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Abstract: We present a theory that explains the resonance
effect of the vibrational strong coupling (VSC) modified reac-
tion rate constant at the normal incidence of a Fabry—Pérot
(FP) cavity. This analytic theory is based on a mechanistic
hypothesis that cavity modes promote the transition from
the ground state to the vibrational excited state of the reac-
tant, which is the rate-limiting step of the reaction. This
mechanism for a single molecule coupled to a single-mode
cavity has been confirmed by numerically exact simulations
in our recent work in [J. Chem. Phys. 159, 084104 (2023)].
Using Fermi’s golden rule (FGR), we formulate this rate
constant for many molecules coupled to many cavity modes
inside a FP microcavity. The theory provides a possible
explanation for the resonance condition of the observed VSC
effect and a plausible explanation of why only at the normal
incident angle there is the resonance effect, whereas, for an
oblique incidence, there is no apparent VSC effect for the
rate constant even though both cases generate Rabi splitting
and forming polariton states. On the other hand, the current
theory cannot explain the collective effect when a large
number of molecules are collectively coupled to the cavity,
and future work is required to build a complete microscopic
theory to explain all observed phenomena in VSC.

Keywords: vibrational strong coupling; polariton chem-
istry; normal incidence resonance

*Corresponding author: Pengfei Huo, Department of Chemistry, Univer-
sity of Rochester, 120 Trustee Road, Rochester, NY 14627, USA; and Hajim
School of Engineering, The Institute of Optics, University of Rochester,
Rochester, NY 14627, USA, E-mail: pengfei.huo@rochester.edu.
https://orcid.org/0000-0002-8639-9299

Wenxiang Ying, Department of Chemistry, University of Rochester, 120
Trustee Road, Rochester, NY 14627, USA,

E-mail: wying3@ur.rochester.edu.
https://orcid.org/0000-0003-3188-020X

Michael A. D. Taylor, Hajim School of Engineering, The Institute of Optics,
University of Rochester, Rochester, NY 14627, USA,

E-mail: michael.taylor@rochester.edu.
https://orcid.org/0000-0002-3300-6834

1 Introduction

Recent experiments [1]-[6] have demonstrated that chem-
ical reaction rate constants can be suppressed [1]-[4],
[71-[9] or enhanced [5], [6], [10] by resonantly coupling
molecular vibrations to quantized radiation modes inside a
Fabry-Pérot (FP) microcavity [11]-[13]. This effect has the
potential to selectively slow down competing reactions [3]
or speed up a target reaction, thus achieving mode selec-
tivity and offering a paradigm shift in chemistry. Despite
extensive theoretical efforts [8], [14]-[41], the fundamental
mechanism and theoretical understanding of the cavity-
modified ground-state chemical kinetics remain elusive [14],
[42]-[44]. To the best of our knowledge, there is no unified
theory that can explain all of the observed phenomena
in the vibrational strong coupling (VSC) experiments [14],
including (1) The resonance effect, which happens when the
cavity frequency matches the bond vibrational frequency,
. = wy,, but also only happens when the in-plane photon
momentum is k” = 0 (the normal incidence), (2) The col-
lective effect [1], [4], [5] which is the increase in the mag-
nitude of VSC modification when increasing the number
of molecules N (or concentration N/V), (3) The driving by
thermal fluctuations without optical pumping [1], [3]. (4)
The isotropic disorder of the dipoles in the cavity, which is
assumed in experiments with many molecules [14].

We aim to develop a microscopic theory to explain
these observed VSC effects, especially focusing on under-
standing the resonance effect under normal incidence.
Experimentally, only the resonance at normal incidence
(k|| = 0) gives rise to VSC effects on the rate constant, while
a red-detuned cavity that has a light—matter resonance at
k, > 0 (oblique incidence) does not give any VSC effect. This
observation strongly suggests that forming Rabi splitting
is not a sufficient condition for achieving the VSC-modified
rate effect. Despite recent theoretical progress [18], [45], [46],
the resonant condition under normal incidence remains an
unresolved question.

In this work, we generalized our recently developed
analytic Fermi’s golden rule (FGR) rate theory of VSC in
Ref. [47] by incorporating many molecules and many cavity
modes for both 1D FP cavities (with only 1D in the in-plane
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direction) and 2D FP cavities (with 2D in the in-plane direc-
tion) cases. In particular, we evaluated the photonic mode
density of states (DOS) inside a 1D FP cavity and found that
it gives rise to a van-Hove-type singularity at k;, = 0; for a 2D
FP cavity, itis found that due to the cavity modes with k;, > 0
propagating outside a given cavity mode extent area, the
modified photon mode DOS still remains dominant around
the bottom of the dispersion band where k; = 0, which are
the keys to account for the normal incidence condition of the
VSC-modified chemical reaction rate constant. The current
theory provides a possible explanation of the resonance
condition for the observed VSC effect and provides a micro-
scopic understanding of why only at the normal incident
angle there is a resonance effect.

2 Model system

Let us consider N identical molecules coupled to many radi-
ation modes inside a FP cavity,

N
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where R i is the reaction coordinate for the jth molecule,
V(R)) is the ground state potential for each reaction
molecule (a double well potential for this paper as is typ-
ical for VSC simulations [22], [27], [34], [39]), and ﬁ(f?j)
is the dipole operator associated with the ground elec-
tronic state of reaction coordinate R j (electronic permanent
dipole). In particular, ¢;, is the angle between AR ;) and
the field polarization direction &, where we only consider
transverse electric (TE) polarization, such that fi(R ) & =
H(R;) cos @ A schematic illustration is provided in the top
panel of Figure 1.

The photonic wavevector k (also referred to as the field
propagation direction) has two components, one perpendic-
ular to the cavity mirror k, and the other coplanar with
the cavity k. The FP cavity has the following dispersion
relation,

_c _ ¢k 2
wy (k) = ;C\/ki +ki = n—ci\/1+tan 0, )

where c is the speed of light in vacuum, n, is the refractive
index of the cavity, c¢/n, is the speed of the light inside the
cavity, and 6 is commonly referred to as the incident angle
(where tané = k; /k,), which is the angle of the photonic
mode wavevector k relative to the norm direction of the
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Figure 1: Top: Schematic illustration of the normal incidence condition
for VSC-modified reactions. Bottom: (a) Schematic illustration of the
dispersion relations of the cavity (red dashed line), the vibrational energy
(gray dashed line), and hybrid polariton states (solid lines). (b) Schematic
plot of reaction rate modification as a function of the cavity frequency ..

mirrors (see the top panel of Figure 1 for a schematic illus-
tration). In most of the VSC experiments, n, =~ 1.5 for the
solution used inside the microcavity. Because n, = 1, it will
not influence the order of the magnitude of our discussion.
For simplicity, we explicitly drop n, throughout this paper.
Later, whenever we write ¢ in an expression we should
replace it with ¢/n,, in principle. When k; = 0 (or 6 = 0),
the photon frequency is

@, = oy lky = 0) = ck. ®

The cavity frequency w, in Eq. (1) is associated with
the wavevector k, according to Eq. (2). Furthermore, § =

VAJ@an) (&) + &y ) and py = ivhon/2(a - ), &y and

&l are the photonic field annihilation and creation operators
for mode k, respectively. The light—matter coupling strength

is
A = 1/1/(g V), 4)

where ¢ is the effective permittivity inside the cavity and V
is the cavity quantization volume. Each reaction coordinate
R j is coupled to its own local phonon bath described by a,.
Each cavity mode ¢y couples to its independent bath {%,  },
accounting for the cavity loss. On the other hand, g, also
couples to the dipole of each molecule (R ;) with a relative
angle ;. For 2D-FP cavities, we further define the angle
between the dipole and the k plane as ¢; which varies
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from 0 to =z, and the angle between the field polarization
and the projection of the dipole on the k; plane as ¢;
which varies from 0 to 2. It is easy to prove that cos ¢, =
€os @; - oS ¢jx- For 1D FP cavity, ¢;, will reduce to ¢;
since ¢;) = 0. Details of the Hamiltonian and a schematic
illustration of the orientations of the dipole operator and
field polarization vector are provided in the Supplemen-
tary Material, Section I.

Figure 1(a) presents a schematic illustration of the cav-
ity dispersion relation in Eq. (2) (red dashed line). The
molecular excitation dispersion (black dashed line) is insen-
sitive to the incident angle and is a straight line, with
energy hw, (see Eq. (7)). These two dispersions hybridize
due to the light-matter interactions, generating polari-
ton dispersions (the upper and lower branches with solid
curves) with the color coding indicating the character of
the states, with purely photonic (red), purely vibrational
(black), and hybridized (yellow to orange). Figure 1(b)
presents a schematic illustration of the typical cavity detun-
ing dependence of the rate constant modifications, with
the highest intensity of the modification arising at the fre-
quency when o, = w, (resonance condition at the normal
incidence).

In this paper, we consider a reaction using a thermal
barrier crossing model. Figure 2(a) presents the first few
vibrational states of the double well model, where |v;)
denotes the vibrational ground state of the reactant (left
well), |v£) denotes the vibrationally excited state of the
reactant, and similar for the product (right well). The red
arrow represents the thermal activation process from the
vibrational ground state, |v; ), to the vibrationally excited
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Figure 2: Potential energy surface for the reaction model. The red
arrows represent the thermal activation process from the vibrational
ground state, |v, ), to the vibrationally excited state, |v/) in the reactant
well (left side of the barrier). Through the coupling between |v/) and
|v,;), a chemical reaction occurs. Finally, the vibrational excited state |vr’{>
relaxed to the ground state |vg). (b) The effective spectral density /()
(red curve), corresponds to the cavity and its associated loss, compared

to the phonon spectral density /, (w) (blue).

-_—3

state, |v] ) in the reactant well. Then, through the coupling
between |v£) and |vl’{), a chemical reaction occurs. Finally,
the vibrational excited state |"1,<> relaxes to the ground
state of the product |vy). The presence of the cavity mode
gy explicitly enhances the transition |v; ) - [v]). The sym-
metric double-well model [39] is used to model the reac-
tion, with details in Supplementary Material, Section IL
Figure 2(b) shows the phonon spectral density J, (@) (blue)
adapted from Ref. [39] as well as the effective spectral den-
sity J.q(w) (red) of the cavity and its associated environment
that accounts for loss. Note that J () resembles the Brow-
nian oscillator spectral density that centers at a particular
frequency. When its peak frequency is in resonance with the
quantum vibrational frequency wy, /(@) could potentially
accelerate the state-to-state quantum transitions |v; ) — |v£)
(as indicated by the red arrows in Figure 2(a)). Note that the
actual experimental system might not be able to be mod-
eled as a simple symmetric double well potential as shown
in Figure 2. Nevertheless, we do expect the mechanism
obtained from investigating this simple model to be insight-
ful and characteristic of the VSC problems. Recent quantum
dynamics simulations [39] using models with asymmetrical
double well potential, a much higher reaction barrier than
hwy,, or coupling cavity to the spectator mode (which in
turn couple to the reaction coordinate) do show a sharp
resonance modification of the rate constant. We anticipate
that the current mechanistic explanation can also be used
to explain these sharp resonance features.

Consider a simplified reaction mechanism outside the
cavity as |\/L>k—1> |v£)k—z> |vl’1)k—3> [vg)- Note that this is the
quantum description of the reaction based on quantized
states, whereas the classical description is a barrier crossing
along the reaction coordinate. These vibrational diabatic
states can be directly obtained by computing the eigenspec-
tum of V(R) and then diabatizing it. The dominant path-
way enhanced by VSC effects is through the first excited
states [47]. The simplified mechanism for this reaction is
that the thermal activation process causes the transition
of |v)— |v£). Then the reaction occurs through the dia-
batic couplings between [v/) and |v;), followed by a vibra-
tional relaxation of the product state, |"1Iz> — |vg). The rate-
limiting step for the entire process is k;, where k, > k;
such that the populations of both |v/) and |v}) reach a
steady state (plateau in time), and from the steady-state
approximation, the overall rate constant for the reaction is
ko ~ k. This steady-state behavior of the [} ) and | v} ) states
has recently been verified by numerically exact quantum
dynamics simulations [47].

Considering many molecules, we focus on the single
excitation subspace. This includes the ground state |G) and
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N singly excited states |v;) (where j € [1,N] labels the
molecules), defined as

1G)= V). ® ... V) ® ... V), (52)

W= . ® .. vy ®... W) (5b)

The vibrational transition dipole matrix element is
iy = V@IV, (6)

which is identical for all molecules j. When measuring the
absorption spectra of the molecule, the optical response
shows a peak at the quantum vibrational frequency

Wy = (EL’ - EL)/h. (7

In the singly excited manifold, the light-matter cou-
pling term, o 7, G ® AR ;) - € in Eq. (1), will hybridize
the bright excitonic state and the photon-dressed ground
states, generating the polariton states [48], [49]. When all
dipoles are fully aligned with a given field polarization
direction &, such that ﬂ(f?j) 8 = y(ﬁj), and under the
resonance condition wy (k) = w, for this particular k, the
light—-matter hybridization generates the upper and lower
polariton states, causing the Rabi splitting expressed as

QR = ;ﬂ N#LL/ = 2\/1T]gc BRI ®)
V € Vv

where g. = p;1/1/1/@2he,V) is the Jaynes—Cummings [50]
type coupling strength (without the \/a)_k-dependence).
Details of this standard analysis are provided in the Supple-
mentary Material, Section III.

The formation of Rabi splitting/polariton states comes
from a collective phenomenon, resulting in the well-known
dependence of \/ﬁ or equivalently 4/N/V for €, which
has been experimentally confirmed [4]. It has been esti-
mated that there are N ~ 10° — 10 molecules effectively
coupled to the cavity mode [14], [16], [52] for recent
VSC experiments [1], [4], and Q; ~ 100 cm™ when W,y ~
1000 cm~! for typical VSC experiments [4], [5]. Despite
encouraging progress, what remains largely a mystery is
how the collective light—matter coupling can induce the
VSC modified rate constant [14]. Another less investigated
area [18], [45], [46] is why forming polaritons at a finite
incident angle does not necessarily lead to the change of
the VSC kinetics, and the only observed VSC effects occur at
k, = 0 (or 6 = 0). This strongly hints that forming polariton
states is not a sufficient condition for VSC-modified effects,
and polariton states might not be the best representation
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for explaining the VSC modification, because the polariton
states are present in both normal and oblique incidences,
and yet only the former case result in the VSC modified rate
constant.

3 Theoretical results

3.1 Analytic rate constant expression

To provide a microscopic mechanism of VSC-modified reac-
tions, we hypothesize that the cavity modes enhance the
transition from ground states to a vibrationally excited state
manifold of the reactant, leading to an enhancement of
the steady-state population of both the delocalized states
on the reactant side and the excited states manifold on the
product side (right well) {lv}'{j ) } which then relax to the
vibrational ground state manifold on the product side (right
well), { |vé) } For a single molecule strongly coupled to a
single cavity mode, our numerical simulations [47] have
confirmed the validity of this hypothesis. The proposed reac-
tion mechanism is represented below

IG>—'3»{|v£f>}£{|v;f>}—k3->{|vl§>}, ©)

among which k; < k,, k5. Note that in the current work,
we only consider the single excitation subspace (where one
particular vibration is excited). In real experiments, many
molecules could be simultaneously excited [13], with a num-
ber n,, ~ Ne=#h® such that 1< n,, << N. For example,
when N =102, fhw, ~ 5, n,, ~ 10°. Future development
is needed to fully account for such statistical distributions
among molecules.

When the molecular system is originally in the Kramers
low friction regime (before the Kramers turnover [53], [54],
or the so-called energy diffusion-limited regime), the cavity
enhancement of the rate constant k; will occur [30]-[32],
[34], [35], [39]. This has been extensively discussed in recent
theoretical work [39], [47]. If we explicitly assume that k; <

k. .
k., ks, then |G)— { |v£’ ) } is the rate limiting step, and the
population of intermediate states will reach a steady-state

behavior. As such, due to the steady-state approximation,
the overall rate constant is [47]

k & ky = Ky + kyse << Ky, s, (10)

where k is the chemical reaction rate constant outside the
cavity, and kys¢ accounts for the pure cavity-induced effect.
As this is a thermally activated reaction, there already exist
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some excited-state populations and transitions outside the
cavity, which k; accounts for. Note that Eq. (10) assumes that
the pure cavity effect kyg. can be added with k;, which is a
fundamental assumption in the current theory.

To quantitatively express kysc, we analyze the overall
effect of the cavity and the photon loss environment on
molecular systems by performing a normal mode transfor-
mation [55]-[57] to the Hamiltonian in Eq. (1) and obtaining
an effective Hamiltonian, where now the cavity modes {qy }
and the photon loss bath modes {Xy , } (described by Hypss)
are transformed into effective photonic normal mode coor-
dinates {)Q(k,g }, which are collectively coupled to the system
DOF through the following term,

Hy=$® ) Fi (1)

k

where $ = 2]}]:1 H(R)) - cos @ is the collective system oper-
ator which does not depend on k, as we used the rela-
tion cos @ = €0s ¢; - cos ¢; to separate the k-dependent
and k-independent components. For simplicity, we have
assumed that ¢;, — ¢, is j-independent for the 2D cavity
case, which means the molecular dipoles are distributed
in a 2D plane that perpendicular to the mirrors (which is
naturally true for the 1D cavity case). Further, 7, = cos ¢ -
Z(:Z'k’gf(k,g is the stochastic force exerted by the k-th effec-
tive bath, {f(k,g } are the normal modes of {{, X ¢ }, and the
coupling constants ¢ - as well as bath frequencies @y . are
characterized by an effective spectral density,

2 2 2 -1
A¢ cos® pywy T

, 12)
(a)f( - wz)z + 72w’

Jeri(@y, @) =

where 7 is the cavity lifetime. Detailed derivation is pro-
vided in Supplementary Material, Section IV.

The rate constant change kyg. in Eq. (10) originates from
a purely cavity-induced effect, which promotes the transi-
tion from |G) to the singly excited states manifold {|v;)}.
Note that this transition is mediated by the cavity operators
F\ through the collective coupling between all molecules
and the cavity modes, as is suggested by the light-matter
coupling term in Eq. (11). We use FGR to estimate this tran-
sition rate constant. The coupling for this quantum tran-
sition is provided by S, and the transition is mediated by
the effective photon bath operators 7, with their spectral
densities J.x(wy, ®) in Eq. (12). Using FGR to estimate the
transition with the frequency @ = w, (the |G)k—1> { |v£j )}
transition), and assuming that the pathways are completely
independent (i.e., no interference between pathways), we
have the following expression for the overall reaction rate
constant,

W. Ying et al.: Resonance theory of vibrational polariton chemistry at the normal
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N
12 A 2
Kpse = Nﬁ}; |<"j|3|G>’ : ;pk * Jeri(@y, @g) - N(@y)

cos? gyl 77w,

2
k

5 n(a)o), (13)

0

4
= fg . P, -
N°oV ; « (w —a)g)2+rc‘2a)
where D denotes the dimension of the in-plane direction in
a FP cavity. The collective Jaynes-Cummings-type [50] cou-
pling strength gIZV (without cavity frequency dependence) is
defined as

N
g =8, cos’ o, (14)

j=1
and the 1/N factor accounts for the normalized rate con-
stant per molecule. Furthermore,

n(wo) = 1/(eﬂhw0 _ 1) ~ e_ﬂhwo (15)

is the Bose-Einstein distribution function, where f =
1/(kyT) with kg as the Boltzmann constant and T as the
temperature. For the typical parameters in VSC exper-
iments, w, ~ 1200 cm™ and room temperature 1/8 =
kT ~ 200 cmm~?, such that fhw,, > 1. Finally, P, represents
the thermal weighting factor for accessing the cavity mode

wy, with
e_ﬂ hax

Py = 7
and Z is the partition function such that ), 7, = 1. Note
that the same thermal average over different modes is
also used in a recent study of electron transfer rate the-
ory in Ref. [61]. Detailed derivations are provided in
Section V of the Supplementary Material.

Under the continuous k; limit, one can replace
the sum in Eq. (13) with an integral as Y, f(k) -
/ % f(&), where Ak, is the spacing of the in-plane

(16)

wavevector k; (or the k-space lattice constant). See
Section VI of the Supplementary Material for details. For 1D
FP cavities, Eq. (13) becomes

) = b [ Ok 0yTcoy
SN Ak T (0] - f) +x e

_4n LT
= NgN/da)/ Ak, (@ — wy)

2 —1
@t ',

* n(a)o)

X P(w) -

* n(wo)

(- o) + 10k

4
= g]zv / dw gp(@)P(w)

21
@’ T W,

(17

- n(wy),
2 _ 2)2 —2,2
(0* = )" + 1770}
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where P(w) = e#"@ / Z (cf. Eq. (14)), and we have explicitly
used cos ¢, = 1, and the 1D DOS is defined as

(18)

Note that when all molecules are aligned with the cavity
field polarization direction, such that cos ¢; =1, g% = Ng2
(cf. Eq. (8)). When the dipole orientations are fully isotropic,
Z] _, cos’ @; = N(cos* ) = N/3.

For 2D FP cavities, similarly, one has (cf. Eq. (13))

cos2 Py 7w,

Kisc = ngZ - n(w,)
o} _wo) +Tc_2 :
=% gzzv / do g, (@)P(w)
*t7w
S ), (19)
(0* = @})" + 1%

where gfv is defined in Eq. (14), and the 2D DOS weighted by
cos’¢y is defined as

/ _ dk* Y e
gZD(a))_/(Ak”)Z o(w — wy) - Cos™ ¢y, (20)
whereas the standard 2D-DOS is defined as
_ dk?
Sop(w) = / ( Ak”)z 0w — wy). 21

Note that géD(a)) = g,p(w)/2 (see the proof in
Section VI of the Supplementary Material). Since there
is only a 1/2 factor difference between géD(a)) and g,p(w),
which does not influence the shape of the rate profiles, we
will regard g; () as gyp(w) in the following discussions.

We further define the accumulated spectral function
A(w) as follows, (cf. Eqs. (17) and (19))

_ (02 _16()
A@) = / dow gp(@)P(®) - T @2)
(@ — &%) + 1% 2’
and k\?sc in Eq. (13) can then be written as
Kpse = ~ glzv - Alwy) - n(wy). (23)

3.2 The resonance effect at the normal
incidence

Next, we work to provide an analytic expression of .A(w)
for the 1D and 2D FP cavities, which is one of the main
theoretical results of this work. The 1D and 2D DOS defined
in Egs. (18) and (21) can be evaluated using the dispersion
relation in Eq. (2).
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For the one-dimensional FP cavity [46], if we ignore the
influence of cavity loss (H,, in Eq. (1)), one can show that
the DOS for the photonic modes (D = 1) is expressed as

@ 24)

2
&p(w) = cAk, : e B — w,),
where O(w—w,) is the Heaviside step function.
Details of the derivations are provided in the
Supplementary Material, Section VI. The DOS, g,(w),
in Eq. (24) has a singularity at @ = w,, which is known
as (the first type of) the van-Hove-type singularity [58].
Such a concentrated peak in g;(®) at @ = w, has been
numerically observed in Figure 1 of Ref. [46]. We will turn
to the case of including the effects of photon propagation in
the in-plane direction later in this section.

By using Eq. (24), we have the spectral function A(w,)

in Eq. (22) for 1D FP cavities as follows,

2 1
-’4(600) = l / dw ng(a)) . e—ﬁhw T, Wy
z (0* — ) + 172wk
. g~fhw w*t ' w,

202"
+ 7w

cAk”Z/ deo

wZ (0* — )
(25)

where w,, — oo is the cutoff frequency. The integral in
Eq. (25) gives a finite value despite the singularity in g,5(w),
because only the contribution from w = @, survives.
At the same time, Z = Y, e /" = [dw gp(w)e P ~
2e~Phoc [(cAky), 501/ Z cancels the e7#"c and the 2/(cAk))
factor that arises from the integral. This leads to an approx-
imate analytic expression of .A(w,) for 1D FP cavity case as

follows

2.1
WiT Wy

202
+ 7w

(26)

Alw,) ~
O - at)

We have also numerically evaluated Eq. (25) and com-
pared it with Eq. (26) for the VSC rates, presented in
Figure S2 of the Supplementary Material, which shows a
nearly identical behavior. The above theoretical results also
suggest that for a 1D cavity, the commonly used single mode
approximation [22], [27], [39] is indeed valid, because only
the mode of frequency w, survives. Using the expression of
Al(w,) (Eq. (26)) in the rate constant expression of Eq. (23)
and taking the limit of N = 1, one obtains the previous result
of kysc (see Eq. (35)) for a single molecule coupled to a single
mode in Ref. [47]. We should remind the reader that all
of the existing VSC experiments were conducted with 2D
cavities.

Figure 3 presents the cavity dispersion relation of
@y (0) (see Eq. (2)) in panels (a) and (d), the 1D DOS g,,(w)
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Figure 3: Dispersion relation, DOS, and the accumulated spectral function .A(w) for a 1D cavity. (a) The cavity dispersion relation (Eq. (2)),

(b) the schematic 1D DOS g,,(w) (Eq. (24)) and (c) the 1D accumulated spectral function A(w) (Eq. (22), evaluated using Eq. (25)) for the normal
incidence case @, = @,, where the resonance condition is reached at & = 0. (d)-(f) corresponds to the red-detuned case (oblique incidence),
with @, = 0.85w,, whose resonance condition is reached at 8 =~ 32°. The cavity lifetime is taken as . = 200 fs.

(see Eq. (24)) in panels (b) and (e), and the 1D accumulated
spectral function A(w) (see Eq. (22)) which is directly pro-
portional to kyge in panels (c) and (f). In panels (a)-(c), one
can clearly see that under the normal incident condition
wy =w, at 0 =0, A(w) is maximized at w, = w, and
accordingly, the rate constant will also maximize based on
the FGR expression (Eq. (13)). In the detuned case (@, # @,
or [@] > 0) in panels (d)—-(f), the intensity of .A(w) still peaks
at 6 = 0, but the value of A(w,) diminishes at the “reson-
ance condition” @, = w, (for generating Rabi splitting).
This analysis also provides a possible explanation for
the resonance effect at normal incidence (k; = 0) for a 1D
FP cavity. In Eq. (26), it is clear that the peak of this function
islocated at w, = w, for k; = 0.Thus, the VSC-modified rate
constant occurs only when w. = @,. This is because there
is a van-Hove-type singularity [58] in the 1D DOS, gp(w),

which manifests itself as the 1/4/@®* — w?* term in Eq. (25),
such that the integral only survives and gives a finite value
atw = ., and at ® > w,, the integral becomes vanishingly
small.

However, directly extending this simple consideration
for the DOS cannot explain the normal incidence condition
for a 2D FP cavity (even when only considering the TE
polarization direction). This is because the 2D DOS g,,(®)
does not have any singularity. Specifically, the DOS for the
photonic modes inside a 2D FP cavity is expressed as
-0 - O —-w,), 27)

_ 2m
&pl@) = (CAk”)Z

where Section VI of the Supplementary Material contain
more details of this derivation.

For the 2D cavity case, one needs to consider beyond the
simple DOS argument. Note that the photon loss associated
with the lifetime 7, only considers the loss in the k,; direc-
tion. What we have not explicitly considered before was the
photon traveling outside a mode area along the k, direction.
Let D be the effective lateral size of a given mode (which is
not the cavity length), and £ be the mirror distance (along
the k, direction in Figure 1), so the effective quantization
volume (per mode) ¥ = £ - D% The mode lifetime can be

estimated as
2 2
D,/kl+k|| _D

ckg &k~

D

T”(k”) - c-sin @ -

(28)

which is propotional to k[ 1 when k, <k, and the asso-
ciated rate constant is F{O = 1/7 (which corresponding to
the photon loss of |1) — |0y)). Note that 7 differs from
the cavity lifetime 7. introduced previously. Specifically, 7
accounts for thermal photon traveling outside a coupling
area associated with a given mode @, in the in-plane direc-
tion, 7, describes the loss channel only due to the escaping
of the photon with a direction that is perpendicular to the
mirror surface k; (and was introduced through the H,
term, which was assumed to be identical for all cavity modes
@y, being independent of k).

An estimation for D is provided as follows. As men-
tioned before, the typical values for the VSC experiments
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are N =~ 108 ~ 102 [14], [16], [52], which is the effective num-
ber of molecules per mode (see estimations in Ref. [52]).
The effective density is estimated to be N/V ~ 102 cm=3
[59]. UsingV =L - D?, and the typical value for the mirror
distance £ =1 pm, we have D ~ 107! ~ 100 pm (or 10% ~
10° nm), which agrees with the numerical simulation in a
FP cavity based on eigenfrequency analysis of the scalar
Helmholtz equation [51]. With the range of D, one can also
estimate the range of D/c =~ 1 ~ 100 fs. For example, when
D ~ 300 nm, D/c ~ 1075 s~ =1 fs. Note that D is differ-
ent than the typical length of the cavity in the in-plane
direction (which is on the order of mm [6], [8]). For a pho-
ton traveling outside a particular cavity mode area, it is
still within the cavity quantization area that contains many
modes. On the other hand, z, usually varies from 100 fs [3]
to 5 ps [60] in typical VSC experiments.

Note that the term e #"®« in Eq. (16) originates from
the photon field thermal distribution, which can also be
interpreted as the ratio between two photonic transition
rate constants according to the detailed balance relation, i.e.,

e P =Ty /Ty, 29
where I'; is the rate for the |0,) — |1;) photonic Fock
states transition due to thermal excitation, and I';; = 1/7,
is the cavity loss rate along the k, direction (associated
with |1,) — |0y)), which was assumed to be identical for all
k modes. Note that all of the above-mentioned excitation
and decay processes are related to the thermally activated
radiation (thermal photon), and not related to the pumping
with an external radiation field. To account for the addi-
tional effect of photon propagating outside a given area
associated with a specific mode w,, we modify the detailed
balance relation (in Eq. (29)) by replacing the original P,
with P,q(w,), defined as follows
1 Ty _ 1 gleh
Zeff 1—‘10 + r‘io B Zeff Tc_l + T“_l ’

Peff(wk) = 30)

where 7 (defined in Eq. (28)) is k-dependent. This can
also be viewed as putting a 7! /(TC_ 14+ 1”‘1
factor to Py in Eq. (16), where 7, explicitly depends on

k, (Eq. (28)). Further, the partition function is also modi-
fledas Z — Z4 = Zkrc‘le‘/’h“’k/<rc‘1 + T”_1>. As expected,
when k; =0, 7”‘1 =0, one should have Pg(w,) — Py =
e~Phew / 7. Note that in Eq. (30), we have not considered the
effect of photon leaving from the mode k” and re-entering
into the mode k. This should be viewed as the limitation of
the current theory. Future work is needed to consider this
effect.

) correction
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Using Pgg(wy) in Eq. (30), the accumulated spectral
function A(w,) in Eq. (22) for 2D cavity is modified as

w*t7lw
Ay = [ 4o gp@Palo) —
(0* = @) + 1770}
“n 2..—1
1 2z / W°T, Wy
= — do F(w) - < s
Zegt (cAky)? (w? — wg)z + Tc‘za)é
CUC

3D

where we used Peg(w) in Eq. (31) and 7 (w) in Eq. (28), and
we further define the following weighting factor

Tc—lwe—ﬂha)

Flw) = 1 @I (@

(32)

This F(w) takes a sharp maximum at k;; = 0 and decays
quickly when k| increases, because F;O increases quickly as
k, increases. This means that for a 2D cavity, as used in all
existing VSC experiments, the VSC-modified rate constant is
still maximized around wy (k; = 0) = @, = w,, fulfilling the
normal incidence condition. Note that the correction factor
7t/ (rc‘ 14+ 1”‘1) can also be applied to the 1D FP cavity but
does not introduce any difference in Figure 3, due to the van-
Hove singularity in the DOS (see Eq. (24)) which dominates
the entire integral, forcing Pey(wy) — Py (as 7 — oo when
k, = 0).

Figure 4 presents the cavity dispersion relation of w, ()
(see Eq. (2)) in panels (a) and (d), the weighting factor F(w)
(see Eq. (32)) in panels (b) and (e), and the 2D accumulated
spectral function .A(w) (see Eq. (22)) for the 2D cavity case in
panels (c) and (f). Figure 4(b) shows the numerical behavior
of the weighting factor F(w) under different D/c values (see
Eq. (28)), among which D/c = 1000 fs, 10 fs, 1 fs, and 0.1 fs,
corresponding to D = 3 X 10° nm, 3 X 10 nm, 300 nm, and
30 nm, respectively. All are within the reasonable range of
Dalues discussed previously. One can see that the maximal
contribution still comes from k; = 0, although no singu-
larity is present. Moreover, the width becomes narrower
as D/c decreases. Note that ¢/D is usually a very large
quantity, so that when the incident angle 6 is slightly larger,
I}, > I’y becomes dominant.

Figure 4(c) presents the behavior of the accumulated
spectral function .A(w), which is calculated by evaluating
Eq. (22) numerically using trapezoidal integration within the
region of w, < w, < 5w, using 4 X 108 grid points, where
numerical convergence is carefully checked. One can see
that .A(w) peaks at @ > w, when D/c is large, and grad-
ually moves to w = w, when D/c decreases and F;O dom-
inates the behavior for k; > 0. Additionally, compared to
Figure 3(c), here A(w) tails towards the higher energy. This
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Figure 4: Same as Figure 3, but with a 2D FP cavity. (a) Same as Figure 3(a). (b) The weighting factor F(w) (see Eq. (32)) under different D/c values,
where D/c = 0.1fs corresponds to D = 0.03 pm, D/c = 1000 fs corresponds to D &~ 300 pm. (c) The accumulated spectral function A(®)

(see Eq. (22)) for the normal incidence case w, = w,, where the resonance condition is reached at 8 = 0. (d)-(f) corresponds to the red-detuned case
(oblique incidence), with @, = 0.85w,, whose resonance condition is reached at 6 =~ 32°. The cavity lifetime is taken as 7, = 200 fs.

is because the weighting factor F(w) is not truly singular
at w,. The smaller the D/c value, the sharper A(w) will
be. When taking the limit of D/c — 0, Figure 4(c) reduces
back to Figure 3(c). On the other hand, when D/c¢ — oo,
there will be noloss in the in-plane direction, corresponding
to a much wider A(w) (see the dark blue curve in Figure
4(c-1)), which is only bounded by e=#"®, Under this con-
dition, A(w) still peaks at a particular frequency, but with
W, > w,. Figure 4(d—f) corresponds to the red-detuned case
under oblique incidence, where w, = 0.85w,.

With the above analysis, we have theoretically justified
why the VSC-modified chemical kinetics only occurs at the
normal incidence when @, = @, for a 2D FP cavity, which
agrees with experimental observations [1], [11]-[13]. This
is because even though there is no singularity in g,p(w),
the photons propagating outside the mode area along the
k, direction force the 2D cavity spectra function A(w) to
peak at w = w,, forcing the normal incidence condition.
The condition for observing Rabi splitting (see Eq. (8)), on
the other hand, is w, = @, V1+ tan? 6 = w, for any 6 > 0.
Although the modes with > 0 barely contribute to kys,
the mode density is finite (see Figure 3(e)) and for o, > o,
there will always be a mode available that satisfies w, = w,,
generating Rabi splitting at 8 > 0. As such, the theory pro-
vides a step forward towards understanding the fundamen-
tal difference between the condition for forming the Rabi
splitting and that of the VSC resonance modification of the
rate constant. This explains the experimentally observed

resonance phenomena [11], [14] that occur only at w. = w,
at the normal incident angle when kH = 0 (or @ = 0), but not
at a finite angle of @ even though the resonance condition for
generating Rabi splitting is fulfilled.

3.3 No apparent collective effect

For our discussion on collectivity, we begin by considering
the FGR expression in Eq. (13). For simplicity, we just focus
on the 1D cavity case, since for 2D cavity there is no appar-
ent collective effect either. If all the molecules’ dipoles are
perfectly aligned with the cavity field polarization direction,
then cosg; = 1 for all molecules, j, and S$=Y j,u(fQ /). Eval-
uating Eq. (23) using Eqs. (25) and (26) leads to

)
KD, ~ = - ANt - )
N (0 - @2) + 7%

where we have explicitly approximated n(w,) ~ e=#® (cf.
Eq. (16)). As a special case of Eq. (33), when @, = @, Eq. (33)
becomes

(34)

12 —ph
k\llgc=ﬁQR'Tc'e Phen,

where Qp = 2\/17] 8- \/a)_O . The cavity quality factor is often
defined as Q = 7', for the resonance condition. For the
recent VSC experiment by Ebbesen [3], the typical values
for these parameters are 7, = 100 fs (reading from a width
of I', = 77" ~ 53 cm™ of the cavity transmission spectra).
If the cavity frequency is w, = w, = 1200 cm~, then the
quality factor is Q ~ 22.6.
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However, for the current theory in Eq. (34), the overall
rate constant would not explicitly depend on N (Eq. (33)),
meaning that only for the small N and strong coupling
between molecules and the cavity mode there will be an
appreciation amount of the cavity-modified effect. This is
in contrast to the experimental observation of the collec-
tive effect and should be viewed as a major limitation of
current theory. This limitation could be related to the fact
that we have only considered the case of single excitation
subspace in our theory, whereas in the experiments, a total
of n,, ~ Ne~#"® molecules could be simultaneously excited
[13] due to the thermal statistics. Future work is needed for
considering multiple excitations in n,, vibrations and the
rate constant theory in this scenario.

When considering the disorder of the orientation
between the dipole and the cavity field polarization direc-
tion, the FGR rate in Eq. (33) becomes

~1,,2
A OEON

(02 = )" + 770}

kioc = 4g%(cos? @) -

—ph
.eﬂwo,

upon statistical averaging of dipole orientations. For fully
isotropically distributed dipoles, (cos?@) = 1/3.

3.4 Resonance behavior of kg

We want to demonstrate the numerical behavior of the
current theory predicted by Eqgs. (25) and (31). Because the
current theory lacks the collective effect, we take the N =1
limit and scale up the coupling strength between a single
molecule and the cavity modes, as most previous work does
[22], [23], [39]. This leads to the expression of (cf. Eq. (33))

D ) o7 w,

VSC — SR’

. @ Phay (35)

(02 —})" + 7%
under the single mode limit (or under the 1D cavity case,
see Eqgs. (25) and (26)). When further considering the pres-
ence of homogeneous or inhomogeneous broadening of the
molecular system, the FGR expression will be a convolution
between the original FGR expression, which does not con-
sidering the broadening for the w, (for example, Eq. (33)),
and a broadening function (assumed to be a Gaussian),
expressed as follows [47]

k\l}gc = / do ™ (@)Gw — W), (36)
0
where
-1
K@) = Q. — 2P o (37a)

R (w? — a)z)2 + 17w
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1 (0 — wy)*
Glo — w,) = R 2 N
( o V2no? exp[ 20° G70)

where ¢ is the variance of the Gaussian.

As expected, the kygc expression in Eq. (33) should
contain several characteristic physical constants, includ-
ing the speed of light ¢ in w, (see Eq. (3)) as it is related
to light-matter interaction, Planck’s constant 7 in g, (see
Eq. (8)) as it should be a quantum theory, and Boltzmann’s
constant ky in n(w,) as it is a thermally activated theory.
We adopt a model system used in Ref. [39] to demonstrate
the basic trend of kyg. predicted by the current theory. The
schematic of the model is provided in Figure 2, whereas the
details are provided in Supplementary Material, Section IL.

To obtain the numerically exact rate constant for
the same model, we use hierarchical equations of motion
(HEOM) to simulate the population dynamics and obtain
the VSC-modified rate constant, with the details provided
in Section VII of the Supplementary Material. The HEOM
simulation requires a linear system-bath coupling Hamil-
tonian. To this end, we follow the previous work [22], [39]
and assume that the dipole operator is linear, u(R) = R. As a
result, the light—matter coupling term in Eq. (1) (for a sin-
gle molecule case) is simplified as w.4.4 - u(R) = o A4.R.
Further, we follow Ref. [39] by defining the normalized
light—-matter coupling strength as below,

_ 1
e = V 2hw, 4

We use a similar range of #, as used in Ref. [39].
The forward rate constant from the HEOM simulation
is obtained by evaluating [39], [47]

Qp

= . (38)
2w pyy

Pr(®)

k=—lim ,
=t Pr(O) + Yeq - [Pr(0) — 1]

(39)

where y., =Pr/Pp denotes the ratio of equilibrium
population between the reactant and product, see
Section VII of the Supplementary Material. The time
derivative P (t) in Eq. (39) is evaluated numerically. For the
symmetric double potential model considered in this work,
Xeq =1 The limit ¢ — ¢, represents that the dynamics
have already entered the rate process regime (linear
response regime) and ¢, represents the “plateau time” of
the time-dependent rate which is equivalent to a flux-side
time correlation function formalism. One can also view
Eq. (39) as the flux-side correlation function that provides
the time-dependent rate constant k(t), which captures both
the initial transient dynamics (the oscillatory behaviors of
k(?)) and the longer time rate process (plateau of k(tp)). For
the FGR-based theory (Eq. (35)), we use the value of the k;
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(outside the cavity rate constant) obtained from the HEOM
simulation and report k/k, = 1+ kysc /K-

We report the numerical value of k/k, as a func-
tion of the cavity frequency w,. For the rate constant pre-
dicted by FGR, we only report the value of k/k, =1+
kysc/ ko (see Eq. (10)), where kyg is evaluated using Eq. (36),
and the variance defined in Eq. (37b) is estimated as ¢ =
30.74 cm~! for the model parameters we used. See Supple-
mentary Material, Section VII for details. And we directly
use the numerical result of k, obtained from the HEOM
simulation.

Figure 5 presents the numerical simulations of the rate
constant from HEOM as well as the FGR results. Figure 5(a)
presents k(¢) for the resonant case when w, = @, at various
light-matter coupling strengths 7. One can see the plateau
value of k(t) increases as 7, increases. Figure 5(b) presents
the case where w, < w, where @, = 1000 cm~', and there
is no apparent 7, dependence of k(¢), indicating that the
coupling to the cavity has no effect. Figure 5(c) presents the
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Figure 5: Numerically exact simulation and the analytic FGR results of
the rate constant. (a) The flux-side correlation functions computed by
HEOM at resonance (with w, = w, = 1190 cm™). (b) The flux-side
correlation functions are calculated by HEOM but off-resonance (with

@, = 1000 cm~"). (c) The profile of the resonant VSC rate constant k /k,
as a function of @, with different light-matter coupling strengths, 7,
obtained by FGR expressed in Eq. (36) (solid lines) and HEOM simulations
(open circles with guiding thin lines), respectively. The cavity lifetime is
set to be 7. =200 fs.
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value of k/k, from Eq. (36) (scaled by 0.4) as a function of
., depicted by the thick solid lines. A range of light—matter
coupling strength #, is explored. The FGR expression shows
the sharp resonance behavior of the VSC-modified rate pro-
file at w, = w, = 1190 cm™~. A similar sharp resonance has
been observed in VSC experiments [1], [5], [6] and quan-
tum dynamics simulations [39]. Further, we provide the
rate constant calculated from the numerically exact HEOM
simulations (see Section VII of the Supplementary Material),
depicted by the open circles with a thin guiding line.
Although the analytic FGR expression overestimates the rate
constant by about two times, the overall agreement between
the FGR expression and the HEOM numerical results is
remarkable, across the range of w, and #, we explored.

Next, we explicitly consider going beyond the single-
mode limit. For the 1D FP cavity, k‘l}gc reduces back to the
single-mode approximation. For the 2D FP cavity, based on
the expression in Eqs. (13) and (31), the VSC-modified rate
constant is expressed as

wm

K —c. ] d weFhe @z wy - nlwy)

vse = C & [ G0 /7@ (0? — ? ) + 222
/ T/ T)(@) (0? - @k)" + 72w

0
(40)

— 8 —
where C = m, and 7(w) = wD/ [c, [@? — ? ] (cf.

Eq. (28)). Note that this expression also peaks at w. = w,
(as indicated in Figure 4(c)). In Eq. (40), @, is the lower
limit of the integral with respect to dw, as well as appearing
explicitly in the expression of 7. The result of this definite
integral in Eq. (40) is not as simple as replacing w with o, as
in the single-mode approximation (Eq. (35)).

Figure 6 presents the FGR rates under different #, val-
ues. Figure 6(a) is the same as Figure 5(a), which corre-
sponds to the single-mode case (or the many-mode case
inside a 1D FP cavity). Figure 6(b) presents the estimated
value of k/k, using kyq. expression in Eq. (40), correspond-
ing to the case of many modes inside a 2D FP cavity. Here,
we choose D/c = 3.33 fs, corresponding to D =1 pm. This
should be viewed as the typical value of D, which is the
effective lateral size of a given mode. Results obtained with
a range of other choices of D are provided in the Supple-
mentary Material, Section VIII, all of which show a sharp
peak at w, = w,. Note that the broadening factor (Eq. (36))
was not included for k‘%‘gc for clarity, and one can in principle
include it which will further broaden the width of the rate
constant distribution. The numerical integration scheme is
the same as the calculation of .A(w), and the convergence
is carefully checked. One can observe that the resonance
peak is still centered around w, = @, with minor red-shift,
which demonstrates the normal incidence condition. The
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Figure 6: FGR rate profiles of k/k, as a function of w,. (a) FGR rate
profiles for the single mode case (or the many modes case inside a 1D FP
cavity) calculated using Eq. (36) (same as the solid lines in Figure 5(c)).

(b) FGR rate profiles k22 for many mode cases inside a 2D FP cavity

calculated using Eq. (40). Here, we use D/c = 3.33 fs, which corresponds

to D =1 um. Note that both k2. and k2. are rescaled by a factor of 0.4

to be consistent with Figure 5.

resonance peak is asymmetric due to the asymmetry of
A(w) (see Figure 4(c—f)). Moreover, the rate profile tails
toward the lower energy regions, which is the opposite of
the trend in A(w) (see Figure 4). Compared to the single
mode version of the theory, considering many modes in
a 2D FP cavity predicts that the “action spectrum” of the
VSC-modified rate constant has an asymmetric behavior
around w, = w,, with a longer tail when @, < w,. This is
an interesting prediction from the current theory in Eq. (40).
Inrecent VSC experiments by Simpkins [8], it does seem that
the o, < w, side has a longer tail than the o, > w, side of
the action spectrum (kygc Vs w, plot, see Figure 3(a) of Ref.
[8]). However, this seemingly asymmetrical rate constant
profile in Ref. [8] could be caused by a lack of more exper-
imental data points for a blue-tuned cavity (w, > w,) due
to the experimental difficulty of obtaining such measure-
ments. More experimental data are required to definitively
test this trend. Note that in the Simpkins experiment [8]
the rate constant was resonantly suppressed. Recent quan-
tum dynamics simulations [39] suggest that by resonantly
coupling the cavity mode to a spectator mode (which in
turn couples to the reaction coordinate), the rate constant
can be suppressed by the cavity. Future work is needed to
investigate such a resonance suppression effect.

4 Conclusions

We present a theory to explain the current VSC experiments,
focusing on the origin of the resonance condition at normal
incidence. The theory provides a possible explanation to
the resonance condition for the observed VSC effect and of
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why the resonance effect occurs only at the normal incident
angle. In particular, we find that the cavity-modified rate
constant kyge can be expressed as the coupling strength
multiplied by the accumulated spectral function .A(w) of the
cavity, where A(w) peaks at @, (when k” =0, i.e., bottom
of the dispersion band). For a 1D FP cavity, this is caused
by a van-Hove-type singularity (Eq. (24)) in the DOS of the
photonic modes. For a 2D FP cavity, we found that one needs
to additionally consider the photons propagating outside
the mode area associated with k|| direction (Eq. (28)), which
creates the peak of A(w) at w,.. As such, the oblique inci-
dence still has the spectral function peaked at the w,, not
at the higher incident angle. This theory provides a step
forward toward understanding why Rabi splitting is not a
sufficient condition to achieve a VSC modified rate effect,
providing a new insight into the mechanistic understanding
of VSC modification.

Under the normal incidence condition, kyg will peak at
@, = w,. For the 1D cavity case, kiz. naturally reduces to the
single-mode case (Eq. (35)), and we have directly compared
the FGR analytic expression with the numerically exact rate
constant for a single molecule under strong coupling, which
provides agreement across a range of light—matter coupling
strengths and cavity frequencies. For the 2D cavity case, we
evaluated the FGR rate expression (Eq. (40)), and found a
similar sharp resonance at . = @, compared to the single
mode (or the 1D case), with an asymmetric rate constant
profile and a long tail when @, < ®,. This is a unique pre-
diction from the current theory, which should be checked
with future experiments.

On the other hand, the current theory cannot explain
the observed collective effect, and only when a few
molecules are strongly coupled to the cavity can the current
theory predict the cavity modifications to the rate constant.
This is the limitation of the current theory, and future work
is needed to fully address these issues. However, the current
work provides significant progress toward building the ulti-
mate theory for understanding VSC effects. Future work will
focus on developing a microscopic theory that can explain
the collective effect.

Supplementary Material

See Supplementary Material for additional information
on detailed derivations of the Hamiltonian; details of the
molecular system; analysis of the Rabi splitting; the effec-
tive Hamiltonian and effective spectral density derived by
applying harmonic analysis to classical equations of motion;
derivation of the VSC-modified rate constant expression in
Eq. (13) of the main text; DOS analysis for the 1D and 2D FP
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cavity; details of the quantum dynamics simulation results;
effects of the D/c values on the rate profiles for the 2D cavity
case.
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