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Abstract: We present a theory that explains the resonance

efect of the vibrational strong coupling (VSC)modiûed reac-

tion rate constant at the normal incidence of a Fabry–Pérot

(FP) cavity. This analytic theory is based on a mechanistic

hypothesis that cavity modes promote the transition from

the ground state to the vibrational excited state of the reac-

tant, which is the rate-limiting step of the reaction. This

mechanism for a single molecule coupled to a single-mode

cavity has been conûrmed by numerically exact simulations

in our recent work in [J. Chem. Phys. 159, 084104 (2023)].

Using Fermi’s golden rule (FGR), we formulate this rate

constant for manymolecules coupled to many cavity modes

inside a FP microcavity. The theory provides a possible

explanation for the resonance condition of the observedVSC

efect and a plausible explanation of why only at the normal

incident angle there is the resonance efect, whereas, for an

oblique incidence, there is no apparent VSC efect for the

rate constant even though both cases generate Rabi splitting

and forming polariton states. On the other hand, the current

theory cannot explain the collective efect when a large

number of molecules are collectively coupled to the cavity,

and futurework is required to build a completemicroscopic

theory to explain all observed phenomena in VSC.
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1 Introduction

Recent experiments [1]–[6] have demonstrated that chem-

ical reaction rate constants can be suppressed [1]–[4],

[7]–[9] or enhanced [5], [6], [10] by resonantly coupling

molecular vibrations to quantized radiation modes inside a

Fabry–Pérot (FP) microcavity [11]–[13]. This efect has the

potential to selectively slow down competing reactions [3]

or speed up a target reaction, thus achieving mode selec-

tivity and ofering a paradigm shift in chemistry. Despite

extensive theoretical eforts [8], [14]–[41], the fundamental

mechanism and theoretical understanding of the cavity-

modiûed ground-state chemical kinetics remain elusive [14],

[42]–[44]. To the best of our knowledge, there is no uniûed

theory that can explain all of the observed phenomena

in the vibrational strong coupling (VSC) experiments [14],

including (1) The resonance efect, which happens when the

cavity frequency matches the bond vibrational frequency,

ÿc = ÿ0, but also only happens when the in-plane photon

momentum is k‖ = 0 (the normal incidence), (2) The col-

lective efect [1], [4], [5] which is the increase in the mag-

nitude of VSC modiûcation when increasing the number

of molecules N (or concentration N∕), (3) The driving by
thermal üuctuations without optical pumping [1], [3]. (4)

The isotropic disorder of the dipoles in the cavity, which is

assumed in experiments with many molecules [14].

We aim to develop a microscopic theory to explain

these observed VSC efects, especially focusing on under-

standing the resonance efect under normal incidence.

Experimentally, only the resonance at normal incidence

(k‖ = 0) gives rise to VSC efects on the rate constant, while

a red-detuned cavity that has a light–matter resonance at

k‖ > 0 (oblique incidence) does not give any VSC efect. This

observation strongly suggests that forming Rabi splitting

is not a suocient condition for achieving the VSC-modiûed

rate efect. Despite recent theoretical progress [18], [45], [46],

the resonant condition under normal incidence remains an

unresolved question.

In this work, we generalized our recently developed

analytic Fermi’s golden rule (FGR) rate theory of VSC in

Ref. [47] by incorporating many molecules and many cavity

modes for both 1D FP cavities (with only 1D in the in-plane
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direction) and 2D FP cavities (with 2D in the in-plane direc-

tion) cases. In particular, we evaluated the photonic mode

density of states (DOS) inside a 1D FP cavity and found that

it gives rise to a van-Hove-type singularity at k‖ = 0; for a 2D

FP cavity, it is found that due to the cavitymodeswith k‖ > 0

propagating outside a given cavity mode extent area, the

modiûed photon mode DOS still remains dominant around

the bottom of the dispersion band where k‖ = 0, which are

the keys to account for the normal incidence condition of the

VSC-modiûed chemical reaction rate constant. The current

theory provides a possible explanation of the resonance

condition for the observed VSC efect and provides a micro-

scopic understanding of why only at the normal incident

angle there is a resonance efect.

2 Model system

Let us considerN identical molecules coupled to many radi-

ation modes inside a FP cavity,

Ĥ =

N∑

j=1

P̂2
j

2M
+ V(R̂ j)+ Ĥÿ + Ĥ loss(q̂k, x̂k,ÿ )

+
∑

k

p̂2
k

2
+

ÿ2
k

2

(
q̂k +

ÿc
ÿk

⋅

N∑

j=1

ÿ̂(R̂ j) ⋅ êk

)2

, (1)

where R̂ j is the reaction coordinate for the jth molecule,

V(R̂ j) is the ground state potential for each reaction

molecule (a double well potential for this paper as is typ-

ical for VSC simulations [22], [27], [34], [39]), and ÿ̂(R̂ j)

is the dipole operator associated with the ground elec-

tronic state of reaction coordinate R̂ j (electronic permanent

dipole). In particular, ÿ j,k is the angle between ÿ̂(R̂ j) and

the ûeld polarization direction êk, where we only consider

transverse electric (TE) polarization, such that ÿ̂(R̂ j) ⋅ êk =

ÿ(R̂ j) cosÿ j,k. A schematic illustration is provided in the top

panel of Figure 1.

The photonic wavevector k (also referred to as the ûeld

propagation direction) has two components, one perpendic-

ular to the cavity mirror k⊥, and the other coplanar with

the cavity k‖. The FP cavity has the following dispersion

relation,

ÿk(k‖) =
c

nc

√
k2
⊥
+ k2‖ =

ck⊥
nc

√
1+ tan2ÿ, (2)

where c is the speed of light in vacuum, nc is the refractive

index of the cavity, c∕nc is the speed of the light inside the

cavity, and ÿ is commonly referred to as the incident angle

(where tanÿ = k‖∕k⊥), which is the angle of the photonic

mode wavevector k relative to the norm direction of the

k∥

k⊥

̂e

θ

k∥

k⊥k
e

θθ

(a) (b)

Figure 1: Top: Schematic illustration of the normal incidence condition

for VSC-modified reactions. Bottom: (a) Schematic illustration of the

dispersion relations of the cavity (red dashed line), the vibrational energy

(gray dashed line), and hybrid polariton states (solid lines). (b) Schematic

plot of reaction rate modification as a function of the cavity frequencyÿc.

mirrors (see the top panel of Figure 1 for a schematic illus-

tration). In most of the VSC experiments, nc ≈ 1.5 for the

solution used inside the microcavity. Because nc ≈ 1, it will

not inüuence the order of the magnitude of our discussion.

For simplicity, we explicitly drop nc throughout this paper.

Later, whenever we write c in an expression we should

replace it with c∕nc, in principle. When k‖ = 0 (or ÿ = 0),

the photon frequency is

ÿc ≡ ÿk(k‖ = 0) = ck⊥. (3)

The cavity frequency ÿk in Eq. (1) is associated with

the wavevector k, according to Eq. (2). Furthermore, q̂k =√
ℏ∕(2ÿk)

(
â†
k
+ âk

)
and p̂k = i

√
ℏÿk∕2

(
â†
k
− âk

)
, âk and

â†
k
are thephotonic ûeld annihilation and creation operators

formodek, respectively. The light–matter coupling strength

is

ÿc =
√
1∕(ÿ0), (4)

where ÿ0 is the efective permittivity inside the cavity and
is the cavity quantization volume. Each reaction coordinate

R̂ j is coupled to its own local phonon bath described by Ĥÿ .

Each cavity mode q̂k couples to its independent bath {x̂k,ÿ},

accounting for the cavity loss. On the other hand, q̂k also

couples to the dipole of each molecule ÿ̂(R̂ j) with a relative

angle ÿ j,k. For 2D-FP cavities, we further deûne the angle

between the dipole and the k‖ plane as ÿ j which varies
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from 0 to ÿ, and the angle between the ûeld polarization

and the projection of the dipole on the k‖ plane as ÿ j,k

which varies from 0 to 2ÿ. It is easy to prove that cos ÿ j,k =

cos ÿ j ⋅ cos ÿ j,k. For 1D FP cavity, ÿ j,k will reduce to ÿ j

since ÿ j,k = 0. Details of the Hamiltonian and a schematic

illustration of the orientations of the dipole operator and

ûeld polarization vector are provided in the Supplemen-

tary Material, Section I.

Figure 1(a) presents a schematic illustration of the cav-

ity dispersion relation in Eq. (2) (red dashed line). The

molecular excitation dispersion (black dashed line) is insen-

sitive to the incident angle and is a straight line, with

energy ℏÿ0 (see Eq. (7)). These two dispersions hybridize

due to the light–matter interactions, generating polari-

ton dispersions (the upper and lower branches with solid

curves) with the color coding indicating the character of

the states, with purely photonic (red), purely vibrational

(black), and hybridized (yellow to orange). Figure 1(b)

presents a schematic illustration of the typical cavity detun-

ing dependence of the rate constant modiûcations, with

the highest intensity of the modiûcation arising at the fre-

quency when ÿc = ÿ0 (resonance condition at the normal

incidence).

In this paper, we consider a reaction using a thermal

barrier crossing model. Figure 2(a) presents the ûrst few

vibrational states of the double well model, where |ÿL⟩
denotes the vibrational ground state of the reactant (left

well), |ÿ′
L
⟩ denotes the vibrationally excited state of the

reactant, and similar for the product (right well). The red

arrow represents the thermal activation process from the

vibrational ground state, |ÿL⟩, to the vibrationally excited

Figure 2: Potential energy surface for the reaction model. The red

arrows represent the thermal activation process from the vibrational

ground state, |ÿL⟩, to the vibrationally excited state, |ÿ′L⟩ in the reactant
well (left side of the barrier). Through the coupling between |ÿ′

L
⟩ and

|ÿ′
R
⟩, a chemical reaction occurs. Finally, the vibrational excited state |ÿ′

R
⟩

relaxed to the ground state |ÿR⟩. (b) The effective spectral density Jeff(ÿ)
(red curve), corresponds to the cavity and its associated loss, compared

to the phonon spectral density Jÿ (ÿ) (blue).

state, |ÿ′
L
⟩ in the reactant well. Then, through the coupling

between |ÿ′
L
⟩ and |ÿ′

R
⟩, a chemical reaction occurs. Finally,

the vibrational excited state |ÿ′
R
⟩ relaxes to the ground

state of the product |ÿR⟩. The presence of the cavity mode
q̂k explicitly enhances the transition |ÿL⟩→ |ÿ′

L
⟩. The sym-

metric double-well model [39] is used to model the reac-

tion, with details in Supplementary Material, Section II.

Figure 2(b) shows the phonon spectral density Jÿ(ÿ) (blue)

adapted from Ref. [39] as well as the efective spectral den-

sity Jef (ÿ) (red) of the cavity and its associated environment

that accounts for loss. Note that Jef (ÿ) resembles the Brow-

nian oscillator spectral density that centers at a particular

frequency.When its peak frequency is in resonancewith the

quantum vibrational frequencyÿ0, Jef (ÿ) could potentially

accelerate the state-to-state quantum transitions |ÿL⟩→ |ÿ′
L
⟩

(as indicated by the red arrows in Figure 2(a)). Note that the

actual experimental system might not be able to be mod-

eled as a simple symmetric double well potential as shown

in Figure 2. Nevertheless, we do expect the mechanism

obtained from investigating this simple model to be insight-

ful and characteristic of the VSC problems. Recent quantum

dynamics simulations [39] using models with asymmetrical

double well potential, a much higher reaction barrier than

ℏÿ01, or coupling cavity to the spectator mode (which in

turn couple to the reaction coordinate) do show a sharp

resonance modiûcation of the rate constant. We anticipate

that the current mechanistic explanation can also be used

to explain these sharp resonance features.

Consider a simpliûed reaction mechanism outside the

cavity as |ÿL⟩
k1
←←←←←←←←←←←←→|ÿ′

L
⟩

k2
←←←←←←←←←←←←→|ÿ′

R
⟩

k3
←←←←←←←←←←←←→|ÿR⟩. Note that this is the

quantum description of the reaction based on quantized

states, whereas the classical description is a barrier crossing

along the reaction coordinate. These vibrational diabatic

states can be directly obtained by computing the eigenspec-

tum of V(R̂) and then diabatizing it. The dominant path-

way enhanced by VSC efects is through the ûrst excited

states [47]. The simpliûed mechanism for this reaction is

that the thermal activation process causes the transition

of |ÿL⟩→ |ÿ′
L
⟩. Then the reaction occurs through the dia-

batic couplings between |ÿ′
L
⟩ and |ÿ′

R
⟩, followed by a vibra-

tional relaxation of the product state, |ÿ′
R
⟩→ |ÿR⟩. The rate-

limiting step for the entire process is k1, where k2 ≫ k1
such that the populations of both |ÿ′

L
⟩ and |ÿ′

R
⟩ reach a

steady state (plateau in time), and from the steady-state

approximation, the overall rate constant for the reaction is

k0 ≈ k1. This steady-state behavior of the |ÿ′L⟩ and |ÿ
′
R
⟩ states

has recently been veriûed by numerically exact quantum

dynamics simulations [47].

Considering many molecules, we focus on the single

excitation subspace. This includes the ground state |G⟩ and
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N singly excited states |ÿ j⟩ (where j ∈ [1,N] labels the

molecules), deûned as

|G⟩ ≡ |ÿ1
L
⟩…⊗… |ÿ j

L
⟩⊗… |ÿN

L
⟩, (5a)

|ÿ j⟩ ≡ |ÿ1
L
⟩…⊗… |ÿ′ j

L
⟩⊗… |ÿN

L
⟩. (5b)

The vibrational transition dipole matrix element is

ÿLL′ = ⟨ÿ′ j
L
|ÿ(R̂ j)|ÿ

j

L
⟩, (6)

which is identical for all molecules j. When measuring the

absorption spectra of the molecule, the optical response

shows a peak at the quantum vibrational frequency

ÿ0 =
(
EL′ − EL

)
∕ℏ. (7)

In the singly excited manifold, the light–matter cou-

pling term, ∝
∑

k, jq̂k ⊗ ÿ̂(R̂ j) ⋅ êk in Eq. (1), will hybridize

the bright excitonic state and the photon-dressed ground

states, generating the polariton states [48], [49]. When all

dipoles are fully aligned with a given ûeld polarization

direction êk, such that ÿ̂(R̂ j) ⋅ êk = ÿ(R̂ j), and under the

resonance condition ÿk(k‖) = ÿ0 for this particular k, the

light–matter hybridization generates the upper and lower

polariton states, causing the Rabi splitting expressed as

ΩR =

√
2ÿk

ℏÿ0

√
N

 ÿLL′ ≡ 2
√
Ngc ⋅

√
ÿk, (8)

where gc = ÿLL′
√
1∕(2ℏÿ0) is the Jaynes–Cummings [50]

type coupling strength (without the
√
ÿk-dependence).

Details of this standard analysis are provided in the Supple-

mentary Material, Section III.

The formation of Rabi splitting/polariton states comes

from a collective phenomenon, resulting in the well-known

dependence of
√
N or equivalently

√
N∕ for ΩR, which

has been experimentally conûrmed [4]. It has been esti-

mated that there are N ∼ 106 − 1012 molecules efectively

coupled to the cavity mode [14], [16], [52] for recent

VSC experiments [1], [4], and ΩR ∼ 100 cm−1 when ÿ0 ≈

1000 cm−1 for typical VSC experiments [4], [5]. Despite

encouraging progress, what remains largely a mystery is

how the collective light–matter coupling can induce the

VSC modiûed rate constant [14]. Another less investigated

area [18], [45], [46] is why forming polaritons at a ûnite

incident angle does not necessarily lead to the change of

the VSC kinetics, and the only observed VSC efects occur at

k‖ = 0 (or ÿ = 0). This strongly hints that forming polariton

states is not a suocient condition for VSC-modiûed efects,

and polariton states might not be the best representation

for explaining the VSC modiûcation, because the polariton

states are present in both normal and oblique incidences,

and yet only the former case result in the VSC modiûed rate

constant.

3 Theoretical results

3.1 Analytic rate constant expression

To provide a microscopic mechanism of VSC-modiûed reac-

tions, we hypothesize that the cavity modes enhance the

transition from ground states to a vibrationally excited state

manifold of the reactant, leading to an enhancement of

the steady-state population of both the delocalized states

on the reactant side and the excited states manifold on the

product side (right well)
{
|ÿ′ j

R
⟩
}
, which then relax to the

vibrational ground state manifold on the product side (right

well),
{
|ÿ j

R
⟩
}
. For a single molecule strongly coupled to a

single cavity mode, our numerical simulations [47] have

conûrmed the validity of this hypothesis. The proposed reac-

tion mechanism is represented below

|G⟩
k1
←←←←←←←←←←←←→

{
|ÿ′ j

L
⟩
} k2
←←←←←←←←←←←←→

{
|ÿ′ j

R
⟩
} k3
←←←←←←←←←←←←→

{
|ÿ j

R
⟩
}
, (9)

among which k1 ≪ k2, k3. Note that in the current work,

we only consider the single excitation subspace (where one

particular vibration is excited). In real experiments, many

molecules could be simultaneously excited [13], with a num-

ber nex ≈ Ne−ÿℏÿ0 , such that 1≪ nex ≪ N . For example,

when N = 1012, ÿℏÿ0 ≈ 5, nex ∼ 109. Future development

is needed to fully account for such statistical distributions

among molecules.

When themolecular system is originally in the Kramers

low friction regime (before the Kramers turnover [53], [54],

or the so-called energy difusion-limited regime), the cavity

enhancement of the rate constant k1 will occur [30]–[32],

[34], [35], [39]. This has been extensively discussed in recent

theoretical work [39], [47]. If we explicitly assume that k1 ≪

k2, k3, then |G⟩
k1
←←←←←←←←←←←←→

{
|ÿ′ j

L
⟩
}
is the rate limiting step, and the

population of intermediate states will reach a steady-state

behavior. As such, due to the steady-state approximation,

the overall rate constant is [47]

k ≈ k1 = k0 + kVSC ≪ k2, k3, (10)

where k0 is the chemical reaction rate constant outside the

cavity, and kVSC accounts for the pure cavity-induced efect.

As this is a thermally activated reaction, there already exist
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some excited-state populations and transitions outside the

cavity, which k0 accounts for. Note that Eq. (10) assumes that

the pure cavity efect kVSC can be added with k0, which is a

fundamental assumption in the current theory.

To quantitatively express kVSC, we analyze the overall

efect of the cavity and the photon loss environment on

molecular systems by performing a normal mode transfor-

mation [55]–[57] to the Hamiltonian in Eq. (1) and obtaining

an efective Hamiltonian, where now the cavity modes {q̂k}

and the photon loss bath modes {x̂k,ÿ} (described by Ĥ loss)

are transformed into efective photonic normal mode coor-

dinates { ̂̃xk,ÿ}, which are collectively coupled to the system

DOF through the following term,

ĤLM = ̂ ⊗
∑

k

̂k, (11)

where ̂ ≡ ∑N

j=1ÿ(R̂ j) ⋅ cosÿ j is the collective system oper-

ator which does not depend on k, as we used the rela-

tion cos ÿ j,k = cos ÿ j ⋅ cos ÿ j,k to separate the k-dependent

and k-independent components. For simplicity, we have

assumed that ÿ j,k → ÿk is j-independent for the 2D cavity

case, which means the molecular dipoles are distributed

in a 2D plane that perpendicular to the mirrors (which is

naturally true for the 1D cavity case). Further, ̂k = cosÿk ⋅∑
ÿ c̃k,ÿ

̂̃xk,ÿ is the stochastic force exerted by the k-th efec-

tive bath, { ̂̃xk,ÿ} are the normal modes of {q̂k, x̂k,ÿ}, and the

coupling constants c̃k,ÿ as well as bath frequencies ÿ̃k,ÿ are

characterized by an efective spectral density,

Jef(ÿk, ÿ) =
ÿ2
c
cos2 ÿkÿ

2
k
ÿ−1
c
ÿ

(
ÿ2
k
−ÿ2

)2
+ ÿ−2

c
ÿ2

, (12)

where ÿc is the cavity lifetime. Detailed derivation is pro-

vided in Supplementary Material, Section IV.

The rate constant change kVSC in Eq. (10) originates from

a purely cavity-induced efect, which promotes the transi-

tion from |G⟩ to the singly excited states manifold {|ÿ j⟩}.
Note that this transition is mediated by the cavity operators

̂k through the collective coupling between all molecules

and the cavity modes, as is suggested by the light–matter

coupling term in Eq. (11). We use FGR to estimate this tran-

sition rate constant. The coupling for this quantum tran-

sition is provided by ̂ , and the transition is mediated by

the efective photon bath operators ̂k with their spectral

densities Jef (ÿk, ÿ) in Eq. (12). Using FGR to estimate the

transition with the frequency ÿ = ÿ0 (the |G⟩
k1
←←←←←←←←←←←←→

{
|ÿ′ j

L
⟩
}

transition), and assuming that the pathways are completely

independent (i.e., no interference between pathways), we

have the following expression for the overall reaction rate

constant,

kD
VSC

=
1

N

2

ℏ

N∑

j=1

|||⟨ÿ j|̂|G⟩|||
2
⋅

∑

k

k ⋅ Jef(ÿk, ÿ0) ⋅ n(ÿ0)

=
4

N
g2
N
⋅

∑

k

k ⋅

cos2 ÿkÿ
2
k
ÿ−1
c
ÿ0(

ÿ2
k
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0), (13)

where D denotes the dimension of the in-plane direction in

a FP cavity. The collective Jaynes-Cummings-type [50] cou-

pling strength g2
N
(without cavity frequency dependence) is

deûned as

g2
N
≡ g2

c

N∑

j=1

cos2 ÿ j, (14)

and the 1∕N factor accounts for the normalized rate con-

stant per molecule. Furthermore,

n(ÿ0) = 1∕
(
eÿℏÿ0 − 1

)
≈ e−ÿℏÿ0 (15)

is the Bose–Einstein distribution function, where ÿ =

1∕(kBT) with kB as the Boltzmann constant and T as the

temperature. For the typical parameters in VSC exper-

iments, ÿ0 ≈ 1200 cm−1 and room temperature 1∕ÿ =

kBT ≈ 200 cm−1, such that ÿℏÿ0 ≫ 1. Finally,k represents

the thermal weighting factor for accessing the cavity mode

ÿk, with

k =
e−ÿℏÿk

 , (16)

and  is the partition function such that
∑

k
k = 1. Note

that the same thermal average over diferent modes is

also used in a recent study of electron transfer rate the-

ory in Ref. [61]. Detailed derivations are provided in

Section V of the Supplementary Material.

Under the continuous k‖ limit, one can replace

the sum in Eq. (13) with an integral as
∑

k
f (k)→

∫ dkD

(Δk‖)
D f (k), where Δk‖ is the spacing of the in-plane

wavevector k‖ (or the k-space lattice constant). See

Section VI of the Supplementary Material for details. For 1D

FP cavities, Eq. (13) becomes

k1D
VSC

=
4

N
g2
N ∫

dk

Δk‖
k ⋅

ÿ2
k
ÿ−1
c
ÿ0(

ÿ2
k
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0)

=
4

N
g2
N ∫ dÿ∫

dk

Δk‖
ÿ(ÿ−ÿk)

× (ÿ) ⋅ ÿ2ÿ−1
c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0)

=
4

N
g2
N ∫ dÿ g1D(ÿ)(ÿ)

⋅

ÿ2ÿ−1
c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0), (17)
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where (ÿ) = e−ÿℏÿ∕ (cf. Eq. (14)), and we have explicitly

used cos ÿk = 1, and the 1D DOS is deûned as

g1D(ÿ) = ∫
dk

Δk‖
ÿ(ÿ−ÿk). (18)

Note thatwhenallmolecules are alignedwith the cavity

ûeld polarization direction, such that cos ÿ j = 1, g2
N
= Ng2

c

(cf. Eq. (8)). When the dipole orientations are fully isotropic,∑N

j=1 cos
2 ÿ j = N⟨cos2 ÿ⟩ = N∕3.

For 2D FP cavities, similarly, one has (cf. Eq. (13))

k2D
VSC

=
4

N
g2
N

∑

k

k ⋅

cos2 ÿkÿ
2
k
ÿ−1
c
ÿ0(

ÿ2
k
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0)

=
4

N
g2
N ∫ dÿ g′

2D
(ÿ)(ÿ)

⋅

ÿ2ÿ−1
c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

⋅ n(ÿ0), (19)

where g2
N
is deûned in Eq. (14), and the 2D DOS weighted by

cos2ÿk is deûned as

g′
2D
(ÿ) = ∫

dk2

(Δk‖)
2
ÿ(ÿ−ÿk) ⋅ cos

2 ÿk, (20)

whereas the standard 2D-DOS is deûned as

g2D(ÿ) = ∫
dk2

(Δk‖)
2
ÿ(ÿ−ÿk). (21)

Note that g′
2D
(ÿ) = g2D(ÿ)∕2 (see the proof in

Section VI of the Supplementary Material). Since there

is only a 1∕2 factor diference between g′
2D
(ÿ) and g2D(ÿ),

which does not inüuence the shape of the rate proûles, we

will regard g′
2D
(ÿ) as g2D(ÿ) in the following discussions.

We further deûne the accumulated spectral function

(ÿ) as follows, (cf. Eqs. (17) and (19))

(ÿ̃) ≡ ∫ dÿ gD(ÿ)(ÿ) ⋅ ÿ2ÿ−1
c
ÿ̃

(
ÿ2 − ÿ̃2

)2
+ ÿ−2

c
ÿ̃2

, (22)

and kD
VSC

in Eq. (13) can then be written as

kD
VSC

=
4

N
g2
N
⋅(ÿ0) ⋅ n(ÿ0). (23)

3.2 The resonance effect at the normal
incidence

Next, we work to provide an analytic expression of (ÿ)

for the 1D and 2D FP cavities, which is one of the main

theoretical results of this work. The 1D and 2D DOS deûned

in Eqs. (18) and (21) can be evaluated using the dispersion

relation in Eq. (2).

For the one-dimensional FP cavity [46], if we ignore the

inüuence of cavity loss (Ĥ loss in Eq. (1)), one can show that

the DOS for the photonic modes (D = 1) is expressed as

g1D(ÿ) =
2

cΔk‖
⋅

ÿ√
ÿ2 −ÿ2

c

⋅Θ(ÿ−ÿc), (24)

where Θ(ÿ−ÿc) is the Heaviside step function.

Details of the derivations are provided in the

Supplementary Material, Section VI. The DOS, g1D(ÿ),

in Eq. (24) has a singularity at ÿ = ÿc, which is known

as (the ûrst type of) the van-Hove-type singularity [58].

Such a concentrated peak in g1D(ÿ) at ÿ = ÿc has been

numerically observed in Figure 1 of Ref. [46]. We will turn

to the case of including the efects of photon propagation in

the in-plane direction later in this section.

By using Eq. (24), we have the spectral function (ÿ0)

in Eq. (22) for 1D FP cavities as follows,

(ÿ0) =
1

 ∫ dÿ g1D(ÿ) ⋅ e
−ÿℏÿ ÿ2ÿ−1

c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

=
2

cΔk‖
ÿm

∫
ÿc

dÿ
ÿ ⋅ e−ÿℏÿ√
ÿ2 −ÿ2

c

ÿ2ÿ−1
c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

,

(25)

where ÿm →∞ is the cutof frequency. The integral in

Eq. (25) gives a ûnite value despite the singularity in g1D(ÿ),

because only the contribution from ÿ = ÿc survives.

At the same time,  =
∑

k
e−ÿℏÿk = ∫ dÿ g1D(ÿ)e

−ÿℏÿ ≈

2e−ÿℏÿc∕(cΔk‖), so 1∕ cancels the e−ÿℏÿc and the 2∕(cΔk‖)

factor that arises from the integral. This leads to an approx-

imate analytic expression of(ÿ0) for 1D FP cavity case as

follows

(ÿ0) ≈
ÿ2
c
ÿ−1
c
ÿ0(

ÿ2
c
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

. (26)

We have also numerically evaluated Eq. (25) and com-

pared it with Eq. (26) for the VSC rates, presented in

Figure S2 of the Supplementary Material, which shows a

nearly identical behavior. The above theoretical results also

suggest that for a 1D cavity, the commonly used single mode

approximation [22], [27], [39] is indeed valid, because only

the mode of frequency ÿc survives. Using the expression of(ÿ0) (Eq. (26)) in the rate constant expression of Eq. (23)

and taking the limit ofN = 1, one obtains the previous result

of kVSC (see Eq. (35)) for a single molecule coupled to a single

mode in Ref. [47]. We should remind the reader that all

of the existing VSC experiments were conducted with 2D

cavities.

Figure 3 presents the cavity dispersion relation of

ÿk(ÿ) (see Eq. (2)) in panels (a) and (d), the 1D DOS g1D(ÿ)
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Figure 3: Dispersion relation, DOS, and the accumulated spectral function(ÿ) for a 1D cavity. (a) The cavity dispersion relation (Eq. (2)),

(b) the schematic 1D DOS g1D(ÿ) (Eq. (24)) and (c) the 1D accumulated spectral function(ÿ) (Eq. (22), evaluated using Eq. (25)) for the normal

incidence caseÿc = ÿ0, where the resonance condition is reached at ÿ = 0. (d)–(f) corresponds to the red-detuned case (oblique incidence),

withÿc = 0.85ÿ0, whose resonance condition is reached at ÿ ≈ 32◦. The cavity lifetime is taken as ÿc = 200 fs.

(see Eq. (24)) in panels (b) and (e), and the 1D accumulated

spectral function (ÿ) (see Eq. (22)) which is directly pro-

portional to kVSC in panels (c) and (f). In panels (a)–(c), one

can clearly see that under the normal incident condition

ÿk = ÿ0 at ÿ = 0, (ÿ) is maximized at ÿc = ÿ0 and

accordingly, the rate constant will also maximize based on

the FGR expression (Eq. (13)). In the detuned case (ÿc ≠ ÿ0

or |ÿ| > 0) in panels (d)–(f), the intensity of(ÿ) still peaks

at ÿ = 0, but the value of (ÿ0) diminishes at the <reson-

ance condition= ÿk = ÿ0 (for generating Rabi splitting).

This analysis also provides a possible explanation for

the resonance efect at normal incidence (k‖ = 0) for a 1D

FP cavity. In Eq. (26), it is clear that the peak of this function

is located atÿc = ÿ0 for k‖ = 0. Thus, the VSC-modiûed rate

constant occurs only when ÿc = ÿ0. This is because there

is a van-Hove-type singularity [58] in the 1D DOS, g1D(ÿ),

which manifests itself as the 1∕
√
ÿ2 −ÿ2

c
term in Eq. (25),

such that the integral only survives and gives a ûnite value

atÿ = ÿc, and atÿ > ÿc, the integral becomes vanishingly

small.

However, directly extending this simple consideration

for the DOS cannot explain the normal incidence condition

for a 2D FP cavity (even when only considering the TE

polarization direction). This is because the 2D DOS g2D(ÿ)

does not have any singularity. Speciûcally, the DOS for the

photonic modes inside a 2D FP cavity is expressed as

g2D(ÿ) =
2ÿ

(cΔk‖)
2
⋅ÿ ⋅Θ(ÿ−ÿc), (27)

where Section VI of the Supplementary Material contain

more details of this derivation.

For the 2D cavity case, one needs to consider beyond the

simple DOS argument. Note that the photon loss associated

with the lifetime ÿc only considers the loss in the k⊥ direc-

tion. What we have not explicitly considered before was the

photon traveling outside amode area along the k‖ direction.

Let  be the efective lateral size of a given mode (which is

not the cavity length), and  be the mirror distance (along

the k⊥ direction in Figure 1), so the efective quantization

volume (per mode)  =  ⋅2. The mode lifetime can be

estimated as

ÿ‖(k‖) =


c ⋅ sin ÿ
=

√
k2
⊥
+ k2‖

c ⋅ k‖
=


c2

⋅

ÿk

k‖
, (28)

which is propotional to k−1‖ when k‖ ≪ k⊥, and the asso-

ciated rate constant is Γ′
10
= 1∕ÿ‖ (which corresponding to

the photon loss of |1k⟩→ |0k⟩). Note that ÿ‖ difers from

the cavity lifetime ÿc introduced previously. Speciûcally, ÿ‖
accounts for thermal photon traveling outside a coupling

area associated with a given mode ÿk in the in-plane direc-

tion, ÿc describes the loss channel only due to the escaping

of the photon with a direction that is perpendicular to the

mirror surface k⊥ (and was introduced through the Ĥ loss

term,whichwas assumed to be identical for all cavitymodes

ÿk, being independent of k‖).

An estimation for  is provided as follows. As men-

tioned before, the typical values for the VSC experiments
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areN ≈ 106 ∼ 1012 [14], [16], [52], which is the efective num-

ber of molecules per mode (see estimations in Ref. [52]).

The efective density is estimated to be N∕ ≈ 1020 cm−3

[59]. Using  =  ⋅2, and the typical value for the mirror

distance  = 1 μm, we have  ≈ 10−1 ∼ 100 μm (or 102 ∼

105 nm), which agrees with the numerical simulation in a

FP cavity based on eigenfrequency analysis of the scalar

Helmholtz equation [51]. With the range of , one can also
estimate the range of ∕c ≈ 1 ∼ 100 fs. For example, when

 ∼ 300 nm, ∕c ∼ 10−15 s−1 = 1 fs. Note that  is difer-

ent than the typical length of the cavity in the in-plane

direction (which is on the order of mm [6], [8]). For a pho-

ton traveling outside a particular cavity mode area, it is

still within the cavity quantization area that contains many

modes. On the other hand, ÿc usually varies from 100 fs [3]

to 5 ps [60] in typical VSC experiments.

Note that the term e−ÿℏÿk in Eq. (16) originates from

the photon ûeld thermal distribution, which can also be

interpreted as the ratio between two photonic transition

rate constants according to the detailed balance relation, i.e.,

e−ÿℏÿk = Γ01∕Γ10, (29)

where Γ01 is the rate for the |0k⟩→ |1k⟩ photonic Fock

states transition due to thermal excitation, and Γ10 = 1∕ÿc
is the cavity loss rate along the k⊥ direction (associated

with |1k⟩→ |0k⟩), which was assumed to be identical for all
k modes. Note that all of the above-mentioned excitation

and decay processes are related to the thermally activated

radiation (thermal photon), and not related to the pumping

with an external radiation ûeld. To account for the addi-

tional efect of photon propagating outside a given area

associated with a speciûc mode ÿk, we modify the detailed

balance relation (in Eq. (29)) by replacing the original k

with ef(ÿk), deûned as follows

ef(ÿk) =
1

ef

Γ01

Γ10 + Γ′
10

=
1

ef

ÿ−1
c
e−ÿℏÿk

ÿ−1
c

+ ÿ−1‖
, (30)

where ÿ‖ (deûned in Eq. (28)) is k‖-dependent. This can

also be viewed as putting a ÿ−1
c
∕
(
ÿ−1
c

+ ÿ−1‖

)
correction

factor to k in Eq. (16), where ÿ‖ explicitly depends on

k‖ (Eq. (28)). Further, the partition function is also modi-

ûed as→ef =
∑

k
ÿ−1
c
e−ÿℏÿk∕

(
ÿ−1
c

+ ÿ−1‖

)
. As expected,

when k‖ = 0, ÿ−1‖ = 0, one should have ef(ÿk)→ k =

e−ÿℏÿk∕. Note that in Eq. (30), we have not considered the
efect of photon leaving from the mode k′ and re-entering

into the mode k. This should be viewed as the limitation of

the current theory. Future work is needed to consider this

efect.

Using ef(ÿk) in Eq. (30), the accumulated spectral

function(ÿ0) in Eq. (22) for 2D cavity is modiûed as

(ÿ0) = ∫ dÿ g2D(ÿ)ef(ÿ) ⋅
ÿ2ÿ−1

c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

=
1

ef

2ÿ

(cΔk‖)
2

ÿm

∫
ÿc

dÿ  (ÿ) ⋅ ÿ2ÿ−1
c
ÿ0(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

,

(31)

where we used ef(ÿ) in Eq. (31) and ÿ‖(ÿ) in Eq. (28), and

we further deûne the following weighting factor

 (ÿ) ≡ ÿ−1
c
ÿe−ÿℏÿ

ÿ−1
c

+ [ÿ‖(ÿ)]
−1 . (32)

This (ÿ) takes a sharpmaximumat k‖ = 0 and decays

quickly when k‖ increases, because Γ
′
10
increases quickly as

k‖ increases. This means that for a 2D cavity, as used in all

existing VSC experiments, the VSC-modiûed rate constant is

still maximized aroundÿk(k‖ = 0) = ÿc = ÿ0, fulûlling the

normal incidence condition. Note that the correction factor

ÿ−1
c
∕
(
ÿ−1
c

+ ÿ−1‖

)
can also be applied to the 1D FP cavity but

does not introduce any diference in Figure 3, due to the van-

Hove singularity in the DOS (see Eq. (24)) which dominates

the entire integral, forcing ef(ÿk)→ k (as ÿ‖ →∞ when

k‖ = 0).

Figure 4 presents the cavity dispersion relation ofÿk(ÿ)

(see Eq. (2)) in panels (a) and (d), the weighting factor  (ÿ)
(see Eq. (32)) in panels (b) and (e), and the 2D accumulated

spectral function(ÿ) (see Eq. (22)) for the 2D cavity case in

panels (c) and (f). Figure 4(b) shows the numerical behavior

of theweighting factor (ÿ) under diferent∕c values (see
Eq. (28)), among which ∕c = 1000 fs, 10 fs, 1 fs, and 0.1 fs,

corresponding to  = 3 × 105 nm, 3 × 103 nm, 300 nm, and

30 nm, respectively. All are within the reasonable range of

 values discussed previously. One can see that themaximal

contribution still comes from k‖ = 0, although no singu-

larity is present. Moreover, the width becomes narrower

as ∕c decreases. Note that c∕ is usually a very large

quantity, so that when the incident angle ÿ is slightly larger,

Γ′
10
≫ Γ10 becomes dominant.

Figure 4(c) presents the behavior of the accumulated

spectral function (ÿ), which is calculated by evaluating

Eq. (22) numerically using trapezoidal integrationwithin the

region of ÿc f ÿk f 5ÿc using 4 × 106 grid points, where

numerical convergence is carefully checked. One can see

that (ÿ) peaks at ÿ > ÿc when ∕c is large, and grad-

ually moves to ÿ = ÿc when ∕c decreases and Γ′
10
dom-

inates the behavior for k‖ > 0. Additionally, compared to

Figure 3(c), here(ÿ) tails towards the higher energy. This
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Figure 4: Same as Figure 3, but with a 2D FP cavity. (a) Same as Figure 3(a). (b) The weighting factor  (ÿ) (see Eq. (32)) under different∕c values,
where∕c = 0.1 fs corresponds to ≈ 0.03 μm,∕c = 1000 fs corresponds to ≈ 300 μm. (c) The accumulated spectral function(ÿ̃)

(see Eq. (22)) for the normal incidence caseÿc = ÿ0, where the resonance condition is reached at ÿ = 0. (d)–(f) corresponds to the red-detuned case

(oblique incidence), withÿc = 0.85ÿ0, whose resonance condition is reached at ÿ ≈ 32◦. The cavity lifetime is taken as ÿc = 200 fs.

is because the weighting factor  (ÿ) is not truly singular
at ÿc. The smaller the ∕c value, the sharper (ÿ) will

be. When taking the limit of∕c → 0, Figure 4(c) reduces

back to Figure 3(c). On the other hand, when ∕c → ∞,

therewill be no loss in the in-plane direction, corresponding

to a much wider (ÿ) (see the dark blue curve in Figure

4(c–f)), which is only bounded by e−ÿℏÿ. Under this con-

dition, (ÿ) still peaks at a particular frequency, but with

ÿc > ÿ0. Figure 4(d–f) corresponds to the red-detuned case

under oblique incidence, where ÿc = 0.85ÿ0.

With the above analysis, we have theoretically justiûed

why the VSC-modiûed chemical kinetics only occurs at the

normal incidence when ÿc = ÿ0 for a 2D FP cavity, which

agrees with experimental observations [1], [11]–[13]. This

is because even though there is no singularity in g2D(ÿ),

the photons propagating outside the mode area along the

k‖ direction force the 2D cavity spectra function (ÿ) to

peak at ÿ = ÿc, forcing the normal incidence condition.

The condition for observing Rabi splitting (see Eq. (8)), on

the other hand, is ÿk = ÿc

√
1+ tan2 ÿ = ÿ0 for any ÿ g 0.

Although the modes with ÿ > 0 barely contribute to kVSC,

the mode density is finite (see Figure 3(e)) and for ÿ0 > ÿc

therewill always be amode available that satisûesÿk = ÿ0,

generating Rabi splitting at ÿ > 0. As such, the theory pro-

vides a step forward towards understanding the fundamen-

tal diference between the condition for forming the Rabi

splitting and that of the VSC resonance modiûcation of the

rate constant. This explains the experimentally observed

resonance phenomena [11], [14] that occur only at ÿc = ÿ0

at the normal incident angle when k‖ = 0 (or ÿ = 0), but not

at a ûnite angle ofÿ even though the resonance condition for

generating Rabi splitting is fulûlled.

3.3 No apparent collective effect

For our discussion on collectivity, we begin by considering

the FGR expression in Eq. (13). For simplicity, we just focus

on the 1D cavity case, since for 2D cavity there is no appar-

ent collective efect either. If all the molecules’ dipoles are

perfectly alignedwith the cavity ûeld polarization direction,

then cosÿ j = 1 for all molecules, j, and ̂ =
∑

jÿ(R̂ j). Eval-

uating Eq. (23) using Eqs. (25) and (26) leads to

k1D
VSC

≈
1

N
⋅ 4Ng2

c
ÿ2
c
⋅

ÿ−1
c
ÿ0(

ÿ2
c
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ e−ÿℏÿ0 , (33)

where we have explicitly approximated n(ÿ0) ≈ e−ÿℏÿ0 (cf.

Eq. (16)). As a special case of Eq. (33), whenÿc = ÿ0, Eq. (33)

becomes

k1D
VSC

=
1

N
Ω2

R
⋅ ÿc ⋅ e

−ÿℏÿ0 , (34)

whereΩR = 2
√
Ngc ⋅

√
ÿ0. The cavity quality factor is often

deûned as Q = ÿ−1
c
ÿ0 for the resonance condition. For the

recent VSC experiment by Ebbesen [3], the typical values

for these parameters are ÿc ≈ 100 fs (reading from a width

of Γc = ÿ−1
c

≈ 53 cm−1 of the cavity transmission spectra).

If the cavity frequency is ÿc = ÿ0 = 1200 cm−1, then the

quality factor is Q ≈ 22.6.
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However, for the current theory in Eq. (34), the overall

rate constant would not explicitly depend on N (Eq. (33)),

meaning that only for the small N and strong coupling

between molecules and the cavity mode there will be an

appreciation amount of the cavity-modiûed efect. This is

in contrast to the experimental observation of the collec-

tive efect and should be viewed as a major limitation of

current theory. This limitation could be related to the fact

that we have only considered the case of single excitation

subspace in our theory, whereas in the experiments, a total

ofnex ≈ Ne−ÿℏÿ0 molecules could be simultaneously excited

[13] due to the thermal statistics. Future work is needed for

considering multiple excitations in nex vibrations and the

rate constant theory in this scenario.

When considering the disorder of the orientation

between the dipole and the cavity ûeld polarization direc-

tion, the FGR rate in Eq. (33) becomes

k1D
VSC

= 4g2
c
⟨cos2 ÿ⟩ ⋅ ÿ−1

c
ÿ2
c
ÿ0(

ÿ2
c
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ e−ÿℏÿ0 ,

upon statistical averaging of dipole orientations. For fully

isotropically distributed dipoles, ⟨cos2ÿ⟩ = 1/3.

3.4 Resonance behavior of kVSC

We want to demonstrate the numerical behavior of the

current theory predicted by Eqs. (25) and (31). Because the

current theory lacks the collective efect, we take the N = 1

limit and scale up the coupling strength between a single

molecule and the cavity modes, as most previous work does

[22], [23], [39]. This leads to the expression of (cf. Eq. (33))

k1D
VSC

= Ω2

R
⋅

ÿcÿ
−1
c
ÿ0(

ÿ2
c
−ÿ2

0

)2
+ ÿ−2

c
ÿ2
0

⋅ e−ÿℏÿ0 (35)

under the single mode limit (or under the 1D cavity case,

see Eqs. (25) and (26)). When further considering the pres-

ence of homogeneous or inhomogeneous broadening of the

molecular system, the FGR expression will be a convolution

between the original FGR expression, which does not con-

sidering the broadening for the ÿ0 (for example, Eq. (33)),

and a broadening function (assumed to be a Gaussian),

expressed as follows [47]

k1D
VSC

=

∞

∫
0

dÿ ÿ1D(ÿ)G(ÿ−ÿ0), (36)

where

ÿ1D(ÿ) = Ω2

R
⋅

ÿcÿ
−1
c
ÿ

(
ÿ2
c
−ÿ2

)2
+ ÿ−2

c
ÿ2

⋅ e−ÿℏÿ, (37a)

G(ÿ−ÿ0) =
1√
2ÿÿ2

exp

[
−
(ÿ−ÿ0)

2

2ÿ2

]
, (37b)

where ÿ is the variance of the Gaussian.

As expected, the kVSC expression in Eq. (33) should

contain several characteristic physical constants, includ-

ing the speed of light c in ÿc (see Eq. (3)) as it is related

to light–matter interaction, Planck’s constant ℏ in gc (see

Eq. (8)) as it should be a quantum theory, and Boltzmann’s

constant kB in n(ÿ0) as it is a thermally activated theory.

We adopt a model system used in Ref. [39] to demonstrate

the basic trend of kVSC predicted by the current theory. The

schematic of the model is provided in Figure 2, whereas the

details are provided in Supplementary Material, Section II.

To obtain the numerically exact rate constant for

the same model, we use hierarchical equations of motion

(HEOM) to simulate the population dynamics and obtain

the VSC-modiûed rate constant, with the details provided

in Section VII of the Supplementary Material. The HEOM

simulation requires a linear system-bath coupling Hamil-

tonian. To this end, we follow the previous work [22], [39]

and assume that the dipole operator is linear, ÿ(R̂) = R̂. As a

result, the light–matter coupling term in Eq. (1) (for a sin-

gle molecule case) is simpliûed as ÿcq̂cÿ ⋅ ÿ(R̂) = ÿcÿq̂cR̂.

Further, we follow Ref. [39] by deûning the normalized

light–matter coupling strength as below,

ÿc =

√
1

2ℏÿc

ÿ =
ΩR

2ÿcÿLL′
. (38)

We use a similar range of ÿc as used in Ref. [39].

The forward rate constant from the HEOM simulation

is obtained by evaluating [39], [47]

k = − lim
t→tp

Ṗ(t)
P(t)+ ÿeq ⋅ [P(t)− 1]

, (39)

where ÿeq ≡ P∕P denotes the ratio of equilibrium

population between the reactant and product, see

Section VII of the Supplementary Material. The time

derivative Ṗ(t) in Eq. (39) is evaluated numerically. For the
symmetric double potential model considered in this work,

ÿeq = 1. The limit t→ tp represents that the dynamics

have already entered the rate process regime (linear

response regime) and tp represents the <plateau time= of

the time-dependent rate which is equivalent to a üux-side

time correlation function formalism. One can also view

Eq. (39) as the üux-side correlation function that provides

the time-dependent rate constant k(t), which captures both

the initial transient dynamics (the oscillatory behaviors of

k(t)) and the longer time rate process (plateau of k(tp)). For

the FGR-based theory (Eq. (35)), we use the value of the k0
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(outside the cavity rate constant) obtained from the HEOM

simulation and report k∕k0 = 1+ kVSC∕k0.

We report the numerical value of k∕k0 as a func-

tion of the cavity frequency ÿc. For the rate constant pre-

dicted by FGR, we only report the value of k∕k0 = 1+

kVSC∕k0 (see Eq. (10)), where kVSC is evaluated using Eq. (36),

and the variance deûned in Eq. (37b) is estimated as ÿ =

30.74 cm−1 for the model parameters we used. See Supple-

mentary Material, Section VII for details. And we directly

use the numerical result of k0 obtained from the HEOM

simulation.

Figure 5 presents the numerical simulations of the rate

constant from HEOM as well as the FGR results. Figure 5(a)

presents k(t) for the resonant casewhenÿc = ÿ0, at various

light–matter coupling strengths ÿc. One can see the plateau

value of k(t) increases as ÿc increases. Figure 5(b) presents

the case where ÿc < ÿ0 where ÿc = 1000 cm−1, and there

is no apparent ÿc dependence of k(t), indicating that the

coupling to the cavity has no efect. Figure 5(c) presents the

Figure 5: Numerically exact simulation and the analytic FGR results of

the rate constant. (a) The flux-side correlation functions computed by

HEOM at resonance (withÿc = ÿ0 = 1190 cm−1). (b) The flux-side

correlation functions are calculated by HEOM but off-resonance (with

ÿc = 1000 cm−1). (c) The profile of the resonant VSC rate constant k∕k0
as a function ofÿc with different light–matter coupling strengths, ÿc,

obtained by FGR expressed in Eq. (36) (solid lines) and HEOM simulations

(open circles with guiding thin lines), respectively. The cavity lifetime is

set to be ÿc = 200 fs.

value of k∕k0 from Eq. (36) (scaled by 0.4) as a function of

ÿc, depicted by the thick solid lines. A range of light–matter

coupling strength ÿc is explored. The FGR expression shows

the sharp resonance behavior of the VSC-modiûed rate pro-

ûle at ÿc = ÿ0 = 1190 cm−1. A similar sharp resonance has

been observed in VSC experiments [1], [5], [6] and quan-

tum dynamics simulations [39]. Further, we provide the

rate constant calculated from the numerically exact HEOM

simulations (see Section VII of the SupplementaryMaterial),

depicted by the open circles with a thin guiding line.

Although the analytic FGRexpression overestimates the rate

constant by about two times, the overall agreement between

the FGR expression and the HEOM numerical results is

remarkable, across the range of ÿc and ÿc we explored.

Next, we explicitly consider going beyond the single-

mode limit. For the 1D FP cavity, k1D
VSC

reduces back to the

single-mode approximation. For the 2D FP cavity, based on

the expression in Eqs. (13) and (31), the VSC-modiûed rate

constant is expressed as

k2D
VSC

=  ⋅ g2
c

ÿm

∫
ÿc

dÿ
ÿe−ÿℏÿ

1+ ÿc∕ÿ‖(ÿ)
⋅

ÿ2ÿ−1
c
ÿ0 ⋅ n(ÿ0)(

ÿ2 −ÿ2
0

)2
+ ÿ−2

c
ÿ2
0

,

(40)

where  = 8ÿ

(cΔk‖)
2ef

, and ÿ‖(ÿ) = ÿ∕
[
c
√
ÿ2 −ÿ2

c

]
(c.f.

Eq. (28)). Note that this expression also peaks at ÿc = ÿ0

(as indicated in Figure 4(c)). In Eq. (40), ÿc is the lower

limit of the integral with respect to dÿ, as well as appearing

explicitly in the expression of ÿ‖. The result of this deûnite

integral in Eq. (40) is not as simple as replacingÿwithÿc as

in the single-mode approximation (Eq. (35)).

Figure 6 presents the FGR rates under diferent ÿc val-

ues. Figure 6(a) is the same as Figure 5(a), which corre-

sponds to the single-mode case (or the many-mode case

inside a 1D FP cavity). Figure 6(b) presents the estimated

value of k∕k0 using kVSC expression in Eq. (40), correspond-

ing to the case of many modes inside a 2D FP cavity. Here,

we choose ∕c = 3.33 fs, corresponding to  = 1 μm. This

should be viewed as the typical value of , which is the

efective lateral size of a given mode. Results obtained with

a range of other choices of  are provided in the Supple-

mentary Material, Section VIII, all of which show a sharp

peak at ÿc ≈ ÿ0. Note that the broadening factor (Eq. (36))

was not included for k2D
VSC

for clarity, and one can in principle

include it which will further broaden the width of the rate

constant distribution. The numerical integration scheme is

the same as the calculation of (ÿ), and the convergence

is carefully checked. One can observe that the resonance

peak is still centered around ÿc = ÿ0 with minor red-shift,

which demonstrates the normal incidence condition. The
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Figure 6: FGR rate profiles of k∕k0 as a function ofÿc. (a) FGR rate

profiles for the single mode case (or the many modes case inside a 1D FP

cavity) calculated using Eq. (36) (same as the solid lines in Figure 5(c)).

(b) FGR rate profiles k2D
VSC

for many mode cases inside a 2D FP cavity

calculated using Eq. (40). Here, we use∕c = 3.33 fs, which corresponds

to = 1 μm. Note that both k1D
VSC

and k2D
VSC

are rescaled by a factor of 0.4

to be consistent with Figure 5.

resonance peak is asymmetric due to the asymmetry of

(ÿ) (see Figure 4(c–f)). Moreover, the rate proûle tails

toward the lower energy regions, which is the opposite of

the trend in (ÿ) (see Figure 4). Compared to the single

mode version of the theory, considering many modes in

a 2D FP cavity predicts that the <action spectrum= of the

VSC-modiûed rate constant has an asymmetric behavior

around ÿc = ÿ0, with a longer tail when ÿc < ÿ0. This is

an interesting prediction from the current theory in Eq. (40).

In recent VSC experiments by Simpkins [8], it does seem that

the ÿc < ÿ0 side has a longer tail than the ÿc > ÿ0 side of

the action spectrum (kVSC vs ÿc plot, see Figure 3(a) of Ref.

[8]). However, this seemingly asymmetrical rate constant

proûle in Ref. [8] could be caused by a lack of more exper-

imental data points for a blue-tuned cavity (ÿc > ÿ0) due

to the experimental dioculty of obtaining such measure-

ments. More experimental data are required to deûnitively

test this trend. Note that in the Simpkins experiment [8]

the rate constant was resonantly suppressed. Recent quan-

tum dynamics simulations [39] suggest that by resonantly

coupling the cavity mode to a spectator mode (which in

turn couples to the reaction coordinate), the rate constant

can be suppressed by the cavity. Future work is needed to

investigate such a resonance suppression efect.

4 Conclusions

Wepresent a theory to explain the current VSC experiments,

focusing on the origin of the resonance condition at normal

incidence. The theory provides a possible explanation to

the resonance condition for the observed VSC efect and of

why the resonance efect occurs only at the normal incident

angle. In particular, we ûnd that the cavity-modiûed rate

constant kVSC can be expressed as the coupling strength

multiplied by the accumulated spectral function(ÿ) of the

cavity, where (ÿ) peaks at ÿc (when k‖ = 0, i.e., bottom

of the dispersion band). For a 1D FP cavity, this is caused

by a van-Hove-type singularity (Eq. (24)) in the DOS of the

photonicmodes. For a 2D FP cavity, we found that one needs

to additionally consider the photons propagating outside

the mode area associated with k‖ direction (Eq. (28)), which

creates the peak of (ÿ) at ÿc. As such, the oblique inci-

dence still has the spectral function peaked at the ÿc, not

at the higher incident angle. This theory provides a step

forward toward understanding why Rabi splitting is not a

suocient condition to achieve a VSC modiûed rate efect,

providing a new insight into themechanistic understanding

of VSC modiûcation.

Under the normal incidence condition, kVSC will peak at

ÿc = ÿ0. For the 1D cavity case, k
1D
VSC

naturally reduces to the

single-mode case (Eq. (35)), and we have directly compared

the FGR analytic expression with the numerically exact rate

constant for a single molecule under strong coupling, which

provides agreement across a range of light–matter coupling

strengths and cavity frequencies. For the 2D cavity case, we

evaluated the FGR rate expression (Eq. (40)), and found a

similar sharp resonance at ÿc = ÿ0 compared to the single

mode (or the 1D case), with an asymmetric rate constant

proûle and a long tail when ÿc < ÿ0. This is a unique pre-

diction from the current theory, which should be checked

with future experiments.

On the other hand, the current theory cannot explain

the observed collective efect, and only when a few

molecules are strongly coupled to the cavity can the current

theory predict the cavity modiûcations to the rate constant.

This is the limitation of the current theory, and future work

is needed to fully address these issues. However, the current

work provides signiûcant progress toward building the ulti-

mate theory for understanding VSC efects. Futureworkwill

focus on developing a microscopic theory that can explain

the collective efect.

Supplementary Material

See Supplementary Material for additional information

on detailed derivations of the Hamiltonian; details of the

molecular system; analysis of the Rabi splitting; the efec-

tive Hamiltonian and efective spectral density derived by

applying harmonic analysis to classical equations ofmotion;

derivation of the VSC-modiûed rate constant expression in

Eq. (13) of the main text; DOS analysis for the 1D and 2D FP
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cavity; details of the quantum dynamics simulation results;

efects of the∕c values on the rate proûles for the 2D cavity
case.
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