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Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red).
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Standard deviation of derivative estimators: BRDF Importance Sampling (top left diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bottom right diagonal). Numbers indicate improvement in gradient estimation, higher is better.

Fig. 1. We propose new importance sampling techniques for sampling derivatives of BRDFs, and they achieve significant variance reduction in the
estimated derivatives. Our techniques work better, because they correctly deal with real-valued BRDF derivatives, for which BRDF importance sampling
from forward rendering is not well suited. Our techniques are general and apply to a wide variety of BRDF derivatives, which was not possible by previous
work in differentiable rendering [Zeltner et al. 2021; Zhang et al. 2021a]. 3D models courtesy of Turbosquid users id_inc (teapot), Evilordus (lion), Adrian
Kulawik (hydrant), 3d_molier International (cactus), and cgaustria (fish vase).

We propose a set of techniques to efficiently importance sample the deriva-
tives of a wide range of Bidirectional Reflectance Distribution Function
(BRDF) models. In differentiable rendering, BRDFs are replaced by their
differential BRDF counterparts, which are real-valued and can have nega-
tive values. This leads to a new source of variance arising from their change
in sign. Real-valued functions cannot be perfectly importance sampled by
a positive-valued PDF, and the direct application of BRDF sampling leads
to high variance. Previous attempts at antithetic sampling only addressed
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the derivative with the roughness parameter of isotropic microfacet BRDFs.
Our work generalizes BRDF derivative sampling to anisotropic microfacet
models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other an-
alytic BRDFs.

Our method first decomposes the real-valued differential BRDF into
a sum of single-signed functions, eliminating variance from a change in
sign. Next, we importance sample each of the resulting single-signed func-
tions separately. The first decomposition, positivization, partitions the real-
valued function based on its sign, and is effective at variance reduction
when applicable. However, it requires analytic knowledge of the roots of
the differential BRDF, and for it to be analytically integrable too. Our key
insight is that the single-signed functions can have overlapping support,
which significantly broadens the ways we can decompose a real-valued
function. Our product and mixture decompositions exploit this property,
and they allow us to support several BRDF derivatives that positivization
could not handle. For a wide variety of BRDF derivatives, our method sig-
nificantly reduces the variance (up to 58X in some cases) at equal computa-
tion cost and enables better recovery of spatially varying textures through
gradient-descent-based inverse rendering.

CCS Concepts: « Computing methodologies — Rendering;

Additional Key Words and Phrases: Rendering, differentiable rendering, im-
portance sampling, positivization, differential importance sampling
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1 INTRODUCTION

Bidirectional Reflectance Distribution Function (BRDF) im-
portance sampling is an essential variance reduction technique
for Monte Carlo forward rendering. However, there is no simple
counterpart for differentiable rendering. Taking the derivative of
a BRDF with respect to one of its parameters transforms it into
a real-valued differential BRDF. The differential BRDF can have
a very different shape from the BRDF, and can also take nega-
tive values. Previous attempts at tackling this problem [Zeltner
et al. 2021] are limited to the roughness derivatives of isotropic
Ground Glass Unknown (GGX) (Trowbridge-Reitz) and Beck-
mann BRDFs, and cannot handle even their anisotropic counter-
parts. Another method [Zhang et al. 2021a] was developed primar-
ily for odd functions with symmetric positive and negative lobes,
and can produce substantially higher variance when the deriva-
tive is close to an even function. We propose effective importance
sampling of derivatives of not only anisotropic GGX and Beck-
mann BRDFs but also a wide variety of other analytic BRDF models
like Ashikhmin-Shirley, Oren-Nayar, Hanrahan-Krueger, Mixture
BRDFs, and ABC models. Figure 1 demonstrates the benefits of our
method on several BRDFs compared to BRDF sampling.

Importance sampling a real-valued function leads to unique
challenges. Its variance has two sources, (a) its sign and (b) its
shape. Our idea is to decompose the function into a sum of single-
signed functions, which we call single-signed decompositions.
A single-signed function is either positive everywhere or negative
everywhere in its domain. Single-signed functions, by definition,
have no sign variance. Importance sampling these functions elim-
inates their shape variance.

A classical strategy, positivization [Owen and Zhou 2000], is
a special case of our single-signed decomposition. It has positive
and negative parts with non-overlapping support, which in turn re-
quires (a) analytic knowledge of the roots and (b) analytic inte-
grability of the BRDF derivative up to the roots, which is possible
only for certain BRDF derivatives. To sidestep these issues due to a
partition of the domain, we introduce the product and mixture de-
compositions for which we allow the positive and negative parts to
overlap. In fact, we ensure that both the positive and the negative
parts have support over the entire hemisphere. This enables ana-
lytic integrability and significantly expands upon the set of BRDF
derivatives we can handle. Our main contributions are three single-
signed decompositions and the corresponding importance sampling
PDFs of a large set of BRDF derivatives; see Table 1.

Positivization. First, we introduce a simple decomposition called
positivization (Section 4.2), which partitions a real-valued function
about its roots into a positive and a negative function. We show
that Zeltner et al’s [2021] antithetic sampling is a special case of
positivization, and positivization provides an explanation of the
efficiency of their approach. When applicable, positivization leads
to significant variance reduction. For example, it can be applied
for sampling the isotropic GGX, Beckmann and Hanrahan-Krueger

ACM Trans. Graph., Vol. 43, No. 3, Article 25. Publication date: April 2024.

BRDF derivatives. However, others like anisotropic GGX, Beck-
mann, Ashikhmin-Shirley (Section 4.2.2) are not analytically inte-
grable up to their roots, and the derivatives with mixture weights
(Section 6) do not have analytic roots. Positivization cannot handle
these derivatives. Zeltner et al’s antithetic sampling inherits these
limitations too.

Product Decomposition. Second, we propose a novel product de-
composition (Section 5). Our key observation is that after dif-
ferentiation, many BRDF derivatives can be decomposed into
single-signed functions by separating the terms that result from the
derivative product rule. Product decomposition does not require
knowledge of the roots for the decomposition and only requires
the resulting single-signed functions to be analytically integrable.
Product decomposition can importance sample the derivatives of
anisotropic GGX, Beckmann, Ashikhmin-Shirley, and more.

Mixture Decomposition. Finally, we introduce mixture decompo-
sition (Section 6). Derivatives of BRDFs with linear combination
coefficients, e.g., mixture weights of a layered BRDF, result in real-
valued functions whose roots cannot be found analytically in most
cases. Our mixture decomposition exploits the fact that this de-
rivative is the difference between two positive-valued terms. Sep-
arating them results in a single-signed decomposition, and the
two terms can then be importance sampled separately. Mixture de-
composition handles the derivatives of Oren-Nayar and mixture
weights of Uber BRDFs such as the Disney BRDF or Autodesk Stan-
dard Surface.

It is likely that several other BRDF derivatives not surveyed in
this article can also be dealt with by one of our three decomposi-
tions, and we provide a recipe for handling them in Section 7. We
provide a library of importance sampling PDFs for the derivatives
of all the BRDF models discussed in this work in Table 1.

2 RELATED WORK

Our work connects two areas in rendering research, differentiable
rendering and BRDF sampling.

2.1 Differentiable Rendering

Derivatives in rendering. Computing derivatives or gradients of
light transport has a long history. Earlier work focused on acceler-
ating light transport using derivatives [Arvo 1994; Ramamoorthi
et al. 2007; Ward and Heckbert 1992]. Approximate differentiable
renderers [de La Gorce et al. 2011; Kato et al. 2018; Laine et al. 2020;
Liu et al. 2020; Loper and Black 2014] have been used for many
computer vision tasks, and light transport derivatives have been
used for recovering scattering coefficients [Gkioulekas et al. 2013;
Khungurn et al. 2015].

Background on differentiable rendering. Much of the current in-
terest in Monte Carlo differentiable rendering was started by Li
et al. [2018], who introduced an edge sampling approach to cor-
rectly handle discontinuities in both primary and secondary visi-
bility. As shown by them and subsequent work [Zhang et al. 2019],
the derivative of the rendering equation is made up of an interior
integral that handles continuous function variation, and a bound-
ary integral that encapsulates discontinuities.
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Table 1. List of Supported Material Derivatives

Material Param. SSD PDFs
Isotropic GGX [1975; 2007] o Pos. A.l.l
Isotropic Beckmann [1987] a Pos. A.12
Blinn Phong (Minnaert) [1977; 1941] n Pos. A.13
Henyey-Greenstein (Hanrahan-Krueger) g Pos. A.l4

[1993; 1941]

Anisotropic GGX [1975; 2007] ax, ay Prod. A21

Anisotropic Beckmann (Ward) [1987; 1992] ax, ay Prod. A22
Ashikhmin-Shirley [2001] ny, ny, Prod. A.2.3
Isotropic ABC [Low et al. 2012] B,C Prod. A24
Isotropic Hemi-EPD [2009] K Prod. A.25
Burley Diffuse Reflectance [2015] d Prod. A.2.6
Mixture Model (e.g., Autodesk, Disney BRDF) w Mix. A31
[2012; 2019]

Oren-Nayar [1994] o Mix. A3.2
Microcylinder [2013] ka Mix. A33

The first column lists the name of the BRDF, and the second column lists the
corresponding parameter whose derivative we can importance sample. The third
column lists the type of single-signed decomposition applied (Positivization,
Product Decomposition, Mixture Decomposition). The fourth column lists the
section number in the Appendix (with links) with the relevant sampling PDFs.
Please refer to the original papers for definitions of the parameters.

Follow-up work [Bangaru et al. 2020; Loubet et al. 2019; Xu et al.
2023a; Yan et al. 2022; Yu et al. 2022; Zhang et al. 2020, 2023] fo-
cused on accurately computing the boundary integral. Some other
recent work focused on reducing memory requirements [Nimier-
David et al. 2020; Vicini et al. 2021] and building automatic differ-
entiation systems and compilers [Bangaru et al. 2023; Jakob et al.
2022; Nimier-David et al. 2019]. Efforts have been made to handle
different light transport phenomena [Wu et al. 2021; Yi et al. 2021;
Zhang et al. 2019, 2021b]. Some recent work has investigated the
possibility to leverage coherency between gradient descent itera-
tions in inverse rendering to reduce variance [Chang et al. 2023;
Nicolet et al. 2023; Wang et al. 2023]. Much of the recent inverse
rendering work has started to incorporate differentiable render-
ing components [Azinovi¢ et al. 2019; Che et al. 2020; Deschain-
tre et al. 2018; Luan et al. 2021; Nimier-David et al. 2021, 2022; Sun
et al. 2023; Wu et al. 2023]. These efforts are complementary to our
work.

Zeltner et al. [2021] show that directly importance sampling a
BRDF’s derivative leads to a detached derivative with only an inte-
rior term, and no boundary term. They also show that reparame-
terization before differentiation leads to a different attached deriv-
ative with not only an interior term but an additional boundary
term too. The boundary term requires careful handling for unbi-
ased estimates and extra auxiliary rays at each shading point to
estimate it too (4 to 64 extra rays as per Bangaru et al. [2020]). As
a result, attached estimators are not suitable for the low sample
budget within which we aim to operate. Our estimators fall under
the detached derivative regime, which does not require these extra
auxiliary rays, which makes them suitable for low sample budget
derivative estimation.

2.2 BRDFs and Importance Sampling

Our work supports importance sampling the derivatives of a wide
variety of analytic BRDF models. Table 1 shows a comprehensive
list of the supported BRDF derivatives and their importance sampling
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PDFs. The code for the sampling routines is included in supplemen-
tary material.

Importance Sampling BRDFs. Importance sampling according to
the BRDF [Pharr et al. 2016] is a fundamental variance reduction
technique used in Monte Carlo forward rendering. While essen-
tial, it was initially limited to Phong-like BRDFs [Lafortune et al.
1997; Phong 1975] and Ward [1992]. Lawrence et al. [2004] intro-
duced a non-negative matrix-based factorization to efficiently fit
analytic and measured BRDFs for sampling. Walter et al. [2007] in-
troduced the GGX BRDF [Trowbridge and Reitz 1975] along with
its importance sampling routines. Follow-up works have correctly
accounted for the shadowing and masking terms to sample micro-
facet BRDFs [Heitz 2017, 2018; Heitz and d’Eon 2014; Jakob 2014].

Data-driven BRDFs. Apart from analytic BRDFs, data-driven
measured BRDFs [Dupuy and Jakob 2018; Matusik et al. 2003] and
Neural BRDFs [Fan et al. 2022; Kuznetsov et al. 2021, 2022; Sztraj-
man et al. 2021; Xu et al. 2023b] are another common class of BRDF
models that can model a wide variety of materials. However, both
these Neural BRDFs and non-analytic measured BRDFs have a very
large number of parameters, and it is unclear which parameters
one might want to differentiate and importance sample with re-
spect to. Hence, we do not consider either of these classes of BRDFs
in our work and focus instead on common analytic BRDF models.

3 BACKGROUND

For the sake of simplicity, we begin our discussion by focusing
on the direct lighting setting, and extend it to indirect lighting in
Section 9. The reflected radiance L, at a shading point y, in the di-
rection wy, is given by the reflection equation [Cohen and Wallace
1993],

Li(y, wo; ) = /f(y, Wi, wo; ®)Li(y, w;)dw;. (1)

Here, f is the cosine-weighted BRDF at y, and « is a scalar BRDF
parameter that controls f. In practice, « is the vector of all BRDF
parameters in a given scene. However, for ease of exposition, we
assume « is scalar-valued, with the results for the other param-
eters following similarly. For example, & could be the roughness
of an isotropic GGX BRDF. Since we are dealing with only direct
lighting, the incident radiance L; does not depend upon «. Differ-
entiating the expression for the reflected radiance with «, we get

DL (s 003 @) = / D [ 01, 00 )Lilys 01)dp.  (2)

Since the parameter « does not affect discontinuities, we do not
have an additional boundary integral [Li et al. 2018].

In forward rendering, BRDF sampling aims to minimize the vari-
ance of the BRDF f in the reflection equation, Equation (1). Simi-
larly, our goal is to minimize the variance of the differential BRDF
O¢ f in differentiable rendering, i.e., the variance of the estimator
for

I(wo;a)=/6af(w,~,wo;a)dw,~. (3)

We drop the spatial coordinate y, without loss of generality, for
simplicity. We deal with the incident radiance L; using light source
sampling. The estimators for 0, f and L; can be combined using
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Multiple Importance Sampling [Veach and Guibas 1995]. We finally
want to compute dy L, so the final estimator must always include
multiplication by L;. All following integrals in the article omit L;
to stress that we only focus on dy f.

3.1 Previous Work on Variance Reduction for
Differentiable Rendering

3.1.1 Detached and Antithetic Sampling. Zeltner et al. [2021]
noticed that standard BRDF sampling using a PDF p o f for the dif-
ferential BRDF d,, f leads to high variance, since d, f and f can be
very different functions. They instead construct a PDF p o |94 f|,
called the differential detached PDF, which matches d, f in shape.
This eliminates variance from the shape of d, f, i.e., the sample
weights d, f/p are constant in magnitude. There is, however, ad-
ditional sign variance resulting from the mismatch in the sign be-
tween the positive-valued p and the real-valued integrand 9, f re-
sulting in sample weights d, f /p that change sign.

To deal with sign variance, Zeltner et al. [2021] applied anti-
thetic sampling. (3) We show that Zeltner et al.’s method is a special
case of another technique called positivization [Owen and Zhou
2000].

We show in Section 4.2 and Appendix B that positivization pro-
vides a theoretical grounding of antithetic sampling: the effec-
tiveness mainly comes from the stratification (separating the real-
valued function into a positive and a negative function). The major
drawback of antithetic sampling is its inapplicability to several BRDF
derivatives, due to the lack of closed forms of root finding and in-
tegration, which we discuss in Section 4.2.2.

Positivization has also been applied by concurrent work in dif-
ferentiable rendering to the target function q in resampled impor-
tance sampling (RIS) [Talbot et al. 2005] by Chang et al. [2023]
(see Equation (11) in their paper). Our work is orthogonal to
their method: They use BRDF importance sampling as their can-
didate distribution p. The variance of RIS is a linear combination
of Var(f/p) and Var(f/q) (see Equation 4.2 in Talbot et al. [2005]’s
work); positivized RIS reduces the variance of the second term by
positivizing the target function ¢ into g+, g—. Our method of pos-
itivizing the differential BRDF (using p., p— instead of p) reduces
the variance of the first term.

3.1.2  Antithetic Sampling of Odd Derivatives. Zhang et al.
[2021a] introduce another antithetic-sampling-based method to
deal with the derivative of the GGX Normal Distribution Function,
D(wy,) with the half vector wy. They exploit the fact that the de-
rivative dg, D(wp,) is odd about the local shading normal, i.e.,

ath([wh,x’wh,vah,z]) = _awhD([_wh,xs _wh,vah,z])~ (4)

Their estimator for Equation (3) requires two antithetic samples
w;,1 and w; 2, and is given by

I~ Oo f(©i,1) + 0o f(@i,2)
p(wi,1) + plwi2)

Here, and going forward, we drop w, and « from the function
arguments of I(wy, @) and f(w;, wo, @) for brevity. This method
works well for the odd derivative with wy,. However, for non-odd
derivatives, there are no variance reduction guarantees. Further-
more, several BRDF derivatives are even, e.g., roughness of GGX,

®)
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PDF & Sampling Weights PDF & Sampling Weights

Fig. 2. Sign variance and positivization. Differentiating the positive orig-
inal function (a, yellow) results in a real-valued derivative (b, yellow). (b)
Although the derivative (b, yellow) d,,f and the PDF (b, blue) p match in
shape, i.e., p oc |0, f |, the sample weights 6..f/p (b, red) are non-constant
due to a mismatch between their signs, causing sign variance. Positiviza-
tion [Owen and Zhou 2000] splits the derivative into its positive and nega-
tive (c, d, yellow) parts. Since both parts are either purely non-negative or
non-positive, they can be perfectly importance sampled by constructing
PDFs p, and p_ (c, d, blue). The resulting sampling weights (c, d, red), are
constant and the corresponding estimator has zero variance.

Beckmann, and Zhang et al’s method increases variance in these
cases.

Additionally, Equation (5) is not in the standard importance sam-
pling form of 9, f /p due to the presence of a sum in the numerator
and denominator. Hence, it is unclear how to use it in conjunction
with multiple importance sampling.

4  SINGLE-SIGNED DECOMPOSITIONS

In this section, we describe the concept of sign variance in real-
valued integrals, and then show how our first decomposition, posi-
tivization, can handle this source of variance for some BRDF deriva-
tives. Positivization requires (a) analytic knowledge of roots and
(b) analytic integrability of the BRDF derivative, which limits its
applicability. In Section 5, we present a novel product decomposi-
tion that exploits the single-signed nature of the terms resulting
from the product rule for derivatives, for the correct handling of
sign variance. It significantly expands the set of BRDF derivatives
we can handle. In Section 6, we present a novel mixture decomposi-
tion that exploits the fact that derivatives with mixture weights
are a difference of two positive functions, to decompose them
into single-signed functions, allowing us to importance sample
even more BRDF derivatives. Finally, we describe a general recipe
to handle other BRDF derivatives not surveyed in this article in
Section 7.

4.1 Sign Variance

We introduce sign variance through the following representative
1D example, showing the real-valued derivative d, f of a normal
distribution f(x; y, o) with its mean y, as shown in Figures 2(a) and



2(b):

X—jt\2

I:[w@JWWJNX=[wV%hJX—Wfa” dx. (6)

For x < yp, the integrand (')l,f is negative, and for x > p, it is
positive. The importance sampling strategy using a single PDF
p o |0, f| no longer has zero variance [Owen and Zhou 2000]. This
is due to the sign variance, i.e., the positive-valued PDF p cannot
match the sign of the real-valued integrand 9, f over the entire
domain, leading to non-constant sample weights; see Figure 2(b).

4.2 Positivization

It is possible to construct an estimator for any real-valued inte-
grand d, f, e.g., Equation (6), which has zero variance. By parti-
tioning d, f into its positive d, f1 and negative d, f- parts,

Og fr(x) = max (0 f(x),0), 0 f-(x) = min(dq f(x),0),

0o f(x) = O f+(x) + Ot f- (),
we are left with two functions that are single-signed by definition.
They can be perfectly importance sampled if we can construct the

following two PDFs, p_(x) o Qg f-(x) and p4(x) o< dq f+(x); see
Figures 2(c) and 2(d). The resulting estimator is

@)

I= /Baf(x)dx: /aaf+(x)dx+/6af,(x)dx

0ufe(X) | Baf-(X)
P )

where X4 ~ py and X_ ~ p_.

This technique is called positivization [Owen and Zhou 2000],
and we apply it to importance sampling BRDF derivatives. The
zero-variance claim is only with regard to the variance arising
from the differential BRDF 0y f. The derivative of the reflection
equation, see Equation (2), is a product of the differential BRDF
and the lighting, and as a result, it will still have variance from
the lighting.

In Appendix B, we show how Zeltner et al.’s approach can be un-
derstood as a special case of positivization with correlated samples
X4, X—; for positivization, these samples are independent. Through
an empirical study, we have found that the majority of the variance
reduction of antithetic sampling comes from the implicit splitting
of 04 f into positive and negative lobes (dq fi and 0y f-), instead
of the negative correlation between samples; see Figure 3.

()

4.2.1 Positivization of Isotropic GGX. Positivization, and by ex-
tension antithetic sampling, is very effective at reducing variance
for BRDF derivatives when p; and p_ can be constructed. For
this, p+ needs to be analytically integrated over the region where
g f > 0 to obtain the necessary PDF and CDF required for sam-
pling; see Figure 4 for the overall pipeline to construct them. This
step faces two challenges (a) the roots, which define the region
where d, f > 0, do not have a closed-form expression for some
BRDF derivatives, and (b) d f is not analytically integrable over
the region where it is positive, for others. A similar argument fol-
lows for p_ too.

Some BRDF derivatives, like isotropic microfacet GGX and Beck-
mann can be handled by positivization. These microfacet models
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Sl X atitp s JHO3X
(a) BRDF Sampling  (b) Zhang et al.

(c) Zeltner et al. (d) Our Positivization

Fig. 3. Comparison between BRDF Sampling, Zeltner et al. [2021], Zhang
et al. [2021a], and our Positivization, for the derivative of an isotropic GGX
BRDF with its roughness a. The object in the scene is a fire hydrant lit
by two area lights. BRDF sampling is unable to correctly handle the sign
or shape variance of the differential GGX BRDF and has high variance.
Zhang et al’s method is unsuitable for even derivatives like roughness and
produces a high variance estimator as well. Zeltner et al’s method is a
special case of positivization and both of them have very similar variance
reduction properties. We have found that positivization and Zeltner et al.’s
method have similar performance across several scenes. Hydrant model
courtesy of Turbosquid user Adrian Kulawik.

0 Oaf+(w) c+p+(w) = dafr(w)
H.= FindRoots(0y, f (w)
C+ = /éaf+(w) dw

He

O o d = o @) — o)

Steps at which Positivization can fail )
9H_= FindRoots(@, f (w))

o= /6af—(w)dw

max Qg f(w),

O f (W

1. Analytically Solve for Roots To
Compute Domain of Integration

Integrate Function inside Domain
" to Compute Normalization Constant

Fig. 4. Importance sampling PDF construction for positivization. Posi-
tivization splits f about its roots into single-signed f, f-. For PDF con-
struction, we first solve for f’s roots, which split the domain H based on
f’s sign into H, and H_. Next, we integrate inside the domain to com-
pute the normalization constants. There are two potential roadblocks for
positivization: (i) no analytic form of the roots of f, so H,; and H_ can-
not be computed, see Figure 6, and (ii) the positivized functions are not
analytically integrable over H, /H_, see Figure 5.

are given by the following equation:

F(wi, 0o, n)G(wi, wo)D(wp,)
4cos b,

fwi, wo) = . ©)
where F is the Fresnel term, G is the shadowing and masking term,
and D is the normal distribution function for the specific BRDF.
The unit vector wy, is halfway between w; and w,, and its spherical
coordinates are 0y, ¢p,.
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(a) Anisotropic Derivative ~(b) Negative Decomp. (c) Positive Decomp.
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Fig. 5. Complicated roots and product decomposition of the anisotropic
GGX BRDF derivative. (a) The derivative dq, f has complicated roots
shown in panel (a), purple curve. Positivization requires analytical integra-
tion over the domain defined by these roots, which we were unable to per-
form. Our product decomposition separates the two terms resulting from
the product rule for differentiation, Og, f = da,, Ng + N 04, g, which are
both single-signed as shown in panels (b, c). Product decomposition does
not require integration up to the complicated roots, which enables easy
PDF construction for both the positive and negative decompositions.

The derivative of the isotropic GGX BRDF with its roughness
a has two components, 9y D(wy,) and d,G(w;, w,). However, as
noted by previous work [Zeltner et al. 2021; Zhang et al. 2021a],
the 0,G term only has a minor effect on the overall derivative.
Hence, we focus on the d,D term, which is given by

1
— 2
ra? (S“:x—zeh + cos? 9;,)
2 cos? 0, (tan? 0, — a?)

in2 0 3
rad (Sm L + cos? 9;,)
(o4

(10)

D(wp) =

daD(wp) = (11)

Its roots have an analytic form and are tan 6, = « for all ¢j,. Ad-
ditionally, the derivative d,D is analytically integrable over both
the positive and negative regions, and so both conditions to apply
positivization are met. Hence, the importance sampling PDFs (and
CDFs) can be obtained for this derivative.

Apart from the derivatives of the isotropic GGX roughness, pos-
itivization can also be used for the derivative of Beckmann BRDFs
with their roughness, and Hanrahan-Krueger BRDF with the scat-
tering parameter g of its Henyey-Greenstein phase function.

4.2.2  Inapplicability of Positivization to Anisotropic GGX. For
many BRDFs’ derivatives, however, one of the two conditions fails,
which precludes the use of positivization (and antithetic sampling)
for them. For example, consider the derivative of D(wy,) of an
anisotropic GGX BRDF with its roughness ax.,

1
D(wp) = ; - . 5
raxay (sm O czos Pn 4 sin 6;;szm Pn + cos? eh)
Yy
cos? O, (3 tan® 0, cos® ¢y, — tan® 0y, sin’ ¢ha)26/a§ - a)zc)
aax D(wh) =

in2 @ 2¢ in2 0 ’Z¢ 3

s Ccos' s s

e b Th 4 cos? O,
(24

nafcay( o
(12)

Its roots are the set of (6}, ¢p) such that the expression

3tan? @), cos? ¢y, — tan? @}, sin’ ¢ha§/a§, — a2 = 0, and are shown
in Figure 5(a), purple curve. However, we were unable to analyti-
cally integrate the derivative d,, D over the positive and negative
strata, see Figure 5(a), red and blue regions, which prevented us
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R(r) = Ng(r) 9aR(r) = 94N g(r) + Nag(r)

(a) Original Function (b) Derivative (cannot be Positivized)

0uNg(r) Noug(r)
—pi(r) (1)

\_ 0aNg(r)/pi(r) = 0;Ng(r)/p:(r)
e

(c) Product Decomposition: (d) Product Decomposition:
Negative Derivative, PDF & Sampling Weights Positive Derivative, PDF & Sampling Weights

Fig. 6. Product decomposition and inapplicability of positivization. The
BSSRDF profile R(r, d) = N(d)g(r, d) from Burley [2015] (a), is the prod-
uct of a shape function g(r, d) and normalization term N(d). r is the spa-
tial coordinate, and d is a parameter that controls its width and height.
Differentiating with respect to d gives rise to the real-valued derivative
AgR(r, d) (b). The derivative’s root is given by 37234 = (3d—r)/(r-d),
which has no analytic solution and renders positivization inapplicable to
this derivative. However, the derivative can be written as dyR(r, d) =
AgN(d)g(r,d) + N(d)d49(r, d) due to the product rule for derivatives.
The first term (c, yellow) is purely negative and the second term (d, yellow)
is purely positive. These single-signed functions have no sign variance and
can be perfectly importance sampled with the PDFs py, p, (c, d, blue) lead-
ing to constant sample weights (c, d, red).

from applying positivization to this derivative. We were also un-
able to find closed-form expressions for the roots of the derivatives
of other materials like the diffuse BSSRDF from Burley [2015] (Fig-
ure 6) and the isotropic microfacet ABC BRDF, which prevented
us from positivizing them.

It is common in BRDF importance sampling to numerically in-
vert a CDF using binary search or Newton iterations, and we
will do this with some of our product and mixture decomposi-
tion CDFs. However, for positivization, taking a purely numer-
ical approach is not practical. Numerically approximating non-
analytic roots and non-analytically integrable PDFs requires stor-
ing a high-dimensional representation (for, e.g., 6D w;, @o, dx, ay
for anisotropic GGX). Storing such a high-dimensional histogram
(piecewise approximation) can be infeasible.

Discussion. Positivization is a specific single-signed decomposi-
tion that decomposes the real-valued function into a positive and a
negative function with non-overlapping supports. As a result, it re-
quires root-finding and analytic integration over complicated do-
mains defined by these roots. In the following two sections, we
discuss two novel decompositions for which the positive and neg-
ative functions are defined over simple domains of integration like
a plane or hemisphere, with overlapping support. As a result, they
do not require root finding, or integration over complicated domains,
and as a consequence can handle a broader class of derivatives.

5 PRODUCT DECOMPOSITION

Our first new decomposition is product decomposition. It can
handle the derivatives of anisotropic microfacet BRDFs, diffuse
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(a) Product Decomposition
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Fig. 7. Importance sampling PDF construction for product and mixture
decomposition. Differentiating the positive-valued functions f(w, a) =
N(a)g(w, a) gives us Oqf(w, @) = g Ng(w) + NIy g(w) for product
decomposition, and differentiating f(w, o) = afg(w)+(1—a)fs(w) gives
us Oq f(w, a) = fy(w) — fs(w) for mixture decomposition. For both de-
compositions, the two terms fi(w) and fa(w) are single-signed. Neither
of the decompositions requires complicated root finding and integration
up to the roots, unlike positivization; see Figure 4. Instead, the integration
domain is simply the entire hemisphere H. This makes PDF construction
for these decompositions possible for several BRDF derivatives where pos-
itivization was not applicable.

BSSRDFs, and the isotropic ABC BRDF that positivization could
not handle. The key idea we exploit is that after differentiating
any of these materials, they split up into two terms following the
product rule. Both of these are single-signed, have no sign vari-
ance, and are analytically integrable over their simple domains of
integration (hemisphere or plane).

Several BRDFs (or normal distribution functions) are of the form

f(@p, a) = N(a)g(wp, ), (13)

where g(wp, a) is a non-negative shape function, which deter-
mines the overall shape of the BRDF over all wp, at the parame-
ter value a. N(«) is a directionally constant (independent of wp,)
normalization term that ensures f integrates to 1. Differentiating
f with a, we get

o f(wp, @) =

Because N and 0o N are directionally constant, the variance in the
two terms above comes from g and 049, respectively. The first term
above is single-signed, because g > 0. The second term with d,g
can potentially be real-valued. However, we have found it to be
single-signed for several common BRDFs. For example, for the
anisotropic GGX normal distribution function D(wy,), we have

OaN(@)g(wp, @) + N(@)dgg(wp, a). (14)

D(wp, ax, ay) = N(ax, ay)g(op, ax, ay),
N(ax, ay) = (”ax(xy)il,
sin? 0y, cos® ¢y, sin? Oy, sin® ¢y,

g(@p, ax, ay) = ) + )
x y

-2
2
+ cos Gh) s

Oqg(wp, ax, ay) = 49(®p, ax, a.ry)3/2 sin? 0y, cos? ¢ha;3,

(15)

where d,¢ is single-signed; see Figure 5. Additionally, d,g is also
analytically integrable over its hemispherical domain.
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Let us provide some geometric intuition for why the shape de-
rivative d,g is often single-signed. For our BRDFs, the parameter
a often controls the variance of the distribution, e.g., ax, ay for
GGX, Beckmann, ny, ny for Ashikhmin-Shirley. For all of these,
the variance a stretches g horizontally, and increases (or decreases)
its value at all locations, making its derivative single-signed. How-
ever, a stretches N(«) vertically to negate the increase (or decrease)
in area due to g, and ensure it integrates to 1.

We construct importance sampling PDFs for the two single-
signed terms separately, with PDFs p; o g and py o« 49,

I:/aaf(wh)dwh

:/aaNg(wh)dwh+/N8ag(wh)dwh (16)
_ 9aNg(@p,1)  Ndag(wp,,)
p1(wp 1) p2(wp )

Figure 7(a) describes the pipeline to generate importance sampling
PDFs for product decomposition. Product decomposition can han-
dle the derivatives of anisotropic GGX, Beckmann, Ashikhmin-
Shirley, which are not analytically integrable over the positivized
domains, and Burley’s diffuse BSSRDF and the isotropic ABC
BRDF, which have no closed-form solution for the roots. However,
they all have single-signed d, g, which is analytically integrable.
Note that the product rule in and of itself does not guarantee a
single-signed decomposition. For example, the product of the mi-
crofacet distribution (D) and geometric terms (G) does not lead to
a single-signed decomposition for the derivative with ay (or ay).
This is because both dy D and the d4 G terms are real-valued.
The decomposition D = Ng is one of the many product decompo-
sitions, but the only one we found to preserve the single-signed

property.

6 MIXTURE DECOMPOSITION

Our second new decomposition further expands the set of BRDF
derivatives we can handle. Consider, for example, a BRDF made up
of a diffuse f; and specular f lobe with scalar mixture weights kg4
and 1 — kg, respectively:

fl@i, 00) = kg fa(wi, wo) + (1 = kg) fs(wi, wo),
O, f(@i, 00) = fa(wi, ®o) = fs(@i, ®o).

The derivative with the mixture weight k, is positive when the dif-
fuse lobe contribution is higher than the specular lobe and negative
otherwise. In general, this derivative is very hard to positivize, be-
cause fy and fs can be arbitrary BRDFs, and so the roots of f; — fs
are unlikely to have a simple analytic form.

However, we can once again decompose this derivative into
single-signed functions with overlapping support; we refer to this
as the mixture decomposition. Since f; and f; are non-negative
valued BRDFs, they are single-signed, and can be importance sam-
pled separately with appropriate PDFs p; and ps:

17)

= / O, f (@i)ideo; = / Falaos)daos - / fr(@idao;

N Jawia)  fs(wis)
Pa(@; q)  ps(@is)

(18)
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Mixture weights show up in all Uber BRDFs, like the Autodesk
Standard Surface, Disney BRDF, and so on, and our mixture de-
composition can be applied to all of them.

Mixture decomposition is also applicable to the derivative of
BRDFs that are not explicitly mixture models, but internally are
made up of different lobes, with parametric weights. For example,
the Oren-Nayar BRDF, which is a linear combination of two terms.
Here, the positive weights A(co), B(o) depend upon the roughness
o of the BRDF:

flwo, ;) = A(G)E cos 0;
p , (19)
+ B(G); max (0, cos(¢; — ¢o)) sin a tan f§ cos 6;,

where a = max (0;,0,), f = min(0;, 0,). Once again, since both
terms of the BRDF above are positive, the real-valued derivative
with o is simply the sum of a positive and a negative term,

o f (@0, @) = g A(0)2 cos 0;
T

+ 6UB(0')§ max (0, cos(¢p; — ¢o)) sin « tan ff cos 0;,
(20)

with the sign of the term decided by the sign of d;A and d4B. Im-
portance sampling the first term is simply cosine-hemispherical
sampling, and we provide an importance sampling PDF for the sec-
ond term in Appendix A.3.2. Besides Oren-Nayar, the microcylin-
der BRDF [Sadeghi et al. 2013] is also a mixture model with weights
kg,1— kg, where kg is the isotropic scattering coefficient, and can
be handled by mixture decomposition as well.

7 RECIPE FOR IMPORTANCE SAMPLING BRDF
DERIVATIVES

We now present a recipe to importance sample BRDF derivatives
based on the key ideas introduced in the previous sections.

Step 1, Positivization. Given a real-valued BRDF derivative
Oqf, check if it can be positivized. For positivization to be
applicable, d4 f should have analytic roots. Compute the nor-
malization constants for the solid angle PDFs pi(w;) o
max (Jg f(wi),0), p—(w;) cc min (dg f(w;),0), and their marginal
and conditional counterparts p(¢;), p— (i), p+(0i|$i ), p—(0i| i), if
they are analytically integrable. See Figure 4 for the PDF genera-
tion and Equation (8) for the estimator.

Step 2, Try Product or Mixture Decomposition. If positiviza-
tion is inapplicable for either reason (no analytic roots or lack of
analytic integrability), then either product or mixture decomposi-
tion might still be applicable.

Step 2.1, Product Decomposition. If the original BRDF is of the
form N(a)g(wi, ), where a appears in a directionally invariant
(independent of w;) normalization term N(«) and an unnormal-
ized shape function g(wj, @), then product decomposition may be
applicable. First check if 9, g is single-signed, i.e., it has a constant
sign for all w;, and is analytically integrable. If these conditions
hold, then product decomposition is applicable. Construct a PDF
p2(wi) x 0yg and compute the normalization terms for it and its
conditional and marginal counterparts. The other PDF p;(w;) « g
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Sha&ing Point Shading Point

(a) Positivization (b) Product and Mixture Decomposition
Fig. 8. Positivization, product, and mixture decomposition for direct illu-
mination. All three techniques send out two shadow rays corresponding
to two different sampling techniques at each shading point, shown by red
and green arrows. For positivization, the PDFs for these sampling tech-
niques have non-overlapping support, shown by the red and green lobes.
For mixture and product decomposition, however, the corresponding PDFs
may have overlapping support.

is simply the BRDF sampling PDF. See Figure 7 for the PDF gener-
ation and Equation (16) for the estimator.

Step 2.2, Mixture Decomposition. If instead the parameter a ap-
pears in the form of linear combination weights either explicitly as
a mixture model between two BRDFs, or implicitly as a mixture be-
tween two lobes that form a single BRDF, then mixture decomposi-
tion is likely applicable here. In this case, simply use the PDFs and
sampling strategies most suitable for the two mixture lobes if they
are available (e.g., visible normal distribution function sampling
for a GGX lobe), or construct PDFs p1(w;) « fi(w;i), pa(w;) o«
f2(w;) for the two lobes, where fi, fa are the two lobes. See Fig-
ure 7 for the PDF generation, and Equation (18) for the estimator.

Figure 8 depicts the estimators for all three of our decomposi-
tions for direct illumination. They all require two shadow rays at
the shading point, corresponding to the positive and negative lobes
of the corresponding decomposition.

Although we have not found examples that require it, our three
decompositions can also be interleaved with one another for com-
plicated BRDF derivatives. For example, it is possible that for some
BRDF derivatives, the derivative of the shape function from the
product rule d, g could be real-valued. It could then further be pos-
itivized to eliminate sign variance.

Forward Rendering Sampling Technique Reuse. Both product and
mixture decomposition reuse BRDF sampling developed for for-
ward rendering as one (or both) of the techniques for differential
BRDF sampling. For product decomposition, this corresponds to
p1 o« g. For mixture decomposition, perfect importance sampling
can be achieved by only employing two standard BRDF sampling
techniques from forward rendering in some cases. BRDF sampling
when used directly to estimate for d, f suffers from sign and shape
variance, however, when paired with the right decomposition, it
can correctly handle the shape variance of one of the terms.

Multiple Importance Sampling. For the product and mixture de-
compositions, the positive and negative decomposition PDFs can
have overlapping support (for positivization they are necessarily
non-overlapping). As a result, the samples generated for one de-
composition can be shared with the other using Multiple Impor-
tance Sampling. Also, all three of our decompositions reduce the



variance from the differential BRDF 9, f and can be used in con-
junction with light source sampling via Multiple Importance Sam-
pling to reduce the lighting, L;’s variance.

8 RESULTS

We organize our results into two subsections. First, we demon-
strate that our decompositions do reduce variance in practice for a
number of BRDF derivatives under a wide variety of lighting con-
ditions in Section 8.1. Next, we demonstrate that lower variance
in gradients indeed does enable better spatially varying texture re-
covery in inverse rendering, in Section 8.2.

Implementation Details. We implemented all the different de-
compositions and BRDFs on our own CPU-based differentiable
renderer, using the Embree [Wald et al. 2014] library for ray trac-
ing. At each shading point, all three of our decompositions require
two shadow rays; see Figure 8. To have a fair comparison with
BRDF sampling, we shoot out two shadow rays at each shading
point for it too, which ensures an equal-ray comparison with our
method. Since our sampling routines have similar timings to BRDF
importance sampling (Table 2), all comparisons are also equal time,
and we report the timings for each experiment in insets. All our
standard deviation comparison images are computed by taking
the square root of the averaged squared error of the gradient im-
ages, which were each generated at nine samples per pixel over 50
runs. The variance improvement can be easily computed by squar-
ing all the standard deviation improvement numbers in the insets.
Additionally, we also provide difference images to show the spe-
cific regions where our estimators outperform BRDF sampling in
Figure 29.

Sample Generation Timings. We report the average times (over
1,000,000 runs) to generate samples using our routines and base-
lines in Table 2. Our routines involve CDF inversion, which we
perform using a combination of Newton iterations and bisection
search as described by Yuksel et al. [2022] (maximum 64 iterations,
107 CDF error tolerance). Our sampling routines only add a small
overhead in the overall path-tracing pipeline; see timings in Fig-
ures 10-13 and 18-23.

Convergence Rates. Our estimators are intended to be used
within inverse rendering pipelines. This necessitates low sample
counts per pixel (1 to 16) for fast iteration times. For these sample
budgets, our estimators outperform baselines both without stratifi-
cation and with it (Figure 9, all other results in the article are with
stratification).

Without stratification, the estimators show the typical O(N~1)
convergence. Stratification improves the convergence rate. Inter-
estingly, with stratification, standard BRDF importance sampling
performs as well as our methods at high sample counts (100+).

Mitchell [1996] provides a possible explanation: at high sam-
ple counts with stratification, variance is dominated by visibility
discontinuities in the integrand, so these pixels have convergence
rates of O(N™1-%). Better importance sampling improves the con-
vergence rate for the continuous differential BRDF, noticeable at
low sample counts. At higher sample counts, visibility dominates
the variance, which none of the techniques handle. Also, BRDF
sampling (which does not handle sign variance) benefits from strat-
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Table 2. Sample Generation Timings for Our Single Signed
Decompositions (SSD)

Material SSD  Time Method
Cosine Fwd. 0.64 s Analytic
GGX [Heitz 2018] Fwd. 2.25pus  Analytic
Anistropic GGX (ours) Prod. 5.97 us CDFInv.
Anistropic Beckmann (ours) Prod. 6.32ps CDFInv.
Anistropic Ashikhmin-Shirley (ours) Prod. 4.93 us  CDF Inv.
Oren-Nayar (ours) Mix. 197 us  CDFInv.
Hanrahan-Krueger (ours) Pos.  9.04 us  CDF Inv.

Isotropic GGX [Zeltner et al. 2021] Pos. 091 pus  Analytic

The timings are to generate a single sample, averaged over 1,000,000 runs.
The first two rows include timings for BRDF importance sampling for
cosine and GGX BRDFs for reference; our routines add negligible
overhead in the overall run time in a differentiable path tracer; see
Figures 10 to 13 and 18 to 23.

= BRDF Sampling

- BRDF Sampling (Strat.)

* Our Product Decomp. (Strat.)
= Our Product Decomp.
—— Theory: Monte Carlo O(N 1)
---- Theory: Strat. Mitchell O(N 1)

100

Variance

e, .
o7
(2 hJ ‘9

0.1

1 9 25 49 81 121 169
Samples Per Pixel

Fig. 9. Convergence rate for product decomposition. Product Decompo-
sition improves upon BRDF Sampling in the low sample regime (1-16
samples) with and without stratification. With stratification, at high sam-
ple counts, both estimators converge to the same rate, since the variance
is dominated by discontinuities in the integrand [Mitchell 1996]. Addi-
tionally, in this regime, as the strata get smaller, most of them become
single-signed; in effect, this reduces (but does not eliminate) sign variance
for BRDF sampling. Inverse rendering operates in the low sample count
regime to enable fast iteration times, so the variance reduction provided
by estimators (even with stratification) plays an important role here.

ification at high sample counts, since smaller strata are increas-
ingly single-signed. Nevertheless, our methods are able to provide
significant variance reduction (by nearly an order of magnitude)
in the low sample regime, most relevant to us. This phenomenon
is a general observation for importance sampling, not limited to
differentiable rendering.

8.1 Derivative Comparison

8.1.1 Positivization. First, we compare positivization with
BRDF sampling for the derivative of two BRDFs in Figure 1. The
scene is lit by two area lights. The isotropic GGX teapot (with
a = 0.02) is differentiated with its roughness @, and the Hanrahan-
Krueger (with g = —0.9) lion is differentiated with its Henyey-
Greenstein parameter for anisotropy g. The Henyey-Greenstein
phase function at g = —0.9 is highly back-scattering and is very
badly importance sampled by regular BRDF sampling, which can-
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Forward Rendering

(a) BRDF Sampling

(b) Our Product Decomposition

Fig. 10. Product decomposition vs. BRDF sampling under constant illumi-
nation. We show the estimated standard deviation of derivatives. Numbers
indicate the relative improvement, higher is better. The scene contains
an anisotropic Beckmann BRDF under constant environment illumination.
Under constant illumination, the BRDF derivative is the main source of
variance. Our product decomposition correctly handles both the sign and
shape variance, because of which we see an overall 8.63x reduction in
standard deviation compared to BRDF sampling. 3D model courtesy of
Turbosquid user id_inc.

not correctly account for the highly peaked and signed nature
of the derivative. Since positivization is correctly able to handle
both sign and shape related variance, we see significant standard
deviation reduction of 1.96x and 58.57x for the teapot and lion,
respectively.

8.1.2  Product Decomposition. Next, we compare product de-
composition with BRDF sampling for the derivative of an
anisotropic Beckmann BRDF with its roughness ay, lit under con-
stant environment illumination in Figure 10. Positivization (and
by extension Zeltner et al.) cannot handle this derivative, see Sec-
tion 4.2.2, and Zhang et al’s method fails for even derivatives like
this one; see Figure 26. Constant illumination eliminates variance
from lighting and only keeps variance from the BRDF derivative
and visibility. Since product decomposition can correctly handle
both the sign and shape variance of the BRDF derivative, it has an
overall 8.63X reduction in standard deviation, whereas BRDF sam-
pling fails, because it cannot handle either source of variance. In
most regions (Figure 10, see right inset), the derivative of the nor-
mal distribution function d, D is the major source of BRDF deriva-
tive variance; we eliminate it and see a big improvement of 32.7x.
However, in the grazing angle regions (Figure 10, see left inset),
the derivative of the shadowing function d,G dominates. Here,
our improvement is still significant (7.45x), but relatively less pro-
nounced, since our sampling strategy minimizes doD’s variance.

Now, we change the lighting to realistic environment illumina-
tion (see insets for forward renderings), and the geometry to ob-
jects with intricate geometry in Figures 11-13; we estimate the
derivative of the anisotropic Beckmann, GGX, and Ashikhmin-
Shirley BRDFs in these experiments, respectively. Apart from
BRDF derivative variance, these scenes have two other major
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(a) BRDF Sampling
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Forward Rendering (b) Our Product Decomposition with MIS
Fig. 11.  Product decomposition for the Anisotropic Beckmann BRDF.
In this scene, we demonstrate that product decomposition (with MIS
across the two techniques) can significantly reduce the standard deviation
(2.09x) for the estimation of the anisotropic roughness derivative ax un-
der (non-constant) environment illumination and complex geometry. The
object exhibits inter-occlusions due to its highly non-convex geometry
leading to additional visibility variance. 3D model courtesy of Turbosquid
user Sonic_art.

Fig. 12. Product decomposition for the anisotropic GGX BRDF. Our prod-
uct decomposition (with multiple importance sampling across the two
techniques) is also effective in reducing the standard deviation of the de-
rivative of the anisotropic roughness for the GGX BRDF (1.31x). Here, we
showcase a scene lit under environment lighting where the object exhibits
intricate geometry with several inter-occlusions. 3D model courtesy of Tur-
bosquid user Shef2oo.

sources of variance, lighting and visibility. When the variance is
significant from other sources too, we have found that sharing
samples between the positive and negative decomposition is ben-
eficial, see Section 7, Multiple Importance Sampling (MIS). In
all three experiments, we have found that our product decomposi-
tion is able to outperform BRDF importance sampling and achieve
lower standard deviation in gradient estimation 2.09X, 1.31%, and
1.21X, respectively.

We show two more examples of product decomposition in Fig-
ure 1, for anisotropic GGX and Beckmann BRDF derivatives, which
achieve standard deviation reductions of 1.56X and 3.61X, respec-
tively. The insets in the top row of Figure 1 show the regions where
our decomposition has lower variance than BRDF sampling in blue.
Product decomposition outperforms BRDF sampling in almost all
regions.

We provide additional comparisons with Zhang et al. for the
anisotropic roughness derivatives of the GGX BRDF for the scenes
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(a) BRDF Sampling (b) Our Product Decombosition with MIS

Fig. 13. Product decomposition for the Ashikhmin-Shirley BRDF. We also
demonstrate the benefits of our product decomposition in estimating the
derivatives with the anisotropic exponent n,, for the Ashikhmin-Shirley
BRDF; it reduces standard deviation by 1.21x. The cat sculpture is quite
non-convex and the lighting is environment illumination, which leads to
additional sources of variance (from visibility and lighting) apart from the
differential BRDF. 3D model courtesy of Turbosquid user Skazok.

modelled in Figures 10 and 12, in figure 26; their estimator has
higher standard deviation than BRDF importance sampling. We
emphasize that this is behavior is expected, since they designed
their estimator to estimate odd derivatives (for example, the deriv-
ative with the half vector), but the roughness derivative is even.

8.1.3  Mixture Decomposition. Finally, we compare BRDF sam-
pling with Mixture Decomposition to estimate the derivative of a
mixture model with its mixture weight for the fish-shaped pot in
Figure 1. The mixture model is a linear combination of a Lamber-
tian diffuse lobe, and a GGX specular lobe and the lighting is two
area lights. Mixture decomposition can reduce the standard devia-
tion by 4.72X, because it correctly handles shape and sign variance,
unlike BRDF sampling.

Figure 1 also shows an example of an Oren-Nayar pot, and its
derivative with the roughness o. BRDF sampling here is simply
cosine hemispherical sampling, and works quite well in the central
regions of the pot, because the cosine lobe is dominant in the non-
grazing angle regions; see Equation (19). However, in the grazing
angle regions towards the edges of the pot where the correction
term is more dominant, BRDF sampling breaks down and has high
variance. However, our mixture decomposition with MIS correctly
accounts for the derivative of both terms with regard to their sign
and shape variance, and can achieve low variance in all regions of
the pot, and leads to a 3.91X reduction in standard deviation.

8.2 Inverse Rendering Comparison

We demonstrate the benefits of correctly handling sign variance in
gradients, for gradient-descent-based inverse rendering. We apply
inverse rendering to the task of spatially varying texture recovery,
and evaluate the effectiveness of all three of our decompositions on
it. Our results for positivization are presented in Figure 14, prod-
uct decomposition in Figure 15, and mixture decomposition in Fig-
ure 16. All our inverse rendering results use 4 samples per pixel
for both forward and gradient rendering at each optimization it-
eration. We use the ADAM optimizer [Kingma and Ba 2015] and
the respective loss graphs show the mean absolute texture recov-
ery error (L1) after some initial iterations. In Figure 14, we show
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Fig. 14. Inverse rendering of the scattering parameter g of a Hanrahan-
Krueger BRDF. (a) Forward rendering of the target. Our positivization has
a lower texture recovery error than BRDF sampling under two setups, one
using the ADAM optimizer and the other using SGD with momentum
(SGDm) (b). For the SGDm experiments, we manually tune the learning
rate to the highest possible value without the loss diverging. Positiviza-
tion admits a higher learning rate (Ir = 1), since its gradients have lower
variance than BRDF sampling (Ir = 0.5); see Figure 28 for the final SGDm
results. Similar to Nimier-David et al. [2022], we find that the difference
between our improved estimator (positivization) and the baseline estima-
tor (BRDF sampling) is more pronounced when SGDm is used. Panel (c)
shows the ground-truth texture, with an inset of the recovered texture us-
ing positivization. Panel (d) shows the error images for positivization and
BRDF sampling, both using the ADAM optimizer. BRDF sampling is un-
able to recover the texture in the highly backscattering logo region (see
purple box). However, positivization can handle the logo region well.

that using the ADAM optimizer instead of SGD with momen-
tum (SGDm) reduces the impact of gradient outliers, similar to
Nimier-David et al.s observation [2022]. Nonetheless, our estima-
tors outperform the baselines in all setups.

For positivization (Figure 14), we recover the (spatially vary-
ing) scattering parameter g of a Hanrahan-Krueger BRDF with
the semi-infinite depth assumption, lit by a single area light. The
ground-truth texture consists of a slightly back-scattering back-
ground region with g = —0.3, and a highly back-scattering logo
region with g = —0.9; see Figure 14(c). We initialized the scatter-
ing parameter g with a random negative number. Positivization
consistently has lower texture recover error compared to BRDF
sampling, especially in the highly back-scattering region.

For product decomposition (Figure 15), we optimize the spa-
tially varying anisotropic roughness textures (ax and o) of a Beck-
mann BRDF under a photometric stereo setup under two illumina-
tion conditions. The two lighting conditions are rotated versions
of the same environment map. Starting from a random initializa-
tion for both textures, product decomposition’s correct handling of
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Fig. 15. Inverse Rendering of the roughness of an Anisotropic Beckmann
Plate under a photometric stereo setup. The forward rendering of the tar-
get under the two lighting setups is shown in panel (a) and its inset. The
texture recovery loss (b) demonstrates that our product decomposition
achieves lower texture recovery error than BRDF Sampling for both the
ax and ay textures. Panels (c) and (d) show the ground-truth textures for
ax and ay, and the insets show our recovered textures.

(a) Forward Rendering of Target

(b) o - Texture Recovery Loss (L1)
over lterations

—— BRDF Sampling
2 —— Mixture Decomposition (Ours)
2.4x 10
22x10°
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Rendering

Fig. 16. Inverse Rendering of the roughness o of an Oren-Nayar BRDF.
(a) Forward rendering of the target; insets show a rendering of the ini-
tialization and our final recovered texture. (b) Our mixture decomposition
correctly deals with sign variance and has lower variance in gradients, and
as a result has lower texture recovery error.

the sign variance leads to a gradient estimator with lower overall
variance, and consequently ensures lower texture recovery error
across all iterations, as shown in Figure 15(b). The final recovery
is displayed in Figures 15(c) and 15(d).

Our product decomposition computes the gradients for both
roughness values using three samples at each shading point com-
bined using multiple importance sampling (one each from p1, p2, x,
p2,y)- To ensure an equal-ray budget, we use three samples for
BRDF sampling at each shading point too.
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For mixture decomposition in Figure 16, we recover the spa-
tially varying roughness of an Oren-Nayar BRDF under environ-
ment map illumination. Once again, mixture decomposition bene-
fits from lowered variance in gradients and can recover a texture
with lower error than BRDF sampling at an equal ray-triangle in-
tersection budget; see Figure 16(b).

9 GLOBAL ILLUMINATION

We now describe how to importance sample BRDF derivatives un-
der multiple bounce global illumination. The recursive rendering
equation [Kajiya 1986] (ignoring emission) is given by a general-
ization of Equation (1),

Lr(y,wo;a)=/f(y,wi,wo;a)Lr(z,—wi;a)dwi, (21)

where we have substituted the incoming radiance L;(y,w;),
with the outgoing/reflected radiance L,(z,—wj;@), and z =
rayTrace(y, ;) is the first intersection point from y in the direc-
tion ;. The recursive call of L, is a function of the BRDF param-
eter a, because upon unrolling the recursion, it may be a function
of an « dependent BRDF. Differentiating this expression, we get

DL (ys 003 @) = / D f (. 01, 0: @)Ly (2~ ey (22)

+/f(y,wi,wo;a)c9aLr(z, ~wi;a)dw;, (23)

which recursively describes how differential radiance is reflected.
The two integrals (Equations (22) and (23)) can be importance sam-
pled separately. We have seen how to importance sample Equa-
tion (22) by applying different BRDF derivative decompositions in
Sections 4.2, 5, and 6. Irrespective of the decomposition required,
this requires two evaluations of L; corresponding to the positive
and negative lobes and is done by regular path tracing (similar to
the standard splitting approach [Arvo and Kirk 1990]). To impor-
tance sample Equation (23), we follow standard BRDF sampling
and continue the same recursive importance sampling of d,L, at
the next shading point.

This means that we need three samples at each shading point,
one each for BRDF, positive lobe and negative lobe importance
sampling. Fortunately, for product and mixture decomposition, we
can reduce this to two samples at each shading point. For product
decomposition, as we saw in Section 5, one of either the positive or
negative lobe decomposition PDFs is the same as BRDF sampling,
and can share a sample with it. For mixture decomposition, BRDF
sampling can be simulated by randomly choosing a sample from
either the positive or negative lobes with the probability equal to
the mixture weight of the BRDF sampling strategy.

Branching Complexity and Comparison with BRDF sampling.
Even though we use two samples to estimate Equation (22), the
total number of rays required to estimate d,L, for a maximum
depth d is quadratic, i.e., O(dz), instead of exponential, see Fig-
ure 17, whereas it is O(d) for BRDF sampling. This is because we
only apply splitting when estimating Equation (22), which recurses
on L,, and we do not split when estimating Equation (23). The re-
cursive call of L, in Equation (22) does not require splitting, which
prevents exponential branching.
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Fig. 17. Branching for global illumination with max depth=3 for product
& mixture decomposition. Starting from a single vertex at d = 0, estimat-
ing Oq L, requires recursive estimation of both L, and 04 L, via Equa-
tions (22) and (23). For product & mixture decomposition, since one new
branch is created at every vertex, the total number of rays used here is qua-
dratic i.e., O(d?), in the maximum depth d. The sampling technique p; is
the same for BRDF sampling and the positive lobe of the BRDF derivative,
and p; is the sampling technique for the negative lobe. For positivization,
two new branches are created at each vertex corresponding to p.., p_, how-
ever, once created, they only require evaluation of L,, and do not further
branch out, so the complexity is still O(d?).

Forward Rendering

(a) BRDF Sampling

(b) Our Mixture Decomposition

Fig. 18. Comparison between BRDF Sampling and Mixture Decomposi-
tion under 1 bounce Global Illumination and equal ray-triangle intersec-
tion budget. The mixture BRDF is given by f = wfy + (1 — w)fs with
w = 0.1 for the left box and w = 0.9 for the right box. We estimate the
derivative with the weight w. f;; is a Lambertian diffuse lobe, and f5 is
an isotropic GGX lobe with @ = 0.05. Mixture decomposition leads to
lower variance in most regions, since it correctly deals with sign variance.
However, in some regions, e.g., the green inset, the lighting, and visibility
variance is more significant, and our improvements in this region are less
prominent.

Variance Reduction under Global Illumination. All of our results
are subject to an equal-ray budget setup to ensure fair comparisons.
We also include wall clock times that reflects this.

We have found that for one-bounce global illumination, our mix-
ture decomposition can reduce standard deviation by 1.55%; see
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Fig. 19. Derivative of glossy reflection. We estimate the derivative of a
glossy reflection of a teapot with the teapot’s mixture weight (100 ray bud-
get). The teapot is modelled by a BRDF with a GGX lobe (¢ = 0.05) and a
diffuse lobe, with the weight of the GGX lobe w = 0.1 and the glossy plate
by a GGX BRDF with & = 0.01. Our estimator produces derivatives with
significantly lower variance by performing mixture decomposition (with
MIS across the two techniques) at the second path vertex (on the teapot),
which reduces both sign and shape variance of the differential BRDF. 3D
model courtesy of Benedikt Bitterli.

Figure 18. Next, we show results for gradient estimation in two
typical global illumination setups, glossy reflections and caustics.
In Figure 19, we compute the derivative of a glossy reflection with
respect to the mixture weight of the teapot that produces the re-
flection. Once again, our estimator produces gradients with much
lower standard deviation, 6.23X in this setting due to our better
importance sampling strategy (mixture decomposition) at the sec-
ond bounce on the teapot. In Figure 20, we compute the derivative
of a caustic pattern formed on a diffuse surface with respect to
the isotropic roughness of a metallic cylinder that produces the
caustic. This setup uses the positivization estimator with a higher
branching factor; nonetheless, it is still able to significantly reduce
standard deviation (by 2.51x) due to correct handling of the BRDF
derivative at the second bounce on the cylinders surface.

We also demonstrate that our estimators work well even in the
presence of more detailed geometry and complicated visibility in
Figure 21. We estimate the derivative with the mixture weight un-
der both direct and one bounce global illumination. Our mixture
decomposition reduces the standard deviation of the estimated gra-
dients by 2.35X and 2.27X under the two settings, respectively, as
compared to BRDF importance sampling.

Finally, we show the effectiveness of the product decomposi-
tion under one bounce global illumination with complex visibility,
glossy reflections and other effects intertwined in a single scene
in Figures 22 and 23. In Figure 22, we estimate the anisotropic
roughness derivative of a chess set modelled by a Beckmann BRDF,
which includes effects such as inter-occlusion among the pieces
and glossy reflections on the chessboard. Product decomposition
reduces the standard deviation by 1.78X on this scene. In Figure 23,
we consider the case of very complex visibility. We estimate the
anisotropic roughness derivative of a metallic hairball. Even un-
der this challenging condition, we are able to better handle sign
and shape variance of the differential BRDF resulting in a 1.52x
reduction in standard deviation over BRDF sampling. We provide
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(a) BRDF Sampling (b) Our Positivization

Fig. 20. Caustic derivative. We estimate the derivative of a caustic pattern
formed on a diffuse surface by a metallic cylinder modelled by an isotropic
GGX BRDF with a = 0.01 (100 ray budget). Despite the fact that posi-
tivization branches out into three paths at the second path vertex (on the
cylinder), it is able to produce much cleaner gradients with lower variance,
since it can correctly account for the differential BRDF’s sign and shape
variance on the cylinder.

Forward Rendering

2 27x
(a) BRDF (b) Our Mixture
Global lllumination

(a) BRDF (b) Our Mixture

Direct lllumination

Fig. 21. Mixture weight derivative estimation for an outdoor scene under
direct and one bounce global illumination. All surfaces (except the roof) are
modelled by a mixture BRDF (between a diffuse and a GGX lobe with the
weight of the specular lobe w = 0.9), we estimate the derivative with w.
Both our direct and global illumination mixture decomposition estimators
(with MIS across the two techniques) significantly reduce the standard
deviation of the estimated gradients as compared to BRDF sampling at an
equal computation budget (9 samples for DI and 25 rays for GI). 3D model
courtesy of Blendswap user MrChimp2313.

difference images, which show the specific regions of improve-
ment for our techniques over BRDF sampling in Figure 29. Addi-
tionally, we also show the effect of longer path lengths in Table 3.

Inverse rendering under global illumination. Positivization has
the highest branching factor of our three decompositions. Apply-
ing it at a path vertex, which requires a derivative, results in the
original path branching out into three sub paths, one of which re-
quires recursive derivative computation. It is conceivable that this
added computation may worsen positivization’s performance as
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Fig. 22. Product decomposition under global illumination for a glossy
chessboard. Our product decomposition can efficiently estimate the
anisotropic roughness derivative of a chess set modelled by a Beckmann
distribution under one-bounce global illumination (25 ray budget). This
scene has more complex visibility due to inter-occlusions and also some
global illumination effects like glossy reflections of the chess pieces onto
the chessboard; our decomposition handles all these effects better than
BRDF sampling. 3D model courtesy of Turbosquid user Vadim Manoli.
Chess position is from Magnus Carlsen vs. Dommaraju Gukesh at the 11th
Norway Blitz (2023), move 54.
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(a) BRDF Sampling (b) Our Product Decomposition with MIS

Fig. 23. Product decomposition under global illumination and very com-
plex visibility. To stress-test visibility variance (due to inter-occlusions), we
estimate the derivative of an anisotropic metallic hairball (Beckmann with
ax = 0.01, ay = 0.02, 25 ray budget). Under this challenging condition
too, we still achieve a significant improvement in the standard deviation,
1.52x over regular BRDF sampling due to better handling of sign and shape
variance of the differential BRDF. 3D model courtesy of NVIDIA Research.

compared to BRDF sampling , since BRDF sampling does not in-
duce any branching. Experimentally, we have found that despite
the additional branching, positivization is able to reduce variance
and better recover textures under a single bounce of global illu-
mination as compared to BRDF importance sampling at an equal
computation budget; see Figure 24. In the setup, we optimize the
GGX roughness of a plate initialized uniformly with & = 0.05 to
match a target with a checkerboard pattern with « = 0.005,0.02.
Light is incident upon the plate only indirectly via a reflection off
a reflector, also modelled as a GGX plate with a fixed roughness
of @ = 0.01; see Figure 24(b). The reduced variance due to better



handling of the sign and shape variance by positivization leads to
a better recovery of the texture. This is despite using the ADAM
optimizer, which ameliorates the issues of higher variance estima-
tors [Nimier-David et al. 2022].

Our next inverse rendering experiment under global illumina-
tion recovers the anisotropic roughness of a GGX BRDF Figure 25.
The scene consists of two dragons (ax = 0.005,ay = 0.007) only
viewed indirectly through a glossy reflection. The initialization
starts with ay, = 0.5, ay = 0.007, and we optimize for the cor-
rect ay value. Our product decomposition is able to better handle
the variance of the differential BRDF at the second bounce (on the
dragons surface), which leads to faster convergence.

10 LIMITATIONS AND FUTURE WORK

Determining the number of samples for each decomposed compo-
nent. For all three decompositions, our current implementation ap-
plies a two-sample estimator, which uses one sample per compo-
nent. It is possible that a different estimator can be more efficient
in some cases. For example, when the two components have differ-
ent areas (i.e., f Oafi # /aafz for components fi and f2), it might
be useful to adjust the number of samples according to the area of
the component (we show in Appendix C that microfacet normal
distribution functions always have components with equal area).
Research in allocating budgets for multiple importance sampling
can likely help in our case as well [Grittmann et al. 2022; He and
Owen 2014; Sbert et al. 2018]. Our estimator that always samples
all components belongs to the deterministic mixture scheme [Owen
2013]. An alternative is a random mixture, which randomly chooses
one component. We opt for deterministic mixtures, since they con-
sistently outperform random mixtures in our direct lighting exper-
iments (due to the stratification effect, similar to standard MIS ver-
sus one-sample MIS). For global illumination, random mixtures are
the same as applying Russian Roulette to keep only one of the two
branches, and can be more computationally convenient in some
cases, since they omit the need for quadratic branching.

Branching and Global Illumination. Our adoption of determinis-
tic mixtures requires path splitting for global illumination. While
the branching complexity is quadratic instead of exponential (same
as a bidirectional path tracer), it can add undesired overheads.
There are several ways to reduce the branching, including (1) de-
terministically using only BRDF sampling, (2) using random mix-
tures instead of deterministic mixtures after a certain recursion
depth, or (3) using path reconnection similar to Zhang et al’s ap-
proach [2020], to reconnect the branches back to a single primary
path. Figuring out an effective strategy to deal with branching is
crucial for applying our method to estimate derivatives in volumet-
ric rendering and subsurface scattering with long paths; this is an
exciting avenue for future research.

Multiple Parameter Optimization. Prior work [Zeltner et al.
2021] and ours only deal with estimating the derivative of a sin-
gle material parameter (such as roughness, mixture weights, etc.)
and constructs specialized sampling schemes for each of them.
However, in inverse rendering, we are often interested in re-
covering several parameters simultaneously. For example, Uber
shaders [Burley 2012; Georgiev et al. 2019] have a large number
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Fig. 24. Inverse rendering of the roughness of an isotropic GGX plate under
global illumination. The isotropic GGX plate shown in panel (a) can only
receive light from the source via a reflector, setup shown in panel (b). We
optimize the roughness of the GGX plate and find that our positivization
is able to better recover the ground-truth checkerboard texture as depicted
by the loss curve (c) and the error in the recovered texture (d). Despite the
extra branching (into three paths) introduced by positivization at the first
bounce, the overall variance is reduced as compared to BRDF sampling (at
an equal compute budget), which leads to a better recovery.
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Fig. 25. Inverse rendering of anisotropic roughness viewed only through
glossy reflection. (a) Our scene consists of glossy reflections of two drag-
ons ax = 0.005, ay = 0.007 formed by a metal plate with & = 0.001, all
modelled by GGX distributions. We recover ay for both the dragons, start-
ing with an initial value of ay = 0.5; see inset for forward rendering of
initialization. (b) Product decomposition (with MIS across the two lobes)
achieves lower recovery error under this setting, the graph shows the sum
of errors for the recovered a, for the two dragons. Better handling of the
differential BRDF’s sign and shape variance lets us recover the roughness
values better at an equal compute budget; see our recovery in the inset in
panel (a). 3D model courtesy of Turbosquid user techunit.

of tunable parameters. Naively applying our decompositions for
each of these parameters independently can lead to very large
branching factors. Developing sampling strategies that efficiently
estimate the derivatives of all the parameters simultaneously is still
an open research problem.
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Unsupported BRDFs. Our work covers a large variety of popu-
lar analytic surface reflection models; see Table 1. However, our
method currently does not support data driven BRDFs or Neural
BRDFs. In both cases, there are a very large number of tunable pa-
rameters, and it is unclear as to which parameters one might want
to differentiate or importance sample.

Better Optimization Schemes. Ultimately, for inverse rendering,
the optimization is both ill-posed and non-convex. Recently, we
have seen some work [Xing et al. 2022] that takes a step in this
direction. We believe the study of efficient estimators of the deriva-
tives is largely orthogonal and equally crucial.

11 CONCLUSION

Our importance sampling techniques provide a fundamental com-
ponent for future differentiable rendering work, enabling correct
handling of sign and shape variance of differential BRDFs. BRDF
sampling is widely used in forward rendering to deal with a variety
of light transport phenomena; this includes unidirectional, bidirec-
tional and gradient domain path tracing, Metropolis light trans-
port, path guiding, photon mapping, and so on. Similarly, as the
need to deal with the differentials of more complicated light trans-
port phenomena arises, we will need to develop differential coun-
terparts of these algorithms, and we believe that our method will
be well suited to serve as a fundamental building block for them.
Our product and mixture decompositions can also potentially
have use outside of graphics for importance sampling real-valued
functions.

APPENDICES

A BRDF DERIVATIVE IMPORTANCE SAMPLING PDFS
AND CDFS

All PDFs and CDFs are in solid angle coordinates, and do not in-
clude multiplication by sin @ for change of variables to spherical
coordinates. PDFs may be defined in either w; or wy space, de-
pending on the BRDF. The PDFs defined in wy, space must finally
be transformed to w; space, and while doing so must include the
appropriate Jacobian 4@, - @},. The PDFs are denoted by p and their
corresponding CDFs are P. In the cases where CDFs are provided
instead of inverse transform sampling routines, CDF inversion is
done numerically.

A.1 Positivization

These are all isotropic BRDFs, and sampling for the azimuthal
angle ¢ is uniform sampling. We introduce PDFs and sampling
routines for Blinn-Phong and Hanrahan-Krueger derivatives that
have not been discussed in past literature to the best of our
knowledge.

Importance sampling routines for the derivatives of isotropic
GGX and Beckmann were first introduced by Zeltner et al. [2021]
in Appendix A of their paper, and we do not repeat them here. How-
ever, they do not provide explicit formulae for the PDFs p., p_ that
we need for positivization. These PDFs have a different normaliza-
tion by a factor of 2 than the PDF p they use, so we define the PDFs
p+.p- here.
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A.1.1 Isotropic GGX.

8a? sec® Oy (tan? 0}, — a?)

r(0p) =

(tan? 0y, + a2)3 (24)
pa,—(eh) == min(r(eh)’ 0)’
Pa,+(0p) = max(r(0p), 0).

A.1.2  Isotropic Beckmann.
0,) = gel—tan®Op/a’ goc3 0y, (tan? 0, — a?)
r(0p) = e ,
(25)

Pa,~(0p) = —min(r(0p), 0),
Pa,+(0p) = max(r(6),0).
A.1.3  Blinn-Phong (Minnaert).

r(0),) = e(n + 2) cos™ 0, ((n + 2)log cos B, + 1),
pn,~(0p) = —min(r(64),0),
Pn,+(0p) = max(r(6y), 0), (26)
P +(8)) = —e(n + 2) cos™*2 0, log cos 6,
Pn.—(0y) = 1 —e(n + 2) cos™*? ), log cos 6j,.
For the Minnaert BRDF, the sampling routines are the same as
above, but defined in 0; space instead of 0.
A.1.4  Henyey-Greenstein (Hanrahan-Krueger).
__ 3PPa-4
BP0 g?)
g° +3) cos 0; + g(g* — 5)
(g2 — 2gcos 0; + 1)5/2
pg.~(6:) = —min(r(6;),0),
Ppg.+(6:) = max(r(6:), 0),

r(0;) = ng(

—0)- M] - .
Py o =1""9 c| | e >0
’ ’ otherwise
w]_ - ,
Pg,+(9,')= [ (g2-2g cos 0;+1)3/2 1, 1fpg,+(91) >0 ’
’ otherwise

(27)

A.2  Product Decomposition

For product decomposition, there are two sampling PDFs. The first
is p1 o« g, which is just regular BRDF sampling (e.g., visible normal
distribution function sampling for GGX/ Beckmann); we do not re-
peat them here. We provide importance sampling PDFs and CDFs
for 0ag.

For Anisotropic GGX and Beckmann, we provide the PDFs and
importance sampling routines for dq . g with one of the directional
parameters ay. The corresponding PDFs and CDFs for the other
directional parameter ay can be obtained by swapping ax with a;
and cos ¢y, with sin ¢,. We do the same for Ashikhmin-Shirley too,
except the directional parameters are ny, ny, in this case.

For the three BRDFs above, the CDF for ¢, generates an az-
imuthal angle in the range [0, 7/2]. ¢y, is mirror symmetric about
/2 and has a period of 7, which is used to transform ¢, to the



range [0, 27| (and the Jacobian needs to account for this via a divi-
sion by 4 as well). The CDF for 0}, generates an elevation angle in
[0, 7/2].

A.2.1  Anisotropic GGX. Derivative with ay.

cos? dp, N sin? ¢y,

a(¢p) = 2 Z
.2 2 -2
9O, Pn) = (a(¢h)51n Oy, + cos Gh) ,
_ 4 cos? on
Do (Pn) = ira,%aya(gbh)z’
4a 2 tan? 0, sec’ @
Per (Oppy) = 220 0 Oy sec Oy

(tan? Opa(dp) + 1)3

(28)
Py (Pn) = ; [tan_1 (Z—Z tan¢h)
ayax sin(2¢y,)
* a + aﬁ + (aﬁ —a2)cos(24p) |
2
Pa Oalén) = 55—

a($n)?((1 — a($p)) cos(40y) + a(dp) + 3).
4(a(pp)? - 1) ((algp) = 1) sin® G + 1)°

A.2.2  Anisotropic Beckmann (Ward). Derivative with ay.
The importance sampling PDFs and CDFs for the anisotropic
Beckmann and Ward BRDFs are the same, since the shape func-
tions g for both the BRDFs (and their derivatives) take on a similar
functional form. The PDF p, (¢y) and CDF P, (¢p,) for them is
the same as GGX; see Equation (28). Also see Equation (28) for the
definition of a(¢p).

(0, dp) = sec® Qhe_“(¢h)tan2 On
Pa.Onldn) = 2a(¢yp,)? tan” ), sec’ 4y, ¢~ @(¢n) tan’ On, (29)
Pa, (O 1$n) = 1 — (1 + a(¢y,) tan? 6),)e~ () tan* O
A.2.3  Ashikhmin-Shirley. Derivative with n,.
a($p) = nu cos’ gy + ny sin® g,
90, 9n) = cos 0 "),
4(ny + 1)32ny +1cos? ¢y,

P, (Ph) = 2T 2o .
P (Oh1¢n) = —log cos 04(1 + a(¢p,))? cos 92(45’1), 0
30

P, (¢n) = % [ tan ™! ( Zz I 1 tan ¢h)

V(nu + D(ny + 1) sin(2¢y,) }

ny + ny + 2 + (ny — ny) cos(2¢y)
Pr,, (0yl¢p) = 1= (1= (a($p) + 1) log cos 6, cos 9:<¢h)+1,

A.2.4 Microfacet ABC. The ABC Microfacet BRDF is an
isotropic microfacet BRDF, and so the sampling for ¢y, is uniform.
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The parameter A does not play a role in the microfacet BRDF (it is
canceled out by the normalization constant), so we ignore it, and
only consider the derivatives with the parameters B, C.

9(0) = (1 + B(1 - cos(6,,))) €.
B2C(C = 1)(B + 1)¢(cos 0, — 1)(1 + B(1 — cos 0)) =€

pa(6h) = (1+BC—(B+1)°) ’

B(C —1)? log(1 + B(1 — cos 0y))
pelOn) = 1-(1+B)=C((C~1)log(B+1)+1) (1+ B(1-cos ;)"
Po(0)) = (B+1)€ (1 + B(1 - cos 0,))"C (1+ BC(1-cos O)) — (B + 1)

(1+BC - (B+1)) ’
1—(1+ B(1 - cos 0,))"C((C - 1)log(1 + B(1 — cos Op,)) + 1)
Pc(0y) = .

1-(B+1)C((C -1)log(1+ B)+1)

(1)

A.2.5 Hemi-EPD. The Hemi-EPD microfacet BRDF is another
isotropic BRDF, so ¢y, is importance sampled using uniform sam-
pling. T is the incomplete gamma function.

g(eh) _ ekcosy 0n _ 1
yr(=i0)ty
T(1+1/y,0)-T(1+1/y,—x))
T(1+1/y,—xcosY ) —T(1+1/y,—x)
I(1+1/y,0)-T(1+1/y,-x)) '

PK(Qh) _ COSY(Qh)eK cos? Gh’ (32)

Pk(eh) =

A.2.6  Burley Diffuse BSSRDF. This BSSRDF is defined over an
infinite plane, and is radially symmetric. The polar angle ¢ is sam-
pled uniformly. We provide an importance sampling routine to
sample the radial distance r € [0, o], for the derivative with the
parameter d that controls both its height and width. Once again, a
Jacobian for multiplication with r is required here.

e—r/d +eT/3d
d)= ———
g9(r.d) . .
e—r/d + e—r/3d/3
= - (33)
pa(r) ¥ ,
e’r/d(r +d) efr/3d(3d +7)
Pd(r) =1- 1d - 1d .

A.3  Mixture Decomposition

A.3.1 Mixture Model. We are interested in differentiating a
mixture model f, given by

fl@i, o) = wfi(wi, wo) + (1 = w) fa(wi, @),
6wf(wia wo) = fl(wia wo) - fz(wi’ wO)a

with its parameter w. Here, f1 and f2 are the two lobes of the
BRDF. The importance sampling scheme for the two terms of the
derivative 0,, f are simply the BRDF importance sampling tech-
niques for f; and f, respectively.

(34)

A.3.2 Oren-Nayar. We are interested in differentiating the
roughness o. The PDFs once again are in solid angle coordinates,
not in spherical coordinates. The first term of Equation (20) re-
quires standard cosine hemispherical sampling, and we provide an
importance sampling routine for the second term. Here, po(6;) is
made up of two terms depending on whether 6; < 6,, and they

’ ’

have weights A — A, ., respectively. For ¢;, an exact inverse

21’1 21°
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Zhang et al’s Antithetic Sampling

Fig. 26. Additional comparisons of Zhang et al. [2021a]. with BRDF Sam-
pling for Figures 10 and 12. Zhang et al. propose a method to estimate an
odd derivative of the GGX BRDFs (the derivative with the half vector) by
using antithetic sampling. However, their method is not directly applica-
ble to many BRDF derivatives, which can often be even functions. Take for
example, the isotropic or anisotropic roughness derivative of a GGX BRDF.
Applying an estimator tailored to odd integrands to an even integrand nat-
urally leads to estimates with higher variance than the base sampling tech-
nique (BRDF sampling). We see this in the figure above as the variance is
increased in both scenes (inset numbers are less than 1) as compared to
BRDF sampling. Our product decomposition performs better than BRDF
sampling; thus, it also outperforms Zhang et al.

transform sampling routine is available.

Az

% $in(0,)(8, — sin(6,) cos(0,)),

Agy = %tan(@o)(l —sin®(6,)),

Ty = Az1 + Ay, A;1 = A2 /T,
’ sin(6;) .
6 = Ag) 0350, =m0 cos@y): L0 < 0o
p2(6:) = (1 A )—3 sin(9y) cos(0;) otherwise ’
217 1sin?(6,) (35)
p2(¢i) = 0.5 max(0, cos(do — ¢:))
A, 0;—sin(6;)cos(0;) if0; < 0,

21 0,—sin(6,)cos(6,)’

’ r\sin®(0;)—-sin®(0,)
Ay +(1=4y) 1.0-sim3(0p) °

P2(0:)

)
otherwise

4 = $o — sin”1(2u), ifu <0.5
' $o +sin"}(2u — 1), otherwise

A.3.3  Microcylinder. We want to importance sample the de-
rivative of the BRDF corresponding to the volumetric scattering
component f; . in the original paper’s notation, with the lin-
ear combination weight k;. This BRDF does not include cosine
foreshortening.
(1~ ka)gOpiyo) + ka ,

cos 0; + cos 8,

1
0 i =F A-F
ka f (@i @0) cos 0; + cos 0,

flwi, o) = F ,
g(YU’ Gh) (36)

cosf; +cosb,

where F is the Fresnel term, A is the albedo, and g is a Gaussian
with width y,,. The first term is importance sampled using cosine
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Table 3. Derivative Estimation Comparison under 3 Bounce
Global Illumination, i.e., Depth=5

Scene House Chessboard Hairball
Improvement (depth = 3)  2.27x 1.78x 1.52x
Improvement (depth =5)  1.87x 1.55% 1.1x

The scenes are Figures 21-23, respectively. The numbers indicate
standard deviation improvement (higher is better) for our
decompositions over BRDF sampling. As the maximum length of light
paths increases (depth = 3 vs. depth = 5), applying our decompositions
at each path vertex is less effective due to extra branching. Figuring
out which path vertices one should perform the decomposition at (or
path reconnection after splitting) will likely ameliorate these issues,
and is an exciting area for future research in differentiable rendering;
Section 10 discusses this in further detail. Nonetheless, even with
splitting at each path vertex, our estimators show improvement over
BRDF sampling at depth = 5; Azinovi¢ et al. [2019] argue that depth =
4 is sufficient for inverse recovery of materials and lighting under
diffuse global illumination.

BRDF Sampling Recovery Product Decomposition Recovery

Ol a, Ol a,
0.05
I0.01

« Relative Absolute Error of Recovery
y ax

BRDF Error: Our Prod Error:
0.5710 0.4451

Fig. 27. Texture recovery comparison for Figure 15. Product decomposition
is able to better recover textures due to its lower variance, this is especially
noticeable in the highly specular regions (with low roughness values). It is
hard to visually compare the differences between recovered textures, since
they are often subtle. However, product decomposition’s lower variance
leads to a smoother texture recovery (see bottom row) and lower error.

Texture Recovery Absolute Error
0.08

2. - 0
BRDF Sampling SGDm: 0.0693

Positivization (Ours) SGDm: 0.0454

Fig. 28. Inverse Rendering of the scattering parameter g of a Hanrahan-
Krueger BRDF with SGDm. Using stochastic gradient descent with mo-
mentum (SGDm) instead of ADAM exposes the higher variance of BRDF
sampling as compared to positivization in the form of higher inverse
rendering error in the recovered texture. The recovered texture with the
ADAM optimizer is shown in Figure 14.
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no1
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Fig. 29. Improvement Regions for Derivative Estimation. For each of the standard deviation images for derivatives estimators in Figures 10-13 and 18-
23, we compute the difference between the standard deviation of BRDF sampling and our techniques (positivization/ product decomposition/ mixture
decomposition). Positive numbers indicate regions (shown in red) where our estimators have better performance (i.e., lower standard deviation) than
BRDF sampling. Negative numbers indicate regions (shown in blue) where our estimators have worse performance. As it can be seen, we are better

almost everywhere across all experiments.

hemispherical sampling, which is also the importance sampling
technique used for this BRDF in forward rendering. The second
term is importance sampled using inverse transform sampling for
the Gaussian.

B ZELTNER ET AL’S ANTITHETIC SAMPLING IS A
SPECIAL CASE OF POSITIVIZATION

Zeltner et al’s [2021] antithetic sampling involves generating
paired and correlated samples for the positive and negative lobes
of the BRDF derivative d, f in two separate passes, one pass for
each lobe, and then averages out the final result.

The correlation is induced by using the same random number
generator state across the two passes. The only difference between
the two passes are that the first one uses a flag to trigger sam-
pling from the positive lobe p+ of the PDF p = wp, + (1 — w)p—,
and the second one triggers sampling from the negative lobe p_.
Here, w is the relative area of the positive lobe of d, f, given by
|f¢9af+|/(| /ﬁaf+| + | f@af_|) and is equal to 0.5 for the BRDF
derivatives they consider; see Appendix Section C.

Their estimator for the integrand dy, f is given by

1 (0af(Xs) | Baf(X)
2\ X T e )

where the samples are drawn from X, ~ p; and X_ ~ p_, and the
factor of 1/2 comes from the fact that they average the result of
the two passes. We can further simplify Equation (37), to bring it
in a form similar to the positivization estimator in Equation (8), by
noticing that g f(X) = d¢ f+(X) when X ~ py and similarly for
p- too, which gives us

= Oa f+(X+ () | Oa f-(X-(w))
p+(Xi(w)) p-(X-(u))
The only difference between the estimator above and the pos-
itivization estimator is that the samples X_(u) and X, (u) are
correlated, because they use the same uniform random num-
ber u, whereas they are uncorrelated for positivization, because

(37)

(38)

positivization does not impose any such restriction. Thus, anti-
thetic sampling is a special case of positivization with correlated
random numbers.

Positivization (with uncorrelated random numbers) achieves its
variance reduction due to the stratification of the real-valued func-
tion into positive and negative functions, and we have experi-
mentally verified that antithetic sampling (with correlated random
numbers) consistently has similar variance reduction as positiviza-
tion. As a result, antithetic sampling’s variance reduction can be
explained by the implicit stratification of 0 f into positive and neg-
ative lobes. See Figure 3 for an example of the variance reduction.

C MICROFACET BRDF DERIVATIVES INTEGRATE TO
ZERO

Previous work [Zeltner et al. 2021] has noted that the derivative of
the normal distribution function of the isotropic GGX (and Beck-
mann) BRDF with its roughness parameter has positive and neg-
ative lobes with equal area. Here, we prove that this observation
extends to all the derivatives of all microfacet normal distribution
functions.

The projected area of a microfacet BRDF’s normal distribution
function D always integrates to 1, i.e., a constant,

/D(wh,tx) cos Opdwy, = 1. (39)

As aresult, its derivative with any parameter « integrates to 0,

/BaD(wh, a) cos Opdwy, =0, (40)

which means that the positive and negative lobes of 0, D cos 6, have
equal area. Since we generally construct microfacet derivative sam-
pling PDFs proportional to the derivative of the projected normal
distribution function, the sampling PDFs (irrespective of the de-
composition) for the positive and negative lobes of the derivative
must necessarily have equal area.
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D ADDITIONAL RESULTS

We present some additional comparisons and results in this sec-
tion. First, we apply Zhang et al’s [2021a] method to estimating
the anisotropic roughness derivative of GGX BRDFs of the scenes
depicted Figures 10, 12, and 13 in Figure 26. Second, we show the re-
covered textures using the SGDm optimizer in the experiment out-
lined in Figure 14 in Figure 28. Third, we show the recovered tex-
tures by both our method and BRDF sampling in Figure 15 in Fig-
ure 27. Next, we show the improvement regions of our estimators
versus BRDF sampling for all the standard deviation estimation ex-
periments in Figure 29. Finally, we discuss the effect of larger path
lengths in Table 3.
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