥd·E. This
unitary transformation is expressed as

=
†
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U i a aexp
2

0 (54)

Note that Û0a
†̂aÛ̂0

† = a†̂a,̂ Û0aÛ̂0
†ia,̂ and Û0a

†̂Û0
† = ia†̂. The

PF Hamiltonian is related to Ĥd·E as follows
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The PF Hamiltonian in eq 55 has the advantage of being a
purely real Hamiltonian (under the long wavelength
approximation).

Using the q̂c and p̂c operators (defined in eq 43), the PF
Hamiltonian is expressed as
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(56)

By comparing the above equation with eq 51, one can clearly
see that the role of Û0 is to swap p̂c with q̂c. In eq 56, qc is

displaced by ·A
0

2

c

. Note that another commonly used

form of ĤPE is with the negative sign of the photonic
coordinate displacement
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(57)

which is the result of applying Û0’ = exp[-iπa†̂a]̂ unitary
transformation on ĤPF, with ĤPF′ = Û0′ ĤPFÛ0′

†. The role of
Û0′ is causing a π phase shift for the photonic DOF and flip the
sign of the q̂c displacement from a positive one in ĤPF to a
negative one in ĤPF′.

From the form in eq 56, the photonic DOF can be
viewed53,72 and computationally treated83,84 as an additional
“nuclear coordinate”.83,85,86 This will be discussed further in
Sec. 4.1.
2.3.4. Consistency upon Gauge Transformation. We

emphasize that both the operators as well as the wave functions
should be gauge transformed through Û, in order to have a
gauge invariant expectation value.87 This means that

| |
†

O UOU U, (58)

such that the expectation value of any observable is invariant
under any gauge

= | | = | |
† †

O O U UOU U( )( )( ) (59)

Even though this is a basic fact in quantum mechanics,
historically, it has been overlooked in the quantum optics
community,87 and has been extensively discussed in standard
text books (e.g., see page 146 of ref 59).

The argument in eq 59 should also apply to the photon
number operator, which means that it should also be gauge
transformed in order to provide a physical result. Under the
Coulomb gauge, it is defined as

= = +·
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Under the dipole gauge, it should be
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where
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d = † †
Ua U =
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]A2 / )c 0 . For the PF Hamiltonian, the photon number
operator should be
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where the corresponding gauge transformed raising operator
becomes

= = +
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and the physical number operator is

= =
† † † † †

N U Ua aU U c c a a
PF 0 0 (64)

This has been pointed out extensively in recently works in
refs 82 and 51. Using the incorrect expression a†̂a ̂ under the
dipole gauge will overestimate the actual photon number,51

causing inaccurate and misleading results.

2.4. Hamiltonians in Truncated Hilbert Spaces

Investigating cavity QED dynamics often requires a truncation
of electronic states applied to the QED Hamiltonians.80,88 This
is because these matter electronic states are often diOcult to
obtain, and in a lower energy regime, one can project the QED
Hamiltonian to a few physically relevant electronic states
without losing significant accuracy. Consider a finite subset of
electronic states {|α⟩} where there is a total of matter states,
eq 26 can be rewritten to define the projection operator

= | |.

(65)

To make the discussion more general, the state |α⟩ is not
necessarily the adiabatic state used in eq 26. As discussed in

Section 2.1, defines the truncation of the full electronic

Hilbert space = +
r

which has infinite dimension, to a

subspace that contains a total of states. This truncation
reduces the size of the Hilbert space of the entire problem

from the original space, r R ph, to R ph,

where
R
and ph represent the identity operators of the nuclear

and the photonic DOF, respectively.
2.4.1. Gauge Ambiguities. Truncating the momentum

operator and dipole operator as p
j

and , the p · A

Hamiltonian under the truncated subspace are commonly
defined as
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(66)
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whereas the d·E Hamiltonian under the truncated subspace is
commonly defined as52,80

= + + +·
†

H i a aA A( ) ( )d E M ph c 0
c

0
2

(67)

It is well-known that the above two Hamiltonians do not
generate identical polariton eigenspectra52,80,88,91−95 under the
ultrastrong coupling regime,47 explicitly breaking down the
gauge invariance. This leads to the gauge ambiguity87,88,96 as to

which Hamiltonian,
·p A or

·d E
, is correct for computing

physical quantities when applying . This is a well-known

result in quantum optics84,88 that
·p A usually requires a larger

subset of the matter states to converge or generate consistent

results with
·d E
, and apparently, under the complete basis

limit, they should be gauge invariant. For clarity, we reiterate
that the gauge ambiguities mentioned in this review only refer
to di%erent eigenspectra obtained from di%erent gauges due to

the same level of truncation (defined by in eq 65). As such,

Figure 2. Gauge ambiguities and the recently proposed resolutions. (a) Demonstration of gauge ambiguities when an electron in a 1-D square
potential is strongly coupled to a cavity whose frequency is resonant to the electronic transition from the ground state to the first excited state.
Electronic matrix element magnitudes shown for the coordinate x̂ and its conjugate momentum, p̂. Note that the coordinate matrix is significantly
more diagonal than the momentum matrix. The bottom panel shows the eigenspectra of the Coulomb (HRabi

C ) and dipole (HRabi
D ) gauges truncated

to two levels compared to the full basis limit. The stark disagreement between to two gauges demonstrates the gauge ambiguities. For this model,
the two level approximation is not a terribly good approximation. (b) This repeats the analysis for panel (a) for a double well potential. For this
model, the two-level approximation is valid. This shows how for a valid level of truncation the dipole gauge results match very well with the full
space results. (c) Demonstration of nonlocal potentials, V(x, x′), that form upon a finite n-level truncation of the electronic Hilbert space. In the
infinite basis limit, V(x, x′) → V(x) and is completely local. As n decreases, the potential becomes increasingly nonlocal. These numerical results
are for an electron in a double well potential (similar to panel (b)). (d) Proposed resolution to the gauge ambiguities discussed in panels (a−c) for
molecular systems. For a simplified 1-D proton and electron transfer model, the eigenspectra of three two-level truncated polaritonic Hamiltonians

under the Born−Oppenheimer approximation are compared: the truncated dipole gauge Hamiltonian ( )pl
D , the naively truncated Coulomb gauge

Hamiltonian ( )pl
C , and the newly proposed properly truncated Coulomb Hamiltonian ( )pl

C . The properly truncated Coulomb Hamiltonian

perfectly matches the results calculated in the dipole gauge. Panels (a) and (b) are adapted with permission from ref 88. Copyright 2018 American
Physical Society. Panel (c) is adapted with permission from ref 89. Copyright 2020 American Physical Society. Panel (d) is adapted with permission
from ref 90. Copyright 2020 American Physical Society.
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the size of the projected Hilbert space must still be treated as a
convergence parameter to produce accurate results.

The fundamentally di%erent behavior of
·p A and

·d E

upon matter state truncation is attributed to the fundamental
asymmetry of the p̂ and μ̂ = ∑j zj x ̂j operators.

88 This can be
more clearly seen when considering just a single electron
confined in a 1D potential V̂(x̂) (such that ĤM − Ĥel = 0, since
there is no nuclear DOF), where ĤM|α⟩ = Eα|α⟩. Under the
energy representation {|α⟩}, the matrix elements of the
position operator xαβ = ⟨α|x̂|β⟩ satisfy the following well-
known Thomas-Reich-Kuhn (TRK) sum rule

| | =E E x
m

( )
2

2
2

e (68)

where me is the mass of the electron. This means when (Eα −
Eβ) is larger (for well-separated energy levels), |xαβ| will be
smaller in order to satisfy the TRK sum rule. This can be
clearly seen in the middle panels of Figure 2a,b, where the
largest matrix elements for xαβ only show up for nearest
neighbor energy levels. Thus, in the energy representation, x̂ is
“local” in the sense it only strongly couples the |Eα⟩ and |Eβ⟩
energy levels when their energies are close. The transition
dipole operator for a single electron is μ̂ = −x̂ (where the
fundamental charge of the electron is z = −1), and thus μαβ =

−xαβ. This explains why
·d E

often gives accurate numerical
results of polariton eigenvalues, due to the fact that μ̂ behaves
locally in the energy space and thus truncation is often a valid
approximation. The matrix element of the momentum
operator pαβ = ⟨α|p̂|β⟩, on the other hand, is related to xαβ

as follows

= ·p i
m

E E x( )e

(69)

Thus, the momentum operator behaves in a “non-local”
fashion in the energy representation, because (Eα − Eβ) can get
very large even when the corresponding xαβ is small. This
behavior can be seen from the middle panels of Figure 2a,b,
where the large amplitudes of pαβ exist among states |α⟩ and
|β⟩, even when (Eα − Eβ) is large. Rabl and co-workers88 argue

that this why
·p A behaves less accurately upon matter state

truncation due to the nonlocal behavior of the coupling term

p A
z

m j

j

j

in eq 66. Thus, the large energy gaps in molecular

systems do not guarantee small matrix elements of the p̂
operator,88 hence a finite-level truncation in the “p·A”
Hamiltonian often leads to large numerical errors. Hence, it
is often more convenient to use the dipole gauge when
applying the finite-level approximation for the matter DOFs.88

Note that such an asymmetry in the x̂ and p̂ operators
disappears for the quantized electromagnetic mode or for a
harmonically bound dipole, where momentum and position
operators are interchangeable.88 However, when the molecular
potential is highly anharmonic, the gauge invariance is
explicitly broken under the finite-state approximation,80 for

·p A (eq 66) and
·d E

(eq 67), due to the lack of a complete

basis.
Figure 2a,b demonstrates the breakdown of gauge

invariance88 between
·p A (eq 66) and

·d E
(eq 67) for

model systems with a square and double well potential,
respectively. In both models, the energy eigenspectra using

each gauge (eqs 66 and 67) for an election in a given potential
is plotted as a function of coupling strength when truncated to
only two matter levels, and the matrix elements of x̂ and p̂ are
visualized. In Figure 2a, these results are shown for a square
potential. In this case, the dipole gauge results outperform
Coulomb gauge results but still fails to capture much of the
physics of the full system. This is a consequence of the locality
of x̂ and p̂ in the energy picture, shown by the matrix element
visualizations in Figure 2a. The position matrix elements are
much more localized than the momentum matrix elements.
However, a two level truncation is still not a good
approximation, since |⟨ψ1|x̂|ψ2⟩| matrix elements are significant,
meaning that at least three states are needed to accurately
describe the first two states. These results can be contrasted
with those of Figure 2b, where the potential is a double well
potential. In this case, the matrix elements of x̂ are more
localized for the first two levels, such that it can be well
approximated as a two-level system. For the momentum matrix
elements, however, the first two states are strongly coupled to
many high energy states. This disparity is apparent in the
energy eigenspectra from the dipole and Coulomb gauges. The
dipole gauge results follow the fully converged results, while
the Coulomb gauge results diverge.

In the truncated electronic basis, the PF Hamiltonian

= = +·

† † †
U U U H UPF 0 d E 0 M 0 ph 0 is expressed as
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(70)

Note that Û0 (eq 54) is only a function of the photonic
DOF, thus it does not bring any matter operator that was

originally confined in to . Hence,
PF

provides consistent

results from
·d E
, ensuring no ambiguities from truncation

between
·d E

and
PF
.

2.4.2. Proposed Causes and Resolutions of Gauge
Ambiguities. In recent literature,75,80,89−91,97 the source of
these gauge ambiguities and corresponding resolutions (see
Figure 2a,b) has been thoroughly discussed from both an
intuitive physical perspective80,89 and a rigorous mathematical
perspective.75,89−91,97

In refs 80, 89, Stefano et al. and Garziano et al. describe the
source of gauge ambiguities in terms of the locality of the
matter potential energy operator in the truncated Hilbert

space, =V x x x( ) ( , ). In other words, upon matter
truncation to a finite basis, the potential energy operator is
defined based on two positions in space, hence it is no longer
local in space (only depending on x). Equivalently, by Fourier
transforming in x̂′, one can say that this operator is dependent
on both the position and momentum operators. Figure 2c

shows how for an n-level matter truncation, x x( , ) gets
increasingly nonlocal as n shrinks. Refs 80, 89 argue that this
nonlocality leads to gauge ambiguities since the expression in

eq 66 contains the nonlocal potential, x p( , ), to which the
gauge transformation has not been applied (due to the fact that
V̂() commutes with Û). This can be seen by rewriting eq 66 as,
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where x̂ = {x̂j}. To fix this problem, it was proposed to first
truncate ĤM and then transform it by the projected PZW

operator UP, which will gauge transform the nonlocal

potential x p( , ). However, ref 91 points out that this does
not formally solve the gauge ambiguities. Instead, it works
specifically when the matter is truncated to a two level system,
making the proposed solution just a rotation on a Bloch
sphere.

In refs 75, 90, Taylor et al. go further to propose a general
resolution to gauge ambiguities for any matter system under
the dipole approximation. The key insight discussed in these
works is the concept of proper confinement of all operators in

the truncated subspace. For a given projection operator, ,

there is a complementary operator, , such that + =
M
.

Taylor et al. describe a new gauge theory that is “properly

contained” in the subspace defined by . In other words, all

the information on the truncated system lives entirely in the

in the subspace. For example, consider the case of x
2 =

+x x( ) ≠ x( )2. In this manner, x
2 is not

properly confined in , since it contains x̂ information from

the subspace, x x .
This concept of proper confinement is then used to resolve

gauge ambiguities by ensuring that any two arbitrary gauges
can be connected through unitary transformations within the

subspace. For either the dipole or Coulomb gauge in the full
Hilbert space, the truncated analog can be formulated in four
steps. First, represent the full space Hamiltonian in terms of
ĤM, Ĥph, and Û (as done in eqs 49 and 50). Second, truncate
ĤM and Ĥph in their eigenbases. Third, redefine the PZW

operator, Û, to be properly confined in the subspace in
terms of x ̂ and p̂. This can be done by applying the projection
operator inside the exponential of Û as follows
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As discussed in ref 75, this idea can be generalized to any
kind of truncation of a Hilbert space, even for those going
beyond just material truncation. For example, the gauge-
transformation operator can also be constructed for cavity

photonic mode truncation, where the projection operator
will also include the cavity mode truncation (by projecting out
the corresponding Fock states of those truncated modes,
except for the group Fock state). For that case, the most

general expression of becomes75

= ·
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Ñ
Ñ

i
Aexp ( )

(73)

where enforces both matter and photonic Hilbert space

projection. An example of the mode truncation related can
be found in eq 95, which also contains the photonic operators

and thus needs to project μ̂·Â all together.75 When only
contains projections on the electronic DOF of the matter, eq
72 and eq 73 are equivalent.

Finally, one can reconstruct the full Hamiltonians using the

forms from eqs 49 and 50 and the truncated operators, H
M

,

Hph , and (from eq 73). The properly truncated

Coulomb gauge Hamiltonian takes the form

= +·

†
H Hp A M ph (74)

By ensuring proper confinement of all operators, this

method strictly ignores any information from the subspace.

The operator is also strictly unitary in its own Hilbert
subspace, so the gauge invariance between the dipole and
Coulomb gauges is ensured. There are scenarios where the
Coulomb gauge is more convenient98−102 than the dipole
gauge for describing light−matter interactions, such as for a
solid state material98,99,102 interacting with the radiation field
where the wave function satisfies periodic boundary conditions
and the expectation value of the dipole operator becomes ill-

defined.103 For these scenarios, instead of using
C
, the

currently derived
C
should be used to investigate the light−

matter interactions. Compared to
C

which requires many
electronic states to provide a reasonable polariton eigenspec-

trum,88,99,104
C

requires as few electronic state as ĤD and
provides identical results.

The properly truncated Coulomb gauge Hamiltonian in eq
74 can then be explicitly written for molecular systems as

= + +

= + + +

·

† †

†

V H

m
H

T x

p A P x p

( )

1

2
( ) ( , ) ,

j j
j j j

p A ph

2
ph

(75)

where [ [ ]] + ···( )P A A p, ,j

i

j

1

2

2
is the residual momen-

tum and P P is the truncated dipole operator.90 Note

that
·p A(eq 66) as well as Ĥp.A (eq 45) only contain the

vector potential Â up to the second order. This is no longer the

case for
·p A in eq 75. In fact, both the P̃j term and the

†
x p( , ) term in principle contain infinite orders of Â.

Hence, the consequence of level truncation on Ĥp·A is not just
simply modifying the matrix elements of the momentum

operator (as incorrectly indicated by
·p A in eq 66), but

rather profoundly changing the structure of light−matter

interactions80 through both the new potential
†

x p( , )
as well as the new momentum shift -∇j μ̃Â + P̂j, due to the

mixing of the light and the matter DOFs through
†
and in

the truncated subspace. It is clear that
·p A(eq 76) will return

to ĤpA (eq 45) under the complete electronic basis limit, such

that , thus ∇j μ̃ → ∇j μ̂ = zj, hence P̃j → 0, as

well as Û → Û, hence =
† †

V U V U Vx x x( ) ( ) ( ). In
ref 97, Gustin et al. further generalizes the resolution of gauge
ambiguities beyond the dipole approximation by defining Û in
terms of the full matter polarization instead of the dipole

operator. They then properly confine by truncating the

polarization operator in terms of x ̂. Unfortunately,
·p A in eq

75 no longer remains in the minimum coupling form in eq 45
which only involves charges but not higher multipole
moments. Of course, when approaching the complete
electronic states limit, the minimum coupling form is restored.

Nevertheless,
·p A is invariant from

·d E
through the

transformation, thus resolving the ambiguity between them.
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2.4.3. Molecular QED Hamiltonian in the p·A form.
Going back to the molecular cavity QED Hamiltonian, by
splitting the matter Hamiltonian as ĤM = T̂R + Ĥel (see eq 20),
one can express eq 75 as follows

= + +

= + + +

·

† †

†

T H H

m
H

p r R

p A P

( , , )

1

2
( ) ,

R r

j R j
j j j

p A el ph

2
el ph

(76)

where the sum over j only includes nuclei. In the above

expression, we did not specify the choice of , which could be
either adiabatic (eq 26 or diabatic states (eq 31).

Figure 2d shows numerical results for this Hamiltonian for a
simple 1-D proton-transfer (Shin-Metiu105) molecular model.
The left graph shows a characterization of this model with its
adiabatic and diabatic states, diabatic coupling, and dipole
matrix elements as a function of the proton’s 1-D coordinate,
R. Additionally, the small insets pictorially depict the ions,
proton, and electron positions for di%erent R. The middle
figure then plots the Born−Oppenheimer surfaces as a function
of R for di%erent Hamiltonians, compared to the zero coupling
case. For R values where the polariton states di%er from the
uncoupled case, the naively truncated Coulomb gauge
Hamiltonian results di%er from the gauge invariant results.
The right figure, similarly, shows how the naively truncated
Coulomb gauge Hamiltonian behaves very poorly as the
coupling strength is increased for a given R value. For this
model, the dipole gauge results converge to the accuracy of the
graph with two levels, so for the results in these graphs, the
dipole gauge can be considered “exact” for this model. This
numerically demonstrates the necessity of maintaining gauge
invariance.

There are several interesting limits of
·p A(eq 76). Under

the limiting case when A0 = 0 or μ̃Â = 0, both the −∇j μ̃Â and

P̃j terms become 0, and =
†

R ph. Thus,

under a such limit, +
·

Hp A M ph; hence, the matter and

the cavity becomes decoupled. When using adiabatic states for

the truncation, one can show that60 ,61 p
j

2 =

| |ip d( )
j

j

,
2, where dαβ

j ≡⟨α|∇j |β⟩ is the well-

known derivative coupling. Besides these adiabatic derivative
couplings, the light−matter interaction also induces additional
“derivative”-type couplings, −∇j μ̃Â and P̃j, regardless of the

electronic representation used in constructing . When using
the Mulliken-Hush diabatic states63,64 which are the eigen-

states of the operator, such that μ̃= ∑ϕμϕϕ |ϕ⟩⟨ϕ|,
one can prove that P̃j = 0 for all nuclei. This is because that ∇j

μ̃ = ∑ϕ∇jμϕϕ |ϕ⟩⟨ϕ|, thus both μ̃Â and [μ̃Â,p̂j] become purely
diagonal matrices, hence all of the higher order commutators

in
†
p
j

become zero, resulting in P̃j = 0 for j ∈ R.

Unfortunately,
·p A no longer remains in a minimum coupling

form in eq 45 (except when approaching the complete
electronic states limit), by only involving charges but not

higher multipole moments. Nevertheless,
·p A is invariant

from
·d E

through the transformation, thus resolving the
gauge ambiguity between them.

Additionally, this method explains why the proposed
resolution of ambiguities in ref 80. only works for matter
systems that can be well approximated by two-level systems
without a permanent dipole. For those types of systems, the
truncated dipole operator is proportional to the Pauli σ̂x

matrix, and =
eg x

, where μeg is the transition dipole

from the ground state to the excited state. In this special case,

( )n n. Then, the properly truncated PZW operator

is U .
In ref 90, the closed analytic formalism for arbitrary two-

level molecular systems is presented. Without the loss of
generality, such a system can be expressed in terms of the
diabatic states {|0⟩, |1⟩}, which represent a broad range of
chemical systems.106−108 To simplify the algebra, one assumes
there is only one nuclear DOF with the coordinate R̂ and
momentum p̂R, and μ̂ is always aligned along the polarization
direction e.̂ Note that both the transition and permanent
dipoles are functions of R̂.

In this special case, the properly truncated PZW operator
becomes,

= ·
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Ç
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Å
Å
Å
Å
Å
Å
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Ñ
Ñ

i
Aexp

(77)

where = + + +R( ( ) ) ( )
x z r10

1

2 00 11

1

2 00 11
and

μ̃’s explicit dependence on R̂ is suppressed in this notation for
clarity. Since μ̃ can be written as a sum of Pauli matrices,

evaluating
†

el
and P̃j becomes tractable using the Pauli

matrix commutator relations.
The electronic Hamiltonian in this truncated subspace is

= = + +H R R R( ) ( ) ( )
z xel el 10 , where R( ) =

R R( ( ) ( ))
1

2 00 11 , R( ) = +R R( ( ) ( ))
1

2 00 11 , and

R( ) = | |H
el

(i.e., they are Ĥel’s matrix elements).

Using the above spin representation for μ̃ and Ĥel, as well as
the BCH identity, one can analytically show (ref 90) that the

terms in
·p A from eq 76 are

= + [ ]

+ [ ] + [ ]

†
R R A

a a

( ( )sin ( )cos )(sin

cos (1 cos ) sin (cos 1) ),

y

x z

el el 10

(78)

where = +( ) 4
00 11

2
10
2 , tan θ = 2μ01/(μ00 − μ11),

and the residual momentum is =Pj = [( tan ) cos (1
R

1

2

2 −

[ ]Acos ) y + ((sin )
z

− [ ] ]A A(cos ) )(sin )
x

. Thus,

for a given R( )el and μ̃(R), under a two-level approximation,
the properly truncated Coulomb gauge Hamiltonian can be
written in this analytic form.

2.5. Connections to Quantum Optics Models

In quantum optics, a two-level atom coupled to a single mode
in an optical cavity is a well-studied subject. This setup has
been described using well-known model Hamiltonians, such as
the quantum Rabi model109,110 and the Jaynes-Cummings
model.25 Since these two models are also widely used in recent
investigations of polariton chemistry, here we briefly derive
them from the truncated Pauli-Fierz Hamiltonian (eq 70). The
original derivations25,109,110 of these two models are slightly
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di%erent than the procedure outlined here, but the general
physical insights are the same.

We consider a molecule with two electronic states and
consider its electronic Hamiltonian as

= | | + | |E g g E e eR R( ) ( )g eel (79)

such that the transition dipole is μ̂eg = ⟨e|μ̂|g⟩. Note that the
permanent dipoles in a molecule μ̂ee = ⟨e|μ̂|e⟩, μ̂gg = ⟨g|μ̂|g⟩ are
not necessarily zero, as opposed to the atomic case where they
are always zero. Hence, it is not always a good approximation
to drop them. The breakdown of the quantum optics models
for computing polariton potential energy surface will be
discussed in Section 3.1.3

The Rabi model assumes that one can ignore the permanent
dipole moments (PD), and leads to the dipole operator

expression in the subspace = | | + | |g g e e as follows

= | |+| | +
†

e g g e( ) ( )
eg eg (80)

where we have defined the creation operator σ̂† ≡ |e⟩⟨g| and
annihilation operator σ̂ ≡ |g⟩⟨e| of the electronic excitation.

The PF Hamiltonian (eq 55) in the subspace thus becomes

the following
nPD

with no permanent dipole (nPD)

= + + · + + + ·
† †

H a aA A( )( ) ( )
eg egnPD el ph c 0

c
0

2

(81)

Dropping the DSE (the last term) in eq 81 leads to the
quantum Rabi model as follows

= + + · + +
† †

H a aA ( )( )
egRabi el ph c 0 (82)

The exact solution of the quantum Rabi Hamiltonian ĤRabi

was first discovered by Braak111 by noticing the parity
symmetry in the Rabi model is suOcient to solve the
Hamiltonian exactly using bosonic operators in the Bargmann
space.111 Later, it was shown that the same solution can also be
obtained from the Bogoliubov transformation.112

Dropping both the DSE and the counter-rotating terms
(CRT) σ̂†a ̂† and σ̂a ̂ leads to the well-known Jaynes-Cummings
(JC) model25 as follows

= + + · +
† †

H a aA ( )
egJC el ph c 0 (83)

which is eq 2 in the Introduction (Section 1.1) when choosing
gc = ωcA0 · μeg.

As we go beyond these simplified Hamiltonians, however,
the most physically relevant coupling parameter becomes
ambiguous. The dipole operator is no longer expressed as

=
eg x

, and instead takes the form of an arbitrary

Hermitian matrix as indicated in eq 28 (for adiabatic basis) or
eq 29 (for MH diabatic basis),

Of course, the JC model and the Rabi model, which are
motivated to describe two-level atoms interacting with a single-
mode cavity, will eventually break down with an increasing
light−matter coupling strength. For atomic cavity QED, the
light−matter coupling constant is gc = ωcA0 · μeg/ℏ. For
comparative purposes, one often uses the unitless coupling
parameter defined as

= = ·

g

A /
eg

c

c

0
(84)

Under the condition η < 0.1, the JC model provides a
reasonably accurate answer compared to the “exact” answer

provided by
nPD

(under the single molecule, single mode, and
long wavelength approximations, without any permanent
dipole). For the ultrastrong coupling regime 0.1 < η < 1, or
deep-strong coupling regime η > 1, the JC model starts to
break down. A detailed discussion of this breakdown can be
found in ref 47. Interestingly, in the ultrastrong coupling
regime, the JC model actually predicts more accurate results
compared to the Rabi model because the DSE term ω(A0·μeg)

2

in
nPD

(eq 81) partially cancels with the energy shift
(commonly referred to as the Bloch-Siegert shift113,114) caused
by the counter-rotating wave terms σ̂† a ̂† and σ̂ a.̂ A detailed
analysis can be found in ref 12, as well as in ref 115.
Interestingly, one can define unitary gauge transformation that
depends on the coupling strength, such that the JC model
(under this gauge transformation) remains reasonably accurate
throughout di%erent ranges of coupling strength.92

Figure 3 presents the three lowest polariton eigenenergies of
a two-level atom (eq 79 without any nuclear DOFs) coupled to

a single mode cavity. The figure presents three polariton states
|g, 0⟩, |−,0⟩ and |+,0⟩. Figure 3a presents the polaritonic
eigenvalues as a function of η = gc/ωc at ΔE − ℏωc = 0
(resonance condition). Figure 3b presents the polaritonic
eigenvalues as a function of the detuning ΔE − ℏωc with a
light−matter coupling strength ℏgc = 1 eV. The eigenenergies
are obtained at various levels of theory, including the JC model
(yellow) in eq 83 that ignores both CRT and DSE, the rotating
wave approximation (RWA) Hamiltonian (magenta) that only
ignores the CRT term but not the DSE term, the Rabi model

Figure 3. Polariton eigenspectrum of a two-level system coupled to
cavity using various light−matter Hamiltonians. Polariton eigenspec-
trum (a) as a function of η = gc/ωc at zero detuning ΔE − ℏωc = 0
and (b) as a function of the detuning ΔE − ℏωc at ℏgc = 1.0 eV
obtained with various levels of theory, including the exact solution of
PF Hamiltonian (black dashed), JC Hamiltonian (yellow) that
assumes RWA and ignores DSE, Rabi Hamiltonian (cyan) that
ignores DSE, RWA (magenta) that ignores counter-rotating term
(CRT), and Perturbation theory (PT) (red) which treats CRT
perturbatively. Adapted with permissions from ref 12. Copyright 2020
American Chemical Society.
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(cyan) in eq 82 that ignores the DSE, and the full PF treatment
(black dashed) in eq 70 that includes both the CRT term and
DSE. The perturbation theory (PT) (red) which treats CRT
perturbatively (see details in ref 12) and includes the exact
DSE and provides very accurate polariton eigenenergies in the
range of the parameter regime investigated here.

In the JC model Hamiltonian (yellow), the ground state
does not shift with increasing η, while the |+,0⟩ and |−,0⟩ states
linearly split as a function of η. This behavior can be easily
understood by examining the JC eigenspectrum in eq 5. The
Rabi model (cyan), which only accounts for the CRT,
overestimates the negative energy corrections and incorrectly
decreases energies for all states. Thus, the Rabi model predicts
that the ground state energy becomes unstable. The RWA
Hamiltonian (magenta), which ignores the CRT but includes
the DSE, overestimates the energy correction in the positive
direction and shifts all states upward. The perturbative
treatment (red) that includes CRT as a perturbation as well
as the DSE performs well and is nearly identical to the exact PF
curve within the range of the η or ℏΔωc presented here. Note
that in Figure 3b, for ℏΔωc < − 0.5 eV, the polariton
eigenenergy for |−,1⟩ becomes lower than |+,0⟩. As a result, a
trivial crossing is formed between the third and fourth
polaritonic eigenenergies as a function of ℏΔωc at ℏΔωc ≈
− 0.5 eV.

When dealing with the full molecular cavity QED situation,
where both the permanent and transition dipoles (eq 28) need
to be considered, the coupling strength gc or η (eq 84) no
longer accurately describes the systems because it only includes
a particular value of the transition dipole, whereas both
transition and permanent dipoles could change their values
significantly as a function of the nuclear coordinate in a real
molecular system (see example in Figure 6b). For this case,
typically two di%erent expressions for coupling parameters are
used in the literature, either the magnitude of the vector

potential, =A
0

2
c 0

,14,75,90,116,117 or a coupling parameter

that does not explicitly depend on the cavity fre-
quency53,72,82,83,115,118−125

=

0 (85)

On the other hand, one should be careful because these
coupling parameters do not include the magnitude of the
dipole, either μαα(R) or μαβ(R), and both values could vary
significantly by changing R for a given system. These values
also need to be included when judging if a system is under a
particular coupling strength.

Further, it should be noted that for Fabry−Peŕot cavities, the
area of the mirrors is typically considered constant when
comparing di%erent frequencies. In this case, the cavity volume
is inversely proportional to cavity frequency, and A0 would be
independent of frequency, while λ would be frequency-
dependent. For the majority of this review, these two
parameters are used to represent coupling strength.

Finally, even with the considerations of a single molecule
coupled to the single cavity mode under the dipole
approximations, we want to emphasize that the accuracy and
validity of JC and Rabi models need to be carefully assessed
before adapting them to the field of molecular cavity QED.
This is because these models only consider two electronic
states {|g⟩, |e⟩} and the transition dipole μge(R) between them,

where the permanent dipole is often ignored. Unfortunately,
these well-established approximations in the atomic cavity
QED can explicitly break down for molecular cavity QED
systems.6,126,127 A detailed example of the breakdown of these
models is provided in Figure 6 of Section 3.1.3.

2.6. Many Molecules Coupled to Many Cavity Modes

In the previous sections, we focused on the QED Hamiltonians
under the long wavelength approximation and the single
photonic mode approximation. However, these approximations
are not adequate to accurately describe experiments conducted
with Fabry−Peŕot cavities.1−4,17−20,37,39−41,128−131,131−137 In
this manner, we must start with the most general Hamiltonian
in eq 35 and derive the convenient expressions for model
Hamiltonians that can accurately describe many molecules
interacting with many cavity modes. Specifically, many modes
are considered with many molecules, and we partially relax the
long wavelength approximation such that Â is no longer
spatially invariant while the matter interactions are still
approximated as dipoles. Such a Hamiltonian is necessary to
describe many molecules coupled to a Fabry−Peŕot cavity,
depicted in Figure 4a. In that situation, we explicitly consider a
1-D array of molecules.138 Several useful review articles related
to this topic can be found in ref 139.

In Fabry−Peŕot cavities, the total wavevector of the photon
can be decomposed into a component that is perpendicular to
the cavity mirror, which we denote as kz

= =k
n

L
n, 1, 2, ...z

z

z

z (86)

Figure 4. Many molecules and cavity modes. (a) Schematic of many
colinear molecules in a Fabry−Peŕot (FP) cavity. eT̂E and eT̂M are the
unit vectors indicating the directions of the Transverse electric (TE)
and Transverse magnetic (TM) polarized components of Ê⊥,
respectively. (b-d) Schematic dispersion for zero detuning (b),
positive detuning (c), and negative detuning (d). Plot of the upper
and lower polariton states in a FP cavity (purple solid) as a function
of the incident angle (θ) with the bare cavity dispersion (red lines)
and the exciton dispersion (blue lines).
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The value of kz is explicitly quantized, due to the boundary
condition imposed by two mirrors, where Lz is the distance
between the two mirrors. In the literature,40,128 kz is often
denoted as k⊥ because it is perpendicular to both mirrors (not
to be confused with the transverse component of the field in eq
37a). There are two more degenerate wavevectors, kx and ky,
with their directions parallel to the mirror, and are commonly
denoted as k∥ in the literature (not to be confused with the
longitudinal component of the field, such as eq 36). Both kx
and ky are in principle, quasi-continuous, because the boundary
length for the lateral directions (x and y in Figure 4) are
generally much larger than the mirror distance Lz. The cavity
quantization volume is = ·L

z
, where S represents the

e%ective quantization area at which molecules are coupled to
the cavity. Using the experimentally measured ΩR and , one
can estimate how many molecules N are e%ectively coupled to
the cavity.40

Overall, this leads to many photonic modes that can be
energetically close to a matter state transition, such as
electronic excitations40,138−144 or vibrational excita-
tions.1,4,17,131,137,145,146 For these cavities, the photonic
dispersion relations are the same for both the transverse
electric (TE) and transverse magnetic (TM) polarizations, and
experimentally, one can easily access both.144,147,148

For simplicity, let us focus on the TE mode, and set ky = 0.
For a field propagation direction k (see Figure 4), the total
energy of the photon is

= = + = +E
c

n
k k

c

n
k( ) 1 tan

k z x zph
eff

2 2

eff

2

(87)

where c is the speed of the light, neff is the e%ective refractive
index inside the cavity, and θ is the angle of k from the normal
of the mirror (see Figure 4a). This angle θ is often referred to
as the “incident angle” of the photon, which is tan θ = kx/kz.
When θ = 0, we have

=E
c

n
k(0)
zph

eff
c

(88)

where ωc is the photon frequency of the quantized direction
(z-direction) in the cavity, used in the single mode
approximation of the cavity QED (see eq 42, eq 44, and eq
56 in Section 2.3). Further, under the single mode
approximation (by setting kx = 0) the photonic momentum
k (or the field propagation direction) will be perpendicular to
the cavity mirror.

Note that in principle, the Fabry−Peŕot cavity has an infinite
set of possible kz that satisfy the mirror boundary conditions
(eq 86). Often, one only considers the kz that is close to the
matter excitation energy. However, when Eph is much smaller
than the matter excitation energy, multiple modes that contain
various kz (eq 86) in the range of matter energy and a given
range of θ have to be considered.140,143 In this review, we only
consider the case for a single kz (such that kz = π/Lz).

Hence, in the regime of small incident angles, the cavity
photon energy can be approximated as

+ +
i

k

jjj
y

{

zzz
i

k

jjj
y

{

zzzE ( ) 1
1

2
tan 1

1

2
ph c

2
c

2
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which is the usual quadratic dispersion relation observed in the
experiments.40,139,144,149 On the other hand, the matter energy
is considered to be invariant in the typical range of the angles θ

measured in the experiments, and thus EM = ℏωeg + Eg = Ee,
where ωge = (Ee − Eg)/ℏ. If one considers θ as a parameter
(under the continuous limit of kx), and the Tavis-Cummings
model to describe light−matter interactions (see Section 1.2),
one can then write down the following two-by-two matrix for
polariton Hamiltonian in the {|G, 1⟩, |B, 0⟩} subspace139
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The diagonal terms are Eph (θ) (red parabolic curves in
Figure 4b−d) and EM (cyan straight-line in Figure 4b−d), and
the coupling term Ng ( )

c
causes the “band bending” when

the matter and photon dispersion branches intercept. Note
that gc (θ) picks up a θ dependence from the cavity dispersion
relation of ωk (eq 87).

Figure 4b−d shows examples of this θ dependence for a
Fabry−Peŕot cavity for the situation of (b) zero light−matter
energy detuning, (c) positive detuning, and (d) negative
detuning, where the polariton dispersion curves are depicted in
purple. For each k (that corresponds to a specific θ or kx), the
model Hamiltonian in eq 90 is diagonalized to find the
dispersion plots. Similarly, the polariton eigenenergies are now
functions of k (or equivalently, θ) as follows

= + + ± +
±
E E E E Ngk k( )

1

2
( )

1

2
( ) 4 ( )g e k k

2

c

2

(91)

The dispersion plots in Figure 4(b−d) plot these
eigenenergies for di%erent kz values (corresponding to the
frequency for θ = 0). The corresponding quantum eigenvectors
for the |±⟩ polariton states are

|+ = | + |Gk kcos( ( )) B, 0 sin( ( )) , 1
N N (92a)

| = | + |Gk ksin( ( )) B, 0 cos( ( )) , 1
N N (92b)

where the mixing angle

=

i

k

jjjjjj
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{

zzzzzz

N g

E
k

k

( )
1

2
tan

2 ( )
N

k

1 c

(93)

explicitly depends on the wavevector, according to the
dispersion relation in eq 87. The expansion coeOcients for
the states in eq 92 are often referred to as the Hopfield
coeOcients150 which indicate the character of polariton
states40,149

= =
+ +

X Ck k k k( ) cos ( ), ( ) sin ( )
N N (94)

where X(k)+ is the exciton character and C(k)+ is the photonic
character of the |+⟩ state.149

Note that for Fabry−Peŕot cavities, ωk is polarization
independent, so typically only the TM mode is considered. We
emphasize that for a plasmonic cavity, eq 87 no longer always
holds. For example, the plasmonic cavity151,152 has a similar

dispersion for the TM polarization = + ( )k
c

n x ak,TM
2 2

2

xeff

,

but a linear dispersion for the TE mode = ±( )kc

n a xk,TE
2

xeff

,

where ax is the lattice constant in the x-direction for the
plasmonic lattice and neff is the e%ective index of refraction of
the ambient material in the cavity. Due to this polarization
dependence for the cavity dispersion with plasmonic cavities,
both polarizations must be considered for such systems.151−156
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For a plasmonic cavity, one should note that the dipole
approximation (and the long wavelength approximation in eq
41) is not as valid since the electric field distribution is varying
rapidly on the scale of the distribution of the electronic density.
Further, the size of the plasmonic excitation is comparable to
the size of the interacting molecular electron density, so the
use of the dipole approximation for the molecular DOFs will
no longer hold for these plasmonic interactions. It is also worth
noting that molecules are thought to couple to the plasmonic
environment via longitudinal fields (i.e., direct Coulomb
interactions between the plasmon oscillations and the adjacent
molecules). Nevertheless, the light−matter coupling in
plasmonic cavities may still contain a similar form of the
DSE as in the Pauli-Fierz Hamiltonian (eq 56), which has been
pointed out in refs 157, 82. Finally, these plasmonic cavities
also exhibit Landau-type damping as a primary source of
dissipation.157−159 All of these aforementioned di%erences
place plasmonic cavities in a separate category for discussion.
For this section and most of this review, we will focus on
Fabry−Peŕot cavities. We refer the reader to other references
for a more in-depth discussion on the modeling and simulation
of plasmonic cavities.50,153,157,159−170

It is worth mentioning that while in this review we focus on
the linear polarization of radiation, exotic e%ects may be
achieved when coupling matter to circularly polarized radiation
modes in chiral cavities which allows to break fundamental
materials symmetries.171 This recent direction in polaritonic
chemistry in chiral cavities may enable enantioselective
photochemistry,172 enhancing the circular dichroism signal173

and inducing valley polariton depolarization174 according to
recent theoretical works. This preferential treatment of
molecules may give rise to additional tunability a%orded by
the cavity to control outcomes of reactions that exhibit one or
more chiral centers. Although it is beyond the scope of this
review, there have been many recent studies exploring this
phenomenon from both theoretical and ab initio perspec-
tives.172,173,175,176

With the motivation of this model in mind, in the next
section, we first present a generalized dipole-gauge Hamil-
tonian and then a generalized Tavis-Cummings Hamiltonian.
2.6.1. Many-Molecule Dipole-Gauge Hamiltonian.

When considering cavities with many kx modes, the energy
eigenspectrum is typically visualized on a dispersion plot,
where the eigenenergies are plotted as a function of kx. To find
these kx-resolved energies and states, the Hamiltonian in
question needs to be truncated to the set of modes with a given
kx. This truncation is classified by the projection operator,

= | |n nk

k n

k k k kM

,

, ,x

y kx kz

x z x z

, (95)

where
M

is the identity for all matter degrees of freedom, and
{|n(kx,kz)⟩} are the Fock states for a given kx and kz. To avoid
gauge ambiguities, this mode truncation can be performed as

discussed in ref 75, where the
kx

enters into the exponential of

the PZW operator (see eq 73). Then, for each kx, this
truncated Hamiltonian is diagonalized to find the dispersion
plots and corresponding Hopfield150 coeOcients as a function
of kx.

To derive such a Hamiltonian, we start from the minimal
coupling Hamiltonian (eq 45), following the framework
discussed in ref 55. It is convenient to rewrite this Hamiltonian
by grouping the matter particles into well-separated molecules,

where the intermolecular distances are much longer than the
intramolecular/interatomic distances. In such circumstances
we can write Â(xj) ≈ Â(x̅J) for all j particles within the
molecule J with center of mass of the molecule x ̅J, and the total
Hamiltonian is written as

= +

+ +

·

[ ] †
H a a

m
z

V V

p A x
1

2
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,
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J j J j
j j J
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I J
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k k kp A

,

2

coul coul

(96)

where {I, J} are the indices over the molecules in the system
whose centers of mass are located at x ̅I/J, {j} are the indices
over each particle j in the molecule J, V̂coul

JJ is the intramolecular
Coulomb potential in molecule J, and V̂coul

JJ is the
intermolecular Coulomb potential between molecules I and J.

To transform this into the dipole gauge, we use the PZW
operator (eq 48), but now with Â (xJ) not under the long
wavelength approximation

= [ + ]
· † ·
a e aA x e( )

2
eJ
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n
i

n
i
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, , ,

J J

(97)

where the general expression of the quantized electric field E⊥

and magnetic field B̂ can be found in standard QED textbooks
(for example refs 54, 55 or the Appendix of ref 12).

The corresponding PZW gauge transform operator becomes
a multicentered PZW operator55,99 expressed as

= ·
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which has specific centers of molecules x̅J. This ÛN is still a
momentum boost operator on p̂j (of the jth charged particle
that belongs to the Jth molecule), given that we assume the
individual molecules are neutral, much smaller than the
wavelength of the mode, and can be well described by their
dipoles.55 Under these approximations, ÛN p̂jÛN

† = p̂j + qj Â
(x̅J). We can also evaluate ÛNak̂ÛN

† as,55

= +
† ·

U a U a i e R
2

( )eN N

J

n J J
i

k k

k

k x

0

J

(99)

where μ̂J(R̂J) is the dipole operator of molecule J with the
nuclear configuration R̂J. Additionally, the phase rotation from
eq 54 can be generalized for many modes as

=
[ ] †

U e
N i a a

0
/2

n n nk k k, , , (100)

where all the modes now experience a phase rotation.
Now, we can write our many molecules and many modes

Pauli-Fierz Hamiltonian in the full Hilbert space as,

= + [ +
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(101)

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00855
Chem. Rev. XXXX, XXX, XXX−XXX

S

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where we introduced a coupling parameter for this more

complicated system, = e
n nk k, ,

0

. While this is rigorous,

its computational cost can quickly become enormous. The
following simple basis size analysis can demonstrate this. For j
molecules with l electronic states and m modes with n Fock
states, the basis size scales as ljnm. Due to this unfavorable
scaling, the generalized Tavis-Cummings Hamiltonian is a
useful approximation to simulate these systems.
2.6.2. Generalized Tavis-Cummings Hamiltonian.

Intuitively, the generalized Tavis-Cummings (GTC) Hamil-
tonian is to the generalized dipole gauge Hamiltonian as the
Jaynes-Cummings Hamiltonian is to the traditional dipole
gauge Hamiltonian. In this manner, there are a series of
approximations from eq 101 to get the GTC Hamiltonian.
Namely, we first truncate each molecule to the two-level
approximation and remove the permanent dipole, such that the
dipole operator for a given molecule can be written as μ̂J = μJ

eg

σ̂x, where μJ
eg is the transition dipole moment between the

ground and excited state for molecule J. Then, the dipole self-
energy terms (last line of eq 101) are neglected entirely.
Finally, the rotating wave approximation is performed such
that the interaction terms go as

· +

· +
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,
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J J

where σ̂J is the lowering operator for molecule J’s two-level
system. This series then leads to an expression of the GTC
Hamiltonian
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(102)

Further making a single cavity mode approximation (only
keeping one k with kx = 0, where e ̂ is along x), with frequency
ωc) and the long wavelength approximation, this Hamiltonian
reduces to the Tavis-Cummings Hamiltonian discussed in
Section 1.2. Note that the GTC Hamiltonian in eq 102 has
been used in recent ab initio polariton quantum dynamics
simulations, such as those in refs 138 and 177.

The benefit of having this generalized Tavis-Cummings
model is that now it is easier to run simulations in the single
excited subspace since di%erent excitation levels are now
decoupled from each other. This drastically reduces the
computational cost of modeling large systems. In particular,
since even in simulations N is typically fairly large, most
numerical calculations using this model consider only the first
excitation subspace. This drastically reduces the basis size from
2N × NF for NF Fock states to (N + 1). Recently, studies
involving this GTC Hamiltonian have been able to shine new
light on the dispersion plots seen in experiments40,128 (see
Figure 4(b−d)).

One such observed phenomenon that can be predicted by
the GTC is the presence of collective ”bright” and “dark” states
formed by the hybridization of each molecule with each kx
mode. It should be noted that these terms refer to the presence
(or lack thereof) of photonic character in the energy

eigenstates of this system. By hybridizing N singly excited
molecular states with 0 photons with a collective molecular
ground state with a single photon, N + 1 energy eigenstates are
formed. The upper and lower polaritons make up the two
bright states, and the other N − 1 states become dark states
with no photonic character, making them energetically
degenerate (when ignoring disorder).

It should be noted that the typical Tavis-Cummings
Hamiltonian, as discussed in the Introduction, is found by
making the long wavelength approximation on the GTC
Hamiltonian shown in eq 102. This simply removes the phase
terms, exp{ ± i k · x ̅J}, essentially stating that the molecules are
identical and that the field is spatially invariant across all the
molecules.

The Tavis-Cummings Hamiltonian in general can be used
with various matter Hamiltonians. One specific model that is
commonly used is the Holstein-Tavis-Cummings (HTC)
model.8,178 In this model, the matter Hamiltonian consists of
an array of two-level systems with phenomenological phonon
modes added to the system. This HTC Hamiltonian can then
be extended from eq 12 as,

= | | + | | + +

+ + +

+ +

†

† † †

† †

i

k

jjj
y

{

zzzE e e E g g a a

g a a b b

g b b

( )
1

2

( )

( ) ,

J

e J J g J J

J

J J

J

J
J J

HTC c

c

,

(103)

where bν
† and b̂ν are the creation and annihilation operators for

the νth phonon mode, respectively, with frequency ων, phonon
coupling strength gν

J and molecular excitation operator σJ
† = |

eJ⟩⟨gJ|. Both the GTC Hamiltonian and the HTC Hamiltonian
have been extensively used in recent theoretical simulations in
molecular polariton systems.40,126,138,139,152,155,177,179 The de-
tails will be discussed in Section 6.1.

3. AB INITIO METHODS FOR MOLECULAR
POLARITONS

Coupling polaritonic Hamiltonians such as eq 55 with realistic,
ab initio calculations for molecular systems has generated
much recent work. Most of the molecular ab initio polariton
chemistry works are based on the single-mode light−matter
interaction Hamiltonian in eq 57, which is equivalent to eq 56
as explained in Section 2.3.2. Here, for consistency, we choose
to use the PF Hamiltonian in eq 56 to describe the ab initio
polaritons. In particular, we express eq 56 as follows

= + + + ·
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(104)

where, to be consistent with the ab initio polariton literature,
we use the light−matter coupling strength defined
as53,72,82,83,115,118−125,180
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= = ·e A e2

0

c 0

(105)

where e ̂ is the electric field unit polarization vector, is the
cavity volume, and ϵ0 is the permittivity of free space. Note
that in Section 2, we have used the magnitude of the vector
potential, A0, itself as the coupling strength. On the other hand,
when coupling solid state materials, the total dipole operator is
no longer well-defined, and ĤpA (eq 45) is often used. For
example, in ref 98 and ref 174, the polariton states of a 2D
TMD coupled to an optical cavity are computed based on ĤpA,
where one needs to evaluate the matrix elements of the matter
momentum operator.

The central task of the ab initio molecular polariton
chemistry is then to solve the polariton states and obtain
polariton potential energy surfaces, which are the eigenstates
and eigenenergies of the following polariton Hamiltonian

= = + + + ·
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(106)

where ĤPF is expressed in eq 104, and Ĥel is the electronic
Hamiltonian defined in eq 20. In term of the raising and
lowering operator of the field, the polariton Hamiltonian in eq
106 becomes
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The eigenvalue equation of Ĥpl is expressed as

| = |H R R R( ) ( ) ( )
a a apl (108)

where |Ψa(R)⟩ is referred to as the ath polariton state and
a

(R) is the ath polariton surface or cavity Born−Oppenheimer
surface.181,182 Note that both |Ψa(R)⟩ and a(R) parametri-
cally depend on R, analogous to eq 21 for the adiabatic states
and energies of the bare molecule.

By far, there are two popular approaches in literature to
solving this coupled electron-photon-nuclear system described
in eq 108. Approach (I): solving the electron−nuclear problem
followed by diagonalizing eq 55 with these electronically
adiabatic basis states along with a photonic basis (e.g.,
number/Fock states, generalized coherent states,183 polarized
Fock States,51 etc.). Approach (II): incorporating the photonic
DOFs (through eq 55) into the common electronic structure
framework whereby self-consistently solving the electron-
photon-nuclear problem in one step. Both methods a%ord
adiabatic polaritonic states as a result. This is because the two
methods only only di%er in the resulting basis describing the
polaritonic system.

In Approach (I), the basis of electronic adiabatic states and,
e.g., number states, never changes, and upon diagonalization of
eq 55 gives some description of the polaritonic states, which
may require extensive basis sets for the electronic DOFs.115

This scheme will be referred to as the frozen adiabatic basis
approach or parametrized QED (pQED).

In (II), the initially adiabatic electronic and photon basis sets
are self-consistently updated to minimize the number of basis
states needed to properly describe the polaritonic system,

which, in general, should give a more accurate and trustworthy
description of the ground and excited states due to their self-
consistent nature. This scheme will be referred to as the self-
consistent QED scheme (scQED). In this scheme, the
electronic DOFs will be perturbed by the presence of the
photonic terms in the Hamiltonian, which has led to studies
involving how the ground state orbitals will react to these
additional photonic terms, which will be discussed in more
detail later..124,184,185

3.1. Parameterized QED Approach

3.1.1. Adiabatic-Fock Electron-Photon Basis. We now
discuss a simple approach to solve the QED problem where
one treats the electronic and photonic basis states as frozen
(i.e., not self-consistently updated). This is often referred to as
the “adiabatic”, frozen basis, or parametrized QED approach,
and is commonly used in the atomic cavity QED problems.88,90

We will exclusively refer to this procedure as the parametrized
QED (pQED) approach in this review. In this approach, one
first solves eq 21 using any electronic structure method of
choice, obtaining the adiabatic electronic states, |ψα(R)⟩. One
can then construct the tensor product of adiabatic electronic
states, |ψα(R)⟩, and Fock states, |n⟩, as the basis, |ψα(R),n⟩
≡|ψα(R)⟩⊗|n⟩, where the character of this basis explicitly
depends on the nuclear position, R. This basis is commonly
referred to as the adiabatic-Fock basis.

Because we are going to work with a finite set of electronic

states, that means one should use eq 70 for
PF
, and the

polariton Hamiltonian in the finite electronic space is
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where the matter state truncation needs to be performed as

( )2 and not 2 (See Sec. 2.4.2 for a detailed
discussion). For the polariton Hamiltonian in eq 106 one
can use the adiabatic-Fock basis {|ψα(R),n⟩} to evaluate the

matrix elements = | |n mR R( ) ( ), ( ),
nmpl , pl result-

ing in118,180
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where {α, β, γ} label the electronic adiabatic states (where
there is a total of electronic adiabatic states being
considered), {n, m} label the photonic Fock states, e ̂ is the

polarization unit vector of the electric field, = ·e( )
2

c

,
nm

= n(
n m, 1 + +

+
n 1 )

n m, 1 , a n d D =

· ·e e( )( )
1

2

2 . Here, only the electronically adiabatic

state energies Eα and transition dipole matrix elements μαβ are
required as input. As has been known for many decades,
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solving the many-body electronic system is not trivial, while
the harmonic oscillator problem is an easy text book problem.
The purpose of this pQED procedure is to make use of the
simplicity of the photonic subsystem, while still relying on
complicated many-body methods to extract the necessary
information from the electronic subsystem as input. An
important distinction to make is that the basis states {α, β,
γ} are many-particle states (Slater determinants or their
combinations) instead of single-particle states (spin orbitals).
The square electronic dipole operator μ̂2 using the many-body
wave functions can be directly evaluated by inserting a
complete set of many-body wave functions (as was done in eq
110) since the dipole matrix elements between the many-
particle states are known directly. However, in the basis of
single-particle states (e.g., Kohn−Sham orbitals), one needs to
consider terms arising from one and two-particle dipoles, as is
shown in many works using the scQED method (to be
discussed later in Section 3.2.122,124,175,184

Upon diagonalizing the matrix of pl(eq 110), one obtains

the expansion coeOcients for the polaritonic states {|Ψi (R)⟩}
in the basis of the adiabatic electronic and Fock states as,

| = |c nR R( ) ( ),
a

n

n

a

,

,

(111)

where the coeOcients cα,n
a (R) = ⟨ϕα(R),n|Ψa(R)⟩ can be used

to compute any observables of the resulting polaritonic system
(which will be revisited later). Note that the expansion
coeOcients also explicitly depend on the nuclear configuration,
due to the R-dependent adiabatic states |ϕα(R)⟩. This is also
the common procedure in quantum optics to solve polariton
eigenstates of model systems couple to cavity, for example, the
results presented in Figure 2.

More practically, the construction of the Hamiltonian matrix
can be easily achieved through tensor products, but it is worth
examining the block structure of the matrix to understand how
the dipole matrix plays such an important role in resolving the
low-lying polaritonic states. The Hamiltonian matrix (eq 110)
can be written as
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where pl is extremely sparse with a triblock-diagonal

structure connecting the block M
n

= E R( ( ) +

| |n n nR R) ( ), ( ),c + | |D n nR R( ), ( ),
,

, to

the block of electronic states dressed with n ± 1 photons Mn±1

is now evident. The Mn and Mn+1 blocks are coupled through
+n 1 . Additionally, the electronic states with the same

photon number (i.e., n = m) are connected only via the DSE

terms Dαβ. Note here that is the maximum number of
included Fock basis states for the photonic subsystem. Recall
for blocks with larger numbers of Fock states, one picks up the
additional +n 1 term on each of the μ̃ blocks, which
ef fectively increases the ef fects of the coupling terms μ̃ with
increasing numbers of photons.

Noting again the block structure in eq 112, the computa-
tional eOciency of this exact diagonalization can be drastically
increased by the use of sparse matrix methods (e.g.,
Lanczos),186−188 which can be heavily relied on for
approximate diagonalization of the lowest eigenvalues and
eigenvectors without loss of physics but with a large
computational speed-up. For this approach to be successful,
one is required to treat the number of electronic (i.e., size of M
and μ̃) and photonic basis states (i.e., ) as convergence
parameters which provides a rigorous approach to solving the
QED Hamiltonian, and it is exact for an infinite basis set.
However, in the literature, often the electronic system is
truncated to only include the ground and first excited
molecular states and only the vacuum |0⟩ and |1⟩ photonic
states. As we will see in the following section, this will lead to a
breakdown of the physics, especially at larger coupling
strengths specifically due to the DSE terms connecting blocks
of the Hamiltonian far-away in energy.

Furthermore, the truncation of the electronic dipole matrix
with the number of included adiabatic electronic states will
drastically a%ect the results, since the transition dipole matrix
appears directly in the light−matter coupling term and its
square appears in the DSE term, thus possibly contributing a
great deal of complication to the o%-diagonal (and on-
diagonal) couplings due to the shape and distribution of the
transition dipole matrix itself. As an example, Figure 5

showcases the dipole matrix for four molecules: (a) form-
aldehyde, (b) LiF, (c) animopropenal, and (d) 35PPE, all of
which under recent study in polaritonic schemes.51,121,125 In
each case, the 20 lowest energy adiabatic electronic states are
shown as the vector norm of the dipole matrix elements as
computed at the TD-DFT level. In all four cases, although
symmetry-based arguments regarding selection rules could be

Figure 5. Norm of the transition dipole vector matrix elements |μ⃗|
calculated with TD-DFT/B3LYP for the lowest 20 electronic states of
four molecules. (a) Formaldehyde. (b) Aminopropenal. (c) LiF. (d)
35PPE. These matrices appear directly in the μ̃ block terms in eq 112,
and their matrix squares form the DSE terms which are located inside
the Mn blocks.
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applied, it is hard to discern any pattern of the dipole matrix
elements. The two small organic molecules (Figure 5a,c)
showcase the most scattered of the dipole matrices, the LiF
(Figure 5b) shows a block-like structure (due to the reduced
dimensionality), and the large organic species (Figure 5d)
shows an intermediate regime where the high-energy states are
weakly coupled and have some structure while the low-energy
states showcase a strong degree of coupling in a block-like
fashion. In this molecule, there is evidence of charge-transfer
states (e.g., states 2 and 3) with large permanent dipoles due to
the large spatial reorganization of charge upon electronic
excitation.189

Using the pQED procedure, one needs to pay careful
attention to the electronic dipole matrix and discern the
distribution of strong coupling. At larger numbers of electronic
states (i.e., ∼100 states), it is usually straightforward to see
where the strong coupling away from the diagonal elements
will decay to near zero. This e%ective “width” is expected to
play a direct role in the convergence of the electronic basis
states used for the pQED procedure. However, one also
requires the square of this dipole matrix (which will change
depending on the choice of electronic state truncation ) for
obtaining the DSE terms, which adds additional complexity to
the situation. To be clear, the convergence of the polaritonic
states requires a balance between the matter and photonic
expansions53 which is, in general, not trivial to know a priori
nor necessarily guaranteed to converge at all when the light−
matter coupling is large for an arbitrary large molecular system
with many electronic states.115

3.1.2. Polarized Fock State Basis. We have outlined the
pQED scheme using the adiabatic electronic state and
photonic Fock states as the basis. Another popular
representation for the photonic degrees of freedom includes
the grid basis, which is the eigenbasis of q̂c and has been
extensively used.5,107,181,190 The choice of basis can signifi-
cantly enhance computational eOciency or reduce the
conceptual complexity of a problem.

One such basis that provides computational as well as
conceptual convenience is the recently proposed polarized
Fock State (PFS) basis introduced in ref 51. Here, the Pauli-
Fierz Hamiltonian (eq 109) is rewritten using an entangled
electronic-photonic basis, where matter is represented in the

eigenstates of the dipole operator = | |R( )
D

and is referred to as the Mulliken-Hush (MH) representation
(see details around eq 29). The light−matter Hamiltonian (see
eq 109) using the MH basis can be written as,51,191

= + + [ + | |]
p

q q R

2 2
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c
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c
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(113)

where = ·q R R( ) ( )0

c

. Notice that the photon field is now

described by the MH-state specific displaced harmonic
oscillators centered around − qν

0 (R). This displacement can
be viewed as a polarization of the photon field due to the
presence of the molecule-cavity coupling, such that the photon
field corresponds to a nonzero (hence polarized) electric field,
in contrast to the vacuum photon field. Within this
representation the Fock states have been explicitly shifted by
a quantity proportional to the molecular dipoles and light−
matter coupling λ, whose shift is evident from direct
examination of the last term in eq 109.

This Hamiltonian can be now block-diagonalized using the
polarized Fock basis (PFS) {|nν(R)⟩} for each |ϕν⟩, which is
defined as,
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The electron-photon subsystem can be represented with the
following tensor product of MH and PFS basis

| | |n nR R R( ) ( ) , ( ) (115)

which is a light−matter entangled basis because one needs to
specify both the nuclear position R and the MH diabatic
electronic state |ϕν⟩ to define the polarized Fock states |nν(R)⟩.

Using this basis, pl is expressed as
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where we have dropped the R dependency for simplicity. Note
that there is a finite coupling between the MH state ϕν with nν

photons and the MH state ϕϵ with mϵ photons through the
⟨mϵ|nν⟩ Vνϵ term, which is the o%-diagonal matrix element of
the electronic Hamiltonian, Vνϵ, scaled by the overlap, ⟨mϵ|nν⟩,
of the PFS. This overlap is nonzero and is simply the overlap of
two harmonic oscillator wave functions that are shifted from

one another by = ·[ ]q q
0 0

c

. Thus, instead of

having an explicit l ight−matter interaction term

· +
†
a a( )

2

c (and the DSE) as shown in eq 111, these

interactions are now completely carried through ⟨mϵ|nν⟩·
Vνϵ(R). This basis is expected (and has been explicitly shown
for models systems51) to eOciently converge the photonic
basis, especially when the permanent dipoles μνν(R) in the MH
basis are large. For additional discussion, see ref 51.

A similar formulation was also presented in ref 53, where
displaced Fock states |n(R̂,r)̂⟩ were introduced which para-
metrically depend on the nuclear position operator R̂ as well as
the electronic position operator r.̂ Here, the displacement of
the Fock state is proportional to the total dipole ∑jRj − ∑jrj.
Using this framework, ref 53 also introduced a generalized
Born−Oppenheimer approximation to include photons, such
that the nuclear part of the many-body electronic-nuclear-
photonic wave function ansatz is factorized from the
electronic-photonic part. The basis based on this work will
be discussed in Section 3.2 and is called the generalized
coherent state (GCS) basis.183

3.1.3. An Example: LiF Coupled to Cavity with the
pQED Approach. Here, we give an interesting example that
has been extensively explored, which is a LiF molecule coupled
to a single mode cavity. We will only focus on the polariton
potential energy surfaces and not consider the time-dependent
polariton dynamics (which will be discussed in Section 4.1). In
addition, we will only focus on two electronic states of the LiF
molecule =( 2). We emphasize that one should treat the
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number of electronic states as a convergence parameter in
pQED calculations.115

Figure 6 presents the polariton potential energy surfaces
predicted by various quantum optics model Hamiltonians for

the model LiF molecule shown in Figure 6a,b (the details of
the model can be found in ref 51). Here, only two diabatic
states are considered, which are denoted as the ionic state |I⟩,
and covalent state |C⟩. These two diabatic states are coupled
through a diabatic coupling VIC(R) (dotted yellow line in
Figure 6a) that causes a splitting (avoided crossing) near the
anticrossing of the diabatic potentials VC(R) and VI(R) (solid
red and blue line in Figure 6a, respectively). The adiabatic
electronic states, ground |g(R)⟩ and excited |e(R)⟩ states can be
obtained by diagonalizing the electronic Hamiltonian Ĥel = VI

(R)|I⟩⟨I| + VC (R)|C⟩⟨C|+VIC (R)(|I⟩⟨C|+|C⟩⟨I|) at each R.
The dipole moment matrix at each R is diagonal in this

diabatic representation. This is because the diabatic states |I⟩
and |C⟩, so-called Mulliken-Hush diabatic states, are the
eigenstates of the electronic transition dipole operator by
definition (see discussion around eq 29). Figure 6b presents
the matrix elements of μ̃ in both the diabatic (solid lines) and
the adiabatic (dashed lines) representations. As expected, the
permanent dipole for the ionic state |I⟩ (corresponding to
Li+F−) μI(R) linearly increases, while the permanent dipole for
the |C⟩ state (corresponding to covalently bonded Li−F)
μC(R) remains nearly zero with increase in interatomic
separation R. The adiabatic states switch their characters

around R ≈ 13.5 au, as a result, the adiabatic permanent dipole
switches in that region, and μeg(R) peaks at R ≈ 13.5 au

The relative importance of di%erent terms in the PF
Hamiltonian and the consequences of ignoring them is
illustrated in Figure 6c−f. For example, the dipole self-energy
(DSE) plays a crucial role in molecular polaritons to guarantee
a bounded ground state and excited states,12,48,82,88,125,192,193

even though DSE is a constant in atomic polaritons and are
dropped out in most of the atomic cavity QED models (see
Section 2.5). Without the DSE, there will be an unphysical
bending of the polariton potential, which is clearly
demonstrated in Figure 6d. Without DSE, the gauge invariance
between the minimal coupling Hamiltonian and the electric-
dipole Hamiltonian will break down.48,53,88,90,104,192 Further,
without the DSE, the ground state is no-longer bounded and
becomes dissociative (and unbounded) at a large nuclear
distance.48 The Rabi model, which explicitly ignores the
presence of the permanent dipole, explicitly breaks down when
electronic states have a large permanent dipole di%erence.51

Neglecting the permanent dipole, as commonly done for most
of the current molecular cavity QED studies,6,127 can cause
unphysical dips in the polariton potentials,127 as demonstrated
in Figure 6c. The JC model which assumes RWA, explicitly
breaks down in the recently emerged ultrastrong coupling
regime,47,80 and also gives unphysical dips of the potential
(Figure 6). Thus, one need to use the most rigorous
Hamiltonian to describe the light−matter interactions and
try to avoid unnecessary approximations.

3.2. Self-Consistent QED Approaches

We will briefly overview the recent work to integrate the PF
QED Hamiltonian (eq 55) into a variety of electronic structure
methods to provide a self-consistent solution to the ground
and excited polaritonic states.194 Note that in the previous
section for the pQED approach we chose a basis for polaritons
that cannot change in a variational or self-consistent sense,
while for the self-consistent methods (scQED, Approach (II)),
the basis is iteratively updated to minimize the energy of the
entire Hamiltonian. In this sense, this procedure may require a
smaller number of overall electronic/photonic states than the
pQED procedure; however, the scQED method requires
knowledge of the low-level basis of the electronic system (e.g.,
atomic orbitals, plane waves, etc.) while the pQED method
only requires the resulting many-body state energies and
transition dipoles (i.e., as solved by CIS, TD-DFT, EOM-CC,
etc.). In this way, the technical details of the self-consistent
schemes become more complicated. In contrast to this, in the
pQED procedure, the convergence of the basis becomes a
more important consideration due to the lack of response of
the basis to the presence of the photon field. That is to say, the
scQED schemes also rely on a truncation in both the electronic
and photonic subspaces. However, the character of higher-
lying excitations (specifically in the electronic subsystem) can
still be mixed through the inclusion of more virtual single-
particle orbitals (i.e., a convergence parameter) while the
higher excitations in the photonic DOFs can be captured
through the polarized Fock state51 or coherent
state122,124,183,184,195 representations.

We want to make a special comment regarding the choice of
notation for the self-consistent methods. In this work, we use
scQED to refer to these methods; however, this is not to be
confused with another common notation of similar, but
di%erent, meaning, SC-QED, which is the strong coupling

Figure 6. Molecular Polaritons in LiF Dissociation: A comparison

between
PF
and other quantum optics models. Polariton Eigenstates

of a LiF molecule (two level model system with details in ref 51)
coupled to a single mode optical cavity, using the (a) rigorous PF
Hamiltonian as well as various quantum optics models, including (b)
PF Hamiltonian without DSE, (c) Quantum Rabi model (eq 82) and
(d) JC model (eq 83).
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QED.124,176 As we will see in this section, in the strong
coupling regime of light−matter interactions, a fully self-
consistent method is often necessary to converge the
polaritonic properties, so in this way, the scQED and SC-
QED notations are intimately related.

As is usually done, we first approach this problem by way of
mean-field Hartree−Fock (HF) theory and continue toward
higher-level schemes such as time-dependent density func-
tional theory and coupled cluster methods, with the final
section of this chapter covering recent applications of the
aforementioned scQED and pQED schemes. Thus, far, we are
not aware of any theoretical work on scQED work that
explicitly solves many molecules coupled to many cavity modes
beyond long wavelength approximation, such as described by
the Hamiltonian in eq 101. Since this is highly relevant to the
description of the actual molecule-cavity coupling in most of
the experimental setup, future theoretical works should focus
toward this direction to achieve a more direct comparison with
experiments. Nevertheless, the ongoing ab initio scQED
approaches layout the groundwork toward that goal and will
be the topic of the following discussion.
3.2.1. QED Hartree−Fock. Canonical HF theory attempts

to describe a many-body system’s ground state by the use of a
single Slater determinant, |ΦHF⟩, that yields an uncorrelated
ground state. This is usually the basis for so-called post-HF
methods that will be discussed later, such as the configuration
interaction (CI) and coupled cluster (CC) methods. For the
polaritonic system, one extends this ideology to include the
photonic DOFs such that the uncorrelated electrons and
photons use the following direct product state. However, to
simplify the problem, many authors have opted to use the
coherent state basis183 for their implementations of the scQED
schemes122,195 for the photonic DOFs, which alleviates some
of the complexity in notation as well as provides a useful
interpretation of the e%ects of the cavity on the ground state
properties.

In order to illustrate the convenience of the coherent states,
following closely the notation of ref 122, we first construct the
HF ground state Ansatz for the hybrid system via a tensor
product of the bare molecular HF ground state (which is a
Slater determinant of molecular orbitals who are themselves
linear combinations of atomic orbital basis) and a Fock state of
the cavity mode as follows
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where |0⟩ is the photon vacuum state of H̃ph (eq 42), a† is the
photon creation operator (see eq 42 and eq 43) and cn is the
expansion coeOcients for the photon number states. The HF
energy for the molecule-cavity hybrid system is then computed
in the usual variational way by using the |Φ0

el+ph⟩ to sandwich
H̃pl (eq 106) as follows
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where the usual HF mean-field procedure is used to iteratively
modify the electronic HF molecular orbitals and photon
coeOcients, eventually reaching a self-consistent solution to
the ground state energy of the molecule-cavity hybrid system.
In practice, one can first obtain the bare molecular HF energy,
EHF, outside the influence of the cavity and variationally
optimize the photonic expansion coeOcients of the partially
evaluated PF Hamiltonian as follows122
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where ⟨···⟩HF = ⟨ΦHF|···|ΦHF⟩ is the HF ground state
expectation value of the molecular subsystem, and we have
not used any photonic basis to evaluate the expectation value
for a ̂† and a.̂ Note that in eq 119, the light−matter interaction
is carried by the term ⟨λ μ̂⟩HF ·(a ̂† + a)̂ resulting from the ĤPF

in eq 55.
This partially diagonalized expectation value in eq 119 can

be fully diagonalized in the coherent state basis183 defined by
the unitary transformation115,122,124,195

=
*

†

U e
a a

(120)

which will shift the photonic creation and annihilation
operators for an arbitrary complex , such that

+ *† †
a a and +a a . This is in the same spirit
of the polarized Fock state idea in the previous section
(Section 3.1), which is a polaron-like transform on the
photonic DOF. Choosing the particular as fol-
lows115,122,124,195
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one can transform the Hamiltonian Ĥpl by unitary rotationU ,

resulting in =
†

H U H Upl pl as follows
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where Δμ̂ = μ̂ − ⟨μ̂⟩HF. Note that because U is a unitary
operator, it will not change the eigenvalue of the problem.

With the transformed Hamiltonian in eq 122, one can still
evaluate its HF variational expectation value as
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and the light−matter coupling term explicitly vanishes due to
the fact that ⟨Δμ̂⟩HF = ⟨μ̂ − ⟨μ̂⟩HF⟩HF = 0. Using this strategy,
the light−matter coupling term ⟨λ · μ̂⟩HF · (a ̂† + a)̂ resulting
from the ĤPF (in eq 119) no longer explicitly shows up in eq
123, and the implicit coupling between molecule and cavity is
now carried through

=( )2 HF
2

HF HF
2

(124)

which can be intuitively understood as the dipole fluctuations
due to coupling to the cavity.

The variational expectation value in eq 123 suggests that the
eigenstates of this Hamiltonian are simply the Fock states.
However, one should not be confused by its appearance as HF
needs to be solved through many iterations (in a self-consistent
manner), and for each iteration, the shift needs to be re-
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evaluated, and a new unitary transformation needs to be
constructed, similar to how the HF density matrix needs to be
reconstructed to progress the self-consistent cycle.

In the original Hamiltonian (eq 119), the eigenvectors
become the generalized coherent states themselves,

| = |n U n, (125)

where | = |
!

†

n 0
a

n

( )n

is the cavity Fock state.

The HF equations can be solved through iterative
diagonalization, and at each iteration the HF electronic
molecular orbitals are updated and are used to evaluate the
shift expressed in eq 121. The Fock matrix can be written
explicitly as
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where {p, q} indicate all possible molecular orbitals, and {i}
and {ν} indicate strictly occupied, and strictly virtual HF
electronic orbitals, and Fpq

el is the bare molecular Fock matrix in
the HF orbital basis. {n, m} are the photonic Fock/number
basis states. The Fock matrix here, by construction, is similar to
eq 123 and does not contain the electron-photon interaction
term, which necessarily drops out in this picture since that
term mixes states with varied numbers of photon basis states
while the DSE term connects only electronic states. Noting
that the solution to the bare molecular Fock matrix is achieved

if = 0
i

el , the QED-HF energy can be written as122
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which is then variationally minimized. More details on the
scQED-HF scheme in varying complexity can be found in refs
122, 124, and 184.

We note here that, compared to the analogous pQED
scheme which requires knowledge of the many-particle excited
states of the bare molecular system, the scQED scheme o%ers a
substantially cheaper calculation since no explicit excited states
are required. In this case, the scQED scheme only requires
convergence with respect to the number of virtual single-
particle orbitals included in the variational scheme.

Furthermore, an interesting result of coupling cavity photons
to molecular systems is the breakdown of Koopman’s theorem,
used to approximate the ionization energies of molecules, due
to the intrinsic spatial and orientational dependence on the
molecular orbitals of the electronic system. Ref 176 has
extensively discussed such consequences on the reinterpreta-
tion of Koopman’s theorem using the recently developed
strong coupling QED-HF methods.122−124,176,196,197

3.2.2. QED Coupled Cluster Theory. An improvement
over the mean-field and single-reference methods can be
systematically achieved by increasing the number of reference
states (configuration Slater determinants). In electronic
structure theory, one can achieve these by building a correlated
wave function theory starting from HF, such as a configuration
interaction (CI) approach that includes all possible singly (S)
excited Slater determinants (CIS),184 or one that includes
doubly (D) excited Slater determinants (CISD), or CISD(T),

etc. However, the most computationally feasible and accurate
methods stem from the coupled cluster (CC) approach. In
particular, CCSD, which includes up to two electronic
excitation operators in principle but indirectly includes
correlation from higher-level excitations due to the location
of the excitation operators in an exponential function. As such,
this method has been shown to systematically achieve more
accurate results compared to the analogous method in CI (e.g.,
CISD method) and sometimes even outperforms the CISDT
methods.198−202 In this case, it is the most appropriate choice
to extend to the QED formalism to correctly capture the
correct electronic and electron−photon correlations that will
result from coupling to the cavity. Even though this method is
too expensive for most medium sized molecules, it provides a
useful benchmark for other lower-order methods (e.g., scQED-
TD-DFT).

Following closely with refs 122 and 203, the CC ansatz for
the ground state polaritonic wave function is

| = | = [| | ]e e 00
CC

0
pl HF

(128)

where |Φ0
pl⟩ is the polaritonic ground state calculated at the

uncorrelated HF level (see previous section) and |ΦHF⟩ is the
uncorrelated HF electronic ground state. Here, |0 is the
photon vacuum state in the rotated coherent state

representation with | = |U0 0 (see eq 120) at the varia-
tionally optimized coherent state parameter after the HF

self-consistent procedure. is the cluster operator (not to be
confused with the kinetic energy operator T̂R or T̂r in eq 20).
This cluster operator involves a sum of electronic, photonic,
and mixed electron-photon excitations as follows

= + +t t t

n

n n

n

n n
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where τ̂α represents creation and annihilation operators for an
αth-order electronic excitation. For example, τ̂i

ν = cν̂
† cî excites an

electron from an occupied orbital i to an unoccupied orbital ν.
Similarly, τ̂ij

νυ = cν̂
†cυ̂

†cîc ̂ĵ will excite two electrons i→ ν and j → υ,
respectively. The photonic excitation operator can be written
in a simple idempotent form203 as τ̂n = |n⟩⟨0| for a finite
number of Fock states203 {| } = {| | ··· | }n 0 , 1 , , . The
coupled excitation operator τIα̨̃ñ; can be written, for example, as
cν̂

†cî |n⟩⟨0| for a single electron excitation coupled to an nth-level
photonic excitation while cν̂

†cυ̂
†câcIb̨ |n⟩⟨0| will provide the

double electron and nth-level photonic excitations. Each of
these excitation operators and one for every choice of n up to
the photon level truncation with a unique cluster
amplitude t. It is important to note that refs 203 and 122
use di%erent definitions of the cluster operator. Notably the
photonic excitation operators in ref 122 (as well as in ref 195)
are instead the true photonic ladder operator a ̂ rather than the
idempotent form used in ref 203.

A graphical representation of these partitioned and coupled
excitations can be found in Figure 7a. The amplitudes tα, tn,
and tãñ can be solved by projection (eq 130). This requires to

evaluate =H e H e
PF PF

, which is the similarity-transformed
Hamiltonian operator, where ĤPF is expressed in eq 104 and is
usually rotated to the coherent state basis (see eq 120). This
leads to the ground state energy as a solution to the following
set of equations,
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| | = { } = | | ={ }H E H, 00 0 CC 0 (130)

with | {Γ}⟩ = τ̂{Γ} |Φ0⟩, where {Γ} is the set of possible

excitations in the cluster operator leading to the set of
projection equations { }. These projections lead to the
equations for the excitation amplitudes t{Γ} and are usually
solved in a self-consistent manner.

There are many di%erent notations for the methods
developed by changing the highest level of excitation for
each term in the cluster operator. In this review, we will use the
notation whereby CCSD-n-jm, which implies that the
electronic DOFs are treated up to double excitations in the
cluster operator, the photonic excitation is limited to n levels,
and the mixed excitation is set to j electronic and m photonic.
As per usual CC theory, the cuto% of excitation level leads to
e%ects that include yet higher excitations through the

exponential treatment of the cluster operator , thus
e%ectively outperforming similar methods like CI with the
same excitation level cuto%. However, due to the

*
N( )6

F
mode scaling (with N electrons and

modes
cavity

modes each with
F
Fock states) of the scQED-CC method in

general, including more than two Fock states has been a
challenge even for small molecular systems,122,125,195,204 and
limited study has been performed including up to 10 Fock
states for a half-filled four-site Hubbard model with direct
comparison to the full configuration interaction result.203 This
will have unfavorable scaling on low-frequency cavities or for
purposes of multiphoton up-conversion, where higher numbers
of photons are required to resolve the physics.
3.2.3. QED Equation of Motion Coupled Cluster

Theory. The excited states in the CC theory are generated
most naturally by the equation of motion (EOM) formalism,

which is often referred to as the EOM-CC approach, whereby
the excited wave functions are generated through the Jacobian
matrix defined as the derivative of the projected eqs (eq 130)
with respect to the cluster amplitudes tα as,198−202

= |[ ]|H ,
e e/ HF

(131)

where |Φα⟩ is is defined below eq 130 and |ΦHF⟩ is the exact
ground state This leads to the following non-Hermitian
Hamiltonian for the bare electronic system,205
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where the explicit elements (as well as additional discussion)
for the vector η and matrix A can be found in ref 205.
Extending the CC formalism to the coupled electron-photon
system, we have
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(133)

where each block Jacobian matrix (1)/(2) mixes various DOFs
through coupled excitations in the individual or mixed

subspaces. Note that e/e is the same as outside the cavity,
and the rest of the Jacobian matrix elements can be written
similarly as follows

= |[ ]|{ }n H, , , 0
n m,

HF
(134)

where τ̂{Γ} can be either the electronic τ̂β, photonic τ̂m, or
mixed electronic-photonic τ̂β̃m̃ excitations. These coupled
equations are usually solved via iterative diagonalization for
the amplitudes in the standard coupled-cluater implementa-
tions. For more details on the exact expressions for ground and
excited polaritonic amplitude equations, see refs 122, 206, and
203.
3.2.4. QED Density Functional Theory. In this section,

we turn to a di%erent and robust approach to include explicit
electron-photon correlation, using density functional theory
(DFT) approaches. DFT207 is formally exact, up to the choice
of the exchange correlation functional, which is currently not
known. To make it practical for realistic systems, multitudes of
approximate density functionals have been developed with
varying complexity that involves di%erent orders of derivatives
on the electronic density in order to capture long-range
correlation. For the electron-photon hybridized system, one
must extend this ideology to include correlations between the
electronic and photonic subsystems, which has only recently
been studied.182,208 We will only give a general outline of this
approach based on ref 182, which uses the optimized e%ective
potential (OEP) approach to generate a simple functional to
include electron-photon exchange interactions. However, other
discussions related to the recent advances of the scQED-DFT
approach can be found elsewhere in the literature.209−212

DFT uses the total density, n(r), as the main variable. For
cavity QED, the photon provides additional DOFs, notably the
photonic coordinate q̂c, which we will see is hidden in new
single-particle (SP) orbitals that can be interpreted as
corrections to the original SP states due to the cavity. The

Figure 7. Implementations of QED-Electronic Structure Methods (a)
The coupled cluster (CC) method can be understood via linear
combinations of the excitation operators generated by the exponential
of the total cluster operator (eq 129). Here, the CC excitations are
visualized for the (left, black) electronic and (right, red) photonic
subsystems, where each subsystem has an excitation operator (τ̂α, τ̂n)
as well as a shared coupled-excitation operator τ̂α̃ñ. Including the
maximum number of excitations (which trivially on the number of
electrons in the system), one recovers the full configuration
interaction (FCI) limit. (b) Various approximations to the QED-
TD-DFT method (eq 142), generating the usual (but generalized to
many states) QED models such as Jaynes-Cummings (JC), Rabi, and
the rotating wave approximation (RWA), as well as an approximation
to the electronic subsystem within the Tamm-Danco% approximation
(TDA). Panel (a) is adapted with permission from ref 115. Copyright
2021 American Institute of Physics. Panel (b) is adapted with
permission from ref 203. Copyright 2020 American Physical Society.
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DFT equations for the noninteracting Kohn−Sham (KS)
system can be written as

+ =

Ä

Ç

Å
Å
Å
Å
Å
Å
ÅÅ

É

Ö

Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
ÑÑ

v r r r

1

2
( ) ( ) ( )

i s i i i

2 KS KS

(135)

where i labels the noninteracting KS orbitals {ϕiσ} with spin σ.
The total density n(r) is computed as the sum of the spin
densities nσ = ∑iϕiσ* ϕiσ. The e%ective KS potential is written
as,

= + +v v v vr r r r( ) ( ) ( ) ( )
s M

KS
ext H

xcxc (136)

where vext is the usual external potential, vHdxcσ
is the electron−

electron exchange-correlation, and vMdxcσ
is the cavity-dependent

exchange-correlation potential. Both vHdxcσ
and vMdxcσ

contain

unknown exchange-correlation functionals. The ground state is
a simple case where the exchange-correlation energy can be
written as,

= +E E E
xc xc

ee

xc

ep
(137)

where Exc
ee is an exchange-correlation term between electrons

and Exc
ep is an exchange-correlation term between electrons and

photons with corresponding potential,

=v
E

n
r

r

( )
( )

xc
xc

(138)

Here, ref 182 asserts an additional approximation such that
only the exchange energy is accounted for as Exc ≈ Ex

ee + Ex
ep =

Ex. In the ground state, only the second-order exchange energy
contributes to the total energy (i.e., only the DSE term) The
electron-photon exchange energy Ex

ep = ∑σ∑i (Ex
ep)iσ can be

written purely as a functional of the KS orbitals {ϕiσ} and two
orbital shifts {Φiσ

(1)} and {Φiσ
(2)} (to be interpreted as the KS

orbital response to the cavity field) as,
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where the “c.c.” term in above equation indicates to add the
complex conjugate of all preceding terms. Here, the two orbital
shifts can be written in terms of the KS orbitals themselves as
follows
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with a total of Nσ occupied KS orbitals of spin σ.
Using these expressions, one can take explicit functional

derivatives of Ex (see eq 138) with respect to {ϕiσ}, {Φiσ
(1)}, and

{Φiσ
(2)} to obtain the total OEP exchange potential vxσ (r) used

in the DFT formulation and further iterated to obtain the
electronic density n(r) under the influence of the cavity.

One possible observable that can be computed from the
photonic subspace is the average photon number in the ground
state N̂ = ⟨a† a⟩̂ and can be written in terms of the orbital shifts
{Φiσ

(1)} as,182

= = | +
·†

=

N a a
( )

2
i

N

i i

1

(1) (1)
2

c (141)

Note that the average photon number in the PF
Hamiltonian (PZW frame) is not the same as the photon
number in the p·A Hamiltonian (Coulomb gauge), which is
usually interpreted as the physical photon number. See more
detailed discussions around eq 64. As such, the quantity
written in eq 141 may be more appropriately referred to as the
mode occupation in the PZW frame. Here, the first term
represents the one-photon wave functions that arise due to the
quantum fluctuations of the photon while the second term is
the correction due to the dipole self-energy contribution (after
variational SCF procedure is performed).182 For the sake of
brevity, we refer the reader to refs 208 and 213 for additional
details and discussion on the scQED-DFT formula-
tion.73,209,209

3.2.5. QED Time-Dependent Density Functional
Theory. The time-dependent analogues of single-particle
approaches have proven to be powerful probes of non-
equilibrium states that give rise to electronically excited
distributions. Linear response (LR), one of the most popular
formalisms, results in the LR-TD-HF and LR-TD-DFT
methods in the random phase approximation (RPA).
Although, it should be noted that the real-time propagation
of the single-particle density matrix−leading to the real-time
TD-HF and real-time TD-DFT approaches−is, in principle, a
more robust approach that captures many finer details of the
nonequilibrium state.

Note that these real-time TD-DFT schemes have already
been developed for the simulation of molecular polaritons
using classical photon DOFs214,215 as well as fully quantum
approaches210,216

In this section, we focus on the LR formalism using the
random phase approximation (RPA) for its potential wide use
in the community for a broad range of applications to both
small and large molecular systems, originally formulated by
Flick and co-workers121,217 using the QEDFT method (or
scQED-DFT in the notation of this work) in the language of
Casida and further used/extended by the groups of Shao115

and DePrince.175 It should be noted that other formulations of
CIS-like excited polariton states can be found in the
community, such as the non-Hermitian configuration inter-
action singles (CIS) aimed at simulating cavity loss via a
complex photon frequency.184

Time-dependent DFT (TD-DFT) in the linear response
framework218 has been used ubiquitously over the last couple
decades to describe electronic excitations in all manner of
chemical systems, due to its computational simplicity and
feasibility for large systems from 100s to 1000s of atoms in
size.187,218−233 For the cavity QED community, it is natural to
extend this powerful method to describe the coupled electron-
photon system. Recent work on developing a new scheme to
include the additional photonic DOFs are underway with
promising results in a variety of molecular sys-
tems.72,73,115,121,125,181,182,208−210,212,213,217,234−239 The Casi-
da-like generalized eigenvalue equation can be recast in an
increased dimensional space to include the excitation and de-
excitation transition densities for both the electron and photon
subsystems including all terms in ĤPF (eq 55).

This approach was first rigorously formulated in ref 217 by
considering the response of the approximate ground state

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00855
Chem. Rev. XXXX, XXX, XXX−XXX

AB

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


density generated by the scQED-DFT formalism. Further work
by Shao and co-workers115 has led to a similar scQED-LR-TD-
DFT formulation without the use of the ground state scQED-
DFT. Instead, it uses the unperturbed ground state electronic
Kohn−Sham orbitals as input. More specifically, ref 115 relies
on the uncorrelated ground state of the bare electronic system,
where the only light−matter interaction and self-consistency is
found in the iterative diagonalization of the RPA equations
themselves. Ref 217 relies on the combined e%ort of the
ground state response (self-consistent cycle) to the photon
field followed by the linear response self-consistency. While the
approach in ref 217 is no doubt more rigorous and reliable,
given a good enough exchange-correlation functional for both
the electron−electron and electron-photon interactions, the
simplified approach of ref 115 was chosen as the workhorse for
this section of the manuscript. Although we acknowledge that
the approach in ref 115 is only approximately capturing the
response to the electronic subsystem and may require
convergence of the virtual single-particle orbitals (i.e.,
increased number of singly excited Slater determinants used
in the RPA equations) to completely validate the results, which
is discussed in the Supporting Information of ref 115.

The central result of ref 115 is the following generalized
Casida equation115
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(142)

where ℏΩPF
TD‑DFT are the TD-DFT excitation energies (for the

ĤPF), X, Y and M, N are the electronic and photonic transition
density matrices, respectively, Δ is the DSE term (eq 52), and
ℏ g is the light−matter coupling term. The nontraditional
matrix elements are constructed as115 Δov,o′v′ = (μov · λ) (μo′v′ ·

λ), = = ·g g ( )
o v o v o v2

c , = c ph, where A, B

are the usual electronic TD-DFT matrix element blocks218,225

for the particle-hole and hole-particle components, respec-
tively, and ωc and λ are the cavity frequency and coupling
strength, respectively. The indices {o, o′}, {v, v′} correspond to
occupied and unoccupied Kohn−Sham orbitals, respectively.

There are two important things to note about this scQED-
TD-DFT procedure:115 (i) Only a single Fock state was
included in the o%-diagonal coupling blocks ℏg (which is
standard in a linear-response regime where only single
excitations are constructed). However, additional photonic
basis states become extremely important at large coupling
strengths,203 which is not included in this scQED-TD-DFT
method. It is our own opinion that one should seek a scQED-
TD-DFT method which allows for the inclusion of additional
Fock states to converge these interactions. This is not
straightforward in the language of linear response, but it may
be possible to add an additional step for self-consistent
formulation of the scQED-TD-DFT (which accounts for the
singly excited subspace of electron and photonic DOFs) to

include a pQED-like diagonalization with additional excited
photon states. It may be possible to construct such a scheme
that would allow for additional relaxation to the singly excited
subspace, even if in an ad hoc way.

(ii) This work115 does not inherently rely on the use of the
ground state scQED-DFT method discussed previously121,217

and can be instead coupled with any molecular ground state as
computed by any exchange-correlation functional and further
used in the canonical TD-DFT blocks A and B. In this way, the
ground state orbitals (i.e., Kohn−Sham basis states)
themselves do not directly respond to the presence of the
cavity through self-consistent iteration, through dipole self-
energy122,240 nor through electron-photon correlation built in
to the exchange-correlation functional,209−212 but instead only
interact with the cavity through the iterative diagonalization
cycles that provide the excited states (i.e., Lanczos/
Davidson188,241,242 algorithms).

A recent work has explored this topic at length and provided
important results regarding the mean-field approaches and the
relaxation/response of various self-consistent schemes to the
electron-photon interaction.240 Similar to the previous pQED
scheme (see Section 3.1), this is an approximate solution to
the excites states given a finite number of unperturbed
electronic basis states (i.e., virtual orbitals included in the
singly excited Slater determinant basis expansion) since the
Kohn−Sham basis is frozen throughout the iterative cycles.
Other works, such as those in refs 217, 234, and 175 to name a
few, solve the scQED-TD-DFT RPA equations using the self-
consistently relaxed Kohn−Sham orbitals. To be clear, the
scQED-TD-DFT used in ref 115 is a particular case of the
scQED-DFT scheme where the electron-photon exchange-
correlation kernel is neglected, leading to unperturbed ground
state single-particle orbitals used in the solution of the RPA
Casida equation. We believe that an important consideration
needs to be made clear in that the inclusion of the electron−
photon exchange-correlation kernel may lead to interesting
e%ects. Often, a reduction in electron−electron exchange-
correlation is made and may lead to an overall reduction in the
ability of the scQED-DFT single-particle orbitals to capture the
correct physics of the bare molecular system. Although, with
the advent of novel electron-photon exchange-correlation
functionals appearing, this trade-o% will hopefully be reduced
and will replace the bare electronic exchange-correlation
functionals of similarly high quality.

Various approximations can be achieved by setting di%erent
blocks of eq 142 to zero. The usual Tamm-Danco%
Approximation (TDA) can be achieved by setting B = 0,
while other QED Hamiltonians (in their many-state general-
izations) can also achieved. For example, setting g̃ = 0 is the
generalized RWA, while also setting the DSE term to zero (Δ
= 0), one arrives at an analogue of the JC Hamiltonian. These
various choices have been extensively discussed in ref 115, and
is schematically depicted in Figure 7b.

Other similar forms of the TD-DFT and CIS equations have
been derived for the scQED scheme, such as those presented
in refs 121, 175, and 184, respectively, where all approaches
yield similar results. In principle, in all methods discussed until
now, an arbitrary number of photonic basis states can be
included in order to converge the photonic contribution with
little-to-no increase in overall expense due to the relative
simplicity of the photonic subsystem compared to the
electronic one. Although more work is needed to test the
results against an increasing number of photonic basis states
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when using these QED approaches, most of the work usually
only includes the vacuum state |0⟩ and |1⟩ Fock state. In the
previous section on wave function-based methods and
specifically with the QED coupled cluster methods, more
work has been done to test such convergence. However, due to
the high computational expense of these QED-CC methods
themselves, the cost becomes too large to include more than a
couple photonic states yet still does not capture qualitative
features (such as the number of avoided crossings between
polariton states), especially when examining higher-energy
polaritonic states for low cavity frequencies (with respect to
electronic transitions), in comparison with a full configuration
interaction (FCI) approach as shown in such model
systems.203 The current status of these scQED methods is
quite limiting in the sense that either additional Fock states
cannot be added to the formulation in a straightforward way
(e.g., scQED-TD-DFT) or are simply too expensive to include
in most situations (e.g., scQED-EOM-CC).

3.3. Recent Results in the Calculation of Ab initio Polariton
States

3.3.1. Polaritonic Excited States. Historically, the
development of electronic structure methods started in the
ground state with HF, DFT, CC, etc. methods and then moved
to the excited state with TD-HF, TD-DFT, EOM-CC, etc. The
recent development of scQED methods took a similar path,
but the production of ground and excited state methods largely
overlapped due to the already available electronic structure
theory for solving complex many-body Hamiltonians. In the
following, we will review some recent studies using scQED as
well as pQED schemes, but we will begin with our discussion
for the excited state. This is more akin to the original context

of quantum optics decades ago, where coupling a cavity to a
single atomic transition (ground to excited electronic
excitation) was prevalent, as illustrated in the simple features
of the Jaynes-Cummings Hamiltonian (Figure 1c).

Figure 8 presents a few examples that illustrate the
modifications of the excited state electronic structure (or
potential energy surfaces) when forming molecular exciton-
polaritons. Figure 8a is one of the first examples122 of scQED
calculations using the equation-of-motion coupled cluster
(EOM-CC) approach (scQED-EOM-CC) to examine the
polariton potential energy curve εa(R) (see eq 108) of H2 (left
panel) and HF (right panel) when coupled inside a cavity, with
the field polarization along the bond axis of each molecule and
with a coupling strength λ = 0.05 au The upper (UP) and
lower (LP) polaritons are labeled to indicate the location of
the main Rabi splitting caused by the |g, 1⟩ and |e, 0⟩
hybridization (as explained by simple JC model in eq 6), but
the presence of the many-electronic-states and additional many
photon-dressed adiabatic states make the UP/LP picture (by
the JC model) overly simplified. In Figure 8a, the blue solid
lines indicate the excitonic character, the white solid lines
indicate photonic character, and the red dotted lines indicate
the original electronic states outside the cavity. Using the
photon-dressed electronic states, one can manipulate and tune
the excited state potential energy surfaces to mediate
additional transitions or eliminate them.

For H2, the cavity frequency is close to the first singlet
electronic transition (at the Franck−Condon region of the
nuclear DOF). The modifications to the excited state PES
curvatures can be seen by the induced localization of the UP
state, which possesses a minimum near the Franck−Condon

Figure 8. Ab initio electronic-photonic structure for polaritonic excited states. (a) scQED-EOM-CC scheme exploring H2 and HF dissociation
potential energy surfaces (PESs) inside a cavity. For each molecule, the cavity frequency is in resonance with the first bright excitation at the
equilibrium geometries with polarization along the bond axis with coupling strength λ = 0.05 au The polaritonic levels are shown in blue, while the
bare molecular levels are shown in red. The lowest-energy levels participating in electron-photonic hybridization are labeled as LP and UP in each
panel. (b) PESs are shown the formaldehyde C−O bond stretch (left) outside the cavity and inside two cavities of frequencies ωc = 8.71 (middle
panel) and ωc = 8.16 eV (right panel), respectively, for a coupling strength λ = 0.04 au and polarization along the C−O bond axis. (c,d)
Hybridization diagrams and (e) absorption spectra for the toluene molecule. (c) Small coupling λ = 0.01 au leads to an e%ective two-level system,
while (d) at larger coupling λ = 0.10 au higher electronic excited states become important. (e) The absorption spectra at small cavity loss rate κ =
10 meV for multiple coupling strengths λ = (i) 0.01, (ii) 0.10, and (iii) 0.43 au and at large coupling strength λ = 0.43 au for varied cavity loss rates
κ = (iii) 10, (iv) 100, and (v) 320 meV. The colorbar indicates the electronic and photonic character. 36,000 external cavity modes were usedd to
model the cavity loss in this e%ective single-mode cavity. Panel (a) is adapted with permission from ref 122. Copyright 2020 American Physical
Society. Panel (b) is adapted with permission from ref 121. Copyright 2020 American Institute of Physics. Panels (c−e) are adapted with
permission from ref 236. Copyright 2021 American Institute of Physics.
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point while the original molecular PES (red dashed line) has a
purely dissociative character. For the HF molecule coupled to
the cavity (right panel), the cavity frequency is near resonant
to the ground to the second excited electronic transition.
Similar features of the polariton potential can be obtained
when this polar molecule (which possesses a permanent
ground state dipole) is coupled to the cavity. The authors of
that work122 thus concluded that the permanent dipole does
not induce additional interesting e%ects, which is accurate for
this particular system. However, as a reminder of what was
discussed previously (eq 5), not only the ground state
permanent dipole contributes to the light−matter interactions,
all excited state permanent and transition dipoles will, in
principle, contribute interesting e%ects. The e%ects of the
permanent dipoles have been studied in many recent
works,48,51,122,124,184,195 which have noted that the molecular
dipole along the direction of the cavity polarization becomes
reduced through interaction with the cavity.

As a small note, the energetic alignment and multitude of
electronic states plays an important role in photophysical
properties and interpretations of the polariton states. For
example, the commonly used language of “upper polariton”
and “lower polariton” could potentially be misleading if the
system has many electronic states nearby in energy, as is the
case for the H2 and HF examples presented in this panel.

Figure 8b presents another recent example of scQED
simulations121 for obtaining polariton potential energy surfaces

a(R), using the scQED-TD-DFT level of theory to investigate
a formaldehyde molecule coupled to the cavity. Outside the
cavity (left), an avoided crossing can be found along the C−O
bond stretching coordinate near to RCO ≈ 1.35 Å. The shading
of the curves in this panel indicates the magnitude of the
electronic transition dipole moment between the ground and
excited state.121 At a large cavity frequency ωc = 8.71 eV, the
avoided crossing can be reduced by the couplings between the
photon-dressed ground state |g, 1⟩ and the higher-energy
excited state with zero photons. At a slightly smaller cavity
frequency ωc = 8.16 eV, the original potential energy minimum
near RCO = 1.5 Å (for the bare molecule) can now be
completely removed through the light−matter potential
curvature hybridization, tilting the polariton potential all the
way back to a global minimum energy located at the Franck−
Condon point of RCO ≈ 1.2 Å. This work,121 demonstrates that
by forming polaritons, one can in principle manipulate
photoexcited reactions via modification of the excited state
pathways and curvatures.10,21,72

Figure 8c presents the first few polariton states generated
from coupling a toluene molecule (under the cavity-free
equilibrium nuclear geometry) to a single mode cavity. In
particular, the first two electronic excited state states (orange)
and one photon-dressed ground state (blue) are shown. At a
weak coupling of λ = 0.01 au and a cavity frequency that is in
resonance with the first electronic excitation, the electronic and
photonic DOF strongly mix and generate the polariton states
(purple), resulting in the usual UP and LP polariton states.
The second excited states, due to their o%-resonant frequency,
is not explicitly involved into polariton formation under this
particular coupling strength. For a larger coupling strength λ =
0.10 au (Figure 8d), the Rabi splitting ΩR (red arrow)
becomes large enough to mix the UP with the second excited
electronic state, thereby forcing the change in terminology to
now include three polaritons: the LP, the upper lower
polariton (ULP) and the upper upper polariton (UUP). In

this case, the LP and ULP are strongly coupled through the
light−matter interaction, while the ULP and UUP are
interacting via the derivative couplings from the bare electronic
interactions and DSE couplings mediated by the cavity. This
will lead to interesting dynamical interplay between all DOFs;
this was done explicitly in ref 236 using a simplified pQED
Hamiltonian based on the data in Figure 8e to perform model
polariton dynamics to elucidate the dynamical e%ects of a
multilevel system.

Figure 8e presents the results of absorption of the same
toluene-cavity hybrid system. In particular, the work in ref 236
uses scQED simulations to directly examine the condition to
achieve a strong coupling by incorporating cavity loss into the
analysis. This is done through broadening of the cavity
coupling strength across a multitude of cavity modes localized
at the primary cavity frequency ωc following a Lorentzian
broadening of varied width κ (i.e., loss rate). The coupling
strength λ (eq 105) is distributed across the multitude of
modes in the spectral function (i.e., a Lorentzian) such that

=

+ ( )
( ; , )

2 ( )
k

k

c c

c
2

2

2

(143)

where the original coupling strength λ has been broadened by
the Lorentzian function, with Δω = ωk+1 − ωk as the discrete
mode frequency separation, ωc as the central mode frequency,
and ωk as the frequency of the kth mode. In this work,236

36 000 cavity modes were used to mediate the cavity loss
e%ects for an e%ective single-mode cavity. Recall that λ is a
generalization of the commonly used Jaynes-Cummings

coupling strength gc and can be related as =g
c 2 eg

c in

eq 3. This approach to cavity loss is, in principle, equivalent to
adding a photonic bath to the cavity mode q̂c (see eq 186 in
Section 4.7). The loss rate κ can be either calculated with
knowledge of the cavity setup using methods such as the
transfer matrix method[1] or directly measured from experi-
ments by the width of the absorption peak of the bare cavity
assuming that the spectral width of the bare cavity is
dominated by the photonic loss, which is a good approx-
imation for most realistic experimental configurations. In
Figure 8e, the absorption spectra (see details in Section 3.3.3)
was computed121 using the e%ective polaritonic dipole by
mixing the electronic dipoles according to expansion
coeOcients of the adiabatic electronic and Fock basis states
μ0α
pol = ∑j

Nelcj
α μ0j

el, where is the number of included electronic
states.121

Recall that the strong coupling in cavity QED is commonly
defined as gc ≫ κ, where gc is the matter-cavity coupling
strength and κ is the cavity loss (if matter de-excitation rate is
much smaller than the cavity loss). In this example (Figure 8e),
the absorption spectra (calculated using eq 147) is shown for
di%erent cases of cavity strength λ and cavity loss rate κ, which
will turn the light−matter couplings from the weak coupling
(no Rabi splitting) to the strong coupling regimes (has Rabi
splittings). The excitonic character (orange) and the photonic
character (blue) are depicted in the color bar in Figure 8e. For
each subpanel, (i) at a low coupling strength (λ = 0.01 au) and
cavity loss κ = 10 meV, the Rabi splitting is not visible in the
spectral resolution, and the feature is dominated by the
excitonic character; (ii) at a larger coupling strength (λ = 0.1
au) and the same κ = 10 meV, the Rabi splitting is clearly
visible; however, the second excited state is not a%ected by the
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presence of the cavity due to the large energetic separation
(detuning) between the UP state and the second electronic
excited state. Now, the main polaritonic absorption features are
mixed between electronic and photonic contributions. (iii) at a
very large coupling strengths (λ = 0.43 au), the UP polariton
state now strongly mixed with the second excited electronic
state and forms the ULP and the UUP polariton states.121

Further, one can fix the coupling strength λ and gradually
increase the loss rate κ. (iv) For the case of the very strong
coupling λ = 0.43 au, the cavity loss rate is increased from κ =
10 meV to κ = 100 meV, e%ectively increasing the spectral
signature of the cavity modes centered at ωc. Here, the
character of the absorption is dominated by the photonic DOF
(blue color), and the width of each main feature in the
absorption becomes much broader compared to the case in
(iii). (v) At an even larger cavity loss rate κ = 320 meV, the
identities of the LP and ULP start to disappear, leaving only a
single broad peak centered at ωc with dominating photonic
character. This e%ectively returns the system back to the weak
coupling regime, due to the light−matter coupling strength is
now much smaller than cavity loss. The second excited
electronic state is nearly unperturbed now due to the
decoupling between the cavity modes and the electronic
states. Note that the absorption spectra is arbitrarily scaled to
showcase the features and may not reflect the exact nature of
the spectra.
3.3.2. Computing Polariton Properties. Now we move

to more examples of using the scQED approaches to analyze
excited state properties of molecular exciton-polaritons. There
are many quantities in the electronic structure community in
determining the character of an excitation, such as natural

transition orbitals,243−245 transition density,121,187,244,245 di%er-
ence density,122,195,244,245 electrostatic surfaces/charges,,246,247

etc. In principle, they can all be generalized for polaritons and
be able to used to characterize the nature of polaritons. Our
main focus here is on the transition density,121,187,234,244,245

which is the most straightforward quantity that can be obtain
from electronic structure packages. The one-electron polari-
tonic transition density between the ground and ath polaritonic
states can be written as

= dq d d qr r r r r r( ) ... ( , , , ... )
a N a N0
M

c 2 0 c 2 ee (144)

where qc is the photonic coordinate of the cavity and rj is the j
th

electronic coordinate of Ne electrons.
121 Here, ρ̂0a = |Ψa⟩⟨Ψ0 |

is the usual transition density operator from ground to the ath
excited polaritonic state. One can also show that this one-
particle polaritonic transition density can be written in terms of
the bare one-particle electronic transition densities according
to the expansion coeOcients Cαm

a (i.e., after diagonalizing the
pQED Hamiltonian in eq 112 with the adiabatic-Fock basis
defined in eq 111) as

= ·C Cr r( ) ( )
a

n

n n

a

0
M 0 M

(145)

where ξαβ
M (r) = ψα (r)ψβ* (r) is the bare one-particle electronic

transition density between adiabatic states ψα and ψβ and Cβn
a is

the βnth expansion coeOcient for the ath polariton (see eq
111), and and indicates the total number of adiabatic
states and Fock states, respectively. Further, ψα(r;R) =
⟨r|ψα(R)⟩ are the many-electron adiabatic states outside the

Figure 9. Ab initio electronic density and transition density analysis. (a) Transition density (top) outside and (bottom) inside a cavity with
coupling strength strength λ = 0.986 au of graphene flakes (or quantum dots) with three types of localized defects: (left) CHB, (middle) CB−CB,
and (right) CB−VN. (b) (i) Absorption spectra of formaldehyde at varying coupling strengths λ = 0.0, 0.02, 0.04, and 0.06 au for cavity frequency
ωc = 7.92 eV. (ii) (Left) Ground state total density and (right) bare molecular transition density (λ = 0.0 au) (iii,iv) Matter-projected transition
density for the (left) lower and (right) upper polaritons at λ = (iii) 0.02 and (iv) 0.06 au (c) Ground state density di%erence function for a charge-
transfer benzene derivative with amino- and nitro- groups in the para position (see panel d). the cavity frequency was set to ωc = 4.84 eV with
coupling strength λ = 0.05 au (d) Excited-ground density di%erence function with the same parameters as in (c). Panel (a) is adapted with
permission from ref 234. Copyright 2021 American Chemical Society. Panel (b) is adapted with permission from ref 121. Copyright 2020
American Institute of Physics. Panels (c and d) are adapted with permission from ref 122. Copyright 2020 American Physical Society.
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cavity. Note that since the Pauli-Fierz Hamiltonian (eq 104) is
purely real, the coeOcients {Cαm

a ,Cβn
b } are also real. In the

matter-projected polaritonic transition density ρ0a
M , the

photonic DOFs were traced out, leaving only linear
combinations of electronic matrix elements of the same
photon number (i.e., n = m). Using these simple expressions,
one can easily compute any polaritonic observables from the
pQED scheme, relying on electronic quantities from widely
available electronic structure codes as well as benefiting from
the simplicity of the photonic subsystem.

Further, eq 145 can be generalized to the following structure
to include any one-particle electronic or photonic observables

| | = | |

= · | | · | |

a a B b C C m a B n

C C a m B n

, ,

,

mn

m

a

n

b

mn

m

a

n

b

el ph el ph

el ph

(146)

where Âel and B̂ph are any one-body operators in the electronic
and photonic subspaces, respectively. Here, Âel or B̂ph may be
the dipole, excitation number, total density, transition density,
etc. operators from the respective subspaces. For example, one
can compute the exciton-polariton absorption spectra, A(E),
shown in Figure 8e and Figure 9. Here, the polaritonic
transition dipole matrix element μ0a

pl can be computed using eq

146 as = =a B
pl

el ph
el ph

where
ph

is the identity

operator in the photonic subspace. With this expression, the
absorption spectra can be written as

= ·| | ·A E E E E E( )
2

3
( ) ( )

a

aa 0 0
pl 2

a
(147)

Note that the delta-function is usually broadened with a
normalized, finite-width Gaussian or Lorentzian function to
account for excitonic, photonic, and/or environmental
relaxation/broadening processes present in realistic exper-
imental conditions. In principle, another term should be added
to account for the photonic part of the absorption/emission,

which is proportional to A Bel

ph
∼ qel c

=

+
†
a a( )el . However, the relative magnitude of the

electronic and photonic contributions in experiment is
extremely reliant on the experimental setup (e.g., cavity loss,
direction of the probe etc.). Other works have used di%erent
quantities to explore the cross-correlation of various
observables for the spectroscopic analysis of molecular systems
in cavities.209 In experiment, usually the photonic contribution
to the absorption and emission will dominate the intensity of
the spectrum in Fabry−Peŕot-type cavities.248,249 however, for
theoretical calculations, the excitonic absorption spectra
expressed here and in other works115,121,217,236 is better-suited
to understand the e%ects of the cavity on the electronic
subsystem and gives more direct insight into the local reactivity
and electronic reorganization in the molecule upon excitation.
It is also important to recall that most of these reported results
are in a single-mode cavity and, in principle, only represent the
θ = 0 special incident angle in a FP cavity (see Figure 4 and
Sec. 2.6).

Figure 9a,b presents the polariton transition density when
coupling matter to an optical cavity.234 The molecular

transition density indicates the electron and hole overlap in
real space and provides information regarding the localization
of the exciton and on molecules, which may provide useful
insights into possible reactive bonding sites upon photo-
activation.187,244,245 Figure 9a showcases the polaritonic
ground-to-excited transition density234 (see eq 145) for three
defected hexagonal boron nitride quantum dots: (left) carbon
substitution at a boron site CHB, (middle) carbon substitutions
at meta-boron sites CB−CB, and (right) carbon substitution
and adjacent nitrogen vacancy CB−VN. Outside of the cavity
(top row), these defects each have a unique low-lying exciton
of varied localization character. The nitrogen vacancy CB−VN

(right) presents the most localized features in the transition
density (where the electron and hole are strongly overlapped
only in this region near the defect). When coupling the system
inside a cavity (bottom row), the transition density for all
species becomes mostly delocalized. This delocalization in the
transition density facilitates an increase in polaritonic dipole
moment and hence the increase in the lowest absorption peak
in all species. Here, the tunability over the bright, low-lying
transition in defected boron nitride quantum dots has been
achieved through cavity QED.

Figure 9b, presents the lowest bright excitation in form-
aldehyde when it is coupled to a cavity. In panel (i), when
varying coupling strengths λ = 0.0, 0.02, 0.04, and 0.06 au, one
can clearly see an an increasing Rabi splitting ΩR in the
absorption spectra. The transition density of the bare
molecular system is shown in panel (ii) right figure while the
ground state density is shown in panel (ii), left figure. Inside
the cavity, for a weak coupling (λ = 0.02 au), the transition
density from the ground state to the upper polariton (iii, right)
and to the lower polariton state (iii, left) indicate a significant
modification of the excitation character compared to the
transition density for the bare molecule. Similarly, at increased
coupling strength (λ = 0.06 au). the transition density
continues to change, although, the ground to the lower
polariton transition (iv, left) is significantly modified compared
to the case in (iii, left).

Another analysis technique common to electronic structure
theory is the density di%erence function, which is capable to
illustrate the change of the electron distribution in a molecule
upon excitation. More specifically, these can be defined in two
ways: (I) the di%erence between the density of polaritonic
state |Ψa⟩ inside and an analogous electronic state outside the
cavity |ψα⟩ ⊗|n⟩ (usually the ground polariton state and the
ground electronic states) and (II) the di%erence between the
density of one polaritonic state |Ψa⟩ and another state |Ψb⟩
(usually for ground and an excited polariton state). Figure 9c
describes the density di%erence of type (I) for the ground state
while Figure 9d for the same molecular shows the di%erence
density of type (II) for the polaritonic excited state and ground
state.122,250

In Figure 9c, the ground state density di%erence (Δρ(z) =
ρ00
cav (z) − ρ00

nocav (z)) is presented where the cavity (with
coupling λ = 0.05 au) is placed in resonance with the lowest-
lying charge transfer state (from NH2 group to the NO2 group,
see panel d for molecule) and showcases a modulation of the
ground state indicating charge displacement, where blue and
red isosurfaces represent charge accumulations and depletions,
respectively. A charge migration of −0.005 |e|, induced by the
cavity, is seen from the acceptor (NO2) to the nitrogen atom of
the donor (NO2), e%ectively reducing the ground state dipole
from 6.87 to 6.77 D. This reduction in dipole moment is
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thought to by a direct result of the cavity inducing charge
migration in order to reduce the variation in the dipole 
μ̂

(see discussion near eq 124).182 Here, Δ�(z) = ∫ ‑∞
∞ dx∫ ‑∞

∞

dy∫ ‑∞
z dz′ Δ�(x,y,z′). Here, the authors have directly shown

that the ground state density is modified by mixing with
excited electronic states and adopting their character via
coupling through the cavity. Similarly, in Figure 9d, the
ground/excited state density di%erence can be plotted (Δ�(z)
= �E.S. (z) − �G.S. (z)) to showcase the e%ects of the cavity on
the exited state character with respect to the polaritonic
ground state. Here, the charge displacement is seen moving
from the donor (NO2) to the acceptor (NH2) species with a
magnitude of −0.4 |e|. The upper (red) and lower polaritons
(blue) observe di%erent amounts of charge displacement, but
the sum of the two (dashed black) nearly reproduce the
original bare molecular ground/excited density di%erence
(green). In this analysis, one can investigate the distribution
of charge between the ground and excited states inside and
outside of the cavity for e%ects on the electrical current in
materials and for reactivity in the excited state and will have
direct application to the design of photovoltaic technologies.122

3.3.3. Comparison between Self-Consistent and
Parameterized QED Methods. Now that we have seen
the types of studies that have been performed mainly using the
scQED procedure, we will circle back to an explicit comparison
between the pQED and scQED methods and showcase some
results obtained on similar systems as already described.
Further, the use of either pQED and scQED schemes should
give the same result in the infinite basis limit. However, as we

shall see in this section, each approach has its own strengths
and limitations that need to be considered when applying to a
specific calculation.

In Figure 10a, the absorption spectra for the benzene
molecule is shown in analogy to the toluene molecule
discussed in Figure 8e, with cavity loss introduced in the
same way (see discussion near eq 143). For these choices of
coupling strength Figure 10a(i−iii) and cavity loss in Figure
10a(iii−v) parameters, the pQED-TD-DFT and scQED-TD-
DFT methods provide nearly identical numerical results. It
should be noted that this system is simpler than the toluene
example since no nearby electronic excited states are present to
mix with the character of the polaritons using these choices of
parameters.236 Additionally, the coupling strength and cavity
loss rates are very small in this example. Importantly, note that
one would not have a priori knowledge on how many
electronic or Fock states are required to obtain this pQED-TD-
DFT Hamiltonian, and as mentioned before the number of of
basis electronic and photonic states should be treated as
convergence parameters.

Figure 10b showcases an investigation of the formaldehyde
excited state PESs (as discussed previously in Figure 8b). This
comparison leads to some deviations between the pQED-TD-
DFT and scQED-TD-DFT schemes. Here, however, the
pQED Hamiltonian was treated with a multistate general-
ization of Jaynes-Cummings model Hamiltonian (eq 83) while
the scQED was treated with Pauli-Fierz QED Hamiltonian (eq
106). As such, the deviation might due to the use of di%erent
QED Hamiltonians.

Figure 10. Comparison of parameterized QED Hamiltonians with self-consistent solutions. (a) Absorption spectra of benzene for a variety of weak
coupling strengths, λ = (i) 0.001, (ii) 0.002, and (iii) 0.003 au, and for a variety of cavity loss rates, κ = 1, 4, and 8 meV. The cavity frequency is is
resonance with the first bright transition of the bare benzene molecule. The pQED Hamiltonian is shown in red, while the scQED solution is
shown in blue. (b) Born−Oppenheimer polaritonic potential energy surfaces for formaldehyde projected along the C−O bond stretch. The two
cavity frequencies used were ωc = (left) 8.71 and (right) 8.16 eV with coupling strength λ = 0.04 au The cavity polarization is along the C−O bond
vector. The pQED result is shown in green, while the scQED result is shown in black. (c,d) The MgH+ molecule was placed into the cavity and the
(c) Mg−H bond length RMgH at fixed coupling strength λ = 0.0125 au and (d) coupling strength λ at fixed bond length RMgH = 2.2 Å were scanned
and compared between the pQED (dashed lines) and scQED (dotted lines) schemes. (e) The pQED scheme was tested on the ethylene molecular
using a 2- (pink) and 3-state (purple) electronic basis and compared to the scQED-JC model scanning over coupling strength λ at the Franck−
Condon geometry. Panel (a) is adapted with permission from ref 236. Copyright 2021 American Institute of Physics. Panel (b) is adapted with
permission from ref 121. Copyright 2021 American Institute of Physics. Panels (c and d) are adapted with permission from ref 184. Copyright 2022
American Institute of Physics. Panel (e) is reproduced with permission from ref 115. Copyright 2021 American Institute of Physics.
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Figure 10c presents the results of dissociation of the MgH+

molecule coupled to the cavity.184 The comparison between
the scQED-CIS approach (at the level of configuration
interaction singles) and pQED-CIS are performed, where a
three-state Pauli-Fierz model was used including the |g,0⟩, |g,1⟩,
and |e,0⟩ states for the pQED-CIS (where the energies,
permanent dipoles, and single transition dipole were taken
from bare CIS calculations). In other words, only one
electronically excited state and one excited Fock state were
used. This is the “minimum basis” for constructing the pQED
Hamiltonian and one should enlarge the basis for achieving
more accurate results at large light−matter coupling strengths.
The agreement between the pQED-CIS and scQED-CIS are
not perfect, and the deviations can be seen near the minima of
the upper polariton (blue). Even with the minimal basis, the
pQED Hamiltonian performs well for these parameters, and
the deviation may be due to the simplicity of the excited state
manifold (i.e., minimal basis) or rather the exclusion of dipole
coupling and dipole self-energy contributions from higher-
energy excitations (not included in the pQED simulation) for
the choice of coupling strength used (see discussion regarding
Figure 5). In Figure 10d, the bond length of the MgH+

molecule (coupled inside an cavity) was fixed while the
light−matter coupling strength was increased. Here, at low
coupling strengths λ < 0.01 au, the pQED-CIS Hamiltonian
perfectly matches the scQED-CIS results. At large couplings λ
> 0.01 au, the pQED-CIS deviates from the scQED-CIS
results, indicating that the minimal basis of |g,0⟩, |g,1⟩, and |e,0⟩
is no longer good enough to converge the interaction and/or
DSE terms that require additional electronic or photonic
states.

In the final example of the comparison between the scQED
and the pQED schemes, an explicit test using either two (pink
triangles) or three (purple squares) electronic states in the
pQED approach compared to the variational scQED approach
(blue circles), both at the Jaynes-Cummings level, was
performed on the ethylene molecule,115 as shown in Figure
10e. Here, both the pQED as well as the scQED schemes used
the generalized Jaynes-Cummings Hamiltonian (see Section
3.2). At low light−matter coupling strength λ < 0.05 au, the
two- and three-electronic-state pQED-TD-DFT and the
scQED-TD-DFT result in the same energies. At larger light−
matter coupling strength λ > 0.05 au, none of the three
methods are in agreement, indicating that more basis states are
required to converge the pQED results. In this work, only the
number of electronic states was explored, with only a single
excited Fock state included in the basis. In this case, only the |
0⟩ and |1⟩ states were used. In the Supporting Information of
this work,115 the number of electronic states was further tested
for large values of coupling. Here, the authors used up to 1000
electronic states, and neither the energies or dipoles were fully
converged at this size of basis. There are a couple potential
causes for this deviation.115 First, at this size of electronic basis,
the number of included Fock states becomes extremely
important for the convergence. For example, the |ej, n⟩ basis
state could be very close in energy to some nearby |ek, n ± 1⟩
state, and recalling the block structure of eq 112, the
interaction are then be nonzero if the transition dipole
between electronic states |ej⟩ and |ek⟩ is nonzero, which is
undeniably hard to predict for an arbitrary system (see
examples in Figure 5). Additionally, the e%ects of the DSE
terms that connect electronic basis states of the same photon
number via the square of the dipole matrix (see eq 112) can

mediate an interaction between a high-energy electronic state
with a low-lying state, making the convergence of the number
of electronic and Fock states of supreme importance. Careful
convergence of the electronic and Fock states must be done
carefully and simultaneously.

In principle, both pQED and scQED will generate identical
results under the complete basis limit, which is rigorously
discussed in ref 53 for the Coulomb-gauge Hamiltonian.
Compared to scQED, the pQED scheme is much simpler in
the sense that it does not require additional redevelopment of
electronic structure theory for the QED Hamiltonian as well as
the simplicity that comes with a nonself-consistent solution.
With the above available examples, one can see that if the light
matter coupling strength is high and more electronic states are
needed for a fully converged pQED calculation, then in
principle, one needs to fully converge these excited electronic
states first before doing the pQED simulation. Further, as one
increases the number of electronic basis states, one also needs
to balance the convergence with the number of photonic
states, which can be complicated and nonmonotonically
convergent with respect to various polaritonic properties one
aims to compute, such as the density, eigenenergies, or mode
occupation.53

One important consideration, of many, is the fulfillment of
the TRK sum rule in eq 68, which is a fundamental
requirement by exact quantum mechanics. However, due to
the use of approximate electronic structure methods, the TRK
sum rule becomes method-dependent. For example, TD-DFT
satisfies this rule but TD-DFT in the Tamm-Danco%
approximation (TDA) does not (see Section 3.2.3).251 Thus,
the accuracy of the excited state dipole matrix elements (such
as those shown in Figure 5) might violate this rule for some
electronic structure methods and become less accurate for
high-lying excited states, which are a necessary input into the
pQED method at large coupling strengths and will eventually
lead to a less accurate description of polariton states.

On the other hand, one can start with a reasonably sized
basis, construct excited configurations from a reference trial
electronic-photonic wave function, and solve only the first few
polaritonic states, as needed, directly by using scQED
approach with high accuracy combined wither iterative
diagonalization techniques.186−188

Here, it is important to note that the scQED schemes may
require substantially less computational e%ort than the
analogous pQED scheme. For the ground polaritonic state in
particular, the pQED scheme requires, in principle, knowledge
of all of the many-particle excited states in order to converge
the ground polaritonic state, while the scQED scheme is
roughly the same cost as a standard ground state variational
scheme. The excited states calculation in both schemes are
more similar in computational expense, since both require an
excited state method (e.g., TD-DFT, EOM-CC, etc.). The
pQED scheme may require the calculation of many more
(∼10−20) bare electronic excitations to converge the few
lowest-energy polaritonic states; whereas, the scQED scheme
only requires the calculation up to the number of polaritonic
states needed. Note that even in the excited state, the
convergence in the number of included virtual orbitals in the
scQED scheme is still required, especially at large light−matter
coupling strengths. Further, the gauge invariance of the
problem is always satisfied when using the properly truncated
dipole-gauge Hamiltonian (eq 70) for either pQED or scQED
schemes. As such, we believe that the self-consistent evaluation
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of the Pauli-Fierz Hamiltonian will be a much more general
and reliable scheme to produce converging results toward
chemical accuracy, especially at very strong light−matter
coupling strengths. However, the pQED scheme (in our
opinion) is a very useful tool aimed at the convenient
calculation of polaritonic properties for application-style
studies, where only semiquantitative trends may be important.

Additionally, it is important to make a distinction between
gauge invariance and numerical convergence. In principle, the
pQED framework using only two electronic states (eq 70) is
gauge invariant (see the discussion in Section 2.4).75,80,90

However, the results generated by such a calculation are likely
incorrect since two electronic states is likely not enough to
numerically converge the polaritonic states (due to the lacking
included correlations) for most realistic molecules or model
systems which have many electronic states. Similarly, scQED
results are intrinsically gauge invariant (by using a Hamiltonian
such as eq 70 in this work), regardless of the number of virtual
orbitals considered. As such, the convergence may be more
easily obtained in the scQED schemes by the inclusion of more
virtual single-particle orbitals while the pQED scheme requires
the inclusion of additional many-particle excitations which may
be more costly to include.

Despite the enormous recent progress in both scQED and
pQED schemes, what is generally missing is a consistent and fair
comparison of both approaches53 and assessment of the
strengths/limitations of each method under di%erent realistic,
ab initio scenarios. Almost all results generated by scQED
approaches have benchmarked against a some form of pQED
approach.53,115,121,184,236 However, in most of these compar-
isons, a minimal basis (that usually only includes one excited
photon state and one or two excited electronic states) are used
in the pQED comparison (as largely discussed in Sec. 3.3.3),
with the exception of a few works.53,115 A consistent and fair
comparison is still needed to provide a convergence test for the
pQED scheme (if possible for moderate-to-large light−matter
coupling strengths) as well as for the scQED results.
3.3.4. Modification of the Polaritonic Ground States.

We now move to another recent direction, where the ground
state of a molecular system can be significantly modified by
coupling to a cavity photon mode with a photon frequency
beyond the infrared (IR).73,122,124,182,195,203,208,235 From the
technical perspective of electronic structure theory, this
appears to be a simpler problem because ground states (even
for polaritons) are often easier to obtain compared to excited
states. Meanwhile, an intuitive understanding of cavity

Figure 11. Ab initio electronic-photonic structure for the polaritonic ground state. (a) Polariton-induced modifications to noncovalent ground-state
(i.e., van der Waals) interactions between a pair of H2 molecules is shown, including interaction with either an X- (circle) or Z- (triangle) polarized
cavity at either the QED-CCSD-1−21 (red) or QED-FCI (black) levels of theory. The single-mode cavity frequency is ωc = 12.7 eV with coupling
strength λ = 0.1, and dotted lines showcase the out-of-cavity results. (b) The reaction barrier of the proton-transfer in malonaldehyde is modulated
through interactions with the cavity (X-polarization) at the QED-CCSD-1−21 (blue), QED-DFT (green) and QED-HF (red), where the solid
lines correspond to outside the cavity. The cavity frequency is ωc = 3 eV with coupling strength λ = 0.1. (c) Ground state density di%erences Δρqq =
ρq − ρq of (i, iii) neutral NaF and (ii, iv) anionic (NaF)− with the cavity polarization e ̂ (i, ii) parallel and (iii, iv) perpendicular to the Na−F bond
(black arrows). Here ρq indicates the polaritonic ground state total density with q ∈ {0, − 1} total charge. The colormap indicates that red (blue) is
increased (decreased) electron density. (d) Molecular orbitals of the methyl chloride CH3Cl and ammonia NH3 molecules (center, at transition
state of the SN2 reaction) and its two main components at varying light−matter coupling strengths λ = 0.0, 0.1, and 0.2 au The molecular orbitals
are chosen as they comprise the majority of combined. The percent contribution is shown for each choice of light−matter coupling. system based
on the amount of contribution to the combined system. (e) The HOMO and LUMO+1 molecular orbitals are shown for the formaldehyde
molecule (bottom) inside and (top) outside of cavity. The light−matter coupling is set to λ = 0.1 au The symmetry of the electron orbitals are
shown to the right side of each orbital. Panel (a) is adapted with permission from ref 123. Copyright 2021 American Institute of Physics. Panel (b)
is reproduced with permission from ref 125. Copyright 2022 American Chemical Society. Panel (c) is adapted with permission from ref 195.
Copyright 2021 American Institute of Physics. Panel (d) is adapted from ref 124. Panel (e) is adapted with permission from ref 184. Copyright
2022 American Institute of Physics.
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modification of the molecular ground state is not available
when using simple quantum optics models. In fact, the JC
model predicts that the ground state is simply |g,0⟩ irrespective
of the cavity coupling strength λ or the cavity photon
frequency ωc and is therefore completely decoupled from the
manifold of excited adiabatic-Fock basis states. Of course, the
JC model Hamiltonian is known to explicitly break down,
especially for large coupling strengths (see Figures 3 and 6).
Therefore, the investigations focused on the ground state
properties of a polaritonic system necessarily belong to a
regime beyond the JC model. This failure of the JC model also
indicates that the cavity modification to the molecular ground
state operates in the ultrastrong coupling regime (USC) or
beyond. Further, this is also an interesting direction where new
chemical reactivity could occur in the ground state of the
hybrid system, which is not well-understood and may require
one to “re-learn” molecular orbital theory in the presence of
the cavity.124

In this case, there is no semblance of the Rabi splitting (eq
6), since the electronic state in question (i.e., the ground state)
is far away in energy from the cavity frequency (e.g., ∼1−10
eV) as we will see in the following examples. However, the
dipole self-energy, which couples electronic states through
dipole interactions mediated by the cavity, will still have a
drastic e%ect, especially at large coupling strengths. To be clear,
the cavity frequency in these examples is far away from those of
the vibrational strong coupling (VSC) cases, which have cavity
frequencies on the order of ∼0.1 eV (see Section 5 for more
details of VSC) lying in the IR regime. Additionally, the
diOculties of such calculations are significantly simplified
because they only require a ground state electronic-photonic
structure method for the scQED scheme (e.g., QED-HF,
QED-DFT, QED-CC, etc., see Sec. 3.2) and are therefore
computationally simpler than those previously discussed
simulations in this section that required the explicit calculation
of excited polaritonic states. In contrast, performing pQED
calculations require the calculation of excited states, since these
ground state modification reviewed in this section are induced
by o%-resonance couplings between the molecular ground state
and other electronic states (through DSE) or other light−
matter dressed states (through light−matter coupling term).
Of course, the pQED Hamiltonian will provide the same
results as the scQED approaches in the infinite basis limit.

Figure 11 presents several recent works on modifying the
ground state properties when coupling molecules to a high
frequency cavity (in the electronic excitation range). Figure
11a examines the e%ects of modulating intermolecular
interactions by coupling an H2 dimer to a cavity with
frequency ωc = 12.7 eV and coupling strength λ = 0.10 au123

Using the coupled cluster (CC) and full configuration
interaction (FCI) methods, as well as their scQED variants,
QED-CC and QED-FCI,122,123 it was determined that the
presence of the cavity drastically modulates the intermolecular
interactions between the two H2 molecules. Depending on the
cavity polarization direction with respect to the hydrogen
dimers, the intermolecular potential well can be increased by
∼0.75 meV (for eẑ polarization along the intermolecular axis)
or decreased by ∼1.0 meV (for ex̂ polarization along the
intramolecular bond axis), respectively. These weak inter-
molecular interactions, on the order of meV, are ubiquitous in
chemistry. As such, a drastic change in the intermolecular
potential may give new and interesting e%ects in many of these

processes. In this simple example, the well was modified by up
to 100% compared to outside of the cavity.

Along the same vein, Figure 11b also uses the scQED-based
approach to investigate the ground state proton transfer
reaction in the symmetric malonaldehyde (top) and asym-
metric aminopropenal (bottom) molecules.125 Here, the cavity
frequency was set to 3.0 eV with light−matter coupling λ =
0.10 au The ground state energy at the transition and product
(for the asymmetric molecule) geometries, both of which are
relative to the reactant energy, were computed using a variety
of scQED methods, including QED-CC (blue), QED-HF
(red), and QED-DFT (green). The reaction profile outside the
cavity (solid lines) is also calculated using the corresponding
level of the theory. Inside the cavity (dashed lines), for both
molecules (top and bottom panels) and for all levels of theory,
the reaction barrier height is increased by nearly ∼1 kcal/mol
(top panel) and ∼0.85 kcal/mol (bottom panel) when
coupling molecule with the cavity. For the aminopropenal
molecule (bottom panel) the product was only changed by
∼0.1 kcal/mol for the QED-CC method and ∼1.0 kcal/mol for
QED-DFT and QED-HF. This evidence the fact that coupling
between the cavity and the excited electronic states may have
drastic consequences for the ground-state potential energy
landscape for large coupling strengths. This is in contrast to the
case of vibrational strong coupling between light and matter,
where the classical potential barrier on the ground polaritonic
potential energy surface is not changed.85 More discussions
related to VSC can be found in Section 5.2.

In another work,195 the authors use the scQED-HF and the
scQED-CCSD-1-21 approaches (see Section 3.2) to explore
the e%ects of adding (i.e., electron aOnity) or removing (i.e.,
ionization potential) from sodium halide molecules coupled to
the cavity195 Specifically, Figure 11c shows the ground state
electronic density di%erence, defined as Δρqq = ρq

pl -ρq
el where q

is the total charge in the system, ρq
pl is the ground state density

inside the cavity, and ρq
el is the ground state density of the bare

molecular system. As shown in Figure 11c, the bond of the
NaF molecule can be destabilized upon insertion into the
cavity and further destabilized if the molecular system is
negatively charged. The results of the ground state di%erence
density function evaluated in the plane of the molecule are
shown in Figure 11c with the coupling strength λ = 0.05 au
and with the cavity polarization along the Na−F bond vector
(panels i and (ii) and perpendicular to the bond vector (panels
iii and (iv). Further, panels (i) and (iii) are for a neutral
system, and panels (ii) and (iv) are for a negatively charged
system. The red color indicates an increase in the electron
density upon coupling to the cavity, whereas the blue color
indicates a decrease in electron density. For the neutral
systems, when setting the cavity polarization along the bond
(panel i) or perpendicular to the bond (panel iii), it was found
that there is a relatively small change of the electron density,
except at positions very close to the nuclei. In both cases, the
electronic density di%erences showcase a p-orbital-like increase
in density with the same polarization as the cavity. In panel (i),
there is a small reduction in electron density (blue color)
between the Na and F nuclei, indicating a reduction in
bonding character. It is clear from the electronic redistrib-
ution in both polarization directions (i, iii) that the stability
and bonding character of the NaF system is significantly
modified, which will lead to changes in the ground state
dissociation of these molecules.195
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Figure 11c (ii) and (iv) present the same type of analysis but
for a negatively charged species (NaF)−. Here, the electronic
redistribution is more drastic, and at larger distances from the
atomic centers, there is a less noticeable impact from the
polarization direction. In both cases of the cavity polarizations,
a large addition of electron density can be seen below the Na
atomic center, more prominent in the case of perpendicular
polarization (iv). This indicates that the cavity is able to
significantly redistribute this additional electron f rom three
places: (I) close to the nuclei, (II) between the Na−F bond,
and (III) far-away (light blue >2 Å from Na nucleus). In all
four cases, the bonding character is expected to be reduced
while a major electron density reorganization is seen for the
negatively charged molecule. This work demonstrated the
capacity of the scQED-CC method for investigating the
electron aOnity and ionization potentials of various small
systems and provided simple physical explanations of the
cavity-induced e%ects through the ground state density
di%erence function.

Further, the authors195 also explain e%ects of the cavity
coupling on the ground state of molecule, prior to perform ab
initio polaritonic calculations. In this scQED framework, the
authors used the coherent state basis183,252−254 (defined earlier
in Section 3.2) which allows one to observe the size of the
variance in the dipole with respect to the electronic ground
state which is (Δμ̂)2 (see discussion around eq 124). The size
of the variance will give direct insight into the magnitude of the
cavity e%ects on the ground state and can be calculated for the
bare molecular system outside the cavity. This was computed
for the sodium-halide species in the present example, which
predicted the larger e%ects for the anionic (negatively charged)
species that was later observed to be accurate after performing
the explicit scQED procedure.184,195

In ref 124, the reactivity of a generic SN2 reaction between
methyl chloride CH3Cl and ammonia NH3 (which forms
methylamine and hydrogen chloride) was explored from the
viewpoint of molecular orbital (MO) theory. Here, the
authors124 portray a new ideology of MO theory inside the
cavity, referred to as cavity MO theory. Using the self-
consistently updated ground state MOs from a scQED-HF
scheme, the authors make predictions regarding the
thermodynamic driving force of the reaction based on the
strongly participating MOs between reactive substituents.
Figure 11d (ii) presents the main results of the work, where
the transition state geometry of the reaction is shown along
with the dominant MO, HOMO-5, with strongly overlapping
orbitals between all participating species for coupling strengths
λ = 0.0, 0.1, and 0.2 au (left to right within each panel).

Figure 11d (i, iii) show the projections onto the
substituents’ MOs that largely contribute to the bonding
process at each light−matter coupling strength. Notably, for
the full molecule shown in (ii), the bonding of the nitrogen to
the carbon gradually decreases with increasing coupling
strength λ, e%ectively due to the localization of the nitrogen’s
lone pair to the nitrogen atom. Here, the presence of the cavity
influences the relative contributions of the substituent MOs as
shown for the (i) ammonia and (iii) methyl chloride. For the
ammonia species, the contribution of the antibonding lone pair
localized to the nitrogen is increased with increasing coupling
strength λ. This is the main driving force for the reduction in
the nitrogen−carbon bond at the transition state geometry
found in Figure 11d (ii). The other e%ect found in (ii) is the
weak conversion of the carbon-chloride bonding character to

antibonding character with increasing coupling strength. This
is exemplified in (iii) which showcases two main contributing
projected orbitals, HOMO-2 and HOMO-5, of the methyl
chloride subsystem. HOMO-2 possess the bonding character
between the chloride while HOMO-5 provides the antibond-
ing character. As the coupling strength increases, the bonding
orbital contribution decreases from 32% to 15% while the
antibonding orbital increases from 5% to 9%. This accounts for
the reduction in bonding character found in (ii). This work124

exemplifies that molecular orbital theory still applies but needs
to be further understood in the presence of a cavity. Through
self-consistent electronic-photonic structure theory (i.e.,
scQED ground state methods), one can more easily under-
stand the response of the MOs due to the presence of the
cavity. Performing a similar calculation via the pQED scheme,
on the other hand, is not trivial for the analysis of the ground
state MOs. In principle, it should be possible to reformulate eq
112 in the basis of MOs rather than electronically correlated
excited Slater determinant states, carefully accounting for the
occupation numbers of photon-dressed MOs.

A similar work performed an analysis of the ground state of
formaldehyde with scQED-HF.184 Figure 11e shows the (left)
HOMO and (right) LUMO+1 for the molecule coupled inside
the cavity (bottom) and for the bare molecule outside the
cavity (top). The cavity frequency was set to ωc = 10.4 eV with
coupling strength λ = 0.1 a.u and polarization e ̂ = ŷ + z ̂ (see
Figure 11e for Cartesian axes). Here, the authors make note of
the loss in the symmetry of the MOs resulting from the
influence of the cavity. The overall symmetry of the molecule
changed from C2v to Cs after orbital relaxations under influence
from the cavity. The bare molecular system contains a HOMO
with 2B2 symmetry and LUMO+1 with 6A1 symmetry. Upon
coupling to the cavity, the MOs become distorted (similar to
what was seen in the previous example Figure 11d) and take
on new types of symmetry with labels 7A′ and 8A′,
respectively. The LUMO+1 state has the most visually obvious
e%ects in that the p-orbital on the oxygen (left-most atom)
rotates to becomes parallel with the polarization direction,
while the other part of the orbital changes shape entirely with
the dominating part of the orbital lying in-line with the oxygen
p-orbital rather than symmetrically split according to the
symmetry of the nuclei. These modifications to the frontier
orbitals showcase the drastic e%ects the cavity may have on
local reactivity of the molecules whereby the molecular orbitals
exchange character and lead to various changes to the local
electrostatic potential and atomic charges. In the same work,
the configuration interaction (CI) theory is also developed for
the sc-QED method, which is convenient for incorporating
electronic-photonic correlations for calculations of the excited
states.

In conclusion of this section, examining the response of the
ground and excited electronic structure to the presence of
molecule-cavity coupling is of extreme importance for all
theoretical applications. The significant changes to the
properties can elucidate a new and powerful method for
manipulating chemical reactions in the ground state and tuning
the local excitonic character of excited states to use in
photochemistry and optoelectronic property modification.
Further, the use of either pQED and scQED schemes is
expected give the same result in the infinite basis limit;
however, each scheme will have strengths and limitations that
need to be considered when applying to a specific situation.
When connecting theoretical simulations with experimental
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results with many molecules coupled to many cavity modes
inside a Fabry−Peŕot cavity, one needs to consider the
generalized Pauli-Fierz Hamiltonian ĤPF

[N] in eq 101. The
development of ab initio polaritonic methods for the GTC
Hamiltonian (eq 102) has been achieved, with the pQED-type
of method to solve the polariton state, and mixed quantum-
classical dynamics approaches (see Section 4.1.4−4.1.5) to
investigate polariton dynamics of many molecules coupled to
many cavity modes.138,177 Future directions for the theoretical
community may involve the application of such a Hamiltonian
toward the simulation of a many-mode

mode
, many-molecule

mol
cavity system through both pQED and scQED type of

methods. Here, the scaling due to the molecules and photons

will be of ( )mol F
state mode . However, including the self-

consistency of the many-electron problem, the scaling will also

include a factor b

el
with b dependent on the choice of

electronic structure method. These simulations are required to
explore the true collective nature of the polaritonic system for a
variety of realistic chemical reactions, polaritonic propagation,
and energy/particle transfer processes.

In the following section, we move to a photophysical
discussion on how polaritonic dynamics in the excited state can
be performed with models as well as with ab initio information
in order to demonstrate specific examples of modified excited
state processes achievable in both experimental and theoretical
realizations.

4. POLARITON PHOTOCHEMISTRY AND
PHOTODYNAMICS

The emerging field of polariton photochemistry has seen
tremendous growth over the past decade due to numerous
experimental3 ,27 ,38 ,39 ,255 and theoretical advance-
ments.5,10,13,70,117,256−258 The theoretical and computational

Figure 12. Recent polariton photochemistry experiments. (a) (i) Schematic of the ring-opening reaction of spiropyran (left) to merocyanine
(right) under ultraviolet (UV) irradiation while the reverse reaction occurs under visible (VIS) irradiation along with thermal energy. (ii, iii)
Schematic of the potential energy surfaces (ii) inside and (iii) outside the cavity with red arrows showcasing the possible reaction/emission
pathways and black arrows indicating possible electronic or polaritonic excitations. (ii) The dashed red arrows exemplify the modified pathways due
to the cavity. (iv, v) The time-dependent concentration of the merocyanine (MC) product (plotted as ln(1−[MC]t[MC]∞

−1)) inside (green) and
outside (red) for a cavity that is (iv) resonant and (v) o%-resonant with the MC electronic excitation (in the UV). (b) (i) Schematic of J-aggregates
of TDBC dye molecules coupled to a plasmonic nanoantennae cavity. The dye molecules can undergo photobleaching which involves reactions
with atmospheric oxygen (blue) and creation of reactive oxygen species. (ii) The photobleaching rate of the dye molecules outside the cavity
(uncoupled) and inside the cavity (coupled) for di%erent Rabi splittings. (c) (i) Schematic of a plasmonic cavity which contains a periodic
repetition (i.e., a lattice) of aluminum (Al) strips on a TiO2 film on a glass substrate. The decomposition rate of the molecule methyl orange is
examined outside and inside the plasmonic Al lattice. (ii) The lattice period of the Al strips is varied and a ratio of the rate inside the cavity ⟨k⟩ to
the bare “b” rate outside the cavity kb is obtained. (d) (i) Potential energy diagram of an excited state energy transfer pathway of a E-4-
dimethylamino-4′cyanostilbene (DCS) molecule from its planar excited state (PES) to another DCS molecule in its twisted ICT excited state
(TICS) whereby the photonic state of the cavity (center black line) mediates transitions between various vibronic states (thin horizontal lines) of
the electronically excited isomer states (left and right, thick curved lines) via the formation of upper (UP) and lower (LP) polaritonic states (center,
dark orange). (ii−iv) Photoluminescence intensity (PL) as a function of emission energy for various concentrations of DCS: (ii) 0.8%, (iii) 1.0%,
and (iv) 1.2%. The vertical dashed green lines indicate the energy of the TICS species at 2.37 eV. (e) (i) Energy diagram of the tautomerization
reaction of a single phthalocyanine molecule showing various reaction pathways including nonradiative singlet decay (knr), singlet fluorescence (kf),
singlet to triplet intersystem crossing (kISC), and triplet decay (kt). The singlet fluorescent decay rates are increased inside the cavity. (ii) Single
molecule fluorescence lifetime distributions outside the cavity (blue) and inside the cavity (green). Panel (a) is adapted from ref 3. with permission.
Copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. Panel (b) is adapted from ref 38 under the CC BY-NC license. Panel (c)
is adapted from ref 255 with permission. Copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. Panel (d) is adapted from ref 39
under the CC BY-NC license. Panel (e) is adapted from ref 136 with permission. Copyright 2021 American Chemical Society.
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investigations of polaritonic photochemistry thus far underpin
the great potential for using cavities to control photochemical
reactivity. This section aims to highlight these advancements
and o%er insight into the various mechanisms that light−
matter coupling provides for modifying photochemistry.

There are two overall regimes of light−matter coupling
which o%er di%erent mechanisms for changing chemical
reactivity: the weak coupling and the strong coupling regimes.
The primary characteristic that di%erentiates these two regimes
is whether the light−matter coupling strength gc is smaller than
(weak coupling) or larger than (strong coupling) the various
loss rates of the system.31−34 In the weak coupling regime, the
primary mechanism for modifying chemistry is through an
enhancement of the overall loss rate of the system, known as
the Purcell e%ect.33,259,260 In this regime, there is a limited
modification of the potential energy surfaces which limits the
amount of control one has over modifying chemical reactions.
On the other hand, in the strong coupling regime, significant
changes to the potential energy surfaces can be observed and
are adjustable based on fundamental physical characteristics
such as the cavity frequency ωc and the light−matter coupling
strength gc. These potential energy surface modifications, along
with other factors such as the initial photonic state, the rate of
cavity loss, and the presence of the dark state manifold, o%er
several mechanisms for theorists and experimentalists to use to
control chemical reactivity in the strong coupling regime.

Recent experiments in polariton photochemistry have
demonstrated some promising results of using molecule-cavity
coupling to change photochemical reactivity. One of the first
experiments to demonstrate a change of photochemical
reactivity in the strong coupling regime is shown in Figure
12a, adapted from ref 3. In this work, the rates of a
photoisomerization reaction (panel i) between spiropyran
and mecrocyanine via a photoexcited ring cleavage) were
modified by resonant coupling between the molecules to a
Fabry−Peŕot cavity, with a reported Rabi splitting of ΩR = 700
meV. In Figure 12a-(ii), the proposed mechanism of this
modification3 was an increase in the decay rate of the pathway
(1) (radiative relaxation from the lower polariton state)
relative to the pathway (2) (excited state isomerization) caused
by the formation of the lower polariton. This mechanism led to
the slowdown of the isomerization reaction inside the cavity at
resonance (Figure 12a-(iv)) but was not present in the o%-
resonant case (Figure 12a-(v)).

Another experiment shown in Figure 12b, adapted from ref
38, demonstrates a suppression of photobleaching rate of J-
aggregates of TDBC dye molecules with dependence on the
Rabi splitting as shown in panel b(ii). This work utilized
plasmonic nanoantennae (panel i) to produce a strong cavity
field that couples to the dye molecules and generates a large
Rabi splitting between the polariton states. These polariton
states are able to decay the excited population to the ground
state more quickly before the excited population can transfer to
the triplet state and undergo photobleaching, which reduces
the photobleaching rate inside the cavity (panel ii) thus
increasing the stability of the dye inside the cavity. This e%ect
of this mechanism is enhanced for larger Rabi splittings.

In Figure 12c, a plasmonic array cavity (panel i) was used to
modify the photochemistry of the photocatalytic decom-
position of methyl orange from ref 255. The methyl orange can
become reactive when the adjacent TiO2 undergoes UV
irradiation and ionizes the methyl orange, which can then react
with other radicals in solution and break down. The coupling

of this pathway to the plasmonic array allows for the formation
of waveguide-plasmon polaritons which can increase visible
light absorption and decrease radiative damping,255 which can
alter the reaction rate. In order to control the decomposition
reaction using a cavity, the array nature of the cavity (in panel
c(i)) allows the lattice period, and thus the cavity frequency, to
be adjusted. This ability to selectively modify the lattice period
was used in panel c(ii) to demonstrate the frequency-
dependent modification of a photocatalytic decomposition
reaction rate.38 In addition to adjusting the cavity frequency
and coupling strength, the pump excitation frequency can also
be adjusted to selectively control excited state energy transfer
as demonstrated by the work shown in Figure 12d, adapted
from ref 39. When the cavity-coupled system (i) was pumped
at the frequency of the lower polariton instead of at the bare
reactant frequency, the photoluminescence spectra was
dominated entirely by the twisted ICT (TICS) excited state
(ii−iv) instead of a mixture of planar (PES) and twisted
(TICS) isomer signals. This selectivity of excited state
population based on pumping frequency was further enhanced
by increasing the molecule concentration and thus the light−
matter coupling strength (ii−iv). Photochemistry has also been
shown to be modifiable in the weak coupling regime in the
work of Figure 12e, adapted from ref 136. The decrease in
excitation lifetime (ii) due to the Purcell e%ect caused a
reduction of population transfer from the singlet to triplet
excited state (i) which ultimately reduced the rate of excited
state tautomerization.

While the aforementioned photochemical experiments have
demonstrated some promise for cavity-controlled photo-
chemistry, recent theoretical investigations on the topic have
shown a wider array of ways to control photochemistry with
polaritons and have elucidated the possible mechanisms
behind this control. The following section details some of
these theoretical works in polariton photochemistry. Section
4.1 outlines various methods for performing nonadiabatic
polariton photochemical simulations. Section 4.2 describes
how light−matter hybridization allows for control over
photochemical processes. Section 4.3 overviews the results of
realistic ab initio simulations of cavity-coupled photoisomeri-
zation reactions. Section 4.4 outlines the various ways that
light−matter coupling can control charge transfer reactions.
Section 4.5 details the influence of cavity-induced conical
intersections on photochemical reactions. Section 4.6
introduces how the initial state of the photonic mode can be
manipulated to influence photochemical dynamics. Lastly,
Section 4.7 goes over the impact of cavity loss on
photochemical reactivity.

We also recommend the recent review articles in polariton
photochemistry: refs 2 and 37 provide the general ideas of
using polariton as a new platform for controlling chemistry;
refs 10, 31, and 21 provide general discussions on the potential
surface hybridization due to molecule-cavity interactions; and
ref 261 summarizes the theoretical challenges for simulating
polariton quantum dynamics in a molecule-cavity hybrid
system.

4.1. Nonadiabatic Polariton Photochemical Simulations

Here, we provide a short discussion of dynamical simulations
of polaritons chemistry. The essential task is trying to solve the
time-dependent Schrödinger equation (TDSE)

| = |i
t

t H t( ) ( )PF (148)
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where |Ψ(t)⟩ is the total quantum states of the electronic-
nuclear-photonic quantum state of the molecule-cavity hybrid
systems, whose time-evolution is governed by the QED
Hamiltonian ĤPF (eq 56). For more than a few nuclear
DOF, solving the TDSE exactly is prohibitively expensive.
Depending on the complexity of the molecular system, one
may perform the dynamics exactly as dictated by the TDSE or
resort to various approximations, such as mixed quantum-
classical (MQC) approaches, semiclassical approaches, various
approximate master equation approaches (e.g., Lindblad,
Redfield, etc.) and approximate wave function approaches.

In the following discussion, we will brief introduce two
popular mixed quantum-classical approaches as well as an exact
method for solving polariton quantum dynamics.
4.1.1. Exact Polaritonic Quantum Dynamics. We begin

by briefly discussing how to solve eq 148 exactly, thus giving an
exact solution to the polaritonic quantum dynamics. There are,
in principle, many possible strategies for exact quantum
dynamics propagation, and we only outline one of the most
commonly used strategies based on the Born-Huang
expansion.

We describe the total wave function of the electron-photon-
nuclear DOFs using the Born-Huang expansion262 using the
polaritonic basis as,

| = | |R R R( ) ( )
a

a a

(149)

where χαn(Rξ) = ⟨Rξ|⊗⟨Ψa(Rξ)|Φ⟩. Here {|Ψa(R)⟩} are the
polaritonic state at R which can be written in expressed in the
adiabatic-Fock state representation as |Ψa(R)⟩ =

∑α,nCα,n
a |ψα(Rξ)⟩,n⟩ and are obtained by diagonalizing pl

(see eq 111). Within this representation, the total light−matter
Hamiltonian is written as

+ = [ | |

+ | | | · | + | | ]

× | | + | |

T
M

R R

R R

R R R R R

2

2

, , ( ) , ,

a b j j
j ab

a j b j a j b

a b

a

a a a

R pl

, , ,

2
2

2

, (150)

where we have used the simplified notation |Ψa⟩ ≡ |Ψa(Rξ)⟩.
We refer the reader to refs 263 and 264 for evaluating the
nuclear kinetic energy (first term) and the derivative coupling
term (second term) using spectral functions or the DVR basis.

Upon diagonalization of this Hamiltonian = +T
RPF pl,

the electronic-nuclear-photonic eigenstates can be obtained as,

| = |j j jPF (151)

The electronic-nuclear-photonic wave function is then
evolved simply as

| = |t c( ) e
j

j
i t

j
/ j

(152)

where j is the jth eigenvalue and cj is the projection of initial
total wave function onto the jth eigenstate | j⟩

= | =c t( 0)j j (153)

where |Ψ(t = 0)⟩ is the initial condition and can be arbitrarily
defined in each case. Additional details on the exact
propagation can be found in refs 118, 265, and 107.

Here, we have depicted only one possible way of performing
exact polaritonic dynamics; however, many other exact (or
almost exact) quantum dynamics approaches exist that can be
utilized. In the following, we will mention a few of these
approaches: The multiconfiguration time-dependent Hartree
(MCTDH) scheme has recently been used to simulate
polariton photochemistry,266 conical intersections in cav-
ity,267,267 and vibrational polariton dynamics.190,268,269 The
exact factorization (XF) approach has only recently been
developed and has been to used to simulate polariton
photochemistry giving rise to novel interpretations of the
wave function and the exact potential energy surface depending
on the choice of factorization of the electronic, photonic, and
nuclear DOFs.11,270 The hierarchical equation of motion
(HEOM) approach has been used to simulate conical
intersection inside cavity271 and vibrational polariton chem-
istry.272 Additionally, ab initio multiple spawning
(AIMS),273,274 Ehrenfest multiple cloning (EMC),275 and
their variants276−278 could also be adapted for polaritonic
dynamics to give nearly exact results.
4.1.2. Ehrenfest Dynamics. Ehrenfest (EH) dynamics is a

mixed quantum-classical (MQC) approach for propagating the
coupled electron-photon-nuclear dynamics.275,279,280 Within
this approach, the nuclear DOFs are evolved classically while
the electronic and photonic DOFs are treated quantum
mechanically. Below, we define the wave function for the
quantum subsystem (which includes the electrons and the
photons)

| = |

= | |

t c t t

c t t n

R

R

( ) ( ) ( ( ))

( ) ( ( )) ,

a

a a

n

n

, (154)

where {|Ψa(R(t))⟩} are the polaritonic basis states that are

eigenstates of = T
Rpl PF (see eq 109) and {|ψα⟩⊗|n⟩}

are the adiabatic electronic and Fock/number photonic basis
states. The time-dependent electronic−photonic wave function
|Ψ(t)⟩ is evolved by solving the following time-dependent
Schrödinger equation (TDSE)

| = |i

t

t t( ) ( )pl (155)

which leads to the following set of di%erential equations for the
expansion coeOcients in the polaritonic basis as,

=

· | |

c t iE c t

d t

dt
t t c t

R
R R

( ) ( )

( )
( ( )) ( ( )) ( ).

a a

b

a R b b

a

(156)

Thus, using the ab initio QED approach outlined in Section
3, one can obtain |Ψa(R(t))⟩ and directly solve eq 156 using
the propagation of R(t). Note that a similar expression can be
obtained for the cαn(t) when using the adiabatic-Fock
representation instead. Note that the derivative couplings in
this basis (adiabatic-Fock) are sparse since ⟨n|∇R|m⟩ = 0, as the
photonic Fock states have no dependence on the nuclear
coordinates unlike the electronic adiabatic ones dαβ

≡⟨ψα(R(t))|∇R|ψβ(R(t))⟩ ≠ 0 (see eq 23). This is not true
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for the generalized coherent state (GCS)183 or polarized Fock
state (PFS)51 bases, which intrinsically entangle the electronic
and photonic DOFs. Note here that the adiabatic polaritonic
states can be obtained through any of the excited state scQED
schemes discussed in Section 3.2 while the adiabatic electronic
and photonic basis can be computed from bare electronic
structure calculations dressed with a photonic basis via the
pQED scheme (see Section 3.1).

The force needed to solve Hamilton’s equations of motion
for the nuclei can be written as,

= * | |t c t c t t tF R R( ) ( ) ( ) ( ( )) ( ( ))
ab

a b a R bpl
(157)

where the matrix elements | |t tR R( ( )) ( ( ))
a R bpl are

written as,

| |

= ·

+ · | | ·

t t

t

t t t

R R

R

R R R

( ( )) ( ( ))

( ( ))

( ( )) ( ( )) ( ( )) (1 )

a R b

R a ab

ba a R b ab

pl

(158)

where Δ ba(R(t)) = b(R(t)) − a(R(t)). Therefore, the forces
F(t) are described by a weighted average over the population
times the diagonal nuclear gradients on the polaritonic PESs
∇R a(R(t)) as well as the coherence-weighted o%-diagonal
gradient terms Δ ba(R(t))·⟨Ψa(R(t))|∇R|Ψb(R(t))⟩. A similar
expression can be obtained when using the adiabatic-Fock
basis. The nuclear motion can be solved using a velocity-verlet
algorithm.263,281

The nuclear DOFs can be initialized by sampling its thermal
distribution on the ground state potential energy surface
around the Franck−Condon region at a given temperature
either by use of BO molecular dynamics (BOMD) using
randomly sampled positions and velocities over long-time
dynamics or via sampling the classical Wigner distribution.
Both methods can be performed at arbitrary temperatures up
to the point where the normal-mode analysis breaks down, at
which point the system needs to be sampled via BOMD to
obtain a meaningful distribution in a highly anharmonic
ground state potential.

The elements of the reduced electronic-photonic density
matrix can be calculated as an average over the distribution of
nuclear configurations as

=t t( ) ( )
ab ab Traj. (159)

where ρ̅ab(t) = ca*(t)cb(t) is the density matrix element for a
single trajectory (see eq 154 for the definition of ca(t)). Any
one-particle observable Ô can be computed from the reduced
density matrix as a trace written as,

= [ ] = | |O t Tr O t O t( ) ( ) ( )
ab

a b ab

(160)

Here, Ô can be either an electronic, photonic, or nuclear
observable. For the case of a nuclear observable, the operator is
simply downgraded to a function O, removed from the trace,
and averaged over all initial conditions.

For light−matter hybrid systems with much lower photon
frequencies (such as in the IR regime), a possible alternative is
using the above-mentioned mixed quantum classical treatment
to group photon modes and nuclear DOF together and
propagate them using their classical equations of motion, while
treating electronic DOF quantum mechanically (refs 53, 74,

86, 258, 282, and 283). In this case, the Hamiltonian

= T
p

Rel PF 2

c

2

is used to evolve the electronic wave

function |Ψ(t)⟩ = ∑α,ncαn(t)|ψα(R(t),qc(t))⟩ quantum me-
chanically while R and qc are evolved classically.
4.1.3. Ab Initio Nuclear Gradients. For ab initio

nonadiabatic dynamics of realistic molecules, the diOculty
often is obtaining the necessary components for the
propagation of the nuclear and electronic DOFs, such as the
gradients of the PESs ∇R a

and more nontrivially the
derivative couplings between electronic states dαβ. In
polaritonic systems, one encounters new terms which contain
gradients on the electronic dipole operators through the light−
matter coupling term ∇Rμαβ. The gradient expression for the
JC type Hamiltonian has been derived in ref 6. For the
rigorous PF Hamiltonian (eq 104), the gradient also arises
from counter rotating wave term and dipole self-energy terms
(see eq 104), where the DSE related term reads ∑γ∇R[(μαγ·
e)̂(μγβ·e)̂]. Explicit expressions for these quantities was recently
formulated in the adiabtic-Fock basis for on-the-fly quantum
dynamics simulations.118 However, these quantities are rarely
available in standard electronic structure packages, including
the derivative couplings dαβ, due to the complexity of obtaining
the analytical expression for excited state electronic structure
methods. The analytic derivative couplings have only recently
been developed for NAMD simulations for common excited
state methods like TD-DFT284,285 over the past decade or so
and implemented in only a few electronic structure or NAMD
packages.286,287 Additionally, a recent work indicated that the
explicit formulation of the derivative couplings may not be
needed and can in fact be approximated very accurately only
using the diagonal gradients and potential energies.288

Recently, Zhang, Nelson, and Tretiak implemented analytic
nuclear gradients on the dipole and simulated the photoexcited
dynamics of the stilbene molecule.289 In this work, the authors
modified the NEXMD software package189,286,290−299 to
include the pQED Hamiltonian (see Section 3) at the
Jaynes-Cummings level with all proper gradients required for
this Hamiltonian (i.e., without DSE and making the rotating
wave approximation). Additionally, the gradients on the
potential energy surfaces, nonadiabatic couplings, and dipole
gradients were achieved analytically at the TD-AM1300 level of
theory in the collective electronic oscillator (CEO) frame-
work.187,286,301 Most importantly, the nuclear gradient on the
bare transition dipole between the ground and excited
electronic states was computed as μ0α = Tr[μ̂X̂0α] in the
atomic orbital {o, v} basis and can be understood as,

= +X
X

R R Rj ov

ov

j
vo ov

vo

j

0 0

0

(161)

where Xvo
0α is the transition density matrix similar to that found

in eq 142 between the ground and αth excited electronic state
in the CIS-approximation187,218,231,232 (see additional dis-
cussion in Sec. 3.2) and μov is the transition dipole between
atomic orbitals o and v. From a computational perspective,
obtaining both terms in eq 161 is not always trivial and may
require additional methods such as iterative optimization
algorithms (e.g., biconjugate gradient optimization) to acquire
the individual terms themselves, which adds an additional layer
of complexity and consideration when performing on-the-fly
NAMD simulations inside the cavity.289
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When generalizing beyond the Jaynes-Cummings model,
one needs to additionally account for the excited state
permanent and transition dipoles matrix elements.118 For
more complicated excited state methods (e.g., EOM-CC,
CISD, etc., see Section 3.2), acquiring analytic gradients is not
trivial and extremely expensive. However, the analytic
expression for the nuclear gradients on the atomic orbital
dipoles ∇Rμ and transition density ∇RX

0α (as well as the bare
electronic nonadiabatic couplings dαβ and excited state PES
gradients ∇Eα) can, in principle, be achieved analytically in any
TDSCF method289,302,303 and has been shown possible in
similar works.70,257,304,305 However, the implementation of
such quantities in commercial or open-source electronic
structure packages are few and far between.306

Ref 118 has recently derived the exact nuclear gradient
expression for the PF Hamiltonian. This gradient is formulated
in the pQED framework (eq 110) and is derived based on the
conservation of total energy for the mixed quantum classical
system.118 As before, the electronic and photonic DOFs are
considered as the quantum subsystem, and the nuclear DOFs
are considered as the classical subsystem. Using the adiabatic-
Fock basis {|ψα(R)⟩⊗|n⟩}, the nuclear gradient that corre-
sponding to the PF Hamiltonian in eq 110 is expressed118 as
follows

[ ] = + +

= +

V V V V

V

d d

X

( )

,

n m n m

l

n l l m n l l m

n m n m

(162)

where Vαnβm = ⟨ψαn|Ĥpl|ψβm⟩ (see Ĥpl in eq 110), dαnβm =
⟨ψαn|∇|ψβm⟩ are the derivative couplings among the
polaritonic states, and Xαnβm = ∑γl (−Vαnγldγlβm + dαnγlVγlβm)
is the gradient originating from the derivative coupling matrix
elements. A simplification can be made by noting that the
derivative couplings between electronic basis states of di%erent
photon numbers vanish as dαnβm = ⟨ψα|∇|ψβ⟩δnm.

The above general expression of the nuclear gradient
naturally reduces back to the gradient of a Jaynes-Cummings
model5,70,126,257,289,305 in the subspace of {|e,0⟩ ≡ |e⟩⊗|0⟩, |g,1⟩
≡ |g⟩⊗|1⟩}. As shown in ref 118, the non-JC Xij components
(colored curves) in the general gradient expression have a
similar magnitude compared to the regular JC-type gradient
(black curve). When the system starts to explore all of the
states and generate sizable populations and coherences among
them, their contributions in the nuclear force are required to
be explicitly and correctly counted. All of these terms are
missing in many of the recent MQC studies of polariton
dynamics based upon the JC model.5,70,257,305 This new
gradient expression has also been used in the quasi-diabatic
propagation simulation of polariton quantum dynamics.180

All possible permanent and transition dipoles (between all
electronic states) as well as their derivatives are necessary
ingredients to perform polariton dynamics simulations.
However, these quantities are rarely available in most
commonly used excited-state electronic structure methods
and have required approximations toward obtaining these
gradients.138,177,307,308 In this case, one may turn to machine
learning techniques to circumvent this need.309 Recently, ref
309 implemented such a scheme for the simulation of ab initio
polariton dynamics. In this work, the authors employed the
kernel ridge regression (KRR) method, which yields an
accurate and analytically di%erentiable dipole. The gradient

related to the derivative of the dipole can then be analytically
computed. Using this approach, the authors successfully
simulated the photoexcited isomerization via conical inter-
section dynamics of the azomethane molecule after bench-
marking the molecular dipoles against numerical gradients.
4.1.4. Fewest Switches Surface Hopping. Surface

Hopping (SH) approach is a widely used approximate
quantum dynamics approach310,311 for simulating nonadiabatic
molecular dynamics. The SH approach, a mixed-quantum
classical approach (also see EH approach in Section 4.1.4), is a
stochastic method where the nuclear DOFs “jump” or “hop”
between adiabatic states. Between such hops, the nuclear
DOFs evolve classically following one adiabatic state referred
to as the active state. This is in contrast to the mean-field EH
approach where the nuclear DOFs evolve over a mean surface.
This approach has also been recently used to simulate
polariton chemistry.70,118,180,257,289,305,312,313

Since there are many flavors of SH dynamics present in the
community, we only present the procedure for the most
commonly used implementation by the community with others
briefly mentioned below. Here, we provide a brief overview of
the fewest switches SH (FSSH) approach for simulating
polariton quantum dynamics. Similar to the EH approach the
electronic-photonic subsystem is treated quantum mechan-
ically while the nuclear DOF are evolved classically. Just as in
Section 4.1.4 the electronic-photonic wave function is written
as,

| = |t c t tR( ) ( ) ( ( ))
a

a a

(163)

The expansion coeOcients ca(t) undergo direct TDSE
propagation as in eq 156. The forces on the nuclear DOFs
then simplify to,
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which only includes the gradient along a single polaritonic PES
corresponding to the active state |ΨS(R(t))⟩. The active state S
jumps from polaritonic state S = a to S = b with probability
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with

= [ ] ·t t
d

dt

R
d R( ) 2Re ( ) ( )

ab ab ab (166)

where dab (R) = ⟨Ψa(R(t))|∇R|Ψb(R(t))⟩ and ρab (t) = ca*(t)
cb(t). The hop from polaritonic state S = a to S = b will occur if
the following condition is met,

< <
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=

=b
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b

a

1

1

1 (167)

At the moment of a hop, the velocities of the nuclei are
rescaled in the direction of the nonadiabtic coupling vectors
dab(R) ∼ (dR/dt)new − (dR/dt)old to retain a constant total
energy.314 If no solution exists to rescale in this direction, the
hop is called “frustrated” and is usually discarded or the
velocities of the nuclei are simply reversed and the active state
remains the same.286
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The initial conditions are similar to that of the EH approach;
however, if there exists a distribution of polaritonic coeOcients
at initial time {cα(0)}, then initial active state should also be
sampled independently for each trajectory (similarly to
sampling of nuclear DOFs) from the probability distribution

defined by = {| | }c(0) (0)
aS

2 . It is well-known,311 FSSH
su%ers from producing overly coherent (or lack of proper
electronic decoherence) within the expansion electronic
coeOcients and will subsequently be problematic for the
polaritonic coeOcients.311 Many ad hoc corrections exist to
modify the expansion coeOcients in FSSH to account for
decoherence, such as the instantaneous decoherence correc-
tion (IDC),275,286 the energy-based decoherence correction
(EDC),315 etc., as well as other forms of the surface hopping
scheme, such as the augmented surface hopping (A-FSSH),316

the decoherence-induced surface hopping (DISH),317 and the
global flux surface hopping318 schemes.

A major simplicity a%orded by the FSSH method is that the
derivative coupling vectors dab(R) are not explicitly required as
the nuclear forces (unlike in the mean-field EH method) do
not require this quantity for time-evolution (except at the hops
for rescaling), and the electronic propagation only requires the
scalar nonadiabatic coupling terms dab · dR/dt = ⟨Ψa|d/dt|Ψb⟩,
which can be easily obtained via finite di%erence wave function
overlaps of the polaritonic states throughout the trajec-
tory.319,320 This procedure is immensely cheaper than the

direct computation of the nonadiabatic coupling vectors
themselves, wherein one only needs to compute the non-
adiabatic coupling vectors to rescale the nuclei at the moment
of a hop.286 Or, one can ignore the asymmetric nuclear velocity
rescaling altogether and perform uniform energy-based
rescaling, which is known to provide slightly worse dynamics
but alleviates the computation of the vector nonadiabatic
coupling altogether.
4.1.5. Other Approximate NAMD Methods. There exist

a multitude of other schemes to approximately solve the TDSE
for a realistic system that will not be discussed in this review.
However, future applications in simulating polaritonic
dynamics will require the use of more accurate methods
compared to EH and FSSH. Similar methods to EH exist that
are an extension to the Meyer-Miller-Stock-Thoss mapping
schemes321,322 and lead to methods such as the symmetric
quasi-classical (SQC),323−333 partially linearized density matrix
(PLDM)334−336 and later the spin-mapping (SM) ap-
proaches,337−342 which are all mean-field-level methods in
that they treat the forces on the nuclear DOFs as an average
over the electronic state population and coherences similar to
the EH method but all drastically outperform EH through, for
example, the inclusion of zero-point energy (all methods) or
using the correct mapping space to constrain the population
(sM). Note that many of these approximate quantum
dynamics approaches (such as PLDM, SQC, SM, etc.) are

Figure 13. Polariton Photochemistry: Modifying molecular photochemistry through light−matter hybridization. (a) Schematic illustration of a
cavity and the potential energy surfaces of an uncoupled NaI molecule with ionic and covalent molecular states. (b) Ground and excited state
potential energy surfaces for a molecule outside the cavity and (c) when coupling the reaction to a cavity leading to the formation of the upper
(red) and lower (blue) polaritons. The cavity frequency ωc is shown by the green arrow. (d) Photodissociation of a NaI molecule inside and
outside the cavity. Subpanel (i) presents the molecular ground state population dynamics after photoexcitation outside the cavity while subpanels
(ii-iii) present these population dynamics inside the cavity at various light−matter couplings g. (e) Modifying a photoisomerization reaction inside
cavity. Subpanel (i) shows the molecular potential energy surfaces outside the cavity. These surfaces result in a nearly 50%/50% mixture of cis and
trans after reacting on the excited surfaces. Subpanels (ii, iii) show the PESs when coupling to cavities of di%erent photon frequencies ℏωc. These
hybrid surfaces allow either nearly 100% cis (subpanel (ii)) selectivity or nearly 100% trans (subpanel (iii)) selectivity. Subpanel (iv) shows the
relative % yield of the cis or trans isomer as a function of ℏωc. Panels (a) and (d) are adapted from ref 5 with permission. Copyright 2016 American
Chemical Society. Panel (e) is adapted from ref 13 with permission. Copyright 2019 American Chemical Society.
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formulated in the diabatic representation and are incompatible
with adiabatic electronic or polaritonic representation. The
recently developed quasi-diabatic scheme resolves this issue
and allows combining any of these diabatic dynamics
approaches with adiabatic electronic or polaritonic representa-
tion without requiring any additional nontrivial theoretical
e%orts such as diabatization.180,329,332,335,343 Finally, methods
stemming from the exact factorization (XF) formalism, which
range from trajectory-based XF surface hopping (XFSH) to
coupled trajectory approaches (CTXF), can also be utilized in
the polaritonic basis which may lead to additional methods
depending on the choice of factorization of the electronic,
photonic, and nuclear DOFs.344−351

4.2. Influencing Photochemical Reactivities through
Light−Matter Hybridization

Coupling molecular excitations to a cavity photonic excitation
causes a hybridization of both types of excitations, leading to
the creation of new light−matter hybrid states.10 When the
PESs of the molecular ground and excited states are
considered, the light−matter hybridization creates hybrid
polariton surfaces, as discussed in Section 1.1 (see eq 11).
These polariton surfaces hybridize the curvatures from both
the ground and the excited molecular states (see Figures 6, 8,
and 13) and possess di%erent levels of matter or photonic
excited character as a function of their nuclear coordinates (as
we have seen). Additionally, the curvature of these surfaces is
modulated by the Rabi splitting and creates new light−matter
avoided crossings. These features of the potential energy
surfaces can modify the path that a chemical reaction takes,
resulting in a polariton-induced change of reactivity. By tuning
the cavity frequency ωc and light−matter coupling strength gc,
the features of these hybrid polariton surfaces can be optimized
to control the outcomes of a variety of photochemical
reactions.

The e%ects of changing ωc and gc on the hybrid polariton
surfaces can be understood as follows. Changing the cavity
frequency ωc will change the energy of a quantum state that
has n photons associated with it by the amount ℏωcn. For an
electronic transition between a molecular ground and excited
state that is coupled to the cavity photon mode, the molecular
ground state with n + 1 photons (the |g,n+1⟩ state) will couple
to the molecule excited state with n photons (the |e,n⟩ state).
When the PESs of these ground and excited states have
di%erent curvatures, di%erent energetic shifts of ℏωc will cause
the |g,n+1⟩ and |e,n⟩ PESs to intersect at di%erent nuclear
configurations. Di%erent points of intersection (in the nuclear
configurational space) lead to di%erent composite curvatures
for the upper and lower polariton surfaces which will a%ect the
force the nuclei feel at a given configuration, thus influencing
the motion of the nuclear DOFs and altering the reaction
pathways compared to the bare molecules outside the cavity.
Note that in the above intuitive argument, we have interpreted
the Fock state |n⟩ as n photons contained inside the cavity.
This is only true when there is no matter inside the cavity, and
approximately accurate when the light−matter coupling
strength is weak. Rigorously, the photon number operator
needs to be gauge transformed as discussed in eq 62.

Changes of the light−matter coupling strength gc have two
primary e%ects. The first is that the upper and lower surfaces
will energetically “split” apart where the |g,n+1⟩ and |e,n⟩ PESs
intersect, by the energy of Rabi splitting which is +n g2 1

c

when considering the JC model (see eq 5). This is also known

as a cavity-induced avoided crossing,5,10 which can impact how
much populations on the upper and lower polaritons can
transfer to each other. The second e%ect is that larger values of
gc will increase the extent of the regions of the polariton
surfaces that have mixed electronic-photonic excited character.
This change in excited character can impact how strongly these
polariton states interact with other quantum states.

These cavity-induced e%ects can be clearly demonstrated
using simple single-molecule model reactions, which is ideal for
an experimental setup with certain plasmonic cavities27 (see
Figure 1a). One of the simplest photochemical reactions is that
of bond photodissociation. The primary mechanism of this
reaction is a Franck−Condon photoexcitation of a molecule to
a molecular excited state, which has a curvature that pushes the
nuclei away from the bonded regime and toward the
dissociated regime. Absent this photoexcitation, the nuclear
wavepacket remains in the equilibrium geometry of the ground
state potential and resists dissociation. How exactly to translate
this PES hybridization principle into the collective coupling
regime is still an open question, and the recent progress along
this direction will be discussed in Section 6.2.

Recent theoretical works have examined the e%ects of
coupling the ground-excited transition of photodissociation
reactions to optical cavities.5,6,10,21,117,119,127,267,352−355 Figure
13a,b illustrates the typical molecular ground and excited
surfaces present in photodissociation reactions which are
composed of covalent and ionic bond characters.5 A key
feature of these surfaces is that they become nearly degenerate
at some finite nuclear distance away from the equilibrium bond
configuration. Additionally, some nuclear configurations have
larger gaps between the excited and ground surfaces (pink
arrow) than other configurations (green arrow). Tuning the
cavity frequency to match these energy gaps will create a cavity-
induced avoided crossing at that respective nuclear configuration,
which will generally be closer to the equilibrium bond
configuration than the original molecular ground-excited
avoided crossing. In particular, Figure 13c demonstrates the
e%ect of hybridizing the molecule excited state |e,0⟩ with the
photon-dressed ground state |g,1⟩. The |g,1⟩ state surface has
the same curvature of the molecule ground state |g(R)⟩ and is
energetically raised by ℏωc (due to the single photon dressing)
which allows it to intersect and hybridize with the molecule
excited surface |e,0⟩, much closer to the equilibrium bond
configuration than the bare molecule surfaces illustrated in
Figure 13b. This causes the upper polariton surface (red curve
in Figure 13c) to have a broad well shape that resists
dissociation, and the lower polariton surface (blue curve in
Figure 13c) to have a potential well centered around the
equilibrium bond configuration. Upon Franck−Condon photo-
excitation and with large Rabi splittings, the curvatures of these
surfaces encourage the nuclear wavepacket to stay near the
equilibrium bond configuration until the excitation eventually
relaxes to the molecule ground state through loss channels.
Figure 13d shows molecular ground state population dynamics
of the dissociation reaction of a NaI molecule coupled to an
optical cavity, as illustrated in panels a−c. With (i) no coupling
or (ii) weak light−matter coupling, a large portion of the
nuclear wavepacket moves toward ionic−covalent avoided
crossing, transfers to the flat part of the covalent curve, and
dissociates readily. With (iii) a stronger light−matter coupling,
the nuclear wavepacket becomes trapped in the wells of the
upper polariton state (red surface shown in panel c), resulting
in an oscillatory covalent character and less dissociation since
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the original ionic−covalent avoided crossing and energetic
plateau is not reached by the wave packet.

Coupling photoisomerization reactions to an optical cavity
have also been shown to alter the reactive outcomes, both
experimentally3 and theoretically.7,10,13,256 Figure 13e(i),
adapted from ref 13, presents the model isomerization
reaction, with a ground state PES (black curve) which has
two well-defined minima that correspond to the cis and trans
configurations. The excited state |e⟩ (cyan curve) is modeled
with a relative flat PES due to the delocalization of the electron
density. Panels (ii, iii) present the modifications of the
polariton potentials due to light−matter coupling, for two
di%erent cavity photon frequencies. In the zero coupling case,
outside the cavity (i), the nuclear wavepacket, once excited to
the state |e⟩, can freely explore the excited PES. Once the decay
channels take over (radiative and nonradiative decay), the
system will relax back to the ground state |g⟩, and end up in
either in the cis or the trans nuclear configuration. The reaction
exhibits barely any selectivity for the cis or trans configuration.
When the molecules are coupled inside the cavity (ii-iii), the
excited surface curvatures are modified specifically based on
the cavity frequency. For cavity frequency ωc = 2.18 au (ii), the

emerging feature of the potential is a new barrier on the upper
polariton surface. Through a Franck−Condon excitation of the
system, a nuclear wavepacket is placed on the upper polariton
surface. Due to the presence of the new barrier, the nuclear
wavepacket is trapped on the left side (cis) which gives cis
selectivity upon relaxation to the ground state. Alternatively,
for cavity frequency ωc = 3.13 au (iii), a nuclear wavepacket
starting on the lower polariton surface transfers to the trans
side of the nuclear configuration space and becomes trapped in
a potential well, resulting in trans selectivity upon relaxation to
the ground state. As a consequence, the percent yield of the
isomerization reaction (iv) can be controlled to be nearly
100% cis or 100% trans by tuning the cavity frequency.

These theoretical investigations on the hybridization of light
and matter excited surfaces highlight the possibility for
photochemistry to be controlled by tuning the coupling
strength gc and the cavity frequency ωc. However, the
investigations in Figure 13 only involved a single molecule
coupled to a single mode with idealized model potentials inside
a lossless cavity. These simplifications merit further inves-
tigation into simulations of more realistic polaritonic systems.
In particular, there exist several other factors that play

Figure 14. Realistic photochemistry. (a) (Top, left) Schematic of the azobenzene molecule coupled to a Fabry−Peŕot cavity with coupling strength
g, cavity loss κ, and molecular photon emission rate γ. (Bottom, left) The isomerization reaction of azobenzene from the trans to the cis
configuration at ultraviolet (UV) wavelengths and the reverse at visible (VIS) wavelengths. (Right) Two dominating molecular coordinates for the
CNNC torsional dihedral angle as well as the NNC angle which dictate the intrinsic bare molecular conical intersection and subsequent cavity-
induced conical intersection. (b) Polaritonic potential energy surfaces at the Jaynes-Cummings level with the uncoupled ground state ESd0,0 (black)

as well as the upper E+ (purple) and lower E− (orange) polaritonic states at the semiempirical AM1 level coupled with the floating occupation
number molecular orbital configuration interaction (FOMO−CI) approach. (c) Populations of the various states (solid lines, color-coded with
panel b) after initial excitation to the upper polaritonic state. The dashed lines with symbols are the populations of the basis states |PSd0,1⟩ (tan) and |

PSd1,1⟩. Here, no cavity loss or molecular photon emission rates were used (i.e., κ, γ = 0), assuming a perfect cavity and infinitely long molecular

emission time. The cavity coupling was set to g = 0.01 au and cavity polarization e ̂ perpendicular to the main axis of the mirror, as shown in panel
(a). (d) Schematic of the azobenzene molecule in a plasmonic cavity with polarization e ̂ shown by the black arrow. The computational system
includes QM (azobenzene) and MM (water solvent and metal lattice atoms). (e) Population dynamics of the trans and cis populations for zero
coupling strength (zc, purple lines) and strong coupling (sc, orange lines). Strong coupling results in a larger steady-state cis population. (f)
Population dynamics of the diabatic states for outside the cavity (dotted lines) and inside the cavity (solid lines). The excited diabatic states inside
the cavity take longer to decay to the ground state than outside the cavity. Panels (a−c) are adapted from ref 70 under the CC BY license. Panels
(d−f) are adapted with permission from ref 257. Copyright 2019 Elsevier Inc.
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significant roles in the ability to control photochemistry, which
will be elaborated upon in the following subsections. The
collective coupling e%ect will be extensively discussed in
Section 6. On the other hand, the theoretical investigations
presented in this section might be able to be carried out in
actual experimental investigations using a plasmonic cavity
setup.27

4.3. Ab Initio Simulations of Polariton
Photo-Isomerizations

Utilizing the NAMD methods described in Section 4.1, several
realistic ab initio simulations of polariton-mediated photo-
chemical reactions have been investigated.70,257,356 Using these
methods provides a simulation with more atomistic details
compared to the simpler model simulations (e.g., in Figure
13e) and allows for detailed molecular insight into cavity
modified photochemical reactions.

The influence of cavity coupling on the mechanisms of the
photoisomerization of azobenzene was investigated through
realistic ab initio simulations70,257 in the work shown in Figure
14a−c, adapted from ref 70. The reaction involves photo-
excitation of azobenzene under ultraviolet light, which allows
for isomerization from trans to cis on the excited state potential
energy surfaces (Figure 14a). In this molecule, there is an
intrinsic conical intersection between the S0 (ground adiabatic
electronic state) and S1 (first excited adiabatic electronic state)
potential energy surfaces, in the nuclear configurational space
of the CNNC dihedral angle (coupling coordinate) and NNC
angle (stretching coordinate). Both coordinates are illustrated
in Figure 14a. The light−matter interaction between the |S0,1⟩
and |S1,0⟩ surfaces causes a Rabi splitting between the upper
and lower polariton surfaces, as shown along the NNC angular
DOF in Figure 14b.

The electronic structure was computed using the pQED
scheme (see Section 3.1) using the Jaynes-Cummings
Hamiltonian (i.e., no counter-rotating terms or dipole self-
energy) with a minimal basis of |S0,0⟩, |S0,1⟩, and |S1,0⟩. Here
the electronic structure was computed at the semiempirical
AM1 level300 coupled with the floating occupation molecular
o rb i t a l configu r a t i on in t e r a c t i on (FOMO−CI)
scheme70,357−359 for the calculation of the lowest singlet
excited state S1.

The Rabi splitting is nuclear configuration dependent, due to
the nuclear-dependent adiabatic energy gap and dipole (both
transition and permanent dipoles). This avoided crossing
region centered at the Rabi splitting, along with the nearby
polariton-induced conical intersection70 (where the light−
matter coupling term μ̂·e ̂ (eq 104) goes to zero because the
component of the dipole along the cavity field polarization
direction goes to zero for a certain nuclear configuration),
allows for population to transfer between the upper and lower
polariton surfaces.

Figure 14c presents the polariton population dynamics
computed with a decoherence-corrected surface hopping
approach.70 While the diabatic excited state population
dynamics of |S0,1⟩ (golden dotted line) and |S1,0⟩ (purple
dotted line) show a trend of smooth decays/increases, the
upper polariton population P+ (purple solid line) and lower
polariton population P− (orange solid line) show oscillations
which are mediated by of the polaritonic avoided crossing and
polaritonic conical intersection.70 The consequence of these
population transitions is that a large amount of population was
transferred to the lower polariton whose curvature resists a

conversion from the trans to the cis configuration, resulting in a
quenching of the photoisomerization reaction rate relative to
outside the cavity.

In the previous example, the coupling of the azobenzene
photoisomerization reaction to a cavity was seen to reduce the
isomerization quantum yield relative to outside the cavity.
However, in another work,257 the authors showed that one is
able to enhance the rate of the photoisomerization reaction
(see Figure 14d−f). Here, the azobenzene molecule is confined
inside a molecular ring (or host molecule) using a QM/MM
level of description with the molecular ring and explicit water
solvent treated at the MM level. Both the molecular rings,
solvent, and azobenzene are further situated between two gold
planar mirrors (Figure 14d). This configuration of the
simulation closely resembles some actual experiments where
a single molecule is coupled to a plasmonic cavity in ref 27. In
principle, one should be able to experimentally check the
prediction of this simulation work.257 In this calculation,
several higher molecular excited states were included,257

increasing the chemical accuracy of the simulation relative to
the simulations that only consider a single electronic excited
state. The population dynamics revealed that strong light−
matter coupling enhanced the conversion of the trans to cis
configurations (Figure 14e). In particular, the trans to cis
reaction was faster at short times outside the cavity, but the
strong light−matter coupling allowed the reaction inside the
cavity to persist much longer. This resulted in a steady state cis
population nearly twice that of outside the cavity. The
proposed mechanism for this photoisomerization rate enhance-
ment is that the photonic |S0,1⟩ state acts as a reservoir for the |
S1,0⟩ state population which helps to delay the decay to the
ground state before the isomerization can occur. This can be
seen in the population dynamics of the diabatic states (Figure
14f) where the strong coupling |S1,0⟩ state maintains a large
population for longer than the no cavity |S1⟩ state.

These studies on the photoisomerization of azobenzene
inside optical cavities demonstrate that the details of the
electronic structure and surrounding environment can have a
strong influence on the ability of cavity coupling to control
chemical reactions. In particular, it was seen that the reaction
modeled in Figure 14a−c experienced more quenching and
less steady state cis product compared to outside the cavity,
whereas the reaction modeled in Figure 14d−f was able to
enhance the isomerization relative to outside the cavity. These
di%erences in reactivity can arise due to experimentally relevant
di%erences in the details of the structural setup of the model,
which may not be able to be captured in simpler model
systems that lack ab initio detail. Thus, it is important to verify
the results of simple model simulations with more realistic ab
initio simulations whenever possible and to explore the
di%erent photochemical reaction mechanisms inside optical
cavities that are possible when utilizing electronic structure
calculations during the reaction dynamics.

4.4. Polariton-Mediated Charge Transfer Reactions

Another fundamental, yet important, type of photochemical
reaction is excited state charge transfer. The basic principle of
this reaction is that a charged particle, often an electron, can
transfer among molecules after the system is excited, often due
to photoexcitation. This transfer is allowed by the presence of
electronic coupling between so-called “donor” and “acceptor”
states.360−368 Accompanying the transfer of charge, there is
often a reorganization of the nuclei based on the new electric
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potential of the acceptor state. The free energy di%erence ΔG,
donor−acceptor coupling strength VDA, and reorganization
energy λ all play key roles in the rate of excited state charge
transfer.

Marcus theory369−372 is one of the most commonly used
descriptions of charge transfer in the weak donor−acceptor
coupling regime when VDA ≪ kBT, where kB is the Boltzmann
constant and T is the temperature. The electron transfer rate
constant kET for the |D⟩ → |A⟩ transition described by Marcus
theory369−372 is
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where VDA = ⟨D|Ĥel|A⟩ is the donor−acceptor coupling
strength, β = 1/kBT with Boltzmann constant kB and
temperature T, λET is the reorganization energy associated
with the electron transfer reaction (not to be confused by the
light−matter coupling strength in eq 105), and ΔG is the
di%erence in free energy between the donor and acceptor states
(also known as the driving force). When including the ground
state in this description, the ground, donor, and acceptor states
can be thought of as parabolas that are shifted from each other
in terms of their minimum energy and nuclear configuration,
with coupling between the donor and acceptor parabolas.
While there have been experimental demonstrations of
photoinduced charge transfer enhancement in organic
crystals373,374 and solar cells375−377 with the use of external
laser driving, these reaction modifications can potentially also
be achieved through strong coupling to a cavity.

When a charge transfer reaction is coupled to an optical
cavity, modifications to many of the key parameters in eq 168
due to light−matter coupling can be calculated. We emphasize
that such modifications have not been observed experimentally
and that more experiments need to be performed to validate
the theoretical principles of polariton mediated charge transfer.
Here, we use this simple analysis to illustrate how
modifications would a%ect the corresponding Marcus-regime
charge transfer rates. One of the most important modifications
is to the driving force ΔG as shown in Figure 15a, adapted
from ref 12. In this model, three diabatic electronic states are
considered: a ground state |G⟩, an optically bright excited state
denoted as the donor state |D⟩, and an optically dark excited
state, denoted as the acceptor state |A⟩. This model setup
could correspond to many experimental systems such as a
colloidal nanocrystal (NC) as a donor molecule and an organic
acceptor molecule.368,378 The molecular excitation transition |
G⟩ → |D⟩ is coupled to the cavity (due to its nonzero ground-
to-excited transition dipole moment) whereas the acceptor
state |A⟩ (which is also an electronic excited state) is not
directly coupled to the cavity but is coupled to the donor state |
D⟩ through the diabatic electronic coupling VDA. It is also
assumed that the donor excited state |D⟩ and the ground state |
G⟩ have the same minima position, meaning there is no
Huang−Rhys factor (or reorganization energy) between |D⟩
and |G⟩. This means that the |G,1⟩ state (orange solid curve in
Figure 15b) and the |D,0⟩ state (black dashed curve in Figure
15b) are nested with the same minimum position, indicating
the ET reorganization energy λ is not changed upon coupling
to the cavity (as opposed to the case illustrated in Figure 28a).

Assuming a thermal equilibrium in the ground state and
quasi-classical nuclear initial conditions upon instantaneous
photoexcitation, Marcus theory can be used to describe the

charge transfer rate between the |±,0⟩ state to the |A,0⟩ state.
The polariton-mediated electron transfer (PMET) rate
constant is expressed as
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where ΔGc
± is the polariton-mediated driving force between

the photon-dressed acceptor state |A,0⟩ and the polariton |±⟩
states (only considering the n = 0 case of the JC ladder in eq
4), is expressed as
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where ℏΔωc = ℏωc − (ED − EG) is the light−matter detuning,
and Vc

± is the polariton-mediated coupling

= ±| |
±
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Since the acceptor state does not carry any ground-to-
excited transition dipole, the matter-cavity coupling term gc
does not provide any coupling between polariton states and
the |A,0⟩ state. Thus, the polariton-mediated e%ective coupling
Vc

± only has a contribution from the electronic Hamiltonian
operator. Under the JC model consideration, the cavity-
mediated electronic couplings between |+,0⟩ and |A,0⟩ states is
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Figure 15. Polariton-mediated electron transfer. (a) Schematic
illustration of modifying the driving force of photoinduced electron
transfer reaction by coupling to the cavity. Polariton state |+,0⟩ lie
above the acceptor state |A,0⟩ (allowing downhill chemical reaction)
while the original donor state |D,0⟩ lies below |A,0⟩. (b) Polaritonic
potentials |G, 0⟩, |±,0⟩ that are color coded by light−matter coupling
strength gc. (c) Electron transfer rate constant as a function of light−
matter coupling strength gc computed from Marcus theory and from
direct quantum dynamics simulation using the PLDM ap-
proach.334,336 Adapted from ref 12. with permissions. Copyright
2020 American Chemical Society.
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and similarly, Vc
− = sin Θ·VDA. Thus, the e%ect of light−matter

coupling always reduces the e%ective electronic couplings
between the |±⟩ states to the acceptor state |A,0⟩. For the
resonant coupl ing condi t ion ED − EG = ℏω c ,

= =sin cos
1

2
, and thus =

±
V V / 2c DA , resulting in a

2-fold reduction of the rate due to the light−matter
hybridization. However, more significant modifications can
come from the exponential part of eq 169, which depends on
ΔGc

±.
When considering a wide range of light−matter coupling

strengths ℏgc, the PMET driving force ΔGc
± and thus the

PMET rate (eq 169) can be tuned significantly. Note that eq
169 is based on the JC model, which is simple and intuitive but
will eventually breakdown (see Figure 3) when gc/ωc ≥ 0.1.
Directly numerical calculations of ΔGc

± and Vc
± are necessary

when going beyond the JC approximation, which is detailed in
ref 12. Figure 15b demonstrates the upper and lower polariton
surfaces and their energetic shifts for several di%erent Rabi
splittings. Comparing these polariton surfaces to the acceptor
surface |A,0⟩ in solid black, the polariton surfaces are able to
access many di%erent charge transfer regimes (normal,
activation-less, and inverted), where the forward ET reaction
can be made more or less favorable depending on the initial
state (upper or lower polariton) and the magnitude of the Rabi
splitting.12 This can be seen in the e%ect of di%erent light−
matter coupling strengths gc on the PMET rate as predicted
from Marcus theory.12 The cavity-induced Rabi splitting raises
the energy of the upper polariton surface and lowers the energy
of the lower polariton surface (Figure 15a). Consequentially,
the ΔG from the upper polariton to the acceptor will decrease
while the ΔG from the lower polariton to the acceptor will
increase. In particular, if the acceptor state has higher energy
than the bare donor state, but lower energy than the upper
polariton state, an uphill reaction outside the cavity can be
modified as a downhill reaction inside the cavity, when exciting
to the upper polariton surface (and when the upper polariton
lifetime is long enough for the reaction, e.g., under a
continuous irradiation condition that constantly supplies |
UP⟩ population.379

Figure 15c presents the PMET rates from the upper
polariton |+⟩ to the acceptor |A,0⟩ as a function of ℏgc,
predicted from Marcus theory (solid line) and from a partial-
linearized density matrix (PLDM) dynamics simulation334

(dotted line). The PMET rate can be enhanced by a factor of
over 100 for this model when the system is resonantly coupled
to an optical cavity with a coupling strength of ℏgc = 600 meV.
Beyond this coupling strength, the rate begins to decrease due
to the |+⟩ state sitting in the Marcus inverted regime.
Alternatively, the lower polariton could be initially excited to
more readily sample other Marcus regimes resulting in a
PMET rate smaller than those outside the cavity.12

For systems with donor states that have nonzero
reorganization energy relative to the ground state, the donor
excited state |D⟩ and the ground state |G⟩ are modeled as
parabolas with di%erent minima positions, as illustrated in
Figure 28a. In the limit that the Rabi splitting is larger than the
donor-ground reorganization energy and the light−matter
detuning, the polariton states |±⟩ (generated by hybridizing
the |D,0⟩ and |G,1⟩ states) are nearly harmonic and have a
potential minimum that is in between the minima of the |D⟩
and |G⟩ surfaces, as illustrated in Figure 28a. This results in an
e%ective reduction of the reorganization between the polariton

states and the ground state. This e%ective reorganization
energy is reduced by a factor of 1/4 in the strong coupling
limit relative to the original donor-ground reorganization
energy outside the cavity due to the polariton superposition
only having half of the donor character.8 Note that the PMET
rate is exponentially sensitive to the e%ective reorganization
energy (eq 169). This mechanism of enhancing PMET due to
the e%ective reduction of the ET reorganization energy is
referred to as the polaron decoupling mechanism.8 Note that
this e%ect only changes the donor-ground reorganization
energy and does not a%ect the acceptor-ground reorganization
energy for acceptor states that do not couple to the cavity.

Although we have only considered a single molecule coupled
to the cavity, the proposed modification of PMET rate can also
be accomplished in the collective coupling regime (which
involves many molecules coupled to the cavity as described in
Section 6.3), involving both a modification of the e%ective
driving force ΔGc

379,380 as well as the polaron decoupling
mechanism.8

While having di%erent chemical mechanisms, singlet fission
reactions share much in common with charge transfer
reactions in terms of how they can be controlled using
light−matter coupling.381 Like charge transfer reactions, singlet
fission reactions are often modeled quantum mechanically with
singlet and triplet surfaces that are shifted parabolas with
certain driving forces and reorganization energies. These
fission reactions can thus be controlled through light−matter
coupling with the same e%ects previously described in this
section. In particular, theoretical investigations382−385 have
shown that cavities may increase or decrease triplet yield and
production rate depending on the singlet fission parameters as
well as cavity parameters such as the cavity frequency and
coupling strength. The similar cavity control of singlet fission
reactions and charge transfer reactions highlights the broad
applicability of cavity modifications to many di%erent types of
photochemical reactions.

4.5. Cavity-induced Conical Intersections and Berry Phase

Coupling molecules to an optical cavity can also create a new
type of conical intersection (CI), which is referred to as the
polariton-induced conical intersection (PICI).117,386 Conical
intersections in general arise when the separation between
adiabatic electronic surfaces goes to zero at a particular nuclear
configuration, causing a degeneracy (which appears as a cone
type of structure). The cavity photon mode and the molecule
are coupled through the λ·μ̂ term in eq 104, which
characterizes the light−matter coupling vector oriented in
the direction of the cavity polarization unit vector e.̂ We
denote the angle between the dipole vector μ̂ and e ̂ as θ (not
to be confused with the incident angle in the Fabry−Peŕot
cavity illustrated in Figure 4), and μ̂ = |μ̂|, hence the light−
matter coupling can be expressed as

· = cos (173)

For polaritonic systems, the PICI can form when the
orientation of a molecule’s ground-to-excited transition dipole
moment becomes orthogonal to the cavity polarization
vector117,386 such that θ = π/2, and the light−matter coupling
vanishes at this orientation. Thus, one can see that even for a
diatomic molecule where there are no intrinsic electronic CIs,
there will be a PICI due to the presence of the additional DOF,
i.e., the angle θ between the dipole and the field polarization
direction. This angle serves as the tuning coordinate in the CI.
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One can thus engineer a new CI that did not exist previously
by coupling molecules with a cavity. These CIs, either intrinsic
or cavity-induced, lead to a singularity in the nonadiabatic
coupling (see eq 23) and thus cause a breakdown of the Born−
Oppenheimer approximation in the vicinity of the CI. Unlike
those intrinsic molecular CIs, cavity-induced CIs depend on
the properties of the cavity and can thus be tuned to control
photochemical reactivity.

In order to understand how cavity-induced CIs could a%ect
photochemical reactivity, a characteristic of CIs called the
Berry phase387 (also known as the geometrical phase) should

be discussed. There is some experimental evidence for the
e%ect of the Berry phase inside certain bare optical
cavities,388,389 but there is a lack of experimental evidence of
the e%ects of the Berry phase (BP) on molecules inside optical
cavities. Thus, it is important to understand the Berry phase’s
predicted modification of nuclear density and population
dynamics to both aid in experimental design and to explain the
features of theoretical calculations of cavity-modified nuclear
densities. In ref 117, these polariton induced BP e%ects (when
coupling an LiF molecule with a cavity) are further
demonstrated through the photofragment angular distribution,

Figure 16. Cavity induced conical intersections. (a) (i) Diagram of a diatomic LiF molecule with bond length R inside a Fabry−Peŕot cavity. The
molecule has a transition dipole moment along the R axis which forms an angle θ with the cavity polarization vector ϵ.̂ The molecule is free to
rotate along this angular DOF which allows the magnitude of the light−matter coupling to change and thus creates a light-induced conical
intersection (LICI). (ii) Phase-space plot of various nuclear encirclement paths (a full 2π rotation in ϕ around a point) for the LiF molecule. For
paths that do not encircle the LICI (yellow, blue), no Berry phase is accumulated. For paths that do encircle the LICI (red), a nonzero Berry phase
is accumulated. (iii) Nuclear probability density before (left) and after (right) encircling the LICI for the J = 0 angular momentum state. Note that
a node is formed at θ = π/2 after encirclement. (iv) Same as (iii) but for the J = 1 angular momentum state. Note that the original node at θ = π/2
before encirclement has disappeared after encirclement. (b) (i) Potential energy surfaces of the upper and lower polariton for a LiF dissociation
reaction coupled to a cavity. Note the LICI where the separation between the two surfaces vanishes. (ii) Population dynamics of the dissociated
state when the molecule is prevented from rotating (hence “1D”). The di%erent lines correspond to either the no light−matter coupling case or to
strong coupling with di%erent initial Fock states n. (iii) Same as (ii) but the molecule is allowed to rotate (hence “2D”). The population dynamics
of the 2D case versus the 1D case become more di%erent as the initial Fock state becomes larger. (c) (i) Potential energy surfaces for a cavity-
coupled pyrazine molecule with two molecular excited surfaces that share an intrinsic CI. The coupling strength, in this case, is ℏgc = 120 meV. The
coupling to the cavity causes the original intrinsic CI to “split” into two polaritonic CIs (PICI). Two of the three excited surfaces have partial
photonic character and both of these states form PICIs with the third molecular excited state. (ii) Same as (i) but for coupling strength gc = 240
meV. The larger coupling has increased the Rabi splitting which causes the two partially photonic states to be further apart. Consequentially, the
PICIs are at di%erent locations and are further apart. This dependence of the CI position on the coupling strength is specific to PICIs while the
position of LICIs does not depend on the light−matter coupling strength. (iii) Nuclear probability density of pyrazine outside the cavity. Note the
lack of a node at coupling mode Qc = 0 and tuning mode Qt = −1. (iv) Same as (iii) but inside the cavity. The nuclear density is less spread out
relative to outside the cavity. Additionally, a node has appeared at Qc = 0 and Qt = −1, indicating that the position of the original (intrinsic) CI
outside the cavity has shifted to a new (polaritonic) CI position due to light−matter coupling inside the cavity. Panel (a) is adapted from ref 117
with permission from the PCCP Owner Societies. Panel (b) is adapted from ref 386 under the CC BY license. Panel (c) is adapted from ref 271
under the CC BY-NC license.
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which can be measured with a state-of-the-art experimental set
up of an intense laser coupling to molecules.390 For a diatomic
system with a stretching coordinate R and a rotation angle, θ,
relative to the cavity polarization vector (not be confused with
the incident angle of photon used in Figure 4), the coordinates
in the configuration space can be denoted as X ≡{R,θ}. Based
on the JC model (eq 4), the upper and lower polariton states
can be expressed as

|+ = | + |e gX X X, 0( ) cos ( ) , 0 sin ( ) , 1 (174)

| = | + |e gX X X, 0( ) sin ( ) , 0 cos ( ) , 1 (175)

with the mixing angle

=

| |g H e

E E
X

X X

( )
1

2
tan

2 , 1 , 0

( ) ( )g e

1 pl

1 0 (176)

where the coupling | |g H e, 1 , 0pl = | + |
†
a a1 ( ) 0

2

c ·

| · |g e , the energies are Eg1(X) = ⟨g,1|Ĥpl|g,1⟩ and Ee0(X)
= ⟨e,0|Ĥpl|e,0⟩, and Ĥpl is defined in eq 106. The Berry
phase387,391 is the change of sign of the electronic adiabatic
wave function when the nuclei follow a closed path around the
CI, which can be expressed as

= × | |

=

i dS

d

X X

X X
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S

a a

C

X

X (177)

where |Ψa⟩ is a single valued polariton adiabatic wave function,
and Θ(X) is the mixing angle (eq 176). The derivation of eq
177 can be found in ref 117. For a molecule inside a cavity, this
Berry phase was analyzed in the work shown in Figure 16a,
adapted from ref 117.

When a molecule can freely rotate inside a cavity, the angle θ
between the dipole of the molecule μ̂ and the cavity
polarization e ̂ will change and influence the strength of
light−matter coupling (see Figure 16a(i)). At a particular bond
distance R where the |e,0⟩ and |g,1⟩ surfaces intersect, a PICI is
formed when the ground-to-excited transition dipole moment
and cavity polarization vectors are orthogonal (θ = π/2). The
nuclear path that takes a particular encirclement around this
PICI in the {R,θ} configuration space (Figure 16a(ii), red
path) will gain a phase of π on its adiabatic wave function |Ψa⟩
after one full encirclement of the PICI based on eq 177. On
the other hand, taking any other closed path that is not
encircling the CI point will not add any additional phase to the
wave function (Figure 16a(ii), blue or yellow paths).

The e%ect of this Berry phase can be seen in the probability
density of nuclear wavepackets that pass through the PICI
point. Note that even though we have used the JC model to
intuitively explain the Berry phase e%ect of the PICI, the actual
quantum dynamics simulation117 was performed using a
numerically exact simulation to solve the full PF Hamiltonian
(see eq 148). Figure 16a presents the PICI generated from
coupling a LiF molecule with an optical cavity.117 For a nuclear
wavepacket that is initially uniformly distributed in θ (Figure
16a(iii)) which corresponds to a rotational state with a
quantum number J = 0, passing through the PICI from the left
will cause half of the density to encircle the CI clockwise and
the other half, counterclockwise. This causes the two halves to
gain phases with opposite signs, causing interference e%ects

when the wavepacket branches meet after the PICI point.
These interference e%ects can be seen in the patterns of the
probability density (Figure 16a(iii)) where, notably, a node at
θ = π/2 appears after encirclement due to destructive
interference from the Berry phase. Considering a di%erent
initial nuclear distribution with a rotational state J = 1 (Figure
16a(iv)) where the probability density has a much larger
amplitude at the parallel (θ = 0) and antiparallel (θ = π) angles
of the light−matter coupling, the probability density after
encirclement has a lack of a node at θ = π/2 due to
constructive interference of the Berry phase. These particular
interference features are not consistently present if the Berry
phase is removed from the dynamics or if the molecule is
prevented from rotating.117 The presence of the Berry phase is
thus an important feature of photochemical simulations
involving conical intersections, and can also be experimentally
observed when measuring the photofragment angular distri-
bution (PAD) in a recent work of the light-induced conical
intersection for a H2

+ molecule coupled to an intense laser
field.390 It is thus possible to experimentally test the e%ect of
PICI by measuring the PAD, which is computed in ref 117.

The impact of cavity-induced conical intersections on
photodissociation reactions inside optical cavities was also
investigated in the work shown in Figure 16b, adapted from ref
386. In a photodissociation reaction of a LiF molecule coupled
with the cavity, a PICI forms at the point when |e,0⟩ and |g,1⟩
surfaces cross and the angle θ between the transition dipole
moment and cavity vector polarization is π/2 (Figure 16b(i)).
To investigate the impact of the PICI (and the rotation
dynamics as a whole), the dissociated population as a function
of time was calculated both when including the rotational
dynamics (Figure 16b(iii), referred to as the 2D model) and
when fixing the angle with the cavity (Figure 16b(ii), referred
to as 1D model). Further, the number of initial photonic
excitations was varied to understand the e%ect of PICI. The
dissociated population dynamics between the 1D and 2D
scenarios were di%erent, and this di%erence became larger for a
larger number of initial photonic excitations in the cavity.386

This is because that for a larger photon number n (associated
with the photonic Fock state |n⟩), the nonadiabatic coupling
between the upper and lower polariton surfaces increases, thus
making the e%ect of the PICI more pronounced (which is to
quickly relax populations from the higher energy surface to the
lower energy surface).

In addition to creating new conical intersections, coupling
molecules that have an intrinsic electronic CI to cavities can
split the original CI into two CIs, each having a mixed
character of electronic excitation and photonic excitation, as
described in the work shown in Figure 16c, adapted from ref
271. As shown in Figure 16c(i), when a model pyrazine
molecule with an intrinsic CI between two molecular excited
states is coupled to a cavity, such that one of the molecular
excited states experiences light−matter coupling, two CI
appear among the 3 excited state surfaces with properties
di%erent from those of either an intrinsic CI or an isolated
PICI (Figure 16a). The locations of both CIs vary with the
light−matter coupling strength, and as the light−matter
coupling increases (from Figure 16c(i) to c(ii)), the distance
between these two CIs also increases. This is in contrast to the
individual PICI in Figure 16a whose location is independent of
light−matter coupling strength. This feature of polariton-
induced CIs allows for tunability of the CI position and thus a
more flexible control over photochemical reactions that involve
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polariton-induced CIs.271 The geometric phase e%ects caused
by these CIs can be seen in the nuclear probability density
distribution in Figure 16c(iii) and (iv). The nuclear density is
more spread out when outside the cavity (Figure 16c(iii)) than
when coupled to the photonic mode inside the cavity (Figure
16c(iv)). This is consistent with the fact that the cavity
coupling causes less energy to be stored in the vibrational
modes and more to be stored in the cavity photonic mode.271

Additionally, the presence of light−matter coupling has pushed
the polariton-induced CI closer toward the Franck−Condon
position which enhances the Berry phase-induced destructive
interference seen at the coupling nuclear coordinate Qc = 0
(not to be confused with the cavity qc) in Figure 16c(iv).
These e%ects ultimately influence the electronic-photonic
population dynamics, allowing for cavity control of these
molecular systems that contain intrinsic CIs.

As demonstrated by the theoretical works above, these
cavity-induced CIs can play a major role in the dynamics of
photochemical reactions. The features of enhanced non-
adiabatic coupling and Berry phase o%er new mechanisms for
an optical cavity to control photochemical reactivity. With that
said, more experimental work is needed to demonstrate clear
evidence of these cavity-induced CI features and to verify the
proposed theoretical mechanisms of how cavity-induced CIs
can control photochemical reactivity. All of the above examples
are considering a single molecule coupled to the cavity,
whereas the possible collective e%ect267 of using PICIs for
chemical reactivity will be discussed in Sec. 6.2.

4.6. Controlling Chemical Reactivity with Quantum
Photon States

Aside from tuning the cavity frequency or light−matter
coupling strength to control polariton photochemistry, one
can take advantage of various initially prepared quantum
mechanical states of the photon, such as Fock states, coherent

states, or squeezed coherent states. Preparing and controlling
these quantum mechanical states are mature techniques in the
quantum optics community. These di%erent initial states can
have a strong influence on the subsequent dynamics and on
how the system’s phase space is sampled.107,352

A single cavity photon mode can be described in a variety of
representations. The two most common representations are
the Fock basis, |n⟩, and the positional basis of the photon,53,181

|qc⟩ (see eq 43 for q̂c). While the Fock basis is most convenient
when considering initial conditions of single Fock states, the
positional basis is convenient when starting from two related
types of states: coherent and squeezed-coherent states.107,181

The construction of these related states takes advantage of
their property that they have the minimal position-momentum
uncertainty as allowed by the Heisenberg uncertainty principle.

A coherent state (CS) is defined as392,393

| = |D( ) 0 (178)

where D̂(α) = eαa ̂d
†
−αd*a ̂ = e−|α|d

2/2 eαa ̂d
†

e−αd*a ̂ is the displacement
operator (analogous to eq 120 where the second equality
comes from the Glauber formula) and |0⟩ is the vacuum state.
By operating the displacement operator on the vacuum state |
0⟩, the coherent state |α⟩ can be expressed as

| = | =
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The parameter α is a dimensionless complex number that
determines the displacement of the vacuum states expressed as
follows
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Figure 17. Photon mode initial state. (a) Phase space illustration of (i) a coherent state and (ii) a squeezed state with a squeezing parameter ξ = |ξ|
eiθ, where the shaded areas depict the phase space area within one standard deviation of the expectation values. (i) Schematic of the dynamics on
the polaritonic PES for a LiF molecule inside a cavity initialized with a quantum photon state. (ii) Dissociation as a function of time when the
system is initialized with a Fock state (red), an SCS with |α| = 2 (blue), and an SCS with |α| = 3 (green) compared to outside the cavity (gray). (c)
Time evolution (denoted by black arrow) of the photonic displacement for the polariton system of a LiF molecule in a cavity initialized with either
a coherent state or a squeezed state. (d) Shows the final excited state population with a system initialized with a squeezed state as a function of the
phase and, ϕ, and squeezing rotation, θ. (e) Shows the final excited state population with a system initialized with a squeezed state as a function of
both r and θ compared to the free space limit (black). Panel (b) is adapted with permission from ref 107. Copyright 2018 American Chemical
Society. Panels (c−e) are adapted with permission from ref 352. Copyright 2018 American Physical Society.
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and can be related to the expected value of photons in the
cavity through ⟨⟩ = |α|2. The magnitude of the displacement is
given by |α| and the phase ϕ determines the composition of the
displacement in momentum and position space.

Further, the CS in the position space representation is given
by
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c . In the phase space representation, this can

be intuitively visualized as in Figure 17a(i), where the

=X q2 /1 c c
and =X p2/2 c values within one

standard deviation of the expectation values are represented
by the shaded circle. This shows how coherent states equally
distribute the x-p uncertainty across x̂ and p̂.

The squeezed-coherent state (SCS) “squeezes” the x-p
uncertainty shared between x̂ and p̂ such that it still is the
minimum x − p uncertainly allowed by the Heisenberg
uncertainty principle. These states are defined as392,394

| = |D S, ( ) ( ) 0 (182)
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is the squeezing operator with a
squeezing parameter ξ = |ξ|eiθ being a complex number. In the
position representation, the SCS is expressed as
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where r = (cosh|ξ|+eiθ sinh|ξ|)−1/2, q
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and ⟨q̂c⟩α and ⟨p̂c⟩α are the same expectation values as the
corresponding coherent state with a displacement of α. While
this representation can be diOcult to parse at a first glance,
additional intuitive insight is gained by looking at the
distribution of SCS states in phase space as shown in Figure
17a(ii). As the SCS name implies, Ŝ(ξ) “squeezes” the
probability distribution of the state in phase space. Instead of
equal uncertainties in X1 and X2, now the distribution takes an
elliptical form and is squeezed exponentially by |ξ| in a given
direction. Additionally, the axes of this ellipse are rotated by
the angle θ (not to be confused with the incident angle in
Figure 4) such that the uncertainties are now squeezed in the
Y1 and Y2 directions. This creates a more general class of
minimal uncertainty states that redistribute the uncertainty
across di%erent pairs of observables (position and momentum,
photon number and phase, etc.).

Recent theoretical works107,352 have demonstrated how
starting from one of these minimal uncertainty quantum
photon states inside a cavity can influence polariton photo-
chemistry. In ref 107, the authors simulate the dynamical
evolution of a LiF molecule strongly coupled to a cavity (see
Figure 17b(i)). Specifically, the dissociation probability is
calculated as a function of time. In Figure 17b(ii) they showed
that by initializing the photonic state in a squeezed state (eq
183) and the molecule in the excited state |e⟩, thus having the
tensor product state |e⟩⊗|α,ξ⟩ for the hybrid system, the

dissociation pathway of the reaction can be suppressed relative
to using |e⟩⊗|n⟩, which is a Fock state, as the initial cavity
excitation.

ref 352., similarly discusses how initializing in a squeezed
state can a%ect polariton dynamics. In that work, a LiF
molecular is coupled to a cavity, described by the quantum
Rabi model Hamiltonian (eq 82). Figure 17c presents the
dynamical progression (illustrated by the black arrows) of the
polariton system in the position representation (with photonic
coordinate qc as the y-axis and nuclear coordinate R as the x-
axis) when the initial photonic condition is set to be either a
coherent state (left) or a squeezed state (right). The coherent
state exhibits the standard oscillator behavior that is a
“trademark” of these states. The squeezed coherent states, on
the other hand, evolve in a “breathing” manner, where the
expectation value of the photonic coordinate remains constant
but the uncertainty oscillates. Figure 17d presents how the
excited state final population changes as a function of the
quantum phase term in α, ϕ, and the phase term of ξ, θ, for
squeezed states of a constant r = |α| = 1. Further, Figure 17e
presents that if α is held as a constant, varying r and θ can also
dramatically change the excited state final population. These
theoretical investigations107,352 with squeezed coherent states
demonstrate how using these minimal uncertainty states
(quantum photonic states) can a%ect polariton dynamics. In
these examples, the reactivity of the LiF molecule changes due
to the photonic state introduced in the cavity, showing how for
a given cavity-molecule system the dynamics can be altered by
introducing di%erent photonic states. If can be realized
experimentally, this will be a prime example of using tuning
knobs in quantum optics to control chemistry.

4.7. Influence of Cavity Loss on Polariton Photochemistry

There can exist several sources of energetic relaxation in
polariton systems. In additional to the typical dissipative
sources in bare molecular systems such as vibrationally induced
dissipations, molecules coupled to optical cavities also
experience cavity loss. Many of the aforementioned works in
polariton photochemistry have assumed that the optical cavity
of study has a perfect internal reflectance with no loss of
electromagnetic energy to the outside world. In reality, the
photonic modes inside every optical cavity have some nonzero
coupling with the photonic modes outside the cavity, which
causes cavity loss to occur. This cavity loss reduces excitation
energy in the molecule-cavity system and can have significant
e%ects on the outcomes of polariton-mediated reactions. Thus,
it is important to highlight the e%ects that cavity loss can have
on simulations of polaritonic systems.

The starting point of a rigorous description of cavity loss is
to describe the loss as an interaction of the cavity modes with
an environment of external far-field photonic modes. The total
Hamiltonian of a system plus its environment can be written as

= + +H H H H
T S E S E I (184)

where ĤS is the system Hamiltonian,
S
is the identity in the

system Hilbert space
S
, ĤE is the environment Hamiltonian,

E
is the identity in the environment Hilbert space

E
, and ĤI

is the interaction Hamiltonian between the system and the
environment. For cavity QED systems, ĤS is the PF
Hamiltonian ĤPF (eq 104) while ĤE describes the far-field
photon modes as free bosons397,398
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where b̂k
† and b̂k are the raising and lowering operators,

respectively, for far-field mode k. The interactions between the
cavity mode and the far-field modes can be described by the
Gardiner-Collett interaction Hamiltonian397,399,400 as
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where the coupling strength between the cavity mode and the
kth environmental mode is gk, characterized by a spectral
density. This Hamiltonian can be rigorously derived from

QED first-principles and has been used to investigate polariton
quantum dynamics in a dissipative cavity.398,401−404

While there may exist some important non-Markovian
e%ects caused by the explicit cavity-bath description, most
often one is only concerned with the primary e%ect of cavity
loss on the molecule-cavity system which is incoherent decay
of excited population, which can be described using Markovian
dynamics. As such, most discussions of cavity loss in the
literature are based on the Lindblad master equation which is
the most general description of the Markovian dynamics of
open systems.405,406

The Lindblad master equation incorporates jump operators
to describe the dissipative dynamical e%ects of the implicit
bath. Most polariton literature up to this point that have

Figure 18. Cavity loss in polariton photochemistry. (a) (i) Polaritonic potential energy surfaces for an asymmetric isomerization model at the
Jaynes-Cummings level with an uncoupled ground state |g, 0⟩ (dark blue). The cavity frequency is ℏωc = 1.632684 eV with coupling strength ℏgc =
0.136 eV. Purple color indicates molecular excited character while light blue indicates photonic character for the upper (UP) and lower (LP)
polaritons. (ii) Population dynamics of the diabatic states (|g,0⟩ in dark blue, |g,1⟩ in magenta, |e,0⟩ in light blue) for a cavity without loss. The solid
lines are exact quantum dynamics while the dotted lines are computed using the stochastic mixed quantum-classical -MFE method. The |g,0⟩
state does not become populated since it does not couple to the polariton states and there is no loss channel. (iii) Same as (ii) but with a cavity loss
rate of κ = 1 meV. The |g,0⟩ state becomes populated due to the loss channel while both excited state populations (|e,0⟩ and |g,1⟩) loss population.
Note that the |g,0⟩ state gains population at a higher rate when the |g,1⟩ state is more populated due to the use of the phenomenological jump
operator L̂ = a.̂ (b) (i) Potential energy surfaces of the ground and polaritonic states. Representative examples of nuclear wavepackets at di%erent
times (0, 10, and 27 fs) are overlaid to demonstrate typical wavepacket behavior when cavity loss is present. Note that some of the nuclear density
dissociates at later times which is not shown. (ii) Light−matter coupling-induced loss rate as a function of bond distance R and plasmonic cavity
frequency ωpl. The loss rate is larger where the photonic |g,1⟩ state intersects the molecular |e,0⟩ state (white dashed line) and is maximized for the
lowest cavity frequency that lets the diabatic states intersect (white dotted line). (iii) Dissociation probability as a function of time and ωpl. The
dissociation probability is largest near the lowest cavity frequency that lets the diabatic states intersect (white dotted line). (c) (i) Potential energy
surfaces of the diabatic states of a MgH+ molecule coupled to a cavity. There are multiple electronic states present (ground state |X⟩ and excited
states |A⟩, |B⟩, and |C⟩) along with multiple Fock states ranging from n = 0 to n = 2 within the plotted range of energy. Cavity loss channels are
shown as downward arrows, indicating several di%erent possible paths for loss-induced population transfer to occur. (ii) The remaining population
(not dissociated) at the steady state for a range of mean cavity lifetimes and electric field strengths c (which is proportional to the light−matter
coupling strength gc). The remaining population shows significant variability and nonmonotonicity over a wide range of lifetimes and coupling
strengths. (d) (i) Diagram of a uracil molecule experiencing photodamage from UV irradiation outside a cavity (top) and being photoprotected by
coupling to a plasmonic cavity (bottom). The photoprotection of the uracil molecule is caused by the photorelaxation induced by cavity coupling.
(ii) The rate of relaxation from the excited state to the ground state inside the cavity relative to outside the cavity (speed-up factor η) for a range of
Rabi splittings Ωc and cavity loss rates γ. A higher speed-up factor allows for more photoprotection from UV photodamage. Panel (a) is adapted
from ref 395 with permission. Copyright 2022 American Institute of Physics. Panel (b) is adapted from ref 355 with permission. Copyright 2021
American Institute of Physics. Panel (c) is adapted from ref 353 with permission. Copyright 2020 American Institute of Physics. Panel (d) is
adapted from ref 396 under the CC-BY-NC-ND license.
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described cavity loss with the Lindblad formalism have used
the phenomenological jump operator355

=L a
S (187)

to describe cavity loss. This jump operator is an approximation
of the rigorously derived jump operators that describe jumps
between the energy eigenstates of the system and include
thermal e%ects. Regardless, the dynamics of the rigorously
derived jump operators are typically well approximated by
those of the phenomenological one for polariton sys-
tems.402,403

Using one of the single photon mode cavity QED
Hamiltonians in Sec. Two as the system Hamiltonian ĤS and
the jump operator L̂S in eq 187 to describe cavity loss, the
Lindblad master equation for single mode polariton systems
with cavity loss is as follows

= [ ] + { }
† †i

k

jjj
y

{

zzz
d

dt

i
H a a a a,

1

2
,

S
S S S S (188)

where the anticommutator term { }
†
a a ,

1

2 S
causes popula-

tion decay as well as decoherence among states, whereas the
aρ̂̂Sa ̂

† term (refilling term) makes the population reappear in
the new state that the decay leads to (in this case, the state
with one fewer photons). In order to make connections to
other methods of propagating loss, the Lindblad master
equation can be written in an equivalent form as

= +
† †

d

dt

i
H H a a( )S

eff S S eff S (189)

where the e%ective Hamiltonian is

=
†

H H i a a
2

eff S (190)

The expression in eq 189 has been used in the development
of the stochastic Schrödinger equation407−409 which converges
to Lindblad dynamics in the limit of large trajectory number.
Alternatively, some recent works in cavity QED (refs 184, 312,
396, and 410−413) have made the approximation to
completely ignore the refiling term Γaρ̂̂Sa ̂

† and approximate
the Lindblad dynamics as the time-dependent Schrödinger
equation (TDSE) with the complex Hamiltonian Ĥeff. In
situations where the refilling term is negligible, this
approximation scheme matches the dynamics of the Lindblad
master equation. However, when the refiling term is significant,
the Lindblad dynamics must be included in full, either by
propagating the density matrix or by using a stochastic wave
function method.395,407−409

The consequences of this cavity loss have been demon-
strated in a number of works on polariton photochemis-
try.70,257,312,353,355,380,395,396 The most pronounced e%ect of
cavity loss, the reduction of excited state population with
photonic character, is demonstrated in Figure 18a, adapted
from ref 395. Shown in Figure 18a(i), a model isomerization
reaction in a perfect cavity (Figure 18a(ii)) undergoes its
excited state dynamics while maintaining a total excited state
population of 1.0. In contrast, when there is a nonzero cavity
loss rate (Figure 18a(iii)), both the upper and lower polariton
states lose population to the ground state. This loss of excited
state population generally reduces the ability of a system to
undergo reactions on excited surfaces. Consequentially, a
significant cavity loss rate often, but not always, reduces the

ability to enhance excited state reaction rates through light−
matter coupling.

Cavity loss may also enhance the rate of photochemical
reactions as demonstrated in Figure 18b(i), adapted from ref
355. In this H2 dissociation model, the molecular excited state
has a broad potential well that resists photodissociation while
the molecular ground state has a potential well that resists
dissociation near the equilibrium bond distance but allows
dissociation at farther nuclear configurations (Figure 18b(i)).
With the presence of light−matter coupling and cavity loss, a
nuclear wavepacket starting on the molecular excited surface
can transfer to the |g, 1⟩ state and experience cavity loss to the
ground state while maintaining the momentum in the direction
of dissociation it gained while on the molecular excited surface.
Afterward, part of this wavepacket can dissociate on the
molecular ground state potential. As shown in Figure 18b(ii),
the loss rate of the excited state due to coupling with the lossy
photonic state is most pronounced where the two surfaces
intersect and is maximal for the cavity frequency shown in
Figure 18b(i) which corresponds to the dashed white line in
Figure 18b(ii). This large loss rate along with the wavepacket
dynamics mentioned previously showcases significant photo-
dissociation probability (Figure 18b(iii)) when the cavity
frequency is near the resonance point shown in Figure 18b(i),
and is much smaller for other cavity detunings. This
demonstrates the ability of cavity loss to take advantage of
the curvatures of both the molecular ground and excited states
to encourage a reaction that was resisted outside the cavity.

However, when multiple excitation manifolds are accessible,
the e%ects of cavity loss become more complicated, as
demonstrated by the work shown in Figure 18c (adapted
from ref 353). The potential energy surfaces considered
(Figure 18c(i)) in this model of MgH+ coupled to a cavity
span states with di%erent numbers of excitations, including
doubly excited states composed of a molecular excitation and a
photonic excitation (states |1, A⟩ and |1, B⟩) or two photonic
excitations (state |2, X⟩). These doubly excited states can
undergo cavity loss (indicated by downward arrows) and
incoherently transfer population to the singly excited manifold.
The combination of these loss channels along with the multiple
cavity-induced avoided crossings leads to nonmonotonic
e%ects when the cavity loss rate or light−matter coupling
strength are varied. The remaining nondissociated population
after photoexcitation (Figure 18c(ii)) was found to be smaller
with a cavity lifetime of 10 fs than with a cavity lifetime of 1 or
1000 fs. The remaining population did generally increase with
larger electric field strength, but this was not always the case
since there are multiple local maxima and minima in the
remaining population for longer lifetimes above 1000 fs. These
nuanced, nonmonotonic features highlight the importance of
using detailed theoretical calculations to predict the optimal
cavity parameters for controlling photochemical reactions.

Additionally, cavity loss may protect molecules from
photodamage by altering the time the photoexcitation spends
in a nuclear configuration prone to damage. In the work shown
in Figure 18d, adapted from ref 396, a photorelaxation model is
considered where a molecule is susceptible to photodamage
when in a nuclear regime where intersystem crossing may
occur (Figure 18d(i)). Outside the cavity, the photoexcitation
has some probability to transfer to a conical intersection
regime which allows relaxation and prevents photodamage.
When this reaction is coupled to a lossy cavity, a speed-up of
this relaxation occurs (Figure 18d(ii)) which enhances
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photoprotection. This speed-up is maximized at a particular
Rabi splitting and a particular cavity loss rate. This result
stands in contrast to the typical idea that a reaction rate change
would be maximized or minimized at either very large or very
small cavity loss rates.

The preceding discussion on the e%ects of cavity loss on
photochemical reaction demonstrates that while cavity loss
may sometimes be a hindrance to enhancing reactivity on
polaritonic surfaces, it may also serve to improve the desired
reactivity and even act as another tunable knob to control
photochemical reactivity light−matter coupling.

5. VIBRATIONAL STRONG COUPLING AND GROUND
STATE CHEMICAL KINETICS IN INFRARED
CAVITIES

Recent experiments4,17,18,41,131,137 have demonstrated that
coupling molecular vibrations to quantized radiation modes
inside an optical cavity can lead to enhancement18,137 or
suppression4,17,41,131 of the rate constant for a reaction in the
electronic ground state. Further, it has been shown that this
vibrational strong coupling (VSC) regime can be leveraged to
selectively break chemical bonds,4 thus e%ectively realizing
mode-selective chemistry.414,415 Interestingly, such modifica-
tions of chemical reactions operate “in the dark”,414 requiring
no external source of photons (laser excitation), unlike the
polariton photochemistry experiments summarized in Figure
12. This new strategy in the VSC regime, if feasible, will allow
one to bypass some intrinsic diOculties (such as intramolecular
vibrational energy transfer) encountered in mode-selective
chemistry that uses IR excitations to tune chemical
reactivities,416−419 o%ering a paradigm-shift of synthetic
chemistry through cavity-enabled bond-selective chemical
transformations.4,41,414,420 On the other hand, recent exper-
imental works have also reported possible discrepancies with
negligible cavity modification to ground-state chemical
kinetics.19,20

Currently, there does not exist a satisfactory theory to explain
these observed modif ied reactivities, despite recent pro-
gress.85,116,272,421−430 In the following section, we will provide
a comprehensive overview of the existing experimental and
theoretical works that have attempted to solve the mysteries of
vibrational polariton chemistry.

When molecular vibrational excitations are coupled to the
optical cavity, one generates the vibrational polaritons, as
illustrated in Figure 19a, where a vibrationally excited state
with 0 photons in the cavity |v1,0⟩ (black energy levels)
hybridizes with the ground vibrational state with 1 photon in
the cavity |v0,1⟩ (red energy levels) that is in resonance to |v1,
0⟩. The resulting hybridized states |±⟩ (green and blue energy
levels) that are energetically separated by the Rabi-splitting ΩR

(with details of the Rabi splitting provided in Section 5.1, eq
195). The Rabi-splitting is spectroscopically visible if it is larger
than the rates of other competing dissipative processes
(typically estimated from the spectral line-widths), such as
solvent dissipation or cavity loss, and consequently, the light−
matter coupling is said to be in the vibrational strong coupling
regime. Note that this is only a schematic based on the JC type
of model, where we only considered a single vibrational DOF
coupled to a single cavity mode. In actual experiments, an
estimated N = 106 ∼ 1010 molecules are collectively coupled to
the Fabry−Peŕot cavity for each cavity mode.45,46,128

The interaction between many molecules and cavity
radiation can be described using the Tavis-Cummings (TC)
model (see Section 1.2) in the long-wavelength limit, which
ignores the counter rotating terms (CRT) as well as the dipole
self-energy (DSE) term. Meanwhile, the generalized TC
(GTC) model can be used to capture the spatial variations
of the cavity radiation. Note that the TC/GTC models break
down in the ultrastrong coupling regime, as DSE and CRT
become important.132 Assuming that the vibrations are perfect
harmonic oscillators, the collective vibrational ultrastrong
coupling regime can be described using the Hopfield

Figure 19. Forming vibrational polaritons and experimental observation of cavity modified of ground state chemical kinetics. (a) Schematic
diagram of the formation of vibrational polaritons |±⟩ by hybridizing vibrational excited state |v1,0⟩ and cavity excited state |v0,1⟩. (b) Suppression
of chemical kinetics: Chemical rate constant as a function of cavity photon frequency inside (red squares) and outside cavity (blue squares) and IR
spectra of the molecule outside cavity (black solid line), the splitting should not be confused with the light−matter Rabi-Splitting. (c) Enhancement
of chemical kinetics: Chemical rate constant as a function of cavity photon frequency inside (filled blue circles) and outside cavity (filled red
circles). (d) Experimental demonstration of mode-selectivity inside the cavity for chemical reaction with two possible products (see top panel)
labeled as 1 and 2. Pink and violet squares represent the relative yield of products 1 and 2 respectively. Panel (b) is reproduced with permission
from ref 17. Copyright 2016 Wiley-VCH. Panel (c) is reproduced with permission from ref 18. Copyright 2016 Wiley-VCH. Panel (d) is
reproduced with permission from ref 4. Copyright 2019 American Association for the Advancement of Science.
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model150 which can be analytically solved to obtain the
spectra.132

The vibrational strong coupling (VSC) regime has been
achieved and the Rabi-splitting has been experimentally
observed.17,41,42,131,132,431 As expected from the Tavis-Cum-
mings (TC) model (see Section 1.2), the Rabi-splitting linearly
increases with N . This collective e%ect has been verified
experimentally Figure 20a,b, where the Rabi splitting measured

from the transmission spectra linearly depends on the N/

(see eq 17), which means linearly depends on the square root

of concentration .
Figure 19b, adapted from ref 17, shows the IR spectrum

(black solid line) outside the cavity (the splitting is an intrinsic
molecular splitting and should not be confused with the Rabi-
splitting due to the light−matter interaction). When the
reaction indicated in panel (b) occurs inside an optical cavity,
it was found17 that the ground state rate constant of the
reaction (red squares and dashed line) is suppressed by 4−5
times, compared to the rate constant of the same reaction
outside the cavity (blue squares). This suppression of the rate
constant will only happen under the “resonant condition”
when the cavity frequency is close (in resonance) with a
molecular vibrational frequency.4,17,131 Specifically, in Figure
19b, the resonant vibrational frequency refers to the Si−C
vibrational stretching frequency.17 Further, Figure 19b
demonstrates the key features of this type of VSC experiment,
with the width and shape of the transmission spectra (black
solid line) being similar to the cavity-modified rate constant
(red dashed line). Similar studies that have observed cavity
suppression include ref 432 that studied Prins cyclization and
ref 420 that very recently studied the urethane addition
reaction.

Note that the experimental condition for the “resonant
condition” is specifically referred to the case at the incident
angle θ = 0, where the cavity frequency matches a particular

vibrational frequency.4,17,433 This is indicated by the
schematics in Figure 4b. The setup illustrated in Figure 4c,
on the other hand, has a finite detuning between light and
matter at θ = 0. Even though it also has a resonant condition
(zero detuning) at some finite θ, there is no VSC modification
of the rate constant observed experimentally for this case.4

Meanwhile, other experiments show a resonant enhance-
ment of ground state chemical kinetics.18,137 For example, as
shown in Figure 19c adapted from ref 18., the reaction rate
constant is enhanced and peaks at a maximum when the
photon frequency is close to a solvent vibrational frequency
(which is the C�O stretching frequency of the EtOAc
solvent). On the other hand, a recent work20 has observed
much smaller (≈1.5 times enhancement) rate enhancement for
the same reaction under VSC, conflicting the results in ref 18.
Interestingly, their results show that modification of the
chemical reaction occurs for nonzero detunings.20

More interestingly, when there are two competing reaction
pathways outside the cavity, it has been demonstrated that
coupling them to the cavity can achieve mode-selective
chemical reactivity.4 That is, the coupling of molecular
vibrations to the cavity can selectively favor one chemical
reaction over another, completely reverting the original
selectivities compared to the situation outside the cavity.
This mode selectivity is shown in Figure 19d, adapted from ref
4, where the yield of product 2 exceeds that of product 1 inside
an optical cavity when tuning the cavity frequency to be
resonant with a variety of bond frequencies. This is in contrast
to the situation outside the cavity (or in the o%-resonant
scenario with a very large cavity frequency ωc ≈ 5000 cm−1),
where product 1 is formed more than product 2. In a similar
experiment, the site-selective reaction of the aldehyde over the
ketone in 4-acetylbenzaldehyde is achieved by automated
cavity tuning to maintain optimal VSC of the ketone carbonyl
stretch during the reaction.434

Figure 20. Modification of thermodynamic parameters under vibrational strong coupling. (a) Transmission spectra under vibrational strong
coupling (VSC) showing Rabi-splitting ΩR at various solute concentrations. (b) Linear increase in ΩR as a function of the square root of the
concentration. Chemical rate inside (under VSC) and outside (non-Cavity) cavity as a function of (c) temperature and (g) Rabi-splitting.
Modification of thermodynamics parameters, (d) change in enthalpy ΔH‡, (f) entropy ΔS‡ and (e) modification to free-energy barrier ΔG‡ under
VSC as a function of Rabi-splitting ΩR compared to the noncavity scenario. This figure is reproduced from ref 41 under the CC BY license.
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Experimental works have attempted to provide physical
insights by computing the modification of thermodynamic
parameters.41,137 Ref 41 investigates the desilylation of 1-
phenyl-2-trimethylsilylacetylene (PTA), the same reaction
studied in ref 131, which is shown in Figure 19, and extracts
thermodynamic parameters assuming that the chemical rate is
given by the transition state expression (Eyring theory)

=
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k T
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Based on the simple Eyring theory in eq 191, it gives
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The e%ective cavity modification of reaction Entropy ΔS‡

and reaction Enthalpy ΔH‡ are extracted from the chemical
rate constant k, measured experimentally. Figure 20c presents
ln(k/T) as a function of 1/T under VSC and compares it to
the noncavity scenario. The modification of the slope of ln(k/
T) indicates that ΔH‡ is being modified (see eq 192) under
VSC, and the changing of the y-intercept indicates that the
reaction Entropy ΔS‡ is also modified (see eq 192) by VSC.

The modification of ΔH‡ and ΔS‡ under VSC as a function
of Rabi-splitting ΩR (due to the change of the concentration

= N/ in the experiment) is shown in Figure 20d and f,
respectively. This analysis indicates that the free-energy barrier
ΔG‡ = (ΔH‡ − TΔS‡) is being modified under VSC inside the
cavity, which is shown in Figure 20e that presents Δ(ΔG‡) =
ΔGc

‡ − ΔG0
‡ as a function of ΩR with corresponding chemical

rate constant shown in Figure 20g. Interestingly, the chemical
rate modification in Figure 20g shows a nonlinear relationship
between Rabi-splitting ΩR and rate constant k. Therefore,
while Rabi-splitting is directly increases with N , the
modification of the chemical rate assumes a more complicated
relationship. The full theoretical understanding and the
physical origin of how cavity modifies ΔS‡, ΔH‡, and ΔG‡

remains unclear and is a subject of ongoing theoretical
research. Note that if one hypothesizes that an unknown
mechanism forces the upper or lower vibrational polariton
states to be a gateway of VSC polaritonic chemical reaction,435

then the activation energy change should shift linearly428 with
ΩR. The experimental results in Figure 20e, on the other hand,
demonstrate a nonlinearity of reaction barrier.41 Figures 19
and 20 summarize the basic features of the observed VSC
modifications on chemical rate constants. Recent experiments
also suggest that the symmetry of the vibrational normal mode
coupled to the cavity mode also plays a role in modifying
chemical reactivity436 and leads to the modification of
stereoselectivity.133 Although it is not clear if the symmetry
plays a key role in all VSC reactivities or just these specific
ones.133,436

Recent theoretical investigations primarily aim to explain the
following key features of the VSC-modified (adiabatic)
ground-state chemical reaction. (i) cavity frequency depend-
ence of the VSC-modified chemical rate: It is suggested that
when the photon frequency is close (so-called resonant photon
frequency) to some characteristic molecular vibrational
frequency the chemical reaction kinetics is strongly modified.
Meanwhile, when the photon frequency is far from these
molecular vibrational frequencies (so-called of f-resonant
photon frequency) the chemical kinetics reduces to that of
the cavity-free case. (ii) The collective regime of the VSC-

modified reactivities: experimental studies that demonstrate
cavity-modified ground-state chemical reactivity by coupling an
ensemble of molecules to cavity photon modes. The Rabi-
splitting that is formed due to collective light−matter coupling
between molecular vibrations and cavity quantized radiation
mode scales with N , where N is the number of vibrational
degrees of freedoms. It is suggested that the cavity
modification of a chemical reaction also scales with N . It is
worth mentioning that for thermally activated nonadiabatic
reactions both collective and resonant modification of chemical
kinetics has been theoretically observed.45,86,106

In the following, we review several recent theoretical and
computational works that have attempted to provide insights
into cavity-modified ground-state chemical kinetics. In Section
5.1, we introduce the model Hamiltonian for the simplest
scenario, a single molecule coupled to a single cavity photon
mode. Section 5.2 shows why one-dimensional transition state
theory (TST) predicts negative results of the VSC reactivities.
In Sections 5.3 and 5.4, we review the Grote−Hynes rate
theory437,438 that predicts a cavity frequency dependence for
chemical reactivity,14,85 albeit with a much broader frequency
dependency of the rate constant modification compared to
experiments. Further, the GH theory predicts a maximum
cavity modification of the rate constant occurring at photon
frequencies close to the reaction barrier frequency, instead of
some vibrational frequencies of the molecule which are actually
observed in the experiments. This should be viewed as the
major limitation of the GH theory when it is applied to the
VSC regime. Then, in Section 5.5 we review recent works that
demonstrate how cavities can resonantly enhance ground state
chemical reactivity421,423 if the solvent−solute interactions are
weak (such that the reaction is under the Kramers under-
damped regime) and review the Pollak-Grabert-Ha ̈nggi
classical rate theory that explains this phenomena. In light of
the limited success that theoretical studies based on classical
mechanics have had, we review works that investigate the
importance of quantum e%ects in VSC modified chemis-
try.272,429 While (approximate) quantum corrections to the
classical rate theories do not bring the theoretical prediction
closer, exact quantum dynamical simulations performed at the
single molecule level272 show cavity modifications (both sharp
suppression and enhancement) of chemical reactivity similar to
the experiments. In Section 5.6, we review theories that show
how IR-frequency cavities can modify ground-state non-
adiabatic electron transfer reactions by directly coupling to
the charge transfer transition dipole. In spite of the fact that all
experimentally documented VSC-modified reaction rate
constants fall under the regime of collective coupling, in this
section, we will only review theoretical works that operate in
the single-molecule limit. The progress of the collective
coupling regime for VSC-modified reaction rate (which
remains unresolved) will be discussed in Section 6.4.

We also recommend the readers for the following resources
for further reading: Refs 1, 2, 433, and 22 reviewed recent
experimental results of the VSC-modified reactivities. Refs 128
and 120 provide an overview of recent progress on the
theoretical and computational developments in VSC-modified
reaction rate constants.

5.1. Model Hamiltonian of Vibrational Strong Coupling

Recent theoretical works have focused on investigating a single
molecule coupled to a cavity mode and try to obtain some
insights into the VSC-modified reactivities (refs 85, 119, 193,
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269, 272, 421, 423, 427, 429, and 430). For simplicity, we
assume that the direction of the dipole is always aligned with
the cavity field polarization direction, such that μ̂ · e ̂ = μ̂. The
universal light−matter Hamiltonian for this ground state

reaction problem is given by
PF

(eq 70) and using the
projection operator that only includes the electronic ground

state as = | |R R( ) ( )
g g

, the projected light−matter

Hamiltonian becomes
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where the first two terms describe a molecular system in terms
of a reaction coordinate R, with a corresponding kinetic energy
operator T̂R, and Eg (R) = ⟨ψg|Ĥel|ψg⟩ is the ground state
potential energy surface for the reaction coordinate R, with and
a molecular ground state permanent dipole μgg (R) = ⟨ψg|μ̂|ψg⟩,
see Section 2.1. Further, Eg(R) takes the form of a harmonic
p o t e n t i a l n e a r t h e r e a c t a n t w e l l R 0 , w h e r e

E R R R( ) ( )g
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2 0
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0
2 and ω0 is the reactant well frequency.

Similarly, near the transition state configuration (R = R‡),
Eg(R) takes the form of a inverted harmonic potential,

+‡ ‡
‡E R R R E( ) ( )g

1

2

2 2 , where ω‡ is the barrier

frequency and ΔE‡ = Eg(R
‡) − Eg(R0) is the potential energy

barrier. Most of the works reviewed here consider Eg(R) to be
a simple double-well potential116,421 or obtain it from a Shin-
Metiu model.14,85,178

The Ĥsb term in eq 193 describes the system-bath coupling
given by the Caldeira-Leggett model439
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which is the coupling between the reaction coordinate R and
the dissipative bath with positions {x̂k} (such as solvent and
other environmental DOFs). This system-bath coupling is
characterized by the coupling constant ck and frequency ωk,

described by a spectral density =J( ) ( )
k

c

k2

k

k

2

. It

should be noted that the Caldeira-Leggett system-bath model
is only a crude model of the reaction coordinate coupling to its
vibrational environment. A realistic description of molecular
systems from ab initio simulations is a more desirable
approach.427 The second line of eq 193 describes how a
cavity photon mode q̂c couples to matter through the matter
dipole μ̂ which for the majority of this section is considered as
the ground state permanent dipole that parametrically depends
on R. Further, p̂c and q̂c are the cavity photon mode
momentum and position operators, respectively, with a photon
frequency ωc and light−matter coupling strength A0.

In this model described by eq 193, the coupling between q̂c
and R creates a hybridization between the molecular
vibrational states and photonic states, forming vibrational
polariton states separated with a Rabi-splitting (Figure 19a). A
simple expression for the Rabi-splitting can be obtained by

considering the light−matter interaction term in
PF

(eq 193)
at the equilibrium position of the reactant, R0. At R0, we may
approximate the permanent dipole as linear function of R, μgg

(R) ≈ μ0 + μ0
’ Ŕ, where μ(0) ≡ μ(R0) is the permanent dipole

at the reactant well and
=

R
R R

0
0

is the slope of dipole at

the reactant well. While this linear-approximation is widely
used in theoretical works investigating VSC mediated
chemistry,14,85,421,430,440 new physical phenomena might
emerge when moving beyond this approximation.190 On the
other hand, direct molecular dynamics simulations of VSC
mediated chemistry423 reveal the same physics as in other
theoretical works employing the linear approximations.421,430

Further, previous works in model systems, where such linear
approximations are tested, also show that this approximation is
reasonable.14,85

The light−matter coupling term is then expressed as

· | |·R qA ( )
g g g2 0 c

c
3

, which hybridizes the photon-dressed

vibronic-Fock states |ν0,1⟩ ⊗|ψg⟩ (photonic excitation) and
|ν1,0⟩ ⊗|ψg⟩ (vibrational excitation) causing a Rabi-splitting of
ℏΩR (under the resonant condition ωc = ω0) of the form85,431

= · ·

M
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R
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where M is the reduced mass of the reaction coordinate R (the
vibrational DOF that couple to the cavity), and the unitless

coupling strength =

A

M2

0 0

0

characterizes the light−matter

coupling strength. Note that to arrive at eq 195 we have used

the fact that | + |R
0 0 0 1

= | + |
†
b b

M0 2
0 1

0

=

M0 2
0

, where b̂† and b̂ are the creation and annihilation

operators for the nuclear vibration associated with the
coordinate R. Note that eq 195 is only valid for the single-
molecule case, but the result can be generalized for N identical
molecules {Ri} coupling to q̂c. This is discussed in eq 220 of
Section 6.4.

Looking at eq 193, the similarity between the vibration-
phonon coupling (the second term) and the vibration-photon
coupling (the third term) is apparent; for a linear permanent
dipole μgg(R) = μ0 · R, both second and third terms take the
form of a typical Caldeira-Leggett system-bath Hamiltonian.439

Therefore, as much of the theories demonstrate, cavity modes
act as additional solvent degrees of freedom providing
fluctuations and dissipation to the reaction coordinate,
resulting in the dynamical caging e%ect,14,85 or redistributing
vibrational energy,116,119,427 hence leading to modifications of
the reaction rate constant.

5.2. Simple Transition State Theory for VSC and its
Limitation

Transition state theory can be employed by extracting the free
energy barrier along the reaction coordinate, from the potential
of mean force (PMF), F(R) that is defined as372

e dPdp dp dq dx eF R

k k
( )

c c
PF

(196)

using the classical limit of the Hamiltonian
PF

(eq 193). Note
that all phase space variables are integrated except the reaction
coordinate R. The barrier along the PMF, ΔF‡ = F(R‡) −
F(R0), is computed from its value at the reactant well, R0, and
the barrier, R‡. The chemical rate using ΔF‡ within transition
state theory is then written as,372,438
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0 (197)

This TST expression e%ectively includes Entropic contribu-
tion from the other DOFs that are not R and should be more
accurate than eq 198. Due to the quadratic form of the light−
matter coupled Hamiltonian (eq 193), the free energy barrier
(or equivalently the ΔF‡) is independent of cavity frequency,
ωc, or light−matter coupling strength, A0.

428 In ref 428, the
PMF for a molecular reaction coordinate was computed for a
cavity photon mode coupled to N noninteracting molecules. It
was found that the free energy barrier extracted from the
potential of mean force is not modified when coupling to the
cavity and therefore no change in chemical rate due to cavity
coupling is predicted.428 Thus, ref 428 concludes the VSC-
modified reactivities can not be explained by TST.

Due to the harmonic system-bath interactions and the

quadratic light−matter interactions in the Hamiltonian
PF

in
eq 193, the TST expression in eq 197 can be equivalently
expressed as follows438

=
‡ ‡

k
k T

h Z
e e
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E E

TST

B

0

0

(198)

where the ω0 is the reactant well frequency along the reaction
coordinate, and the rate depends on the potential barrier
height ΔE‡ = Eg(R

‡) − Eg(R0) along the reaction coordinate.
Further, in eq 198, the approximate expression is obtained in
the classical limit for the partition function Z0, and it is
assumed that solvent friction is nearly zero while thermal
equilibrium in the reactant well persists at all times.438 The
entropic contribution of the environment to the free energy
barrier is set to zero as a result of this crude approximation.438

Therefore, for this simple one-dimensional transition state
theory, cavity modification to chemical reactivity can occur
only due to the modification of the barrier height ΔE‡.

When considering the cavity-molecule hybrid system, it is
reasonable to examine the two-dimensional potential, so-called
the cavity Born−Oppenheimer surface181

= + + ·V R q E R q A R( , ) ( )
1

2
( 2/ ( ))g ggc c

2

c c 0
2

(199)

which is T H
RPF sb

(see eq 193 for
PF
). The energy

barrier along the minimum energy path for the two-
dimensional potential in eq 199 is unchanged in comparison
to the original barrier ΔE‡ of the bare molecule (barrier along
R in Eg(R)). When the dipole self-energy (DSE, which is

·A R( )
gg0

2 2c in eq 199) is explicitly considered, E‡ remains

invariant to changes of the light−matter coupling strength or
the photon frequency. This is because the light−matter
interaction Hamiltonian (eq 193 and eq 199) has a complete
square of (qc − qc

0)2, and the stationary point along the

photonic coordinate qc is always = ·q R A R( ) ( )
ggc

0 2
0

c

for

all possible R (see ref 85 for details). As a result, ΔE‡ is not
changed for V(R, qc), regardless of the magnitude of A0. Thus,
kTST is also independent of ωc or A0 for the Hamiltonian in eq
193. Note that it is crucial to include the dipole self-energy

term A R( ( ))
gg0

2c for describing light−matter interactions

inside a Fabry−Peŕot cavity, without this term the barrier
height and consequently the kTST will be modified inside an

optical cavity,440,441 which should be viewed as an artifact,193 at
least for the FP type of cavity. On the other hand, the shape of
the dipole can also play a role in determining the dynamics of
the molecule in the absence of the dipole self-energy (DSE)
term.190 However, these modifications will explicitly vanish
when considering the DSE.193

We note that it has been argued for plasmonic cavities, the
light−matter interaction Hamiltonian does not contain the
DSE term.442 In ref 442, the authors state that the light−
matter interaction in a plasmonic cavity setup originates from
the Coulomb interaction between the molecule and the
plasmonic nanoparticle, described by the pure longitudinal
electromagnetic contribution (see eq 36). This implies that
such a light−matter interaction term is not impacted by the
PZW transformation and does not have an accompanying DSE
term. In relation to this, ref 442 also pointed out an ambiguity
in computing the DSE, where one arrives at two di%erent
expressions for the DSE depending on whether the PZW
transformation is performed after or before the mode
truncation. Ref 75 resolved this ambiguity of truncating cavity
modes in the long-wavelength limit (similar results are found
beyond the long-wavelength limit in refs 97 and 443) and
showed that it is appropriate to include the DSE term when
considering a few energetically relevant cavity photon modes.
At the same time, refs 82 and 157 argue that the response of
the plasmonic nanoparticle due to its coupling to a molecular
system will provide a DSE term (or a DSE-like quadratic term)
that is necessary to describe a stable and physical system.
Overall, the existence of the dipole self-energy (DSE) in the
plasmonic light−matter coupling Hamiltonian remains an
ongoing debate.75,82,442 On the other hand, the ground state
potential of the coupled molecule-cavity hybrid system has
been shown to be modified, even in the presence of DSE, when
including electronic excited states123,125 but for high photon
frequencies (in the UV regime) and is extensively discussed in
Section 3.3.3. Thus, such theoretical treatments show neither
resonance e%ect nor collective e%ect. In the next few sections,
we will discuss theoretical works that have attempted to
address these e%ects.

5.3. Dynamical Recrossing and Transmission CoeAcients

The explicit dynamical interaction of the cavity DOF and the
reaction coordinate should be taken into account explicitly,
rather than integrating out as was done in ref 428 using kTST

(eq 197). Of course, the TST rate is only a very crude
approximation of the rate constant, which explicitly assumes
that once the reactive trajectory reaches the transition
configuration, it will move forward to the product side (follow
one direction) and no recrossing of the barrier nor turning
back to the reactant side will occur. This is, of course, not
accurate for reactions in the condensed phase where the
solvent fluctuation can facilitate the reaction coordinate to
recross the barrier many times before finally settling inside the
product well.

A formally rigorous expression for the rate constant (under
the classical limit of nuclei) can be written as

= ·k t klim ( )
t t

TST
p (200)

where tp refers to the plateau time of the flux-side correlation
function, and κ(t) is the time-dependent transmission
coeOcient that captures the dynamical recrossing e%ects,
measuring the ratio between the reaction rate and the TST
rate. Since the classical κ(t) always starts from 1 and decays to
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a finite value (between 0 and 1) at tp, the kTST is the upper
limit of the actual rate constant k. Numerically, the
transmission coeOcient can be calculated from the flux-side
correlation function formalism444−446 as follows

=
· [ ]

· [ ]

‡

‡

t
h R t R

h R
( )

(0) ( )

(0) (0) (201)

where h[R − R‡] is the Heaviside function of the reaction
coordinate R, with the dividing surface R‡ that separates the
reactant and the product regions (for the model system studied
here, R‡ = 0), the flux function t( ) = h t( ) =
[ ]·‡R t R R t( ) ( ) measures the reactive flux across the

dividing surface (with δ(R) as the Dirac delta function), and
⟨···⟩ represents the canonical ensemble average (subject to a
constraint on the dividing surface which is enforced by δ[R(t)
− R‡] inside t( )). Thus, all degrees of freedoms (including
the solvent and cavity photon modes) are sampled from the
classical thermal distribution. Further, Ṙ‡ (0) represents the
initial velocity of the nuclei on the dividing surface. The above
flux-side formalism of the reaction rate can be derived from
Onsager’s regression hypothesis, with derivations presented in
standard textbooks (e.g., Chapter 8.3 in ref 446). Numerical
examples of � can be found in refs 85 and 423 for the VSC
problems.

Alternatively, � can also be computed using the Grote−
Hynes (GH) rate theory,438,447 or equivalently the multi-
dimensional transition state theory (MTST),448 that treats all
degrees of freedoms classically. Within GH theory, the
transmission coeOcient is given by

=

†

i i

i i

GH

(202)

such that k = �GH · kTST, where ω̃i
† are the frequencies

associated with the stable normal modes (ω̃i
†2 > 0) at the

transition state geometry, and ω̃i are normal-mode frequencies
at the reactant well..14,85,438 The detailed expression of κGH for

PF
(eq 193) can be found in ref 85.

5.4. Dynamical Caging EBect and Suppression of Rate
Constant

In ref 85, it was theoretically demonstrated that the cavity
photon mode acts as a non-Markovian solvent-like degree of
f reedom that is coupled to the molecular reaction coordinate R,
such that the presence of photonic coordinate enhances the
recrossing of the reaction coordinate and decreases chemical
rate. In simple chemical processes and enzymatic catalysis, a
closely related phenomenon is referred to as the “dynamical
caging” e%ect,449−453 which has been well explained by the
Grote−Hynes (GH) rate theory.438,447,448 Due to the low
frequency of the cavity mode (in comparison to polariton
photochemistry), which is in the same frequency range as the
vibrational frequencies, both R and qc are treated as classical
DOFs in ref 85, and the GH theory is used to study how the
cavity mode a%ects the dynamics of a reaction.14,85,116 We
emphasize that treating the photonic coordinate qc as a
classical DOF is a drastic approximation, and we will discuss
the quantum treatment in Sections 5.4.5 and 5.5.

In ref 85, such a classical description was employed to
investigate cavity-modified ground state chemical rate for a
single molecule coupled to a single cavity mode. The model

system is described by
PF

(eq 193), where the choice of
Eg(R) is the ground state potential of the Shin-Metiu hydrogen
atom transfer model.105 The key results of these studies14,85 are
summarized in Figure 21. Figure 21a presents the absorption
spectra of the polariton system, where with an increased light−
matter coupling strength η (eq 195), the Rabi splitting ΩR also
increases accordingly as observed in the absorption spectra.
Figure 21b presents the transmission coeOcient, κ, computed
numerically using eq 201 (dots) or obtained using the GH

Figure 21. Cavity induced dynamical caging e%ect of the reaction coordinate and modification of ground state chemical kinetics. (a) Absorption
spectrum of a model system at di%erent light−matter coupling strengths. (b) Transmission coeOcient κ as a function of the cavity frequency ωc at
di%erent coupling strengths. (c) Transmission coeOcient κ and the e%ective change of the Gibbs free energy barrier Δ(ΔG‡) at di%erent Rabi
splitting ωR, i.e., coupling strengths. The nonlinear change in Δ(ΔG‡) is similar to the experimental observation shown in Figure 20e. (d,e) Two-
dimensional potential energy surface with respect to the molecular coordinate R and photonic coordinate qc at small (d) and large (e) coupling
strengths. The black solid lines represent typical reactive trajectories. (f) Percentage yield of two competing pathways at various cavity frequencies.
Panels (a−e) are reproduced from ref 85 under the CC BY license. Panel (f) is reproduced with permission from ref 14. Copyright 2022 American
Chemical Society.
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theory through eq 202 (solid lines). Since kTST remains
invariant inside and outside the optical cavity, κ directly reports
the absolute change of the overall rate constant (see eq 200).
In this panel, we present the change of κ when the molecule is
coupled inside the cavity, with a range of cavity photon
frequency ωc. Three di%erent light−matter coupling strengths,
η = ΩR/2ℏωc, were chosen corresponding to the Rabi-Splitting
observed in the absorption spectra shown in Figure 21a. The
cavity modified transmission coeOcient κ in Figure 21b clearly
shows the cavity frequency-dependent suppression of chemical
rate, which was not observed when only considering the TST
level of theory428 or when ignoring DSE.441 At a fixed light−
matter coupling strength A0, the transmission coeOcient κ is
minimized at a frequency ωc

min that is related to the imaginary
barrier frequency ω‡. This e%ect can be physically understood
as the cavity dynamically caging the reaction coordinate R near
the barrier leading to a reduction in chemical rate.85 Further,
one can also understand the significant red-shift of the ωc

min,
with the detailed theoretical explanation provided in ref 85. We
emphasize that there are no existing experiments that report
that matching cavity frequency ωc with the top of the barrier
frequency ω‡ will suppress the rate constant, under the single
molecule limit. So even though there is a similarity between
theory (Figure 21b) and experiment (Figure 19b), one must
clearly understand that they are under very di%erent coupling
limits (single molecule for theory, and collective coupling for
experiments) as well as at what photon frequency cavity most
strongly modifies chemical reactivity. For the classical theories
discussed above, it is when ωc ≈ ω‡, and for experiments, it is
ωc ≈ ω0 (reactant well frequency). Nevertheless, the dynamical
caging e%ect has also been observed in the ab initio VSC
dynamics simulations427 of the reaction in Figure 19b. With
the plasmonic cavity setup or the epsilon-near-zero cavity,42 it
is possible to confine IR frequencies and even achieve an
ultrastrong coupling regime for just a few (or a single)
molecules.454,455 Thus, besides the purely theoretical value, the
prediction in Figure 21 might also be within the reach of near-
future experimental setups.

Figure 21c illustrates how the light−matter coupling
modifies chemical reactivities. As one increases ΩR (by
increasing the light−matter coupling strength A0), the rate
constant decreases in a nonlinear fashion which closely
resembles the experimental trend in Figure 20g. For the PF
Hamiltonian description that explicitly includes the DSE term,
there is no change in kTST because there is no change of
potential energy barrier.85 The only change in the rate comes
from κ. The modification of κ (formally κ contributed to the
change in entropy438) will lead to the e%ective change of the
free energy barrier height. To this end, we use the Eyring Rate
equation to convert the change of rate from κ into an e%ective
Δ(ΔG‡). The 4 times decrease in κ (blue curve in Figure 20c)
results in ∼4 kJ/mol change in “e%ective” Δ(ΔG‡) (red curve
in Figure 20c) at ∼700 cm−1 of ΩR. This theory indicates that
such a nonlinear increase of the “e%ective” Δ(ΔG‡) as
increasing ΩR is in fact due to the change of κ.

To clearly demonstrate the dynamical caging e%ect, we
further present representative reactive trajectory on the Cavity
BO surface (eq 199). Figure 21d presents a typical non-
adiabatic case of the GH theory. When the instantaneous

friction is weak
| |

‡
‡( )
c

, the GH theory becomes a model

of nonequilibrium solvation, where the friction from the
photonic coordinate qc does not severely impede the

transitions.456 In this case, the transmission coeOcient remains
close to those without the cavity, and the reactive trajectory
crosses the barrier without much influence from qc. Figure 21e
presents a typical “dynamical caging” regime of the GH theory,
where the instantaneous friction from qc to R is strong

| |

‡
‡( )
c

, such that the reaction coordinate R becomes

trapped in a narrow “solvent cage” on the barrier top.456 At
longer times, the bath relaxations of Ĥsb (eq 194) allow the R
to move away from the barrier top, but at shorter times, the
reaction coordinate R oscillates within the cavity-induced
“solvent” cage.457 The trajectory recrosses the dividing surface
(R‡ = 0) many times, resulting in oscillations of κ(t) at a short
time and with a small plateau value of κ(t) at tp. Similar
dynamical caging e%ects from the solvent have been extensively
studied in simple organic reactions (SN1 and SN2)

449,450,458

and enzymatic reactions,451−453 where the solvent dynamics
significantly influence the reaction rate constant.438,456,459−461

Here, the cavity photonic coordinate qc acts like a “solvent
coordinate”, and for strong couplings between qc and R, the
system exhibits the dynamical caging e%ect which e%ectively
slows down the reaction rate constant.

In ref 14, this theoretical framework of dynamical caging was
extended to two competing reactions coupled to the cavity,
motivated to provide a theoretical explanation of the observed
VSC mode-selectivity in Figure 19. In that work, two
competing reaction pathways that have nearly identical barrier
heights but di%erent barrier frequencies are constructed as the
model systems, both of which have their individual dipole that
couples to a common cavity mode.14 The work finds that the
dynamics of the cavity photon mode leads to a cavity
frequency-dependent dynamical caging e%ect of a reaction
coordinate, resulting in suppression of the rate constant. In the
presence of competitive reactions, it is possible to preferentially
(and selectively) cage a reaction coordinate when the cavity
frequency matches one barrier frequency of two competing
reactions, resulting in a selective slow down of the reaction
between two highly competing ones.14 Figure 21f presents
several representative data points. In particular, it demonstrates
that when using a high-frequency o%-resonant cavity (ωc is
larger than all vibrational frequencies, such as ωc > 1600 cm−1

in the current model), the selectivity is the same as the original
selectivity without the cavity (e%ectively ωc = 0). Further, the
reverted preference occurs during a range of cavity f requencies,
even though the maximum reduction of the rate constants for
two competing reactions occurs at two specif ic cavity
f requencies. These theoretical results provide a new perspective
to understand the recent VSC enhanced selectivities of
competing reactions, such as the results presented in ref 4
(see key results in Figure 19d). The results in Figure 21f
closely resemble the basic feature of the experimental
observation shown in Figure 19d.

Despite the similarities between the theoretical predictions
in Figure 21 and the experimental observations in Figure 19, a
number of significant di%erences must be noted. First, these
theories suggest that κ is most strongly suppressed when the
cavity frequency, ωc, is close to the barrier frequency, ω‡. This
is in contrast to what the experiments suggest (such as in
Figure 19b), where the chemical rate is strongly suppressed
when photon frequency is close to the reactant well frequency.
Second, the rate profile as a function of photon frequency is
much broader, spanning several orders of cavity photon
frequency. In contrast, experiments show sharp resonant cavity
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modifications, such as in Figure 19b. Third, these theoretical
works14,85,116 that are based on the GH theory only predict
cavity-mediated suppression, while the experiments also report
enhancements (such as in Figure 19c). Finally, these works are
studying cavity modifications at the level of single molecule
and single cavity mode. This is in contrast to the experiments
where an ensemble of molecules is coupled to a distribution of
cavity photon modes.

Recent theoretical works119,424,425,427 have also explored
dynamical e%ects related to intramolecular vibrational energy
redistribution of the molecules coupled to an optical cavity. Ref
119 uses numerical simulations to investigate the dissociation
dynamics of a triatomic molecular system (ozone) coupled to a
cavity photon mode. Classical molecular dynamics is used to
describe all degrees of freedom, including the nuclear DOF R
and the photonic DOF qc. In this work, the dissociation
dynamics were studied in the absence of a dissipative bath and
by initiating the system in a nonthermal-equilibrium initial
condition.119 Specifically, the cavity photon mode was
initialized at zero temperature, while the molecular subsystem
was initially deposited with enough energy (∼34 kcal/mol) to
ensure that the dissociation of the ozone molecule takes place
on a short time scale. It was found that when the cavity
frequencies are close to vibrational modes, the “hot” molecular
subsystem (with a high enough initial energy) eOciently
exchanges energy with the “cold” cavity photon mode, leading
to a suppression of the dissociation probability. While such a
setup may not be representative of chemical kinetics in real
molecular systems given its highly nonequilibrium initial state,
it further illustrates the rich dynamical interplay between the
cavity and molecular vibrations, which cannot be captured by
static electronic structure calculations.

Similar conclusions have also been discovered from direct
on-the-fly ab initio molecular dynamics simulations in ref 427.
In this work, the deprotection reaction of 1-phenyl-2-
trimethylsilylacetylene (PTA), experimentally studied in ref
17 (see Figure 19b) was investigated in the gas phase inside
the cavity. The direct numerical simulations reveal that the
cavity mode mediates the vibrational energy transfer between
di%erent vibrational modes, resulting in a shorter bond
distance for the breaking bond during the reaction, thus in
principle, suppressing the reaction. Interestingly, there is a
resonant e%ect where the reactive bond distance will reach its
minimum length when the cavity frequency matches the
vibrational frequency of this bond. Future work is needed to
investigate if such an e%ect still survives in the condensed
phase (when considering the solvents) as well as if the bond
shorting e%ect is equivalent to the reaction rate constant
reduction.
5.4.1. Quantum Corrections of the Rate Constant.

Due to the initial success of the classical description of
molecules interacting with cavity photon modes, the next
natural question is how quantum e%ects (of the cavity mode or
molecular vibrations) will influence the theoretical predictions.
Along these lines, ref 429 attempted to add (approximate)
quantum corrections to the GH rate theory to describe cavity-
modified chemical kinetics. Two possible quantum correc-
tions429 are added, including (i) replacing the classical
partition function with their quantum counterpart using the
quantum transition state theory (QTST)462 and (ii) adding
tunneling e%ect using the formalism of the centroid TST
(CTST).463 Using the QTST429 that only includes the
quantum correction in (i), the total rate constant is written as

= · = ·
‡

k e k
2

E

QTST Q
0

Q TST (203)

where kTST is expressed in eq 198, and κQ is the corresponding
transmission coeOcient. This transmission coeOcient κQ =
κZPE · κS has two components, a zero-point energy (ZPE)
correction (contributing to enthalpy) to the transmission
coeOcient κZPE, and an entropic component κS that depends
on the normal-mode frequencies of reactant and the stable
normal-mode frequencies at the transition state configuration.
Under the high temperature limit, κS ≈ κGH, and the κQ ≈ κGH

(with κZPE ≈ 1). Under the low temperature limit, κQ ≈ κZPE.
Based on the QTST formalism, ref 429 found that when the

cavity photon frequency ωc matches the reactant well
frequency ω0 (i.e., a resonant condition), the ZPE correction
κZPE is minimized. This is in contrast to the high temperature
(classical limit) where the GH theory predicts the transmission
coeOcient is independent of ω0, but depends on ω‡. Ref 429
further shows that it is possible to have chemical kinetics
minimizing when ωc is close to ω0 for specific sets of
parameters when kQTST is dominated by κZPE (e.g., at low
temperatures), and not dominated by κS. But in general, the
rate constant suppression will happen in a broad range of ωc,
resulting in a much broader range of the photon frequency that
suppresses the rate constant. This is in contrast to the sharp
resonant behavior in experiments (see Figure 19). Meanwhile,
this work,429 also shows that the additional quantum tunneling
correction κT in the centroid TST (CTST) theory (where the
rate is now k = κT · kQTST) is much larger than the ZPE
correction κZPE. However, this tunneling correction minimizes
the chemical rate when the photon frequency is close to the
barrier frequency ω‡ in contrast to ω0, a behavior similar to the
GH theory.429 As a result, the overall rate constant also
minimizes when ωc is close to ω‡. Overall, such quantum
corrections, which are included through approximate rate
theories, do not bring theoretical predictions closer, and
potentially further, from experiments.

In ref 193, it has also been shown that when the DSE term is
included, the cavity can only slightly modify the ZPE and bond
lengths, but no obvious e%ects on dissociation energies and
inversion barriers. When the quantum e%ects is considered, the
reaction barrier will slightly decrease as the coupling strength
increases. In a follow-up work,269 the authors further
concluded that both the number of reactive channels and the
tunneling probability will be reduced when the quantum e%ects
are considered explicitly. It is also found that there is a
coherent energy exchange between the system and cavity mode
in the resonant case.

Finally, in ref 272, the chemical kinetics in a model
molecular system coupled to a dissipative solvent bath and a
lossy cavity mode was simulated with an exact quantum
dynamics approach. It is found that the cavity can resonantly
suppress the chemical reactivity of a molecular system that is
strongly coupled to resonant solvent modes (i.e., sharp peaks
in the solvent spectral density around reactant vibrational
transitions). Such suppression occurs when the molecular
vibrational states are split (through quantum light−matter
interactions) further away from resonant solvent degrees of
freedom, due to the formation of vibrational polaritons. This
leads to a drastic reduction in molecule-solvent interactions.
Since this particular mechanism relies on the formation of
vibrational polaritons, the resonance condition between the
cavity photon frequency and the vibrational frequency
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naturally appears.272 This work also showed that chemical
reactivity can also be resonantly enhanced depending on the
details of the molecule, solvent, and cavity. Overall, this work
underscores the importance of the quantum dynamical
interplay of solvent, molecules and cavity degrees of freedom.

5.5. Energy DiBusion and Enhancement of Rate constant

In the previous section, we reviewed theoretical works that
attempted to explain resonant suppression of chemical
reactivity. Importantly, some of the theoretical works suggest
that the cavity plays a role in e%ectively modifying environ-
mental friction. The works that used GH theory14,85 showed
that the e%ective increase in environmental friction led to the
suppression of chemical reactivity. The same argument can
also be used to show that cavity modification to environmental
friction leads to an enhancement of chemical reactivity if the
solvent friction is much weaker in the energy di%usion-limited
regime.421,423,430

To understand this, consider again a model molecular
system described by a double well potential such as in the inset
of Figure 22b. The chemical reaction rate as a function of
environmental reorganization energy (proportional to environ-
mental friction) is computed using a classical treatment for all
degrees of freedom. The reorganization energy Λ of a solvent
is directly computed from the solvent spectral density J(ω)

(see below eq 194) as = d
J1

0

( )
. The resulting rate

constant is presented in Figure 22a. The transmission
coeOcient (black dashed line in Figure 22a) shows two
distinct regimes: for Λ < 5 × 10−6 the chemical rate increases
with increasing Λ (so-called energy di%usion-limited regime)

and for Λ > 5 × 10−6 the chemical rate decreases with
increasing Λ (so-called spatial di%usion-limited regime). The
transition from the energy to the spatial di%usion-limited
regime around Λ ≈ 5 × 10−6 is referred to as the Kramers
turnover.438

Within the classical rate theory, the cavity photon mode is
regarded as an additional environmental degree of freedom85

which increases the e%ective environmental friction. Thus,
depending on whether the solvent friction is in the energy or
spatial di%usion-limited regime the cavity mode is expected to
enhance or suppress chemical reaction rates, respec-
tively.116,421,423 However, in order to capture this cavity-
modified enhancement of chemical kinetics, one must go
beyond the GH theory which does not capture the energy
di%usion-limited regime, as shown in Figure 22a where the κGH
(red solid line) diverges from the true transmission coeOcient
(black dashed line) at low Λ.

In ref 421., an analytical rate theory based on the Pollak-
Grabert-Han̈ggi rate theory (PGH)464 was used to capture the
complete range of solvent friction values, from the energy
di%usion-limited to the spatial di%usion-limited regimes.
Within the PGH theory, the reaction rate constant is given as

= · · ·k Y k k
cl GH TST PGH TST (204)

where κPGH is the transmission coeOcient within the PGH
theory and Ycl is the classical depopulation factor that accounts
for the finite time for the reaction coordinate to reach thermal
equilibrium in the energy di%usion-limited regime. In the
spatial di%usion-limited regime, Ycl → 1. As a result, in the
spatial di%usion-limited regime the classical rate predicted by

Figure 22. Cavity enhancement of ground state chemical kinetics. (a,b) Classical rate theory for cavity enhanced chemical reactivity. (a) The
chemical transmission coeOcient in bare molecular system (dashed solid lines) and the depopulation factor (blue solid line) as a function of solvent
friction computed using the Pollak-Grabert-Han̈ggi rate (PGH) theory464 and the transmission coeOcient within Grote−Hynes (GH) rate
theory438,447,448 (red solid line). (b) Cavity photon frequency-dependent transmission coeOcient (red solid line) and the depopulation factor (blue
solid line). Inset shows the double well potential of the model system studied in (a,b). (c,d) Direct molecular dynamics simulation of cavity
modification of the isomerization reaction in HONO, schematically illustrated in (c). (d) Cavity photon frequency-dependent transmission
coeOcient directly obtained from molecular dynamics simulations. (e,f) Exact quantum dynamics simulation of cavity enhancement in a model
molecular system described with a double well potential shown in (e). (f) The chemical rate constant as a function of photon frequency was
obtained from exact quantum dynamics simulations and compared with the absorption spectra of the molecule-cavity hybrid systems. Panels (a,b)
are reproduced with permission from ref 421. Copyright 2022 American Chemical Society. Panels (c,d) are reproduced with permission from ref
423. Copyright 2022 American Chemical Society. Panels (e,f) are reproduced from ref 272 under the CC BY license.
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the PGH theory becomes k → κGH · kTST which is the same as
in the GH theory. Using this theory, the cavity-induced
enhancement of chemical rate was predicted in ref 421., which
was also demonstrated using direct numerical simulations423

based on the flux-side correlation function formalism (eq 201).
It is found that when the cavity frequency, ωc, is in resonance
with the reactant well frequency ω0, the cavity can considerably
improve the thermalization of the molecular system in the
energy di%usion-limited regime.421,423,430 This is directly
reflected in the photon frequency dependence of the
depopulation faction Ycl shown in Figure 22b (blue solid
line). The overall transmission coeOcient κPGH (consequently
the shape of the rate constant as a function of photon
frequency ωc) shown in Figure 22b is dominated by Ycl in the
energy di%usion-limited regime. Importantly, the chemical rate
shows a clear resonant structure, peaking when ωc ≈ ω0, and
the width of the “resonant rate constant enhancement profile”
is much sharper than the cavity suppression of chemical
reactivity shown in Figure 21 in the spatial di%usion-limited
regime. Ref 421 further points out that the extent of the cavity
chemical kinetics modification is also more substantial in the
energy di%usion-limited regime than in the spatial di%usion-
limited regime, which often results in an enhancement by a
factor of 2−3 (with a A0 = 0.01 as the light−matter
coupling).421

In ref 423, the same e%ect of cavity-enhanced chemical
reactivity was investigated for the cis-trans isomerization of the
HONO molecule, as schematically illustrated in Figure 22c.
With direct molecular dynamics simulations, it is observed that
when cavity photon frequency is resonant to the O−N
stretching mode at 900−1000 cm−1 the chemical kinetics is
enhanced (Figure 22d). This is because the O−N stretch is
strongly coupled to the torsion coordinate,423,465 which is the
reaction coordinate for this isomerization reaction. Using the
same computational setup they also verified the predictions
made in GH theory85 where the chemical rate is suppressed
due to cavity coupling in the spatial di%usion-limited regime
(see Section5.4).

It must be noted that, while it is presently not known if the
VSC related experiments operate in the spatial or energy
di%usion-limited regime, chemical reactions in the liquid phase
are typically expected to take place in the spatial di%usion-
limited regime (strong solvent friction regime, either the
plateau regime or the overdamped Kramers regime), whereas
those in the gas phase are expected to take place in the energy
di%usion-limited regime (weak solvent friction, or under-
damped Kramers regime). Therefore, even if one disregards
the issue of collectivity, the results obtained in these
works421,423,430 may not be directly relevant to the experiments
that were conducted in the liquid phase.18,137 That said, as has
been argued in ref 421, the energy-di%usion-limited regime is
more prevalent than is commonly assumed for chemical
kinetics in liquid solvents.437,466−468 It is also possible for
chemical reactions to be energy-di%usion-limited even if the
solvent friction is large as long as the bath degrees of freedom
are slow.464,469 A straightforward way to answer this question is
to perform direct molecular dynamics simulation to extract the
solvent spectral density. Overall, at this point we simply do not
know what the precise value of the solvent friction is or in
which regime the solvent coupling places those systems studied
experimentally.

Finally, in ref 272 exact quantum dynamics simulations,
using the hierarchical equations of motion (HEOM) approach,

were carried out for a model system depicted in Figure 22e. In
this work, a reaction coordinate was coupled to a dissipative
solvent environment, a cavity photon mode which is also
coupled to a dissipative bath composed of far-field radiation
modes describing cavity loss (see Section 4.7).

In this fully quantum mechanical treatment, the chemical
kinetics process can be easily understood in terms of solvent-
mediated population transfer between vibrational states. The
molecular subsystem is initially prepared in the ground
vibrational state |ν0,R, 0⟩ (here 0 denotes no photon in the
cavity) on the left well of the potential energy surface (shown
in Figure 22e). Outside the cavity, the ground vibrational state
on the left reactant well |ν0,R, 0⟩ is thermally excited to the
vibrationally excited states such as |ν1,0⟩. Then, following a
vibrational relaxation from the vibrationally excited states to
the ground vibrational state |ν0,P,0⟩ on the right (product) well,
the forward reaction occurs. In the weak solvent coupling
(energy di%usion-limited) regime, the chemical kinetics is
dominated by the thermal excitation process. The thermal
excitation due to cavity loss mediated by the coupling of cavity
photon modes to other far-field (outside of cavity) modes
leads to the creation of a photon inside the cavity which can be
absorbed by the molecular subsystem leading to the vibrational
excitation. Therefore, coupling to the cavity provides (in
addition to the solvent-mediated thermal excitation |ν0,0⟩ →
|ν1,0⟩ outside cavity) an additional pathway

| | |, 0 , 1 , 00,R 0,R 1 (205)

which leads to an enhancement of chemical kinetics. Here, the
first step is the thermal radiation fluctuation promoted
transition and the second step is mediated by the quantum
light−matter interactions. Since this mechanism requires
strong hybridization between molecular vibrational and cavity
photonic excitation (for the second step in eq 205), the
resonance structure in rate constant modifications appears as a
much sharper feature, shown in Figure 22f. Interestingly, the
shape of the rate constant modification profile (blue) is similar
to the absorption profile (yellow) in Figure 22f, which closely
resembles the case in experiments,18,137 as illustrated in Figure
19. Importantly, this work reveals that the resonant cavity
modification of chemical reactivity may have quantum origins.
However, while this work underscores the limitations of the
classical treatment in capturing VSC modified chemistry, it is
not clear to what degree the cavity radiation has to be treated
quantum mechanically as it may be possible that the
semiclassical description photons (such as ring-polymer
molecular dynamics,86 mixed quantum-classical dynamics,74,83

linearized path-integral model283) might provide accurate
results when compared to the exact ones. Further, note that
ref 272 operates at the single molecule level. Since it is
prohibitively expensive to carry out such exact quantum
dynamics in the collective regime, the development of
approximate quantum dynamics methods (see Section 4.1)
that allow eOcient quantum dynamics of a large ensemble of
molecules coupled to cavity photons will be vital in resolving
the mysteries of the vibrational polariton chemistry.

5.6. Modifying Ground-State Electron Transfer Reactions

The chemical rate constant for nonadiabatic electron transfer
reaction can be analytically computed using the Marcus
theory369,370,372 as provided in eq 168. However, if the
molecular system contains a quantum degree of freedom (such
as a vibration with frequency ℏωvβ ≫ 1), the rate constant
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requires a quantum description beyond the simple Marcus
theory (especially in the inverted regime). This is because, with
quantum degrees of freedom, the system can also access
vibrational excited states for which the driving force is no
longer just ΔG but is modified by nℏωv, where n is the
quantum number of vibrations and ωv is the vibrational
frequency. The above situation is precisely the case when a
nonadiabatic electron transfer reaction inside an optical cavity
is considered. Such a setup is schematically shown in Figure
23a for plasmonic cavity. Note that the cavity frequency is

either in the infrared regime or in the UV−vis region, but not
matching any particular vibrational transition or electronic
transitions. Instead, the cavity mode is directly coupled to the
transition dipole of the charge transfer process106 between the |
D⟩ and |A⟩ state, which is μDA.

Due to the presence of the cavity photon mode, new
photon-dressed donor and acceptor states, such as |D⟩ ⊗|n⟩
(donor state with n photons in the cavity) and |A⟩ ⊗|n⟩
(acceptor state with n photons in the cavity), become available
for mediating the charge transfer process. The potential energy
surface for these states along the charge transfer reaction
coordinate (a collective solvent coordinate, which is often

referred to as the Marcus coordinate) is shown in Figure 23b.
The polariton-mediated electron transfer rate constant can
then be computed by considering all possible reactive channels
|D⟩⊗|n⟩ → |A⟩⊗|m⟩. The chemical rate constant in the
presence of quantum degrees of freedom can be computed
using the Marcus-Levich-Jortner (MLJ) theory470,471 as follows
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where λET is the reorganization energy (not to be confused
with the light−matter coupling strength in eq 105), Fnm is the
e%ective coupling among photon dressed states |D⟩⊗|n⟩ and |
A⟩⊗|m⟩, ΔGnm = ΔG + (m − n)ℏωc is the driving force
between photon-dressed states, and

n
= [ ]nexp

c
/

[ ]mexp
m c

is the thermal population of the correspond-

ing cavity mode. Ref 106 investigated the modification of
nonadiabatic chemical rate constant inside an optical cavity. In
this work, the molecular system is coupled to the cavity photon
mode via the molecular dipole μ̂ = μDD |D⟩⟨D| + μAA |A⟩⟨A| +
μDA (|A⟩⟨D| + |A⟩⟨D|) where μAA and μDD are the permanent
dipoles and μAD is the transition dipole. The authors106

(assuming that donor and acceptor wells are of the same
frequency) der ive the coupl ing F

nm
= V S
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0 with Δμ = μDD − μAA. In the absence of

permanent dipoles Snm → δmn and the coupling reduces to F
nm
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nmDA

+ [A n
DA n mc 0 1, + + ]+n 1

n m1, .

Figure 23c presents the modification of the ground state
electron transfer rate when the molecule is coupled to a high-
frequency photon mode (ωc = 2 eV). Despite the fact that this
example does not pertain to the regime of IR photons (or
“VSC regime”), it clearly demonstrates the fundamental
principles of such cavity modifications on electron transfer
reaction rate constant. The red dashed line in Figure 23c
depicts the rate constant as a function of driving force ΔG with
one peak at ΔG = −λET, which is the famous Marcus turnover
of the electron transfer rate constant. Inside the cavity, the
chemical rate (black solid line) shows two peaks, instead of
one. This additional peak that appears deep in the Marcus
inverted regime (where − ΔG > λET) is due to the additional
channel |D,0⟩ → |A,1⟩ due to the light−matter interaction via
the electronic transition dipole moment μDA = ⟨D|μ̂|A⟩. For
low photon frequency ωc = 200 meV (panel b and panel e),
the second peak becomes merged with the first and leads to a
broadening of the overall rate profile shown in Figure 23e. In
addition to this, suppression of the chemical reactivity is also
observed around the peak of the rate curve. This suppression is
due to the presence of the permanent dipoles106 that reduces
the diabatic coupling between |D,0⟩ and |A,0⟩ by the factor Sm,n

as · =
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2 , a result that

is obtained by performing the polaron transformation,51,86,106

but can also be understood through the polarized Fock state
formalism (Section 3.1.3). Overall, this work106 points out that
the cavity photon mode can act like high-frequency quantum
vibration that modifies the nonadiabatic electron transfer rate
constant, especially for driving forces in the inverted regime.

Ref 86 followed up on the work of ref 106, using an
extended phase space path-integral framework,472−474 so-called
nonad iaba t i c r ing -po lymer molecu l a r dynamic s

Figure 23. Cavity modified thermally activated nonadiabatic electron
transfer reaction. (a) Schematic illustration of a plasmonic cavity
coupling to an electron transfer reaction. (b) Potential energy surface
of donor and acceptor dressed states. (c), (e,f) Cavity modification of
electron transfer rate at (c) ωc = 2 eV, (e) ωc = 0.2 eV and at (f) ωc =
0.01 eV. (d) Schematic illustration of the ring-polymer description of
a cavity photon mode. Panels (a, c, and e) are reproduced with
permission from ref 106. Copyright 2019 American Institute of
Physics. Panels (b, d, and f) are reproduced with permission from ref
86. Copyright 2021 American Institute of Physics.
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(NRPMD),475−477 to describe discrete electronic states using
mapping variables321,322 and the photon field and nuclear DOF
using the extend phase space variables of the ring polymer.
Using the RPMD framework, the photon and nuclear degrees
of freedom are copied into multiple “beads” in the extended
phase space, with the adjacent beads coupled through a
Harmonic spring, forming a ring-polymer (shown schemati-
cally in Figure 23d). This ring polymer, together with the
electronic mapping variables, is evolved classically through the
corresponding equation of motion. Despite the classical
evolution, NRPMD e%ectively captures all possible quantum
e%ects, including the electronic nonadiabatic e%ect and the
nuclear quantum e%ects, as well as similar e%ects exhibited by
the photonic DOF qc. Ref 86 shows that even for a photon
frequency as high as ωc = 500 meV, the rate constant predicted
by the direct NRPMD simulations provides the same result as
the rates obtained from the analytic MLJ theory in eq 206
(that uses the quantum description of a cavity photon mode),
which matches the analytic result perfectly for the model
calculation presented in panel (c). Recent work478 has also
used the adiabatic limit of RPMD (or referred to as path-
integral MD) description of photon mode to perform
molecular dynamics simulation using “real” molecular systems
(using classical force fields) beyond any simple model systems.
Regarding such development of semiclassical methods for
accurately capturing such cavity-modified reactivities, ref 283
introduced a linearized semiclassical approximation with
Fermi’s golden rule (FGR) rate theory, which can numerically
reproduce the cavity-induced rate enhancement of such
nonadiabatic electron transfer reactions with high accuracy.

Ref 86 also investigated the cavity modification of a
nonadiabatic electron transfer reaction when photon frequency
is very low, such that the classical description of the photon
mode becomes accurate. With a classical treatment of the
photon mode, the diabatic coupling becomes time-dependent
and is a function of the photon coordinate, such that

= +V q V A q( ) 2DA c DA
0

c
3

0 DA c
, In such a case, the photon

mode plays the role of a Peierls coupling mode.86,360,362,479 For
such fluctuating diabatic coupling the chemical rate is given by
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where σc = 2ωc
3A0μDA⟨qc

2⟩ with ⟨qc
2⟩ = 1/βωc

2 for classical
distribution of the photon mode. Thus, the reaction rate is
enhanced, (as shown in Figure 23f) when coupled to the
cavity. This is due to the modification of the diabatic coupling
due to the photonic mode serving as a fluctuating DOF that
mediates the donor-to-acceptor coupling (commonly referred
to as the Peierls coupling). It must be noted that while these
works86,106 show the modification of the nonadiabatic electron
transfer reactions for photon frequencies in the IR regime, the
photon mode is coupled to the transition dipole between the
donor and acceptor diabatic states (or a given permanent
dipole), not any explicit vibrational excitation in the system.

In summary, despite enormous theoretical and experimental
e%orts, the mechanistic principles of VSC modified ground
state chemical reactivities remain elusive. Theoretical and
computational works do predict some modifications of the
ground state chemical kinetics, and direct quantum dynamics
simulations show photon frequency dependent rate profiles
similar to the experiments. However, these results cannot be

directly compared to experiments as they operate in di%erent
parameter regimes: while most theoretical works operate in the
single/few molecule limit, the present experiments operate in
the collective regime. In Section 6.4, we discuss some recent
theoretical works that operate in the collective regime, which
have had limited success so far. At the same time, there has
been exciting experimental progress in achieving VSC at the
level of few molecules.42,480 More concerted theoretical and
experimental e%orts are needed to realize the true potential of
VSC mediated chemistry.

6. POLARITON CHEMISTRY UNDER THE COLLECTIVE
COUPLING REGIME

Most experiments of polaritonic systems involve many
molecules coupled to many photonic modes in optical cavities.
Although there have been exciting works demonstrating the
possibility of strongly coupling a single molecule to a
plasmonic cavity mode,27,454,455,481 it is understandably
diOcult (if not impossible) to achieve strong coupling in a
Fabry−Peŕot microcavity in the single molecule limit. This is
because the relatively large cavity mode quantization volume in
Fabry−Peŕot microcavities leads to a negligible coupling for a
single molecule.

When a large number of molecules are simultaneously
coupled to the cavity, the e%ective coupling strength is scaled
by N where N is the number of molecules (as will be
discussed below). This collective coupling allows for significant
Rabi-splitting despite the vanishingly small cavity coupling per
molecule. Consequently, there has been a recent strong push
by the community to better understand the collective coupling
phenomenon from a rigorous theoretical perspective. In recent
years, there have been a number of theoretical advancements
that allow direct simulation of the quantum dynamics of a
single cavity mode coupled to many molecules8,45,116,126,256,313

or many cavity modes coupled to many molecules.138,141,177,179

In the previous three sections of this review (see Sections 3,
4, and 5), the discussion has been focused on the properties,
dynamics, and chemical transformations enabled by coupling a
single molecule to a cavity mode. As we will see, the
conclusions drawn in these previous sections that operate in
the single molecule limit cannot be directly applied to the
more experimentally relevant case of many molecules coupling
to the quantized field inside an optical cavity. In this section,
we will review recent theoretical works that investigate the
modification of chemical and physical properties of matter in
the collective coupling regime. In Section 6.1 we review
computational works that study modifications to photophysical
properties, such as absorption, photoluminescence, transport,
decoherence, and population dynamics. In Section 6.3, we
discuss theoretical works that show that charge transfer
reactions can be modified in the collective coupling regime.
Next, in Section 6.2, we review works that demonstrate the
possibility of modifying chemical reactivity in the collective
regime as well as works that provide conceptual insights on
such processes. Finally, in Section 6.4, we discuss the
unresolved mysteries of vibrational polariton chemistry in the
collective regime and review some interesting works that have
attempted to provide a resolution.

6.1. Polariton Photophysics in the Collective Coupling
Regime

In this section, we review theoretical works that shed light on
interesting photophysical processes that are enabled or
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modified when coupling a large ensemble of molecules to one
or more cavity photonic modes. An appealing simplified
picture can be obtained by using the Tavis-Cummings
Hamiltonian (see eq 12) for an ensemble of identical
molecules coupled to a single cavity photon mode. In the
Tavis-Cummings Hamiltonian, N singly excited molecular
states {|EJ, 0⟩ ≡|g1,···eJ, gJ+1...⟩ ⊗|0⟩} (one molecule is excited
while rest of the molecules are in their ground state with zero
photons in the cavity) couples to the cavity excited state |G, 1⟩
≡|g1, g2...⟩ ⊗|1⟩ (all molecules in their ground state with one
photon in the cavity). Due to this coupling, a lower polariton,
upper polariton, and N − 1 dark states are formed, as shown in
Figure 24a. For identical molecules, the symmetry of the
problem allows one to define the collective bright state

| = |B E, 0 , 0
N J J

1 and other orthogonal states |Dk,0⟩ =

∑JCJ,k|EJ,0⟩ such that | = =B D C, 0 , 0 0k N J J k
1

, . As a

result, the bright state couples collectively to |G,1⟩ with a

coupling strength Ng where g is the coupling between |EJ,0⟩

and |G,1⟩. Notably, the |Dk,0⟩ states do not couple to the |G, 1⟩
state, and thus are referred to as the dark states. The coupling

Ng leads to the formation of the |+⟩ (upper polariton) and
|−⟩ (lower polariton) states that are linear combinations of |G,
1⟩ and |B, 0⟩ (see more in eq 12 and onward) as depicted in
Figure 24a. We note that the TC Hamiltonian is expected to
break down in the ultrastrong coupling regime as it ignores the
dipole self-energy and the counter rotating-wave terms. In
addition to this the TC Hamiltonian also ignores the
permanent dipoles, which might play an important role
depending upon the molecular system under considera-
tion.51,354,482

The formation of the polariton states |±⟩ is readily visible in
the absorption spectra of the molecule-cavity hybrid system.
Figure 24b presents the absorption spectra of the rhodamine
molecules outside the cavity which peaks around the electronic
transition |G⟩ → |E⟩. Due to the formation of |±⟩, the
absorption spectra are split (Rabi-splitting) when coupled to a
cavity as shown in Figure 24c, with the lower (upper) energy

Figure 24. Modification of molecular photophysics in the collective coupling regime. (a) Schematic diagram of N identical emitters coupling to a
cavity excitation leading to N − 1 dark states and 2 bright polariton states. Absorption spectra of (b) uncoupled molecules and (c) an ensemble of
molecules coupled to the cavity. (d) Population dynamics of an ensemble of molecules coupled to a lossy cavity photonic mode. Simulated (e)
absorption and (f) photoluminescence spectra for an ensemble of molecules coupled to several cavity photonic modes. (g) Schematic illustration of
molecules coupled to plasmonic cavity arrays. (h) Time evolution of the polaritonic wavepacket and its excitonic and photonic components. Panel
(a) is reproduced with permission from ref 313. Copyright 2017 American Chemical Society. Panels (b−d) are reproduced with permission from
ref 126. Copyright 2019 American Chemical Society. Panels (e,f) are reproduced with permission from ref 138. Copyright 2021 American Institute
of Physics. Panels (g,h) are reproduced with permission from ref 152. Copyright 2022 American Chemical Society.
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peak corresponding to the lower (upper) polariton. Figure 24c
also shows the increase in Rabi-splitting as more molecules are
coupled. Note that the dark states are not seen in the
absorption spectra because they are optically dark.

This simplified picture, however, does not reveal the true
complexity of the cavity-molecule hybrid systems. The
molecular excitations are not truly degenerate in energy
(thus the broadening of the absorption spectra in Figure 24b),
and their energies fluctuate in time due to their dependence on
the nuclear motion. The nuclear motion also induces
nonadiabatic transitions between the upper polariton, lower
polariton, and dark states, which in turn modify nuclear
dynamics. Thus, direct dynamical simulations are an appealing
approach to investigating the complex dynamical interplay
between photons, molecular vibrations, and electronic degrees
of freedom.

Ref 313 implemented a QM/MM excited state molecular
dynamics approach to simulate a large ensemble of molecules
coupled to a cavity photon mode. Specifically, they
implemented the mean-field Ehrenfest approach, where the
electronic and photonic degrees of freedom are treated
quantum mechanically while the nuclear degrees of freedom
are evolved classically. They used the Tavis-Cummings
Hamiltonian (see eq 12), obtaining the energies and transition
dipole matrix element for each individual molecule on a
separate CPU/GPU in parallel, thus allowing them to perform
large-scale excited state molecular dynamics inside an optical
cavity.

Using the same on-the-fly quantum dynamics approach, ref
126 investigated the relaxation of strongly coupled molecule-
cavity systems. In this work, the authors study ensembles of
rhodamine molecules coupled to a single radiation mode. They
find that the nonadiabatic transitions between the dark states,
upper, and lower polaritons prolong the relaxation process of
the excited molecule-cavity hybrid system. In an empty cavity,
when the system is prepared in the |1⟩ (1 photon in the cavity)
state, the cavity quickly relaxes to the vacuum states due to
cavity loss (see details in Section 4.7). When the cavity-
molecule hybrid system is prepared in the |±⟩ states, the
photoemission rate is controlled by both the cavity loss (as
they have significant photonic character) as well as the

nonadiabatic transitions to the dark-state manifold. This is
because the lower/upper polariton population is transiently
transferred to the dark-state manifold, which does not have
photonic contributions, thus suppressing cavity loss. This e%ect
is shown in Figure 24d. After initial excitation to the lower
polariton (pink solid line), fast relaxation to the ground state is
observed at very short times. Then at ∼30 fs, a rise in the dark
state population is observed and consequently, the relaxation
to the ground state is suppressed marked with the ground state
population rising at a slower rate at longer times, for the
reasons mentioned before. This is in line with experimental
works that show cavity-molecule hybrid systems having a much
longer lifetime than the bare cavity.129,483

As mentioned in Section 2.6.2, a realistic description of the
cavity radiation must account for photon dispersion. Ref 138
considers the photon dispersion and uses the generalized
Tavis-Cummings model to simulate the photoexcited dynamics
in an ensemble of molecules coupled to a distribution of cavity
modes. The polariton dispersion is shown in Figure 24e which
presents the absorption (or visibility) spectra of the multi-
molecule multicavity setup computed as484
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where |Ψa⟩ are the polariton states that are the eigenstate of

the polariton Hamiltonian T
RGTC
where T̂R is the nuclear

kinetic energy operator, ΔEa = Ea − EG with EG as the ground
state energy of the light−matter hybrid system, Γc is a
broadening parameter that accounts for various sources of
dissipation such as cavity loss, and ⟨···⟩ represents the average
over di%erent nuclear configurations. The authors find that an
initial excitation to the upper polariton branch quickly decays
to the dark states which then transfer population to the lower
polariton. This relaxation process is reflected in the photo-
luminescence (PL) spectra shown in Figure 24f. This is
because unlike the absorption spectra in Figure 24e, the PL
spectra depend on the populations of the polariton states and
can be computed as

Figure 25. Quantum dynamics of nanoplatelets coupled to a cavity. (a) Schematic illustration of nanoplatelets coupled to a cavity mode. (b,c)
Time-dependent polaritonic energies for a representative trajectory obtained with numerical simulation with a large detuning (b) and a small
detuning (c). (d−i) Photoluminescence spectra obtained at increasing detunings from left to right experimentally (d−f) and theoretically (g−i)
using direct quantum dynamics simulations. Reproduced with permission from ref 40. Copyright 2021 American Chemical Society.
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where ρa(t) is the steady-state (nonequilibrium photodriven
condition) population of the ath polariton state, |Ψa⟩, at a delay
time t after photoexcitation.

Ref 40 simulated the PL spectra using a similar approach and
analyzed the relaxation process from the upper polariton to the
lower polariton through the dark state in an ensemble of
nanoplatelets coupled to cavity radiation (as schematically
illustrated in Figure 25a). This combined theoretical and
experimental study demonstrates that at small exciton-photon
detunings, the phonon-assisted nonadiabatic transitions lead to
the depletion of the upper polariton population and the
transfer of population to the lower polariton branch. The PL
spectra obtained experimentally and theoretically are shown in
Figure 25d-f and Figure 25g−i, respectively.

Figure 25b,c presents time-dependent polariton eigenener-
gies that fluctuate due to the evolution of phonons (in the
mixed-quantum classical picture). In Figure 25b the photon
frequency is much lower (o%-resonant) than the molecular
excitation. As a result, there is no substantial population
transfer from the upper polaritons and the dark states (both of
which are primarily excitonic) to the lower polariton (primarily
photonic). As a consequence of this, the lower polariton,
despite having a large photonic character, does not show up in
the PL spectra since it does not get populated. At the same
time even though the upper polariton and the dark states are
substantially populated, they appear dark in the PL spectra due
to negligible photonic character.

Figure 25c, shows the time-dependent polariton eigenener-
gies when photon frequency is close to the molecular
excitation (∼ resonant). As the upper polariton is energetically
close to the dark states, nonadiabatic transitions lead to the
transfer of population from the upper polariton to the dark
states. In the same way, the lower polariton gets populated by
dark states through nonadiabatic transitions. Thus, at low
detunings (or at resonance), the PL intensity congregates at
the lower polariton as a result of both significant population
and photonic character. Thus, in summary, this work40

concludes that the congregation of the PL intensity results
from an interplay among phonon-mediated nonadiabatic
transitions between polaritons, cavity loss, and the angle-
dependent photonic character of the polariton branches. The
resulting angular resolved PL spectra with various detuning (at
zero angle) obtained experimentally and through direct
quantum dynamics simulations are presented in Figure 25d−
f and g−i, respectively.

In Figure 25d−f and g−i the Rabi-splittings are nearly the
same while the detunings at zero angle ΔE are varied. Figure
25d−f (and Figures 25g−i) correspond to ΔE = −15.7 meV,
ΔE = −29.6 meV, and ΔE = −34.6 meV, respectively. Overall,
it can be observed that the congregation of the PL spectra
directly depends on ΔE. At low ΔE the congregation of PL on
the lower polariton is observed at low angles since the resonant
condition is met at those angles, at which significant
nonadiabatic transitions take place (Figure 25d and g).
Similarly, at higher ΔE the resonant condition is met at a
higher angle, and as a result, the congregation of PL on the
lower polariton is observed at higher angles (Figure 25e,f and
h,i). The theoretical simulations capture this qualitative trend
Figure 25h,I thus verifying our theoretical understanding.

Figure 26. Entropy reordering theory. (a,b) Polaritonic states ordered according to their energy (a) and free-energy energy (b). Note that LP lies
above dark states in (b) due to entropic contribution. (c) Entropic di%erence between dark states and the lower polariton at two di%erent light−
matter couplings, gc = 50 cm−1 (red dots) and 75 cm−1 (cyan dots). Scaling of entropic contribution (kBT log N roughly estimates maximum
entropy of dark states) to the dark state free energy as a function of collective light−matter coupling (equivalently N). Adapted from ref 485 with
permissions. Copyright 2020 American Chemical Society.
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The population transfers among polariton states in the
works mentioned above are rationalized by considering their
relative energetic ordering such that population dynamics flow
downhill, which is reminiscent of Kasha’s law.486 Based on this
picture, for a typical energetic ordering of polaritonic states
shown in Figure 26a, we anticipate a relatively small upper
polariton population and a relatively large lower polariton
population. Ref 485 points out that this picture of energetic
downhill population dynamics could be misleading as it
ignores the entropic contribution which could make a
dominating contribution to the free energy and dictate long-
time populations. For example, while lower polaritons can lie
energetically well below the dark states, the entropy of the
lower polariton (that is in a delocalized superposition state) is
much smaller than that of the localized (localized especially
when considering disorder) dark states. Thus, the total free-
energy F = E − T · S, with temperature T, energy E and
entropy S may reorder polaritonic states as shown in Figure
26a,b.

To gain an intuitive understanding of this entropic
reordering of polaritons,485 consider the single excited
subspace spanning the N excitonic states {|EJ, 0⟩} of the
molecular subsystems that is coupling to a cavity excitation |G,
1⟩ (one photon in the cavity). As explained before, such as in
Figure 24a and in Section 1.2, each of the |EJ, 0⟩ states are
coupled to the |G, 1⟩ state through the light−matter coupling,
gc, and this leads to the formation of a lower polariton, upper
polariton, and N − 1 dark-states. In reality, these polaritonic
states also interact with their environment. For example, the
molecular excitation {|EJ, 0⟩} at site J is also interacting with
some local dissipative environment, which will cause static
disorder of the excitonic energies {EJ}. To account for the
interaction with the local environment, the authors485,487

sample {EJ} from a random Gaussian distribution. For each
realization of {EJ}, the corresponding polaritonic eigenstate
|Ψa⟩ can be computed as |Ψa⟩ = ∑jcj

a|Φj⟩, where |Φj⟩ ∈ {|EJ,
0⟩, |G, 1⟩} and cj

a = ⟨Φj|Ψa⟩, with the corresponding density
matrix |Ψa⟩⟨Ψa| = ∑i,j (ci

a)*cj
a|Φj⟩⟨Φi |. The authors compute

the average density matrix ρ̂a for the ath polaritonic eigenstate
averaged over random realizations of {EJ} as
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where ⟨···⟩ denotes the average over the random realizations.
With this, the von Neumann entropy Sa for the average ath
polaritonic state can be computed as

= [ ]S k Tr lna a aB (211)

When computing the free energy associated with each
polaritonic state, it is possible to have the “lower” polariton
lying above the dark states because of its lower entropic
contribution to its free energy as schematically depicted in
Figure 26b. Figure 26c presents numerical results for gc = 50
and 75 cm−1 represented by red and cyan dots respectively,
with N = 2000 and a Gaussian disorder with a standard
deviation of 25 cm−1 at T = 300 K. In both cases, a substantial
number of dark states lie above the dashed solid line that is
represented as EDark − ELP = T(SDark − SLP). The reordering
between dark states and the lower polariton occurs for T(SDark

− SLP) > EDark − ELP. Therefore, such dark states lie below the
“lower” polariton when considering free energy.

The size-scaling of this e%ect is semiquantitatively
investigated in Figure 26d. Note that E E N gDark LP c

while the maximum entropy of the dark states is approximately
kB log N, for large N. From Figure 26d it is evident that, for
small N, the entropic contribution could dominate the free-
energy ordering of polaritons, while at large N the energy gap
between the lower polariton and the dark states will dominate.
This can be also verified analytically by simply considering the
ratio
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Overall, due to entropic contribution to the free energy, the
lower polariton is more reactive to population transfer
processes to higher-energy states (i.e., dark states) than it is
generally anticipated when only considering their energetic
ordering.485

Coupling to the cavity can also enhance excitation energy
transfer and lead to faster energy transport, especially in
materials. Using a generalized Tavis-Cummings Hamiltonian,
ref 152 simulates the transport properties of organic crystals
when coupled to plasmonic nanoparticle arrays as illustrated in
Figure 24g. They find that the propagation length when
coupling to a cavity is significantly larger than outside the
cavity. Their simulations suggest that nonadiabatic transitions
in combination with cavity decay dominate the transport
mechanism and set an upper limit to the distance over which
energy can be transported.

Ref 141 investigates ballistic transport in exciton-polaritons
by tuning the polariton-phonon through light−matter
interactions. The polariton-phonon coupling can be modified
because the exciton couples to the phonon but the cavity
excitation does not, and as a result, the phonon coupling
strength directly depends on the excitonic character of the
polariton which can be modulated by detuning. They find that
the ballistic motion of polariton propagation can be observed
even at high exciton content (∼25% excitonic) but with a
reduced group velocity, as seen in experiments.488,489 Their
quantum dynamics simulations indicate that the source of this
group velocity rescaling originates from a transient localization
process induced by the moderately weak interactions to
phonon.141

6.2. Polariton Photochemistry in the Collective Regime

In this section, we will review theoretical works that propose
the modification of photochemical reactivity in the collective
regime. This is relevant for the present experimental
setups3,38,255 where the individual light−matter coupling
remains vanishingly small but the collective Rabi-splitting is
substantial due to the scaling by N with N as the number of
molecules.

Ref 356 shows that when a mixture of photoreactive
molecules and photononreactive molecules is strongly coupled
to the same cavity mode, photoexcitation to the lower
polariton can be used to enable reactions in the photoreactive
molecules. The main idea of this work follows from Kasha’s
rule for the molecule-cavity hybrid system155,313,356 which
suggests that polaritonic excitations relax into the lowest
energy state available to the cavity-molecule system. They use
this to funnel energy, initially deposited to the lower polariton,
to a molecule that can undergo a photochemical reaction to
energy levels below the lower polariton. Through direct on-
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the-fly atomistic simulations, the author shows that collective
strong coupling can be utilized to enable reactivity in a few
photoreactive molecules embedded in a large ensemble of
nonreactive molecules.

Ref 256 shows that chemical reactions in an ensemble of
molecules can be triggered by a single photon when all
molecules are coupled to a cavity photon mode. They
represent each molecule with a one-dimensional reaction
coordinate resembling an isomerization reaction. The ground
state potential (blue solid line in Figure 27a) is characterized
by a double-well potential with a large barrier between the left
and the right wells corresponding to the product and reactant,
respectively. As also explained before (such as in Figure 13e),
the excited state potential energy landscape for a single
molecule can be modified by coupling to cavity (with a specific
photon frequency) such that photoexcitation leads to 100%
product which is shown in Figure 27a. In such a scenario, the

initially photoexcited molecule emits a photon inside the cavity
as it reaches the local minima on the product side (the minima
originates from the |G, 1⟩ state which is the ground state with 1
photon in the cavity) on the polaritonic potential energy
surface. When multiple molecules are present in the cavity, the
photon emitted at the end of one molecule reacting (reaching
the local minima in the polariton potential energy surface) can
be reabsorbed by another molecule, which then can undergo
chemical reactivity. This is illustrated in Figure 27b where the
polariton potential energy surface for two molecules coupled to
a cavity mode is shown. The potential energy surface in Figure
27b reveals that the formation of the two product molecules
follows a downhill process, and this photochemical reactivity
can be triggered using just one photon. Thus, the quantum
yield, defined as the number of products created per photon
consumed, goes beyond unity. The same has also been shown
beyond two molecules in ref 256. Thus, the photon here acts as

Figure 27. Modification of photochemical reactivity in the collective regime. (a) Polariton potential energy surface of one molecule coupled to a
cavity mode along a molecular reaction coordinate with polaritonic states color with by photonic and excitonic character. (b) Polaritonic potential
energy surface for two molecules coupled to one cavity mode. (c) Schematic illustration of a single MgH+ molecule and an ensemble of Mg atoms
coupled to a cavity mode. (d−g) Polaritonic potentials along the dissociation coordinate of MgH+ with (d) 0, (e) 1, (f) 2, (g) 3 Mg atoms coupled
to a cavity mode. (h) Polaritonic potentials (middle panel) for N − 1 identical molecules and one perturbed molecule (schematically illustrated in
the left panel) with the character schematically illustrated in the right panel. Panels (a,b) are reproduced from ref 256 with permission. Copyright
2017 American Chemical Society. Panels (c−g) are reproduced from ref 490 with permissions. Copyright 2020 American Chemical Society. Panel
(h) is reproduced from ref 238 with permission. Copyright 2021 American Chemical Society.
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a catalyst that is recycled between successive molecules that
undergo chemical reactivity.

The mechanism described in ref 256 was confirmed through
direct quantum dynamics simulation.13 In addition to this, ref
13 showed that instead of molecules directly emitting and
absorbing a photon, molecular excitation can be exchanged
when cavity photon frequency is o%-resonant. In this case, the
molecules can exchange a virtual photon, which may be
protected from cavity loss and still lead to a quantum yield of
more than 1.

Ref 490 investigates how collectively coupling an ensemble
of Mg atoms to cavity radiation can modify chemical reactivity
in a molecule (MgH+) also coupled to cavity radiation (as
schematically shown in Figure 27c). Two relevant molecular
electronic states and two atomic electronic states are
considered in this work. The work assumes a Tavis-Cummings
Hamiltonian and focuses on the single excited subspace
spanning either a molecular or an atomic excitation or 1
photon in the cavity. The upper and lower polariton potential
energy surfaces formed for a single MgH+ molecule coupled to
a cavity mode along the dissociation coordinate q is shown in
Figure 27d. When an atom is also coupled, a middle polariton
is formed, as shown in Figure 27e (pink solid line). In the
resonant situation when the bare molecular, photonic, and
atomic transitions are degenerate (at some molecular nuclear
configuration), the scenario reduces to what is shown in Figure
24a such that the middle polariton corresponds to a dark state
(a superposition of the molecular and atomic excitation). Note
that this middle polariton is not dark for any other nuclear
configurations. When more atoms are added, new degenerate
dark states are formed, which are shown in Figure 27f,g (black
solid line). Regardless of q, light−matter coupling, or the
additional number of atoms, these dark states remain
decoupled from the rest of the polaritons and thus have no
e%ect on the reactivity of the molecule. When only a single
molecule is coupled due to the formation of the light−matter
avoided crossing (Figure 27d between blue and yellow curve)
the dissociation is suppressed and the molecule is photo-
stabilized. This work finds that this stability, however, cannot
be further enhanced with a large number of atoms N ≳ 10
coupled to the cavity. For a small number of atoms, N ≲ 10,
the stability of the molecule may be enhanced. The authors
report constructive and destructive interference at the avoided
crossings which prevent molecular dissociation and leads to
molecular stability. It is worth mentioning, as this analysis
indicates, that collective cavity coupling can only a%ect a
molecular excited state potential energy surface to a limited
extent.

Overall, one of the main conundrums of modifying chemical
reactivity in a cavity is that while the collective coupling of an
ensemble of molecules to a radiation mode and the resulting
collective Rabi-splitting is a global phenomenon (involving all
molecules spatially spread inside the cavity), a chemical
reaction is a local phenomenon in that only one molecule
undergoes chemical reactivity at a time which is largely
dictated by the potential energy surface of the single molecule.
Thus, whether or not the collective coupling to all molecules
also translates to a local modification of the potential energy
surface of a single molecule remains an open question. Ref 238
has attempted to shed light on this issue.

Ref 238. uses an ab initio QEDFT (see details in Section
3.2.3) approach to investigate a chain of nitrogen dimers
within a cavity. They find that collectively coupling all nitrogen

dimers (with the same nuclear configuration) can modify the
potential energy surface for small perturbations along the
dissociation coordinate of one molecule in the vicinity of the
uniform (such that all molecules have identical nuclear
configuration) configuration. The e%ect of a small perturbation
to one molecular nuclear configuration on the collective
coupling is illustrated in Figure 27h. For identical molecules
with uniform nuclear configurations, the collective cavity
coupling gives N − 1 dark states and 2 polaritonic (upper and
lower) bright states (as shown in Figures 1d and 24a). For one
molecule perturbed, as schematically shown in Figure 27h (left
panel), an additional polariton state appears as molecular
excitation on one molecule (the perturbed one) is o%-resonant
to the molecular excitations on the rest of the molecules or
cavity photon frequency. To understand this consider the rest
of the N − 1 molecules collectively coupled to a cavity to form
upper polariton, lower polariton, and N − 2 degenerate dark
states, which corresponds to the higher energy levels in Figure
27h. The perturbed molecular excitation (lying energetically
lower) then weakly couples to the upper and lower polaritons.
As a result, there are four types of light−matter states, in
ascending order of energy they are, (a) an upper polariton
composed of N − 1 (unperturbed) molecular excitation, the
cavity excitation (1 photon in the cavity), and of a relatively
tiny fraction of the perturbed molecular excitation, (b) a set of
N − 2 dark states composed of only N − 1 (unperturbed)
molecular excitations, (c) a middle polariton with a similar
composition as the upper polariton except for a relatively
higher contribution (still tiny) from the perturbed molecular
excitation, and (d) the lower polariton predominantly
composed of the perturbed molecular excitation with a
relatively low component of the other molecular and cavity
excitations. It is the modification of the lower polariton that
will lead to a modification of local chemical reactivity. The
authors report, for the few molecules coupled to a cavity
considered in their study, this lower polariton can indeed be
modified by collective coupling to the rest of the molecules.
However, the extent of the modification of this lower polariton
is also limited by the light−matter coupling of a single
molecule. Thus, when a single molecular coupling to the cavity
is vanishingly small, such modification of a single molecular
potential is unlikely regardless of how strongly the rest of the
molecules are coupled to the cavity.

In a related work, ref 426 investigated collective e%ects in a
Fabry−Perot-type electromagnetic environment, driven by
classical electromagnetic fields following the previous develop-
ment in ref 491. Interestingly, ref 426 shows that the short-
time product population dynamics of a model proton transfer
reaction (described by a time-dependent potential energy
surface) has a nontrivial oscillatory dependence on the number
of molecules collectively coupled to the cavity. However, it is
unclear if the collective e%ect observed in the short-time
coherent dynamics in this work necessarily translates into the
modification of (incoherent) chemical kinetics that occurs at
much longer time scales observed in the VSC experiments.

In conclusion, despite many interesting theoretical pro-
posals, modifying chemical reactivity through collective light−
matter coupling remains a challenging task. There are several
ongoing e%orts, both experimental and theoretical, that are
focused on clarifying what photochemical reactions can be
controlled through collective light−matter coupling and, in
such cases, what mechanisms allow this to occur in spite of the
minuscule coupling of individual molecules to the cavity.
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Regardless, the experimental and theoretical works up to this
point have demonstrated the potential for many molecule
photochemical reactions to be controlled through light−matter
coupling and have set the stage for future works to modify
photochemistry in the collective coupling regime.

6.3. Polariton-Mediated Charge Transfer in the Collective
Coupling Regime

In this section, we will review works that have proposed
possible ways to modify photoexcited electron transfer
reactions in the collective regime. Typical photoexcited
electron transfer reactions occur between an optically bright
donor state to an optically dark acceptor.492−496 As expected,
the bright donor states have a large transition dipole (from the
ground state) while the dark acceptors have a negligible
transition dipole. This asymmetry can be exploited in a cavity,
as cavity radiation only couples to optically bright states (here
the donor state), allowing us to tune such chemical
reactivity.8,12,379

An optical cavity can modify photoexcited electron transfer
through a wide range of mechanisms. To appreciate this,
consider the polariton states |±⟩ at resonance given by
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where |DJ, 0⟩ is the state where the Jth molecule is in its donor
excited state while the rest of the molecules are in their ground
states with 0 photons in the cavity and |G, 1⟩ represents the
molecules in their ground state with 1 photon in the cavity.

First, note the cavity-mediated electronic coupling between |
±⟩ and |AJ,0⟩ state is ⟨AJ,0|Ĥpl|±⟩. Here only the |DJ,0⟩
component in the |±⟩ is coupled to the |AJ,0⟩ state through
Ĥen. The general expression of the e%ective electronic coupling
is
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with the mixing angle ΘN (see under eq 14). Using these
cavity-modified quantities, the charge transfer rate from | ± ⟩
to all possible final states {|AJ,0⟩} is expressed as
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where to arrive at the second line, we have explicitly evaluated
the sum in the first line equation (which are N identical terms)
and used the expression of the coupling (in eq 213a). Here
ΔGc

± and λ± are the polariton-mediated driving force and
reorganization energy (between |± ⟩ and |AJ, 0⟩) respectively,
and the following e%ective electronic coupling

= =
+

V V V Vcos ; sin
N Nc DA c DA (215)

where ΘN is the mixing angle defined under eq 14. The cavity
QED process can thus mediate the charge transfer process by
modifying the driving force ΔGc

±, the reorganization energy λc
±,

and e%ective electronic coupling Vc
±. These quantities, and

consequently the ET dynamics, can be tuned by changing the
photon frequency ωc, as well as the light−matter coupling
strength ℏgc. Thus, coupling molecules to the cavity opens up
new possibilities to control ET kinetics by using fundamental
properties of quantum light−matter interaction.

Ref 8 analyzes the e%ect of collective coupling on the
modification of such excited state electron transfer reactions
via the modification of reorganization energy with the key
results shown in Figure 28a−c. The bare donor and acceptor
states are displaced along the nuclear coordinate (along
vibrational DOF) and thus have substantial reorganization
energy relative to the ground state (Figure 28a). In this
example, the donor state minima R0

D < 0 and the acceptor state
minima R0

A > 0 are shifted in opposite directions with respect
to the ground state minima (set as the origin). Thus, the
reorganization energy between the donor and acceptor states is

λD + λA− ωD
2R0

DR0
A (for ωD = ωA) where = R( )D

1

2 D 0
D 2 is

the of the donor reorganization energy relative to the ground
state with ωD as the donor-well frequency, and

= R( )A
1

2 A 0
A 2 is the acceptor reorganization energy relative

to the ground state with ωA as the acceptor well frequency.
When there are N donor−acceptor pairs whose ground-donor
transition is coupled to a cavity, the resulting polariton states
are superpositions of the donor states with 0 photons in the
cavity and the and the ground state with 1 photon in the cavity.

In pa r t i cu l a r , cons ide r the po l a r i t on s t a t e s
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1 at resonance, where |DJ,

0⟩ is the state where the Jth molecule is in its donor excited
state while the rest of the molecules are in their ground states.
The consequence of the N1/ 2 factor in front of the donor
states in eq 212 is that the reorganization energy of these
polariton states, in the strong coupling limit, is proportional to
the donor reorganization energy times 1/N. This can be seen
as a shift of the polariton parabolas toward the ground state
configuration (which is closer to the acceptor state) as N
increases (Figure 28a). In the limit of large N, this polariton
reorganization energy goes to 0, which is known as polaron
decoupling. Note that this e%ect also applies to the donor dark
states, but does not apply to the acceptor states, which are
uncoupled from the cavity in this example and thus retain their
original reorganization energy relative to the ground state.

The consequences of polaron decoupling are demonstrated
in Figure 28b,c. The reduction of the reorganization energies
of the polariton and dark states relative to the ground state
changes the reorganization energy of these states relative to the
acceptor states, thus directly impacting the Marcus transfer
rate. Figure 28b shows the e%ect of increasing the number of
molecules while maintaining the same Rabi splitting. In this
case, the increase in N, and consequential decrease in λD, cause
an increase in the cavity-modified ET rate relative to the rate
outside the cavity. However, this increased relative rate
eventually plateaus at large N since λD nears its limit of 0.
The e%ect of the ratio of λD to λA in the large N limit is
examined in Figure 28c. Depending on the relative magnitude
and sign of the reorganization energies, λD versus λA, the many-
molecule cavity may experience an increased or decreased rate
of electron transfer, with the largest rate increases seen at very
large relative λD values. This demonstrates that light−matter
coupling can have a very system-dependent e%ect on the rate
due to polaron decoupling.
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The polariton-mediated charge transfer dynamics can also be
a%ected by cavity loss, particularly in relation to the strength of
laser driving as shown in Figure 28d,e, adapted from ref 379. In
this work, a Lindblad driving/decay model was constructed to
describe charge transfer in a driven and lossy cavity (Figure
28d). Both the cavity loss rate κ and laser driving to the |G,1⟩
state κ+ were independently varied to determine their e%ects
on the charge transfer rate inside the cavity. Even for laser
driving rates orders of magnitude smaller than the loss rate, an
increase of charge transfer rate relative to outside the cavity
was observed (Figure 28e) which grew for larger relative
driving strengths. These rates also varied as a function of the
strength of the light−matter coupling relative to the cavity loss.

The collectivity of light−matter coupling can also facilitate a
di%erent arrangement of charge transfer reaction, a so-called
“super-reaction” as shown in Figure 28f,g, adapted from ref
498. In this reaction, several donor molecules are coupled to a
single acceptor molecule (Figure 28f). This arrangement allows
charge from any of the donors to transfer to the acceptor
molecule, which allows for an increase in rate as N becomes
larger. In particular, the donor−acceptor coupling in the matter
Hamiltonian has the form

= | | + | |H V ( D , 0 A, 0 A, 0 D , 0 )
j

N

J JDA
sup

DA

(216)

and the coupling between the upper polariton and the acceptor
state at resonance is

= +| | = =
+

V H
N

V
N

VA, 0
1

2 2
j

N

c DA

sup

DA DA

(217)

such that the coupling strength between the upper polariton
and the acceptor increases as N . This is in stark contrast to
the case when only individual pairs of donor and acceptor
molecules are coupled and the coupling strength scales as

N1/ (see eq 213a). Additionally, the e%ective reorganization
energy in the large Rabi splitting regime between the upper
polariton and the acceptor is λ+A = Nλ thus the reorganization
energy of the polariton states scales as N. The rate constant at
resonance is thus
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The super-reaction rate thus has a N dependence in its
prefactor as well as an N dependence in the shoulder of the
negative exponential that scales as e−N when Nλ ≫ ΔGc

±. The
consequence of these scalings is that there exists some optimal
value of N that maximizes the rate constant in eq 218 before
the e−N scaling kills the rate for larger N. The main principle
behind why cavities can enhance super-reaction systems is that
the protection of coherence between the donor molecules is
especially important to maximize transfer rates to the acceptor
molecule. Coupling to the cavity increases the coherence
between these donor molecules by encouraging delocalized

Figure 28. Modifying charge transfer reactions in the collective
regime. (a) Schematic of the ground |G⟩, donor |D⟩, acceptor |A⟩, and
polariton |±⟩ potentials. (b,c) Charge transfer rate as a function of (b)
the number of molecules N at various di%erences in vibrational energy
ΔE = ωDA − (mD − mA)ων = 0 (red), 2γν (blue), and 5γν, for

= = 2
D A

and (c) as a function of the donor energy shift λD/

λA with = 2
A

and ΔE = 0. Here, γν = 0.01ων is the vibrational
line-width, ων is the vibrational frequency with kBT = 0.1ℏων. (d)
Schematic illustration of a Fabry−Perot cavity depicting electron
transfer in the collective regime. (e) Electron transfer rate as a
function of light−matter coupling for various cavity loss rates κ. (f)
Schematic of multiple donor (D) species coupled to an acceptor (A)
inside a Fabry−Perot cavity. (g) The probability of ET from a donor
(D) to acceptor (A) as a function of time for a various number of
molecules: 0 (black), 10, (red), and 20 (blue) meV. Panels (a−c)
were adapted from ref 8 with permissions. Copyright 2016 American

Figure 28. continued

Institute of Physics. Panels (d,e) were adapted from ref 379 with
permissions. Copyright 2021 American Institute of Physics. Panels
(f,g) were adapted from ref 497 with permissions. Copyright 2021
American Institute of Physics.
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polariton and dark state formation. This ultimately leads to an
increase in the acceptor population versus outside the cavity
(Figure 28g).

Ref 499 investigates the possibility of modifying free charge
carrier generation as in a system composed of oligothiophene
donors and fullerene acceptors when coupling to the cavity.
They model the oligothiophene as a chain containing N
Frankel excitation sites (one electron and one hole is located at
a site) |XTJ⟩ ≡ |DJ

e⟩⊗|DJ
h⟩, with e and h representing an

electron and a hole, whose nearest neighbors are coupled (|
XTJ⟩ is coupled to |XTJ+1⟩). They treat the fullerene molecules
by an e%ective, coarse-grained supermolecule, such that there is
one acceptor state |A0

e⟩ which is localized on the fullerene
supermolecule. As a result, there exists N charge transfer states
|CTJ⟩ = |A0

e⟩⊗|DJ
h⟩, that is electron localized on the fullerene

(supermolecule) and a hole localized on the Jth site on the
oligothiophene, which couples to its neighboring |CTJ+1⟩ state
(similar to the |XTJ⟩). In their analysis, they restrict themselves
within the single excited subspace such that when considering
the cavity they are considering the subspace spanning {|XTJ,
0⟩, |CTJ, 0⟩, |G, 1⟩}, where |G, 1⟩ is ground state of the matter
with 1 photon in the cavity. Due to the light−matter
interactions, each |XTJ, 0⟩ couples to the |G, 1⟩} state. Finally,
|XT0⟩ is coupled only to the |CT1⟩ state as the fullerenes are
assumed to be spatially close to the i = 1 site of the
oligothiophene.

The main idea of this work is to use the collective coupling
of |G, 1⟩ to the {|XTJ, 0⟩} states to enhance free charge carrier
generation. Due to the collective Rabi-splitting that scales as
N where N (see Figure 1d) is the number of sites, a lower

polariton, upper polariton, and N − 1 dark states are formed.
Because the lower and upper polaritons are energetically
shifted, they can be brought closer or further away from the {|
CTJ, 0⟩} states thereby modifying the free charge carrier
generation. They show that by such secondary hybridization,
that is between the lower polariton and the |CT1, 0⟩, the free
charge carrier generation is enhanced, as these two states are
energetically brought closer through collective light−matter
coupling. However, they also show that when considering
cavity loss, the generation of free charge carrier is actually
suppressed as the lower polariton has significant photonic
character. Overall, they find that free charge carrier generation
can be enhanced at short time scales (shorter compared to the
cavity lifetime) but is suppressed due cavity loss at longer
times.

6.4. Collective EBects in VSC-Modified Reactivities

The VSC experiments4,17,37,41,130 happen intrinsically in the
collective coupling regime, where there are a large number of
molecules (often >1010) coupled to the cavity modes and the
light−matter coupling strength for each molecule is relatively
small. Unfortunately, most theoretical works are restricted to
the one molecule limit, which requires a nonphysical light−
matter coupling strength or an extremely small cavity size.14,85

However, dealing with a model system with many molecules
coupled to a cavity is challenging for both direct MD
simulations and theoretical derivations. There have been
quite a few attempts on explaining the mysterious collective
e%ects, but more theoretical work is needed to provide a
satisfactory answer.

The VSC Rabi frequency in eq 195 is only valid for the
single-molecule case. The result can be generalized for N
identical molecules {RJ} coupling to q̂c. The light−matter

Hamiltonian for N molecules coupled to one cavity photon
mode (in the single excited subspace) is given by,
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where |ψG⟩⟨ψG| is the ground state of the matter with EG({RJ})
as the ground state potential energy surface and μG ({RJ}) is
the ground state permanent dipole. For noninteracting

molecules, we have { }E R R R( ) ( )G J J J

1

2 0
2

0 and μG

({RJ}) ≈ Nμ0 + ∑Jμ0RJ. Note the term Nμ0 can be removed

by the translation + ·q q NA
c c

2

0 0
c

using a displace-

ment operator for qc. With this simplification, the expression of
the collective Rabi-splitting for the many-molecule case can be
obtained by defining a collective molecular coordinate

=R R
N J JB

1 which couples to the q̂c with a collective

coupling scaled by N . At the resonant condition of ωc = ω0,
the Rabi splitting ℏΩR in the collective coupling regime can be
expressed as85,431,441
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where N is the total number of molecules coupled to the cavity
mode, and the collective normalized coupling strength η

characterizes the light−matter coupling strength. Setting N = 1
will go back to the single-molecule case. Note that the above
relation between ΩR and η only holds under the linear
approximation of the dipole operator, and it breaks down for
ultrastrong coupling (USC) regime and beyond when η >
0.1.47

While the scaling of the Rabi-splitting with the number of
molecules N is well understood theoretically and verified
experimentally, it is not clear how VSC modification of
chemical reactivity could depend on N. Currently, there is no
cohesive theory that fully explains the range of phenomena
experimentally observed for VSC reactions in the collective
regime. However, many groups have made important and
notable advances to this field that hopefully further elucidate
the problem at hand and inspire future advances in the field.
With that in mind, the rest of this section discusses many of
these creative theoretical advances in VSC, reviewing the
methods, results, and drawbacks of each one of these theories.

Campos-Gonzalez-Angulo and Yuen-Zhou440 performed a
normal-mode analysis of a model system where molecules were
isotropically distributed and coupled to the same cavity mode.
The Hamiltonian of the model system is shown in eq 221 as
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where M is the mass of the molecule, N is the total number of
molecules, Eg(RJ) is the ground-state potential energy surface
of the J-th molecule, A0 characterizes the strength of the light−
matter coupling strength, ϵ is the polarization vector of the
cavity field, and μ(RJ) is the dipole moment of the J-th
molecule. When one molecule is in the transition state, the
Hamiltonian can be rewritten in an e%ective 3-mode

expression x( ), where x = {R‡, RB, qc} represents the
coordinates of the reactive molecule, the collective bright
mode, and the photon mode. To compute the normal-mode
frequencies, the 3-mode Hessian matrix is written as,
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where ω0 is the reactant frequency, ω‡ is the barrier frequency,
μ0’ is the slope of the permanent dipole at the reactant well, μ‡’
is the slope of the permanent dipole at the transition state, ⟨···⟩

denotes the ensemble average, and = A
N0 0

2

0

2

1

c

3

represents the coupling between the cavity mode and the
collective bright mode. Here, we have introduced

=
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A
2

0
c

3

which characterizes the light−matter coupling

strength. Clearly, the coupling strength between the reactive
molecule and the cavity mode is limited by (single-molecule
coupling strength). As a result, the reaction rate will not
depend on the number of molecules. The same conclusion is
drawn when using the Pollak-Grabert-Han̈ggi theory that
extends the MTST to the energy di%usion-limited regime.500

Then the normal-mode frequencies are used to compute κN,
which is the ratio between the rate constant of N molecules
inside the cavity and the TST rate of one molecule outside the
cavity,
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As the denominator scales with respect to the number of
molecules N, when N is large, κN → 1. In other words, when N
is large (N = 109 in the original work), the reaction rate has no
obvious dependence on the coupling strength or the scale of
the dipole moment. Note that the single-molecule limit of such
theory is equivalent to what was presented in ref 85 when
considering the dipole self-energy term.

Galego and co-workers441 performed classical molecular
dynamics simulations to explore a system of many molecules
distributed around a sphere nanoparticle, where the permanent
dipoles of molecules are aligned along the direction of the field
of the sphere’s z-oriented dipole mode. The simulation results
show that both the dipole-sphere interaction (between the
molecules and the nanosphere) and the dipole−dipole
interaction (between the molecules) have positive contribu-
tions to the potential energy barrier of the whole system, so
that the barrier increases almost linearly with respect to the
number of molecules coupled to the sphere. Consequently, the
TST rate will decrease exponentially due to the monotonic

increase of the reaction barrier. Even though the authors find
rate suppression in the perfectly aligned case, the frequency
dependence (resonant e%ect) is obviously missing.

Nitzan and co-workers501 used classical molecular dynamics
to simulate a model system with many CO2 molecules coupled
to a cavity mode shown in Figure 29a. The strong coupling is
formed between the cavity mode and the C−O bond
stretching mode in the CO2 molecules. A fraction of the
molecules are “hot”, which are thermally activated and have
higher kinetic energy. The rest CO2 molecules are at room
temperature, which are called “thermal” molecules and act like
a thermal bath to dissipate excess energies from the “hot”

Figure 29. Cavity modification of ground state kinetics in the
collective coupling regime. (a) A schematic illustration showing some
“hot” CO2 molecules (with higher thermal energy) surrounded by a
thermal bath of other CO2 molecules which are at room temperature.
All these molecules collectively couple to a cavity mode. (b) Fitted
vibrational energy relaxation rates as a function of the cavity mode
frequency. The enhancement of energy dissipation is in resonance
with the cavity frequency. (c) While the number of CO2 molecules in
the thermal bath (Nsub) is fixed, increasing the number of hot
molecules (Nhot) enhances thermal dissipation both inside and outside
the cavity. However, the enhancement inside the cavity increases
faster with respect to Nhot. (d) A rendering shows a model system
where a reactive molecule is coupled to some solvent molecules that
are coupled to the cavity mode. (e) Fixing the total number of solvent
molecules (N = 2,500), increasing per-molecule light−matter
coupling will further suppress the reaction rate. Note that the
suppression is in resonance with the cavity frequency. (f) Reaction
rate as a function of the total number of solvent molecules (N) at
di%erent fixed per-molecule light−matter coupling strengths (shown
as the numbers). The reaction rate decreases monotonically in all
cases. Panels (a−c) are adapted with permission from ref 501.
Copyright 2021 Wiley-VCH. Panels (d−f) are reproduced with
permission from ref 116. Copyright 2022 American Institute of
Physics.
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molecules. Figure 29b shows that inside the cavity the fitted
vibrational relaxation rates are much larger than the rates
outside the cavity. This shows that polaritons can facilitate the
intermolecular vibrational energy transfer between the hot
CO2 molecules and the thermal bath. This e%ect is especially
strong at the resonant condition where the cavity frequency is
close to the C−O bond stretching frequency. Figure 29c shows
that while the total number of molecules (Nsub) is fixed,
increasing the number of “hot” molecules results in faster
energy dissipation both inside and outside the cavity. However,
the increase of decay rate is faster inside the cavity, so the
di%erence between the two rates increases as well, so this
cavity-enhanced energy transfer depends on the Rabi splitting
and scales with the number of hot molecules. Although
polaritons are always transiently excited and able to mediate
the energy transfer, the modification on the average relaxation
rates becomes negligible when the total number of CO2

molecules exceeds a certain number (Nsub > 104 as reported
in the work).

In ref 116, the authors developed a model system, shown in
Figure 29d, where a reactive molecule couples to many solvent
molecules and these solvent molecules then couple to the
cavity mode. The model Hamiltonian is written as
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where Eg(R) is modeled as
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The solute molecule is modeled as a double-well potential
UM (RM) = aRM

4 - bRM
2 . At the top of the barrier
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2 2. Further, the total dipole of

the system is μG (R) = ∑J = 1
N μJ (RJ) ≈ ∑JμJ’ RJ (where μJ′ =

dμG (R)/dRJ), and we assume that μM(RM) = 0. Here, cJ is the
reactant-solvent coupling constant and ωJ is the solvent
frequency. For simplicity, we assume that the solvent
molecules are identical, such that cJ = cs, ωJ = ωs and μJ′ =
μs′. Note that these solvent molecules are aligned anisotropi-
cally around the reactive molecule. Similar to the previous
work in the single-molecule limit,85 the GH theory can be
applied to this system to study the reaction rate suppression
due to the cavity mode. However, unlike in the single molecule
limit, the suppression observed here will also depend on the
solvent frequency ωs (in addition to the barrier frequency ω‡)
and the total number of solvent molecules N. At the dividing
surface RM = RM

‡ , the Hessian matrix in the 3-mode x subspace
is shown in eq 227,
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where x = {RM
‡ ,RB,qc} represents the coordinates of the reactive

molecule, the collective bright mode, and the photon mode. ω‡

is the barrier frequency of the reactive molecule and

= A
2

0 s

c

3

. Note the interesting structural di%erence

between eq 227 and eq 223. In eq 227, while both the o%-
diagonal coupling terms scale by N , in eq 223 only one o%-
diagonal term scales by N . The presence of this additional
N in eq 227, which appears due to intermolecular

interactions (solvent−solute interactions) is the origin of the
collective “resonant” suppression shown in Figure 29e. This
also indicates that such intermolecular interactions might be
one of the missing pieces for solving the mystery of VSC in the
collective coupling regime.

The normal-mode frequencies can be obtained by solving eq
227 and the transmission coeOcient κ can be computed by
plugging these normal-mode frequencies into eq 202. Figure
29e shows the trend of κ/κ0, where κ is the transmission
coeOcient inside the cavity and κ0 is the transmission
coeOcient outside the cavity, concerning di%erent light−
matter coupling strengths. When the total number of solvent
molecules is fixed (N = 2500), the reaction rate is suppressed
at all tested coupling strengths, and there is a clear resonant
structure for the cavity frequency. The rate profile, similar to its
single molecular counterpart85 presented in Figure 21b, shows
a much broader cavity photon frequency dependency than is
observed in experiments. However, note that the resonant
photon frequency (where the highest cavity modification is
observed) is related to ωs as well as the barrier frequency ω‡.
This is in contrast to the single molecule scenario where the
resonant photon frequency did not depend on any (stable)
molecular vibrational frequency. Further, it demonstrates the
collective behavior, as one increase the number of solvent
DOF, the VSC modification increases.. Figure 29f shows the
cavity-modified reaction rate with respect to the number of
solvent molecules, while the cavity frequency is fixed at ωc =
200 cm−1. At a certain per-molecule light−matter coupling
strength, increasing the number of molecules will further
suppress the reaction rate. Additionally, the authors also
explored the e%ects of cavity loss and found that cavity loss can
further enhance the dissipation capability of the cavity mode,
which will lead to more suppression of the reaction rate.116

Note that the setup of this model system is not directly related
to the experimental setups shown in Figure 19a. Here, N
denotes the number of solvent DOF (which are also
collectively coupled to the cavity) directly coupling to the
reactive molecule, while the experiments in Figure 19a suggest
the reactivity depends on the number of reactive molecules (or
their concentration in Figure 20b) collectively coupled to the
cavity. Nevertheless, there are VSC experiments that directly
couple cavity mode to the solvent DOF, whereas the solvents
are then coupled to a solute molecule that undergoes reactions.
In Figure 19c, the rate constant is enhanced when the cavity
mode is collectively coupled to the solvents, which are also
coupled to the reactive molecules. In a very recent experiment
of VSC modified Urethane Addition Reaction,420 it was also
found that when collectively coupling the solvent DOF with
the cavity mode (where the solvent also interacts with the
reactive molecule), the rate constant is suppressed, which is in
favor to the theoretical results proposed here. We should
emphasize that by no means does this theoretical work
provides the ultimate answer to the mysteries of the VSC
modification of the reactivities. We envision that this
theoretical work brings us one step closer to finally resolving
the mysteries of VSC enabled chemistry demonstrated in
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recent experiments4,17,18,41,131,432 by demonstrating both the
collective coupling e%ect and the cavity frequency dependent
modification of the rate constant.

Finally, ref 45 investigated the VSC e%ect using a model that
couples radiation modes to the vibrational degrees of freedom
in nonadiabatic electron transfer reaction. The authors in that
work considered an ensemble of molecules placed inside an
optical cavity (schematically shown in Figure 30a) with

quantized radiation described by a single cavity mode. Each
molecule has a reactant (donor) |RJ⟩ and a product |PJ⟩
electronic state (with J as the index for the molecule) and they
are coupled to a high-frequency molecular vibration such that
the electron transfer rate (reactant to product) constant is
computed using the MLJ theory. The cavity excitation is
assumed to be coupled to the vibrational excitation but only on
the product such that the light−matter coupling term read
g�Jaĉ

†aî |PJ⟩⟨PJ |+h.c. where gc is the light−matter coupling
strength. In other words, a product state with no vibrational
excitation and one photon in the cavity c

†|PJ⟩⊗|0⟩ (where aĉ
† is

the cavity photon creation operator) is coupled to the product
state with a vibrational excitation and no photons in the cavity
aĴ
†|PJ⟩⊗|0⟩ where |0⟩ represents the vacuum state of the cavity

and the molecular vibrations. For N identical molecular
vibrations, only one collective bright vibration, representing

delocalized vibrational excitation over all molecules, can be
shown to hybridize strongly to the cavity excitation, such that

the light−matter coupling can be written as +
†Nga a h c.Bc

.

where = | |
† †
a a P PB N J J J J

1 . At the same time, N − 1 dark

vibrational excitations remain uncoupled from the cavity
photon mode. The resulting hybrid vibro-polaritonic states
are schematically illustrated in Figure 30b.

Figure 30b presents the vibro-polariton energies along a
reaction coordinate qs. Here the driving force between the
reactant state (blue solid line) |RJ⟩ and the product state
(orange solid line) |PJ⟩ is in the Marcus inverted regime. Due
to the light−matter coupling between aB̂ and aĉ two light−
matter hybrid states, lower and upper polariton states, are
formed which are indicated as red and violet solid lines. The
relative driving force between the reactant state and the lower

polariton thus depends on the light−matter coupling N

where N is the number of products. Thus, the chemical rate
increases as more products are formed. Meanwhile, the relative
driving force between the reactant state and (N − 1) excited
vibrational dark states (green solid line) remains the same as
the uncoupled case. The chemical rate modification as a

function of the light−matter coupling Ng and the detuning
Δ = ωc − ωp, where ωp is the frequency of the vibrational
mode on the product state, is shown in Figure 30c. The bell-
shaped rate curves are because as the Rabi splitting increases,
the activation energy of the lower polariton decreases, thus
making this channel dominant.45 The authors find a parameter
range where, despite the vastly greater number of dark-state
channels (N − 1) than polaritonic ones, the latter controls the
reaction’s kinetics due to their lower activation energies.45

Using a similar model system, ref 498 showed that such
nonadiabatic ground state electron transfer reactions can also
be suppressed in addition to being enhanced as shown in ref
45. The authors in ref 498 point out the two main factors in
modifying such reactions: (i) through the modification of the
driving forces due to the shifts of the energy levels induced by
the light−matter coupling and (ii) through the modification of
the Franck−Condon factors that rescale the diabatic coupling.
They find that when the cavity coupling for the reactant and
product states di%er significantly from each other (as was the
case in ref 45) the cavity coupling leads to an increase in
chemical rate. On the other hand, when cavity coupling for the
reactant and product states are similar in magnitude the
modification of the Franck−Condon factors leads to
suppression of chemical kinetics, especially at ultrastrong
vibrational coupling regime.

Meanwhile, ref 145 points out that a realistic cavity contains
a distribution of cavity modes and not just kx = 0 mode (see
Figure 4). When considering the full polariton dispersion the
authors find a negligible e%ect in the VSC regime for
nonadiabatic electron transfer rate for the type of model
system studied in ref 45. Specifically, while ref 45 implicitly
assumes that the density of states consists of three delta
functions which are at the lower and upper polariton and the
dark states, ref 145 generalizes their approach to a continuous
density of states of polaritons and dark states. By doing so they
find that the overall chemical reaction rate is proportional to an
energy integral rather than a sum over three discrete
contributions. The net cavity modification of chemical rate
under such circumstances is negligible. This work also

Figure 30. Cavity modification of nonadiabatic electron transfer
reaction through vibrational strong coupling. (a) Schematic
illustration of an ensemble of molecules placed inside an optical
cavity. (b) Vibro-polariton potential energy surfaces of the molecule-
cavity hybrid system. (c) Chemical rate constant as a function of
cavity detuning Δ and total light−matter coupling strength Ng .
Reproduced from ref 45 under the CC BY license.
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illustrates the importance of studying cavity-mediated chemical
reactions beyond a single cavity mode.

Overall, despite many theoretical e%orts, a clear theoretical
explanation of the experimentally observed modifications of
ground-state chemical reactivity is unavailable. However, these
studies will undoubtedly inspire future research that may 1 day
solve the mysteries of cavity-modified ground-state chemical
reactivity.

7. CONCLUSIONS AND FUTURE DIRECTIONS

As the experimental demonstrations of molecular cavity QED
in the strong and ultrastrong coupling regimes become more
frequent and accessible to the broader community, there is a
need for the development of new theoretical tools that can
accurately and eOciently describe such complex light−matter
interactions found in experiments. This review summarizes
some of these exciting theoretical advances in polariton
chemistry, showcasing methods ranging from improvements
in the fundamental framework and description of these hybrid
systems to the computational challenges, techniques, and
applications spanning from modifying reactivity in the ground
state to understanding spectral signatures of excited state
photochemistry.

In Section 2, we discussed the rigorous theoretical
background of molecular cavity QED. We first reviewed the
basic theory of the molecular Hamiltonian (Section 2.1) and
quantum electrodynamics (Section 2.2). Section2.3 further
reviews di%erent forms of the QED Hamiltonians under
di%erent gauges and provides a clear connection among them
through gauge transformations. Even though the theory of
QED goes back to the midtwentieth century, we discussed
recent advances made in resolving gauge ambiguities to
describe interactions between light and matter. In particular,
Section 2.4 highlighted several possible causes of such
ambiguities and their resolutions, which enable consistent
physics regardless of the chosen gauge. In Section 2.5, we then
connected the most rigorous QED Hamiltonian with various
approximate Hamiltonians commonly used in the quantum
optics community, which can be achieved through intuitive
arguments and simple mathematical approximations of the
rigorous Hamiltonian. Finally, in Section 2.6 we discussed
light−matter interactions between many molecules and many
cavity modes inside a Fabry−Peŕot cavity, which is one of the
most experimentally relevant setups.

In Section 3, we discussed the recent progress of ab initio
polariton chemistry calculations, where one aims to solve
polariton eigenvalue problems with real molecular systems.
Particularly, we reviewed two approaches for performing these
calculations: the parametrized QED (Section 3.1) approach
and the self-consistent QED (Section 3.2) approach. Along
with a brief overview and direct comparison of the two
methods (Section 3.3.3), in Section 3.3, we showcased recent
works that have implemented these approaches and demon-
strated their ability to calculate chemically relevant properties
(Section 3.3.3) in both the excited (Section 3.3.3) and ground
polaritonic states (Section 3.3.3).

In the second half of this review, we discussed theoretical
and computational applications that use the approaches
outlined in the previous sections. Experiments have shown
that, by tuning the cavity photon frequency and light−matter
coupling between the quantized cavity photons and electronic
transitions, photochemical reactions can be controlled inside
an optical cavity. In Section 4, we revealed how through

excited state nonadiabatic polariton dynamics simulations,
theorists, inspired by experiments, have discovered new ways
of modifying and enabling photochemical reactivity by
exploiting quantum light−matter interactions. In Section 4.1,
we briefly outlined some of the quantum dynamics approaches
used for simulating polariton dynamics exactly and approx-
imately. Then, in Section 4.2, we introduced intuitive schemes
and possible approaches for modifying and manipulating
photochemistry with the readily available theoretical tools from
cavity QED. Following this, in Section 4.3, we showed how ab
initio on-the-fly simulations can validate these schemes toward
modifying photochemical reactivity in real molecular systems,
thereby revealing previously unknown basic principles of how
polaritons can be used to manipulate excited state features and
dynamical properties. Further, in Section 4.4 we show that the
same ideas can be applied in the modification of photoinduced
charge transfer reactions. We then reviewed works in Section
4.5 that demonstrate the possibility of introducing new conical
intersections through light−matter interactions and their
impacts on excited state processes. In Section 4.6, we showed
that the choice of the initially prepared quantum state of the
cavity photon can also be used to directly control photo-
chemistry. We concluded this section with a discussion in
Section 4.7 on the important role of cavity loss in these excited
state processes and illustrated how the nonideal nature of real
experiments (e.g., partially transparent mirrors) can inhibit or
enhance cavity control of photochemistry.

If the cavity resonance is instead tuned to the vibrational
(i.e., instead of electronic) transitions in the molecule, referred
to as the vibrational strong coupling regime, enhancement and
suppression of ground state chemical reactions have been
experimentally observed. We presented a few recently
proposed theoretical explanations of this (largely unresolved)
phenomenon in Section 5. Within this section, we first
introduced a model Hamiltonian in Section 5.1 for a single
molecule coupled to a cavity radiation mode and showed in
Section 5.2 why simple one-dimensional classical transition
state theory (TST) fails to predict any modification to the
chemical reactivity when coupling to the cavity for this model.
In Section 5.3 and 5.4, we further developed the model and
showed how Grote−Hynes (GH) rate theory (or the
multidimensional TST), which also treats all degrees of
freedom (DOFs) classically, predicts a suppression of chemical
reactivity albeit much broader than what is observed in
experiments, as well as it predicts the rate suppression when
the cavity frequency matches the reaction barrier frequency
(which has not been observed by any experiments). Never-
theless, the GH theory provides a conceptually simple idea−
the so-called solvent caging e%ect, where the cavity radiation
mode acts as a non-Markovian solvent DOF − to explain the
cavity-mediated suppression. Within this section, we also
showed that approximate quantum corrections to the GH
theory tend to depart further from experimental observations
while exact quantum dynamics simulations make predictions
much closer to experiments and depict similar features in the
chemical rate that are sharply peaked at resonance conditions.
In Section 5.5 we showed that the cavity photonic mode,
which was shown to act as a solvent DOF in Section 5.4, can
also enhance the chemical reactivity when solvent-molecule
interactions are weak and can be understood using the Pollak-
Grabert-Han̈ggi rate (PGH) rate theory, which classically
treats all degrees of freedoms. Again, we show that the direct
quantum dynamics result (at the single molecule limit) shows a
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sharp resonant cavity modification (enhancement) of chemical
reactivity, which is visually similar to the experiments. Finally,
to conclude this section, we described in Section 5.6 how the
cavity can also modify thermally activated nonadiabatic
electron transfer reactions. One major deficiency of many of
these theoretical works is that they operate in the single
molecule limit, whereas the experiments operate in the
collective coupling regime with a large ensemble of molecules
simultaneously coupled to the cavity radiation. To this end, in
Section 6, we reviewed theoretical works that operate in the
collective coupling regime.

Overall, with the recent new capabilities demonstrated in
experiments, there has been a recent push to rigorously
simulate polariton systems in the strong coupling regime. This
has led to a number of theoretical innovations that start to
explain and predict these experimental results. However, there
are still many mysteries to solve as the systems get increasingly
more complex with more molecules and cavity modes.

From the theoretical perspective, the single-molecule case
has made significant progress due to the relative numerical
simplicity of the simulations compared to highly expensive
many-mode (with many Fock states) and many-molecule
(with many electronic levels) simulations that have yet to be
fully explored. From the experimental perspective, single-
molecule spectroscopy in plasmonic cavities is extremely
challenging and has not been widely achieved; however, the
results stemming from such simple hybrid systems will a%ord a
much greater leap forward in understanding.

The theoretical understanding of how cavities can control
photochemical reactions in the collective coupling regime has
also seen significant progress, particularly for polariton-
mediated electron transfer reactions. Important experimental
work remains to confirm the collective coupling mechanisms
proposed by theorists and to further demonstrate changes in
photochemical reactivity in the collective coupling regime for a
wider variety of reactions.

Despite the recent progress discussed in Section 6, we still
do not clearly understand the mechanisms of collective
vibrational strong coupling and their modification of
reactivities, or the available mechanisms that can take
advantage of the collective coupling of forming polariton that
changes photochemistry reactivities. In Section 6.1, we review
works that elucidate how collective coupling can modify
photophysical properties, such as energy/carrier transport,
population dynamics, and linear and nonlinear spectroscopy.
On the other hand, in Sections 6.3 and 6.2, we show how
photochemical reactivity may be modified by collective e%ects.
Finally, we discuss the mysteries of modifying chemical
reactivity in the vibrational strong coupling in Section 6.4
and illustrate a few theoretical works that have attempted to
address this issue. This cutting-edge research has many
opportunities for both theorists and experimentalists to
contribute and discover new physics. In this manner, much
work is needed from both sides to demystify these collective
e%ects and unlock their potential applications.

The purpose of this review was to provide fundamental
knowledge for the readers in the emerging field of polariton
chemistry. Through the examination of the recent literature,
this review aimed to provide, in a single location, much of the
current working theoretical knowledge of polariton chemistry
for the continued e%orts of both the chemistry and quantum
optics communities to actively participate in this exciting new
research direction. Hopefully, this work can inspire the

discovery of new principles and mechanisms of chemical
reactions that take advantage of intrinsic quantum light−
matter interactions and facilitate a quantum leap in chemistry.
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