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ABSTRACT Location awareness is vital in next generation (xG) wireless networks to enable different use

cases, including location-based services (LBSs) and efficient network management. However, achieving

the service level requirements specified by the 3rd Generation Partnership Project (3GPP) is challenging.

This calls for new localization algorithms as well as for 3GPP-standardized scenarios to support their

systematic development and testing. In this context, the availability of public datasets with 3GPP-compliant

configurations is essential to advance the evolution of xG networks. This paper introduces xG-Loc, the

first open dataset for localization algorithms and services fully compliant with 3GPP technical reports

and specifications. xG-Loc includes received localization signals, measurements, and analytics for different

network and signal configurations in indoor and outdoor scenarios with center frequencies from micro-waves

in frequency range 1 (FR1) to millimeter-waves in frequency range 2 (FR2). Position estimates obtained via

soft information-based localization and wireless channel quality indicators via blockage intelligence are also

provided. The rich set of data provided by xG-Loc enables the characterization of localization algorithms

and services under common 3GPP-standardized scenarios in xG networks.

INDEX TERMS 3GPP, xG, localization, dataset, next-generation networks.

I. INTRODUCTION

Location awareness is vital for next generation (xG) wireless

networks [1], [2], [3], [4], [5]. On the one hand, it is a key

enabler for several use cases (UCs), including autonomous

driving [6], [7], [8], assets tracking [9], [10], [11], Internet-

of-Things (IoT) [12], [13], [14], virtual reality [15], [16],

[17], and public safety [18], [19], [20]. On the other hand,

the positional information can be exploited to enhance the

network capabilites, for example via radio resource and beam

management [21], [22], [23]. In this context, the 3rd Genera-

tion Partnership Project (3GPP) has defined seven positioning

service levels (PSLs) for UCs enabled by localization: the key

performance indicators (KPIs) requirements include hor-

izontal and vertical localization accuracy, availability,

and latency [24]. Fulfilling such specification require-

ments calls for new localization and location-aware al-

gorithms as well as for a common ground to support

their systematic development and testing. Therefore, to

advance the evolution of xG networks, it is fundamen-

tal to make publicly available datasets compliant with

3GPP technical reports and specifications that serve as com-

mon ground for companies and research institutions for de-

veloping and testing new algorithms. In particular, the 3GPP

has defined a set of reference settings in terms of scenarios,
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signals, channels, and resource allocations [25], [26], [27].

However, implementing software to generate 3GPP-compliant

data can be particularly challenging due to the complexity of

the 3GPP specifications that make such task time-consuming

and computationally intensive.

Starting from Release 16, the 3GPP has been dedicating

significant efforts to extend the localization architecture and

capabilities of mobile wireless networks for both downlink

(DL) and uplink (UL). For example, the new enablers intro-

duced by fifth generation (5G) New Radio, such as multiple-

input multiple-output (MIMO) antennas and millimeter wave

signals, can be leveraged to achieve unprecedented local-

ization performance levels in cellular networks [1], [28].

Currently, few datasets for localization with 5G radio access

technology (RAT)-dependent and RAT-independent measure-

ments are publicly available [29], [30], [31], [32], [33], [34],

[35]. In particular, fully 3GPP-compliant datasets for localiza-

tion in 5G and beyond 5G wireless networks are still missing.

The goal of this paper is to introduce xG-Loc, an open

dataset for localization and location-based services (LBSs)

fully compliant with 3GPP technical reports and specifica-

tions [36]. xG-Loc includes received localization signals,

measurements, and analytics for 3GPP-standardized indoor

factory (InF)-dense high (DH), InF-sparse high (SH), indoor

open office (IOO), and urban microcell (UMi) scenarios with

central frequencies from micro-waves in frequency range 1

(FR1) to millimeter-waves in frequency range 2 (FR2) and

bandwidths from 5 MHz to 400 MHz, and others as standard-

ization will evolve. Specifically, the rich set of data provided

by xG-Loc can be used to develop and test localization

and location-aware algorithms. xG-Loc also includes position

estimates obtained via soft information (SI)-based localiza-

tion [37] and wireless channel quality indicators obtained

via blockage intelligence (BI) [38] as performance bench-

marks. In particular, xG-Loc is publicly available on IEEE

DataPort [36]. The key contributions of this paper can be

summarized as follows:
� introduction of xG-Loc, the first open dataset for the

evaluation of xG localization algorithms and LBSs in

3GPP-standardized configurations;
� overview of the key characteristics of xG-Loc, includ-

ing 3GPP-standardized reference signals (RSs) structure,

measurements, and scenarios; and
� performance benchmarks for xG-Loc obtained via SI-

based localization and BI.

The remainder of the paper is organized as follows.

Section II provides an overview of the signals and archi-

tectures defined by the 3GPP for localization in beyond 5G

wireless networks; Section III describes the setup used for

the generation of xG-Loc; Section IV presents the structure

of xG-Loc; Section V provides performance benchmarks on

xG-Loc obtained via SI-based localization and BI. Finally,

Section VI gives concluding remarks.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

are denoted by bold lowercase letters. For example, a random

variable and its realization are denoted by x and x, respec-

tively; a random vector and its realization are denoted by x

and x, respectively; For a vector x, its transpose is denoted

by xT. Sets are denoted by calligraphic fonts. For example, a

set is denoted by X. Symbol x∗ denotes the complex conjugate

of x. The function fx(x) and, for brevity when possible, f(x)
denotes the probability density function (PDF) of a continu-

ous random vector x; E
x|y{·|y} denotes the expectation with

respect to the random variable x conditioned on y = y.

II. LOCALIZATION IN CELLULAR NETWORKS

Localization in beyond 5G networks is performed via the

transmission of specific RSs, namely the positioning reference

signal (PRS) in DL and the sounding reference signal (SRS)

in UL. Let Nb be the number of base stations (BSs), referred

to as gNodeBs (gNBs) in 5G networks, and indexed by j ∈
Nb = {1, 2, . . . , Nb}. The position of each BS is known and

denoted by pj . Considering a cellular network composed of

Ns sites with Nsec sectors each, then the total number of BSs

is given by Nb = NsNsec [39]. The estimation of the user

equipment (UE) position can be performed by exchanging

RSs with the BSs. According to current specifications [40],

[41], the RSs can be transmitted with different carrier fre-

quencies either in FR1 (carrier frequency between 410 MHz

and 7.125 GHz) or FR2 (carrier frequency between 24.25 GHz

and 52.6 GHz). A brief description of the structure of the PRS

and of the SRS is presented next.

A. REFERENCE SIGNALS STRUCTURE

The PRS and the SRS are both based on orthogonal frequency

division multiplexing (OFDM), with a specific organization

in the time and frequency domains [42], [43], [44]. In the

frequency domain, the signal is organized into NRB resource

blocks (RBs), with NRB ∈ {4, 8, . . . , 272}, where each RB

contains NSC = 12 subcarriers. Thus, the total number of

subcarriers used for the RS transmission is given by NF =
NRBNSC. The subcarrier allocation is organized into a comb

structure, i.e., only one subcarrier out of K contains data,

while the others are padded to zero. In the time domain,

the RSs transmission is organized into multiple slots, with

L consecutive symbols used. The k-th subcarrier of the l-th

symbol is referred to as resource element (RE) and is in-

dexed by (l, k). The slots are transmitted within radio frames

with a fixed duration of 10 ms. The number of slots within a

radio frame (and therefore their duration) depends on the nu-

merology parameter μ ∈ {0, 1, 2, 3, 4, 5, 6}. The parameter μ

is used to configure the specific subcarrier spacing for the RS

transmission, which is given by ∆f = 2µ × 15 kHz. There-

fore, the RS bandwidth is given by B = NF∆f . The complete

description of the possible configurations for allocating the

time-frequency structure of the RSs can be found in [42].

Given a time-frequency allocation, the digital OFDM-based

signal for the l-th symbol is obtained via the inverse fast

474 VOLUME 5, 2024



Fourier transform as

sl[n] =
1√
NF

NF
∑

k=0

ak,l exp

{

2πnk

NF

}

(1)

where

ak,l =

{

β q[m] if m is mapped to k

0 otherwise
(2)

in which β denotes a scaling coefficient and q[m] is a sequence

to be allocated in the subcarriers (different in the cases of PRS

and SRS).

B. POSITIONING REFERENCE SIGNAL (PRS)

The PRS has been introduced by the 3GPP specifically for DL

localization [42]. The PRS leverages the OFDM-based struc-

ture described in Section II-A, where K ∈ {2, 4, 6, 12} and

L ∈ {2, 4, 6, 12}. The sequence q[m] is obtained via quadra-

ture phase-shift keying (QPSK) modulation as

q[m] =
1√
2
(1− 2c[m]) + j

1√
2
(1− 2c[m+ 1]) (3)

where c[m] denotes a 31-bit long Gold sequence initialized

based on the physical cell identity (PCI) according to [42].

C. SOUNDING REFERENCE SIGNAL (SRS)

The SRS was originally introduced by the 3GPP to perform

UL channel sounding to support communication but its use

has been extended also to localization purposes. The SRS

exploits the OFDM-based structure described in Section II-A,

where K ∈ {2, 4, 8} and L ∈ {1, 2, 4, 8, 12}. The sequence

q[m] is a low peak-to-average power ratio Zadoff-Chu

sequence, generated according to [42].

D. 3GPP MEASUREMENTS FOR LOCALIZATION

According to the 3GPP specifications, the received RSs can

be processed to extract relevant measurements for local-

ization. These measurements, denoted by {θ̂j}j∈Nb
include

time-based measurements, such as DL-time difference-of-

arrival (TDOA), UL-TDOA, and round-trip time (RTT), as

well as angle-based measurements, such as angle-of-departure

(AOD) [21], [45]. The set of measurements is related to a set

of positional features {θj(pj ,p)}j∈Nb
which are a function of

both the position pj of the BSs and on the unknown position

p of the UE. To improve the accuracy of the measurements,

several retransmissions, also referred to as occasions, of the

RS can be performed in different radio frames and coher-

ently accumulated to obtain a waveform that presents a higher

signal-to-noise ratio. Moreover, given the 3GPP specifications

for the symbol allocations, portions of the received signals

corresponding to K OFDM symbols in the same slot can be

coherently accumulated if mod(L,K) = 0 [25].

Let r̄[n] and s[n] denote the sampled versions of the re-

ceived RS after accumulation and of the transmitted RS,

respectively, then their cross-correlation is given by

R[n] =

Ns−1
∑

k=0

r̄[n]s∗[n− k] (4)

where n = 0, 1, . . . , Nc − 1. Such cross-correlation can be in-

tended as an estimation of the channel impulse response (CIR)

and can be processed to obtain time-based measurements for

localization [46], [47]. Several approaches can be exploited

to estimate the time-of-arrival (TOA), which is necessary to

obtain both the TDOA and the RTT [45]. In particular, TOA

is typically determined from (4) based on the estimation of the

delay associated with the first peak.

Given a set of TOA measurements {τ̂j}j∈Nb
obtained from

the RSs, the TDOA measurements are obtained as

θ̂j = τ̂
k̂
− τ̂j (5)

where the BS indexed by j = k̂ is the reference BS (possibly

selected under an optimality criterion, e.g., see [48]). If the

TOA estimate is obtained via the PRS or the SRS trans-

mission, the measurements are referred to as DL-TDOA or

UL-TDOA, respectively.

Differently, given a set of TOA estimates obtained via

the PRS transmission, denoted by {τ̂dj}j∈Nb
, and a set of

TOA estimates obtained via the SRS transmission, denoted

by {τ̂uj}j∈Nb
, the RTT measurements for localization are

obtained as

θ̂j =
1

2
(τ̂dj + τ̂uj) . (6)

In addition to time-based measurements, angle-based mea-

surements can be exploited for localization purposes [45].

This is performed via a beam sweeping procedure that in-

volves multiple PRS transmissions with different beam steer-

ing angles [49]. The AOD is estimated as the steering angle

that determined the PRS transmission with the highest ref-

erence signal received power (RSRP) [21]. Specifically, let

Aj = {αj0, αj1, . . . , αjNA
} be a set of NA angles to evaluate

via beam sweeping, and let ρ(αjl) denote an RSRP measure-

ment obtained via beam steering toward the angle αjl. Then,

the AOD is obtained as

θ̂j = arg max
αjl∈Aj

ρ (αjl) . (7)

E. SOFT INFORMATION-BASED LOCALIZATION

SI-based localization has been recently proposed to overcome

the limitations of classical localization algorithms based on

single-value estimates (SVEs) [37], [50]. In particular, SI-

based localization combines soft feature information (SFI),

i.e., the information on features obtained from measurements,

and soft context information (SCI), i.e., the information on

the wireless environment, to localize the UE. The SFI can

be classified into soft range information (SRI) and soft angle

information (SAI), respectively, depending on whether time

or angle measurements are considered. For any measurement
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y in a 5G network, the SFI is given by

Ly(θ) ∝ fy(y;θ) . (8)

Denoting by {θ̂j}j∈Nb
a collection of independent measure-

ments obtained from different BSs, the position p of a UE can

be inferred via maximum likelihood estimation as

p̂ = arg max
p̃

∏

j∈Nb

Lyj
(θj(pj , p̃)). (9)

The SFI is obtained as proportional to a generative model,

i.e., an approximation of the joint probability distribution

of measurements and positional features. Given the wireless

propagation complexity of 5G wireless scenarios, it cannot be

determined a priori and requires to be obtained via density

estimation. In particular, the use of Gaussian mixture models

(GMMs) with NM components as generative models has been

demonstrated to be effective for localization in 5G and beyond

wireless networks [50], [51].

F. BLOCKAGE INTELLIGENCE

The concept of BI has been recently proposed to overcome the

limitations of conventional non-line-of-sight (NLOS) identifi-

cation approaches. It has been demonstrated that BI provides

an indicator of the wireless channel quality that can be effec-

tively employed to improve the performance of both conven-

tional and SI-based localization algorithms [38]. Specifically,

this can be obtained by leveraging the information on wire-

less propagation encapsulated in a set of statistical features ν

extracted from (4).

This problem can be cast to a two-class supervised classi-

fication problem. Let γ ∈ {+1,−1} be a binary random vari-

able which takes value +1 and −1 for NLOS and line-of-sight

(LOS) propagation conditions, respectively. By considering

an exponential loss function, a model c(ν) for classification

can be obtained by solving [52]

c(ν) = arg min
c̆ :Rd→R

Eγ|ν{e−γc̆(ν) | ν} (10)

which has a closed-form solution given by

ψ(ν) = P{γ = +1 | ν} =
ec(ν)

e−c(ν) + ec(ν)
(11)

representing the probability of being in NLOS given a vector

of features. However, solving (10) requires the joint proba-

bility distribution of γ and ν, which is not known a priori

and calls for machine learning (ML)-based techniques to be

obtained [38], [53], [54].

To provide a quantification of the BI performance, it is

possible to use the area under the curve (AUC)-receiver op-

erating characteristic (ROC), a conventional metric used in

ML and estimation theory for evaluating probabilistic classi-

fication algorithms [55], [56]. Specifically, the AUC-ROC can

be intended as a measure of the probability that a randomly

chosen wireless link in NLOS conditions is assigned a higher

probability of being in NLOS compared to a randomly chosen

wireless link in LOS conditions. In addition, the mean-square

error (MSE) can be used to evaluate the BI NLOS probability

estimation quality [57]. High values of ROC-AUC and low

values of MSE indicate a high quality of the probability indi-

cator provided by BI.

Note that the probabilistic value provided by BI can be

transformed into a conventional binary NLOS indicator, here-

after referred to as discretized blockage intelligence (DBI), by

applying a threshold η [38].

III. SETUP FOR xG-Loc GENERATION

xG-Loc [36] is generated in full compliance with 3GPP

technical reports and specifications, including environments,

channels, and signals [25], [26], [39], [58]. This enables

providing data under a common setting used by companies

and research institutions to evaluate their localization algo-

rithms. In addition, the localization performance obtained via

SI-based localization [37], [50], as well as the probabilistic

indicator provided by BI [38], can be leveraged to evaluate

the performance of LBSs that require accurate positional in-

formation under 3GPP-compliant settings (e.g., see [59]).

In the following sections, the main parameters used for gen-

erating xG-Loc are reported, including the wireless scenarios

considered, the UE characteristics, and the RS time-frequency

allocation parameters.

A. REFERENCE SIGNALS CHARACTERISTICS

The physical structure and the time-frequency allocation of

the RSs are generated according to Section II-A, Section II-B,

and Section II-C [42]. Specifically, the RSs are allocated in

a single slot, which is retransmitted on 4 occasions for co-

herent accumulation. The PRS is generated with a number of

symbols L = 12 and a comb size K = 6, while the SRS is

generated with a number of symbols L = 8 and a comb size

K = 4. These configurations enable an intra-slot coherent

accumulation of the K symbols for the PRS and SRS [25].

The coherent accumulation of the RSs is performed over

NOCC = 4 occasions. For the RS transmission and reception,

no synchronization errors and ideal muting are considered in

the network [60]. Moreover, the RSs are transmitted without

the power boosting configuration [39].

B. WIRELESS CHANNELS

The wireless channels are generated according to the 3GPP

specifications in [39]. The channel parameters are generated

according to specific probability distributions, which depend

on the wireless scenario and on the NLOS conditions [39].

In addition, the wireless channels, as well as the NLOS con-

ditions, are generated using the 3GPP spatial consistency

procedure via the QuaDRiGa wireless channel simulator [61].

C. 3GPP 38.901 INDOOR FACTORY-DENSE HIGH

The InF-DH scenario is a 3GPP-standardized scenario mod-

eled to represent an indoor industrial environment charac-

terized by high density of metallic objects with irregular

structures [39]. Such characteristics determine heavy multi-

path propagation and high NLOS condition probabilities. The
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scenario is modeled with correlation distances for the wireless

channel parameters and for the NLOS conditions equal to

10 m and 1 m, respectively. The layout of the InF-DH scenario

consists of an environment of dimension 120 m × 60 m, where

18 sites with an inter-site distance of 20 m and a height of 8 m

are deployed (see Fig. 1(a)).

According to the specifications provided by 3GPP, the BSs

are composed of 1 antenna sector in FR1 and of 3 antenna

sectors in FR2, each of them covering 120◦. The antenna

patterns and characteristics are different in FR1 and in FR2,

and are reported in [26]. The BSs transmitted power is equal to

24 dBm, and their noise figure is equal to 5 dB and 7 dB in FR1

and FR2, respectively. For determining the NLOS conditions,

the effective clutter height is 2 m, the typical clutter size is

2 m, and the clutter density is 40% [26], [39]. Fig. 1(a) shows

the layout of the InF-DH scenario, where the background rep-

resents an instantiation of the spatially consistent LOS map.

D. 3GPP 38.901 INDOOR FACTORY-SPARSE HIGH

The InF-SH scenario is a 3GPP-standardized scenario mod-

eled to represent an indoor industrial environment, character-

ized by low density of metallic objects with regular metallic

surfaces [39]. Such characteristics determine moderate multi-

path propagation and low NLOS condition probabilities. The

scenario is modeled with correlation distances for the wireless

channel parameters and for the NLOS conditions equal to 5 m

and 1 m, respectively. The layout of the InF-DH scenario con-

sists of an environment of dimension 300 m × 150m, where

18 sites with an inter-site distance of 50 m and a height of 8 m

are deployed (see Fig. 1(b)).

According to the specifications provided by 3GPP, the BSs

are composed of 1 antenna sector in FR1 and of 3 antenna

sectors in FR2, each of them covering 120◦. The antenna

patterns and characteristics are different in FR1 and in FR2,

and are reported in [26]. The BSs transmitted power is equal to

24 dBm, and their noise figure is equal to 5 dB and 7 dB in FR1

and FR2, respectively. For determining the NLOS conditions,

the effective clutter height is 2 m, the typical clutter size is

10 m, and the clutter density is 20% [26], [39]. Fig. 1(b) shows

the layout of the InF-SH scenario, where the background rep-

resents an instantiation of the spatially consistent LOS map.

E. 3GPP 38.901 INDOOR OPEN OFFICE

The IOO scenario is a 3GPP-standardized scenario modeled to

represent open cubicle areas typical of indoor environments,

such as offices, shops, and shopping malls [39]. Accordingly,

the IOO scenario exhibits scarce multipath propagation and

low NLOS conditions probabilities. The scenario is modeled

with correlation distances for the wireless channel parameters

and for the NLOS conditions equal to 10 m. The layout of

the IOO scenario consists of an environment of dimension

120 m × 50m, where 12 sites with an inter-site distance of

20 m and a height of 3 m are deployed (see Fig. 1(c)).

According to the specifications provided by 3GPP, the BSs

are composed of 1 antenna sector in FR1 and of 3 antenna

sectors in FR2, each of them covering 120◦. The antenna

FIGURE 1. Layout of the 3GPP-standardized scenarios considered in
xG-Loc. The red annuluses denote the BSs positions, while the background
indicates a single random instantiation of the spatially consistent LOS
map. The color map indicates the percentage of BSs in LOS conditions for
each point of the map. The coordinates on the axes are in meters.

patterns and characteristics are different in FR1 and in FR2,

and are reported in [25]. The BSs transmitted power is equal

to 24 dBm, and their noise figure is equal to 5 dB and 7 dB

in FR1 and FR2, respectively [25], [39]. Fig. 1(c) shows the

layout of the IOO scenario, where the background represents

an instantiation of the spatially consistent LOS map.
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F. 3GPP 38.901 URBAN MICROCELL

The UMi scenario is a 3GPP-standardized scenario mod-

eled to represent outdoor street canyons, hence capturing

environments such as cities and stations squares [39]. Such

characteristics determine low multipath propagation and high

NLOS conditions probabilities. The scenario is modeled with

correlation distances for the wireless channel parameters and

for the NLOS conditions equal to 10 m. The layout of the UMi

scenario consists of an environment of dimension 1000 m ×
1000m, where 19 sites with an inter-site distance of 200 m and

a height of 10 m are deployed (see Fig. 1(d)). The minimum

distance between a site and the UEs is equal to 10 m.

According to the specifications provided by 3GPP, the BSs

are composed of 3 antenna sectors, each of them covering

120◦. The antenna patterns and characteristics are different

in FR1 and in FR2, and are reported in [25]. In FR2, multi-

ple antenna panels are employed according to [25]. The BSs

transmitted power is equal to 44 dBm, in FR1, and to 37 dBm

per panel in FR2. The BSs noise figure is equal to 5 dB and

7 dB in FR1 and FR2, respectively [25], [39]. Fig. 1(d) shows

the layout of the UMi scenario, where the background repre-

sents an instantiation of the spatially consistent LOS map.

G. USER EQUIPMENTS CHARACTERISTICS

The 5G UEs are deployed in the aforementioned scenarios,

with a height equal to 1.5 m. Their positions and orienta-

tions are generated randomly following the 3GPP drop-based

procedure (i.e., the UEs positions are generated following a

uniform distribution) [25]. The UEs are assumed to be static

in the instant of the RSs transmission.

According to the specifications provided by 3GPP, the UE

is equipped with an omnidirectional antenna in FR1, and with

a directional antenna in FR2, whose specific pattern is re-

ported in [25]. The UEs transmitted power is equal to 23 dBm,

and their noise figure is equal to 9 dB and 13 dB in FR1 and

FR2, respectively.

IV. xG-Loc CHARACTERISTICS

This section presents the characteristics of xG-Loc [36]. First,

the configurations of central frequency and bandwidths con-

sidered for the generation of xG-Loc are reported. Then, the

directory organization of xG-Loc is described. Finally, the

performance of SI-based localization and BI are evaluated on

xG-Loc.

A. xG-Loc GENERATION

Several conditions for the RS transmission are considered in

xG-Loc, including different central frequencies (both FR1 and

FR2) and bandwidths (from 5 MHz to 400 MHz) in the scenar-

ios described in Section III. Moreover, different numerologies

and numbers of RBs are taken into account. This enables to

provide data that can be used to evaluate different operational

conditions, from reduced capability devices to high-end 5G

devices. The configurations of central frequency fc and band-

width B are selected according to [25], [26], [42] and depend

TABLE 1 xG-Loc Configurations Characteristics

on the scenarios and are reported in Table 1. In addition,

a summary of the main parameters of the 3GPP scenarios

considered for generating xG-Loc and described in Section

III are reported in Table 2.

B. xG-Loc STRUCTURE

xG-Loc is structured in different directories, where each of

them contains all the data related to a certain configura-

tion of scenario, bandwidth B, and central frequency fc.

The name of these directories for the different configura-

tions is reported in Table 1. For each configuration, NRUN =
100 random instantiations of the scenarios, indexed by n ∈
{0, 1, . . . , NRUN − 1} are generated with spatially consistent

wireless channels and NLOS maps. For each n, a corre-

sponding folder, named RUN_n, is generated to contain the

information related to the RS transmission involving NUE =
10 UEs, indexed by m ∈ {0, 1, . . . , NUE − 1}. For each UE,

a corresponding folder named UE_m is used to store in-

formation related to the m-th UE. Such folders contain the

RSs exchanged between the m-th UEs and all the BS in
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a compressed folder named RX_PRS_RUN_n_UE_m.zip

and RX_SRS_RUN_n_UE_m.zip for the received PRS and

SRS, respectively.

The sampled versions of the received RSs are saved

in text files in the aforementioned directories and

named as RX_PRS_RUN_n_UE_m_BS_j.txt, for

j ∈ {0, 1, . . . , Nb}. The signals saved in the text files

are first pre-processed to reduce their dimensionality and to

provide data that can be more easily handled by localization

algorithms as in the following. First, the baseband RSs are

processed to remove the cyclic prefix introduced for the

transmission via OFDM [42]. Then, the NOCC occasions of

the RSs are coherently accumulated, and the samples not

corresponding to allocated symbols are discarded. Finally,

given the time-frequency configuration of the RSs reported in

Section III-A, groups of K symbols are accumulated.

In addition to samples of RSs, a set of synthetic data

obtained from the RSs are reported in a JavaScript object

notation (JSON) file named INFO_RUN_n_UE_m.json,

whose keys and values are described in the following:
� UE_REAL_POS indicates the vector

p = [x, y, z]
T

(12)

with the coordinates of the real 3D position in meters for

the UE in the scenario. For each scenario, the coordinate

system is as in Fig. 1.
� UE_EST_POS_SI_RTT indicates the vector

p̂ = [x̂, ŷ, z]
T

(13)

with the coordinates of the estimated position in meters

for the UE in the scenario via SI-based localization. SI-

based localization is performed in 2D, hence only x̂ and

ŷ are estimated. The position is estimated using only the

information obtained from RTT measurements and with

NM = 8 components in the GMM. The UE height z =
1.5m is fixed and is included in p̂ as known information.

� DIST_DL_TOA and DIST_UL_TOA, indicate the

vectors

dd =
[

cτ̂d0, cτ̂d1, . . . , cτ̂dNb

]T
(14a)

du =
[

cτ̂u0, cτ̂u1, . . . , cτ̂uNb

]T
(14b)

respectively, containing the 3D distance estimates in me-

ters between the Nb BSs and the UE. The estimates are

based on the transmission of the PRS in (14a), and of

the SRS in (15), respectively. The TOA estimates are

obtained via the detection of the highest peak in the

estimated CIR. For simplicity, the estimated TOA τ̂ is

mapped into distances via the multiplication with the

speed of light c.
� EST_AOD indicates the vector

α = [α0, α1, . . . , αNs
]
T

(15)

containing the AOD estimates between the Ns sites and

the UE in degrees. Given the 3GPP specifications for

the BSs antenna configurations, a sufficient number of

antennas to enable the AOD estimation is available only

in FR2 [25], [26]. The AOD estimation is accomplished

leveraging a beam sweeping procedure with an angular

resolution of 10◦ as briefly described in Section II-D.

The complete algorithm used for the AOD estimation

can be found in [50]. Fig. 2 shows the angular coordinate

system used for the AOD estimation. Moreover, it shows

the normalized antenna radiation pattern of a single an-

tenna sector for some steering configurations. Note that

for the configurations where the AOD is not estimated,

this field is left empty.
� NLOS_STATE indicates the vector

γ =
[

γ0, γ1, . . . , γNb

]T
(16)

containing the binary indicators of NLOS conditions be-

tween the BSs and the UE. The value “1” indicates that

the UE is in NLOS condition with respect to the BS,
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FIGURE 2. Polar plot representing the normalized antenna radiation
patterns of a single BS sector considering different steering vectors. The
grey solid lines delimit the antenna sectors, while the dotted lines indicate
the angle to which the antenna is directed.

while the value “0” indicates that the UE and the BS are

in LOS condition.
� BI indicates the vector

ψ =
[

ψ(ν̄0), ψ(ν̄1), . . . , ψ(ν̄Nb
)
]T

(17)

containing the probabilistic values provided by BI as

described in Section II-F for each wireless link between

the BSs and the UE. The vector of statistical indicators

ν̄ is obtained by averaging the feature vector νPRS ob-

tained transmitting the PRS and the feature vector νSRS

obtained transmitting the SRS. The selected features are

as in [38].

In the outer directory, some other information neces-

sary to perform localization is available. Specifically, there

are two compressed folders, named TX_PRS.zip and

TX_SRS.zip, which contain the transmitted PRS and SRS,

respectively. To simplify the use of such data, the same pre-

processing applied to the received RS is applied also to the

transmitted RS.

In addition, a set of relevant information on the simula-

tion settings is reported in a JSON file named SIMULA-

TION_INFO.json, whose keys and values are described in

the following:
� SCENARIO_COORD indicates the coordinates of the

corners of the scenario as in [39] and as depicted in

Fig. 1.
� BS_COORD indicates the coordinates of the BSs in the

scenario; and
� SAMPLING_RATE indicates the sampling rate in sam-

ples/s used for saving the RSs.

The complete directory organization of a single configura-

tion of xG-Loc is shown in Fig. 3.

FIGURE 3. xG-Loc directory organization for a single configuration.

V. PERFORMANCE BENCHMARKS

This section presents performance benchmarks for the differ-

ent datasets in xG-Loc. First, the performance of SI-based

localization are reported for all the configurations considered.

Then, the performance of BI are evaluated considering the

metrics briefly described in Section II-F.

A. SI-BASED LOCALIZATION PERFORMANCE

Table 3 shows relevant percentiles of the horizontal localiza-

tion error obtained via SI-based localization for the different

configurations considered using only RTT measurements.

Such statistics summarize and describe the error of the posi-

tion estimates reported in the field UE_EST_POS_SI_RTT

over all the runs and UEs for each configuration. Further
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TABLE 3 Error Percentiles for SI-Based Localization With RTT Measurements

localization performance benchmarks with different types of

measurements can be found in [25], [26], [38], [50].

First, it can be observed that for all the configurations

considered, the localization performance tends to improve by

increasing the bandwidth. This is because of the higher sam-

pling rate which determines a higher resolution in the TOA

estimation. Moreover, it can be observed that the performance

in the UMi scenario are worse with respect to the ones in

indoor scenarios.

In the InF-DH scenario, it can be observed that an accuracy

of around 1 m at the 60th percentile and of around 2 m at

the 90th percentile (i.e., 90% of the times the error is below

2 m) can be obtained with a bandwidth higher than 100 MHz.

Moreover, it can be observed that the use of a bandwidth

of 5 MHz is not sufficient for providing localization in the

scenario.

In the InF-SH scenario, it can be observed that an accuracy

of around 3 m at the 90th percentile can be achieved in FR1

with a bandwidth of 20 MHz. It can also be observed that for

every configuration with a bandwidth higher than 100 MHz,

it is possible to achieve sub-meter localization accuracy at

the 90th percentile with SI-based approach. Moreover, a sub-

meter accuracy can be achieved even at the 99th in FR2 if the

bandwidth is higher than 200 MHz. Specifically, the errors are

0.6 m and 0.38 m at the 99th percentile with bandwidths of

200 MHz and 400 MHz, respectively.

In the IOO scenario, it can be observed that accuracy of

around 1 m at the 90th percentile can be achieved in FR1 with

a bandwidth of 100 MHz. It can also be observed that the best

localization performance is obtained in FR2 at 30 GHz with a

bandwidth of 400 MHz. Specifically, with this configuration,

it is possible to achieve a localization accuracy of 0.51 m and

1.36 m at the 90th and at the 99th percentile, respectively.

In the UMi scenario, it can be observed that the localization

performance is worse with respect to other scenarios. This is

due to the characteristics of such scenario, which is charac-

terized by a high NLOS probability, as shown in Fig. 1(d). In

particular, it can be observed that the localization performance

is better in FR1 than in FR2. Given the size of the scenario,

this is due to the degradation of the RSs caused by the path
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FIGURE 4. Histogram of the BI ROC-AUC and of the BI MSE for the different configurations in xG-Loc.

FIGURE 5. Histogram of the DBI identification accuracy for the different configurations in xG-Loc.

loss which highly impacts the quality of the RTT measure-

ments used for localization.

B. BI PERFORMANCE

Fig. 4 shows the BI ROC-AUC and the BI MSE. These metrics

are evaluated on the fields BI over all the runs and UEs

for each configuration. It can be observed that the BI ROC-

AUC increases with the bandwidth within the same frequency

range, while the BI MSE decreases. This is because, similarly

to localization performance, higher bandwidths correspond

to higher sampling frequencies, which determines a better

estimation of the CIR via the RSs cross-correlation. The high

values of ROC-AUC and the low values of MSE demonstrate

the quality of the probability estimation provided via BI.

Fig. 5 shows the DBI NLOS identification accuracy assuming

η = 0.5. It can be observed that the identification accuracy of

DBI is between the 80% and the 90% for the configurations in

the InF-DH and in the InF-SH scenarios, while it is over the

90% for all the configurations in the IOO and UMi scenarios.

VI. FINAL REMARK

This paper introduces xG-Loc, the first open dataset for lo-

calization algorithms and services that is fully compliant with

3GPP technical reports and specifications. xG-Loc includes

localization signals, measurements, and analytics for different

network and signal configurations in indoor and outdoor sce-

narios with center frequencies from micro-waves in FR1 to

millimeter-waves in FR2. The rich data provided by xG-Loc

enables the systematic development and testing of localization

algorithms and services in scenarios compliant with 3GPP

specifications. The public availability of xG-Loc paves the

way to advance the evolution of xG networks.
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