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Abstract— Integrated localization and communication (ILC) at
millimeter wave (mmWave) frequencies will be a key enabler
for providing accurate location information and high data rate
communication in beyond fifth generation (B5G) networks.
This paper proposes a transmission frame structure and a
soft information (SI)-based localization algorithm for position-
assisted communications. In accordance with B5G specifications,
we consider multiple-input multiple-output (MIMO)-orthogonal
frequency division multiplexing (OFDM) networks. Theoretical
limits are also derived to serve both as performance bench-
mark and as input for algorithm design. The proposed method
enables cooperative ILC with improved localization accuracy
and enhanced communication rate simultaneously. In partic-
ular, position-assisted communication at mmWave frequencies
is explored accounting for the statistical characteristics of the
wireless environment. Localization accuracy and communication
rate are quantified in 3rd Generation Partnership Project (3GPP)
network scenarios. Results show that the SI-based localization
algorithm achieves decimeter-level accuracy, approaching the
theoretical limit. Moreover, the position-assisted communication
can provide higher communication rate with reduced overhead
compared to existing techniques, especially in scenarios with high
mobility.

Index Terms— Integrated localization and communication, mil-
limeter wave networks, MIMO, OFDM, soft information.

I. INTRODUCTION

I
NTEGRATED localization and communication (ILC) is

expected to play a key role for numerous applications

in beyond fifth generation (B5G) wireless networks [1], [2],

[3], [4], [5], [6]. These applications include autonomy [7],

[8], [9], [10], [11], crowd sensing [12], [13], [14], [15],

smart environments [16], [17], [18], assets tracking [19],
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[20], [21], [22], and Internet-of-Things (IoT) [23], [24],

[25], [26]. For example, ILC with decimeter-level localization

accuracy and gigabit-per-second data rate will enable safe driv-

ing of connected and automated vehicles (CAVs), including

lane change, collision avoidance, and indoor parking [27],

[28]. To this end, cellular-based localization techniques have

received attention and evolved in the standardization process

[1], [3], [5], [29]. Fifth generation (5G) New Radio (NR) is

expected to meet those performance requirements [1], [3], [5].

In particular, millimeter wave (mmWave) networks can enable

new applications via large bandwidth exploitation, multi-

antenna processing, multi-node cooperation, and intelligent

surface control [3], [30], [31], [32].

Although mmWave networks have been extensively investi-

gated, most studies have focused only on communication and

not on ILC [33], [34], [35], [36], [37], [38]. The design of

ILC for efficient mmWave networks is crucial for sharing the

spectrum and hardware between localization and communica-

tion. In particular, a suitable frame structure for ILC is needed

especially for networks with multiple antennas and multiple

nodes. The main challenges in designing ILC at mmWave

frequencies are: to achieve high localization accuracy and

high communication rate simultaneously with limited wireless

resources; and to overcome the harsh propagation environ-

ments with acute pathloss, severe multi-path, and frequent

blockage of line-of-sight (LOS) path.

In recent years, mmWave localization has been explored in

the literature, while research on the ILC method at mmWave

frequencies is still lacking. The existing works are categorized

into three main streams: i) performance analysis [39], [40],

[41], [42], ii) transceiver design [43], [44], [45], and iii) local-

ization algorithm design [4], [6], [46], [47], [48], [49]. In par-

ticular, ILC methods for mmWaves have been investigated in

[42] and [43] in terms of the position error bound and commu-

nication rate. Localization algorithms for mmWave networks

have been designed for narrowband systems in [46], [47], and

[48] and wideband systems in [4], [6], and [49]. For accurate

localization in realistic mmWave environments, harsh propaga-

tion conditions (e.g., LOS blockage and multi-path scattering)

should be taken into account to design localization algorithms.

Classical localization techniques relying on single-value

estimates (SVEs) (e.g., range and angle estimates) may suffer

from performance degradation as the SVEs are biased in the

conditions with LOS blockage and multi-path scattering [50],

[51], [52], [53], [54]. To overcome this drawback, the direct

positioning (DP) techniques have been proposed [55], [56],

[57], [58], [59]. However, they are still not robust particularly
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when measurements are obtained in different propagation

conditions. For accurate localization in harsh mmWave envi-

ronments, statistical characteristics of the measurements in

different propagation conditions should be taken into account

in designing localization algorithms.

To capture richer information from statistical character-

ization of heterogeneous measurements, soft information

(SI)-based localization has been investigated [4], [6], [60],

[61]. SI contains all the positional information inherent in

the signal measurements as well as in the contextual data,

allowing more accurate localization than the SVE-based and

DP methods. In [4] and [6], the generative models learned

from the SVEs and their true values have been used for SI-

based localization. For a full exploitation of SI in mmWave

networks, however, it is necessary to characterize the rela-

tionship between the received reference signals and the user

equipment (UE) positions in realistic propagation environ-

ments. This approach allows to account for signal correlation

across different frequencies of the wideband system and for

cooperation among multiple gNodeBs (gNBs) in dense 5G-

and-beyond mmWave networks, thus improving localization

and communication performance.

The fundamental questions related to cooperative ILC for

mmWave networks are: i) what frame structure can be used

for accurate localization as well as high rate communication;

ii) how to design efficient algorithms for ILC accounting for

statistical characteristics of mmWave channel; and iii) what

gain can be obtained via gNB cooperation and multiple anten-

nas in terms of both localization accuracy and communication

rate. The answers to these questions will enable develop-

ment of cooperative ILC methods for mmWaves in B5G

networks. The goal of this paper is to determine theoretical

limits of mmWave ILC and to design methods for achieving

improved localization accuracy and enhanced communication

rate. We advocate position-assisted communication, via a

suitable ILC frame structure, in which the positions of multiple

UEs are simultaneously estimated and used for reducing

communication overhead (see an illustration of ILC in Fig. 1).

The key idea is to exploit the spatial reciprocity of uplink

(UL) and downlink (DL) channels, as well as the correla-

tion among different subcarriers. This enables simultaneous

localization of multiple UEs based only on a short reference

signal.

This paper develops a cooperative ILC method for mmWave

multiple-input multiple-output (MIMO)-orthogonal frequency

division multiplexing (OFDM) networks. The key con-

tributions of this paper can be summarized as in the

following:

• propose an efficient ILC frame structure for position-

assisted communication by exploiting spatial reciprocity

between UL and DL channels to reduce the communica-

tion overhead;

• determine the theoretical limits of localization in

mmWave MIMO-OFDM networks based on the Fisher

information, accounting for gNBs cooperation and signal

correlation among subcarriers;

• design the SI-based localization algorithm, which

approaches the theoretical performance limits by

Fig. 1. An illustration of the ILC method in a network with multiple gNBs
and UEs. LOS paths may be blocked by obstacles, and non-line-of-sight
(NLOS) multi-path components exist randomly.

exploiting the statistical characteristics of mmWave sig-

nals including LOS blockage and random scattering; and

• quantify the performance of the proposed ILC method in

indoor and urban scenarios according to 3rd Generation

Partnership Project (3GPP) specifications for mmWave

networks.

The remaining sections are organized as in the follow-

ing: Sec. II describes the system model of the proposed

ILC method. Sec. III determines the theoretical limits of

mmWave localization. Sec. IV presents the SI-based local-

ization algorithm. Sec. V develops the position-assisted

communication scheme. Sec. VI quantifies the performance

of the proposed ILC method. Finally, Section VII gives our

conclusions.

Notations: Random variables (RVs) are displayed in sans

serif, upright fonts; their realizations in serif, italic fonts.

Vectors and matrices are denoted by bold lowercase and

uppercase letters, respectively. For example, a RV and its

realization are denoted by x and x; a random vector and its

realization are denoted by x and x; a random matrix and

its realization are denoted by X and X , respectively. Sets and

random sets are denoted by upright sans serif and calligraphic

font, respectively. For example, a random set and its realization

are denoted by X and X , respectively. The m-by-n matrix of

zeros is denoted by 0m×n; when n = 1, the m-dimensional

vector of zeros is simply denoted by 0m. The m-by-m identity

matrix is denoted by Im: the subscript is removed when the

dimension is clear from the context. The relation X { 0

means that X is positive definite. The operators tr(X) and

∥X∥F denote the trace and the Frobenius norm, respectively.

The operations ¹ and » denote the Kronecker product and

element-wise product, respectively. The function fx(x;a) and,

for brevity when possible, f(x;a) denote the probability dis-

tribution function (PDF) of a continuous RV x parameterized

by a; fx|y(x|y;a) and, for brevity when possible, f(x|y;a)
denote the PDF of x conditional on y = y parameterized

by a; φ(x;µ,Σ) denotes the PDF of a circularly-symmetric

complex Gaussian (CSCG) RV x with mean µ and covariance
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matrix Σ. The operators P{·} and E{·} denote the probability

and expectation of the arguments, respectively. The Kronecker

delta function is denoted by ¶i,j . The imaginary unit is denoted

by ı such that ı2 = −1. The transpose and conjugate transpose

of X are denoted by XT and X , respectively. The real part

of a complex number is denoted by ℜ{·}.

II. SYSTEM MODEL

This section describes the proposed ILC method, the chan-

nel model, and the signaling format.

A. mmWave ILC With gNB Cooperation

Consider ILC in a mmWave network composed of NB

gNBs and NU UEs, where each gNB and UE have MB and

MU antennas, respectively. The gNBs cooperatively receive

and transmit the signals for localization and communication,

respectively. Consider a wideband mmWave network, where

MIMO-OFDM system with K subcarriers and the subcarrier

spacing ∆f is adopted as in 3GPP NR. Fig. 1 illustrates the

operation of the proposed ILC method in the network. For

efficient use of the frequency band and the hardware system,

a UL localization phase and a DL communication phase are

incorporated as a form of ILC. The position estimates can be

used not only for the DL communication but also for other

location-based services in beyond 5G applications. If UEs

need the position information, the position estimates can be

sent via DL communication. Meanwhile, gNB cooperation is

taken into account to provide accurate localization as well as

high communication rate by exploiting macrodiversity. Since

the communication rate may be degraded by the signaling

overhead required for reference/pilot signal transmission and

channel information feedback, an efficient ILC method for

mmWave networks is designed based on position-assisted

communication.

The proposed frame structure for mmWave ILC consists

of two sequential phases as shown in Fig. 2. The goal of

the first phase is to estimate the positions of the UEs at the

gNBs using short UL reference signals, while the goal of the

second phase is to transmit the DL pilot and data symbols

by exploiting the estimated position information. In partic-

ular, distinguishable subsets of subcarriers can be allocated

to UEs in the UL localization phase so that the reference

signals can be transmitted simultaneously from multiple UEs.

The received signals at the gNBs are used for the SI-based

localization algorithm based on statistical characterization of

the mmWave OFDM signals. Meanwhile, all the subcarriers

are shared to all the UEs via space division multiple access in

the DL communication phase. Since the position estimates can

be used for determining the UE association and the transmit

beamforming (BF) in DL communication based on spatial

reciprocity, the overhead for DL channel estimation can be

significantly reduced by estimating the beamformed channels

with reduced dimensions instead of the full channel matrices.

The intuition behind this idea is that the UE position can

be inferred using only a subset of subcarriers as the spatial

information is correlated over all the subcarriers.

Fig. 2. Frame structure of the proposed ILC method. The UL reference
signals are used for UE localization, which helps reduce the DL pilot overhead
by exploiting the knowledge of the position estimates of the UEs at the
gNBs. The localization accuracy and the signaling overhead have a trade-off
depending on the resource allocation for UE localization. In this figure,
12 subcarriers are allocated to U = 6 UEs.

B. Channel Model

The three-dimensional (3D) positions and orientation angles

of the bth gNB are denoted by qb = [qx
b , qy

b , qz
b ]

T and (φB
b , ϑB

b ),
respectively, which are known to all the gNBs. In particular,

φB
b and ϑB

b are angles with respect to the z-axis and the

−x-axis, respectively. Meanwhile, the uth UE is located at an

unknown position pu = [px
u, py

u, pz
u]T, which is to be estimated

in the localization phase.

The UL channel from the uth UE to the bth gNB at the kth

subcarrier is expressed by the matrix Hb,u[k] ∈ C
MB×MU .

For fixed pu and qb, the channel matrix is given by a clus-

tered model including a probabilistic LOS path and multiple

scattering clusters at random positions as follows [34], [62],

[63], [64],

Hb,u[k] = H
(0)
b,u[k] +

Lc∑

i=1

Lr∑

j=1

√
ϱ
(i,j)
b,u H

(i,j)
b,u [k] (1)

where H
(0)
b,u[k] is the LOS component, while H

(i,j)
b,u [k] is the

NLOS component for the jth scattering path within the ith
cluster. The numbers of scattering clusters and rays per cluster

are denoted by Lc and Lr, respectively. The NLOS path

power is normalized as
∑Lc

i=1

∑Lr

j=1 ϱ
(i,j)
b,u = 1. Considering

probabilistic existence of the LOS path and using a single

index l indicating both the LOS and NLOS paths, i.e., l =
0, 1, . . . , L− 1 with L = LcLr + 1, the channel model in (1)

can be expressed as

Hb,u[k] = χb,u Hb,u,0[k] +

L−1∑

l=1

Hb,u,l[k] (2)

where

χb,u =

{
1 with probability pL(rb,u)

0 with probability 1− pL(rb,u)
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Hb,u,0[k] ≜

√
MBMUh̃

(L)
b,ue−ı2Ãk∆fÄb,u,0

× aB(ϕb,u,0, ¹b,u,0) a
 
U

(
ϕ′

b,u,0, ¹
′
b,u,0

)

Hb,u,l[k] ≜

√
ϱb,u,lMBMUh̃

(N)
b,u αb,u,le

−ı2Ãk∆fτb,u,l

× aB(φb,u,l, θb,u,l)a
 
U

(
φ′b,u,l, θ

′
b,u,l

)
.

In (2), the random existence of the LOS path is represented

by the binary indicator χb,u ∈ {0, 1}, which follows the

Bernoulli distribution with respect to the LOS probability

pL(rb,u) depending on the LOS path distance rb,u. The

matrices Hb,u,0[k] and Hb,u,l[k] correspond to the LOS and

NLOS propagation paths, respectively. The large-scale channel

gains for LOS and NLOS paths are given by h̃
(L)
b,u ≜ cLr−´L

b,u

and h̃
(N)
b,u ≜ cNr−´N

b,u , respectively, where ´L and ´N are the

pathloss exponents, and cL and cN are known constants. The

propagation delays for the LOS path and the lth NLOS path

are denoted by Äb,u,0 and τb,u,l, respectively. In particular,

the LOS path delay is given by Äb,u,0 = rb,u/c where c
is the speed of light. The complex path gain for the lth
path is denoted by the random variable αb,u,l, which follows

the CSCG distribution with zero-mean and unit-variance. The

normalized array response vector of the gNBs is denoted by

aB(ϕ, ¹) as a function of the azimuth and zenith angle-of-

arrivals (AOAs) for each path. The mth element of aB(ϕ, ¹)
is given by

[
aB(ϕ, ¹)

]
m

≜
1√
MB

exp
(
− ıgT

B,mk(ϕ, ¹)
)

for m = 1, 2, . . . ,MB, where gB,m is the relative position

vector of the mth element of the antenna array of the gNB

with gB,1 = 0, and the wave vector is given by

k(ϕ, ¹) ≜
2Ã

¼c
[cos ϕ sin ¹, sinϕ sin ¹, cos ¹]T

with the wavelength ¼c. The array response vector of the UE

aU(ϕ, ¹) is similarly defined as aB(ϕ, ¹). The azimuth(zenith)

AOAs are denoted by ϕb,u,0(¹b,u,0) for LOS and φb,u,l(θb,u,l)

for NLOS, respectively. Similarly, the azimuth(zenith) angle-

of-departures (AODs) are denoted by ϕ′
b,u,0(¹′b,u,0) for LOS

and φ′b,u,l(θ
′
b,u,l) for NLOS, respectively. Note that the AOAs

and delay of the LOS path can be expressed as functions of

pu for given qb and (φB
b , ϑB

b ) by the following coordinate

transformation

ϕb,u,0 = tan−1 (p̊b,u,y/p̊b,u,x) (3a)

¹b,u,0 = Ã − cos−1 (p̊b,u,z/∥p̊b,u∥) (3b)

Äb,u,0 =
rb,u

c
= ∥pu − qb∥/c (3c)

where the rotated position vector is defined as [41]

p̊b,u ≜ KT(φB
b , ϑB

b )(pu−qb) = [p̊b,u,x, p̊b,u,y, p̊b,u,z]
T (4)

with the rotation matrix

K(ϕ, ¹) ≜




cos ϕ − sin ϕ cos ¹ − sin ϕ sin ¹
sinϕ cos ϕ cos ¹ cos ϕ sin ¹

0 − sin ¹ cos ¹



 . (5)

The DL channel from the uth UE to the bth gNB at the kth

subcarrier is expressed based on the spatial reciprocity by the

matrix H′
b,u[k] ∈ C

MU×MB with similar notations to (2) as

H′
b,u[k] = χb,u H ′

b,u,0[k] +

L−1∑

l=1

H′
b,u,l[k] (6)

where

H ′
b,u,0[k] ≜

√
MBMUh̃

(L)
b,ue−ı2Ãk∆fÄb,u,0

× aU

(
ϕ′

b,u,0, ¹
′
b,u,0

)
a
 
B(ϕb,u,0, ¹b,u,0)

H′
b,u,l[k] ≜

√
ϱb,u,lMBMUh̃

(N)
b,u α

′
b,u,le

−ı2Ãk∆fτb,u,l

× aU

(
φ′b,u,l, θ

′
b,u,l

)
a
 
B(φb,u,l, θb,u,l) .

The AOAs and AODs in (6) are the same with the AODs and

AOAs of the UL channels, respectively. The complex path gain

for the lth path is denoted by α′b,u,l, which follows the CSCG

distribution with zero-mean and unit-variance.

C. Signaling Format

In the UL localization phase, multiple UEs simultaneously

transmit a common reference symbol s using distinguishable

subsets of subcarriers to the gNBs for UE localization. Since

the UEs have no prior information about the channels or

relative positions of the gNBs, the reference symbol of each

UE is transmitted through a single antenna element with the

omnidirectional radiation pattern instead of using BF weights.

In this case, the transmit BF vector of the UEs is expressed as

e1 ≜ [1, 0, 0, . . . , 0]T with length MU. The reference symbol

is received at all the gNBs. For a given symbol time of interest,

the received signal at the kth subcarrier of the bth gNB from

the uth UE can be expressed as

yb,u[k]=
√

PtHb,u[k]e1s + nb,u[k]

=
√

Ptχb,uhb,u,0[k]s+

L−1∑

l=1

√
Pthb,u,l[k]s + nb,u[k] (7)

with

hb,u,0[k]≜

√
MBh̃

(L)
b,ue−ı2Ãk∆fÄb,u,0aB(ϕb,u,0, ¹b,u,0)

hb,u,l[k]≜

√
ϱb,u,lMBh̃

(N)
b,u αb,u,le

−ı2Ãk∆fτb,u,laB(φb,u,l, θb,u,l)

where k ∈ Ku ¦ {1, 2, . . . ,K} and Ku ∩ Kj = ∅ for j ̸= u.

The subset Ku can be chosen depending on the required

localization accuracy and the number of UEs. In particular,

a larger size of Ku can be chosen for achieving a higher

localization accuracy. Pt is the transmit power of the UE. The

UL reference symbol is assumed to be a unit scalar, i.e., s = 1.

The noise vector nb,u[k] follows the CSCG distribution, i.e.,

CN (0MB , PnIMB), where Pn is the noise power at the gNB.

In the DL communication phase, the gNBs transmit pilot

symbols for channel estimation and data symbols for informa-

tion transmission. In the DL pilot transmission period, a subset

of gNBs Bu ¦ {1, 2, . . . , NB} is associated with the uth UE

based on the results of the UL localization. Then the BF matrix

Fb ≜
[
fb,u,∀u ∈ Ub

]
∈ C

MB×|Ub|,∀b = 1, 2, . . . , NB is

used at all the subcarriers to allow a low complexity channel
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acquisition at the UEs [35], [65]. The set Ub includes the UEs

associated with the bth gNB. In addition, we rely on the same

BF matrix for both pilot and data transmissions to reduce the

pilot overhead and feedback overhead. In particular, for each

u, the gNBs in Bu simultaneously transmit the known pilot

symbol using each BF vector fb,u ∈ C
MB . The details of the

UE association and BF design will be explained in Sec. V.

In the DL data transmission period, gNBs cooperatively trans-

mit the data symbols to the UEs for given effective channels

without the need of channel state information (CSI) feedback.

The uth UE detects the transmitted symbol as

y′u[k] = w 
u

NB∑

b=1

√
P ′

t

|Ub|
H ′

b,u[k]Fbdb[k] + w 
un′

u[k] (8)

where wu ∈ C
MU is the receive BF vector, and P ′

t is the

transmit power of the gNB. The data symbol vector is denoted

by db[k] = [s′j [k], j ∈ Ub]
T, where s′j [k] is the data symbol for

the jth UE. This satisfies E
{
db[k]

(
db[m]

) }
= 1

|Ub|
¶k,mI|Ub|.

The BF matrix Fb is normalized so that ∥Fb∥2F = |Ub|. The

noise vector follows n′
u[k] ∼ CN (0MU , P ′

nIMU) with the

noise power P ′
n at the UE.

III. THEORETICAL LIMIT OF MMWAVE LOCALIZATION

In this section, the theoretical limit of localization accuracy

in OFDM-based mmWave MIMO networks is determined

based on the Fisher information. For notational simplicity, the

set of subcarrier indices allocated to the uth UE is denoted by

Ku = {1, 2, . . . ,K}.

A. Probability Distribution of Received Signal in UL

To determine the theoretical limit of localization in terms

of the Fisher information, we first derive the conditional prob-

ability distribution of the received signals at the gNBs. This

result will also be used in designing the proposed localization

algorithm in Sec. IV.

From (2) and (7), it can be seen that the signals

at different subcarriers are correlated as the parameters

χb,u,αb,u,l, Äb,u,0, τb,u,l, ϕb,u,0,φb,u,l, ¹b,u,0, and θb,u,l affect

all the subcarriers. Accounting for this, we derive the joint

distribution of the random vectors yb,u[k], k = 1, 2, . . . ,K for

the given set of the channel parameters defined as

Sb,u ≜
{
Ç

b,u, Äb,u,l, ϕb,u,l, ¹b,u,l : l = 1, 2, . . . , L− 1
}
. (9)

Define the vector ȳb,u[k] as the concatenation of the received

signals at the bth gNB from the uth UE on subcarriers

k, k − 1, . . . , 1, i.e.,

ȳb,u[k] ≜
[
yT

b,u[k], yT
b,u[k − 1], . . . , yT

b,u[1]
]T

. (10)

The next lemma shows that ȳb,u[K] follows the multivariate

Gaussian distribution for the given Sb,u and pu.

Lemma 1: The PDF of ȳb,u[K] for the given Sb,u and pu

is given by

fȳb,u[K]|Sb,u

(
ȳb,u[K]| Sb,u;pu

)

= φ
(
ȳb,u[K]; µ̄

(Çb,u)
b,u [K], Σ̄b,u[K]

)
(11)

where

µ̄
(Çb,u)
b,u [k] = Ç

b,u

√
MBPth̃

(L)
b,u

[
Ä
(−k)
b,u,0, Ä

(−k+1)
b,u,0 , · · · , Ä(−1)

b,u,0

]T

¹ aB(ϕb,u,0, ¹b,u,0)

Σ̄b,u[k] = MBPth̃
(N)
b,u

L−1∑

l=1

ϱb,u,lRb,u,l[k]¹Ab,u,l + PnI

with Ä
(n)
b,u,l ≜ eı2Ãn∆fÄb,u,l . The matrix Rb,u,l[k] ∈ C

k×k

accounts for the correlation among the subcarriers, in which

the element on the nth row and the mth column is defined as[
Rb,u,l[k]

]
n,m

≜ Ä
(n−m)
b,u,l . The matrix Ab,u,l is defined as

Ab,u,l ≜ aB(ϕb,u,l, ¹b,u,l)a
 
B(ϕb,u,l, ¹b,u,l) . (12)

Proof: Refer to Appendix A. □
The next proposition shows that the PDF in (11) can be

factorized into the PDFs of K correlated random vectors.

Proposition 1: The PDF of ȳb,u[K] for the given Sb,u

and pu is factorized into the PDFs of yb,u[k] for the given

ȳb,u[k−1] and Sb,u for k = 1, 2, . . . ,K as

fȳb,u[K]|Sb,u

(
ȳb,u[K]| Sb,u;pu

)

=

K∏

k=1

φ
(
yb,u[k]; µ̂

(Çb,u)
b,u [k], Σ̂b,u[k]

)
(13)

where

µ̂
(Çb,u)
b,u [k] = µ

(Çb,u)
b,u [k] + Σ̄

(1,2)
b,u [k]

(
Σ̄

(2,2)
b,u [k]

)−1

×
(
ȳb,u[k−1]−µ̄

(Çb,u)
b,u [k−1]

)
(14)

Σ̂b,u[k] =Σ̄
(1,1)
b,u [k]−Σ̄

(1,2)
b,u [k]

(
Σ̄

(2,2)
b,u [k]

)−1
Σ̄

(2,1)
b,u [k]. (15)

The definitions of µ
(Çb,u)
b,u [k] and Σ̄

(i,j)
b,u [k] are given in (37) of

Appendix B.

Proof: Refer to Appendix B. □
This result will be used for the derivation of the Fisher

information matrix (FIM) of the received signals as well as

the design of localization algorithm.

B. Bayesian Cramér-Rao Lower Bound for Position Estimate

To evaluate the localization accuracy, the mean square error

(MSE) of the estimator p̂u is used as the performance metric.

In particular, the Miller-Chang type bound in [66] is used as

a form of Bayesian Cramér-Rao lower bound (CRLB), which

takes the expectation of the conditional CRLB over a random

nuisance parameter. By treating the random parameters in the

union set Su ≜ ∪NB

b=1Sb,u as nuisance parameters, the MSE of

p̂u over the set of the observations, i.e., Yu ≜ {ȳb,u[K] : b =
1, 2, . . . , NB}, can be lower bounded as

EYu

{
∥p̂u − pu∥2

}
= ESu

{
EYu|Su

{
∥p̂u − pu∥2|Su

}}
(16a)

⩾ ESu

{
tr

(
J−1

(
pu|Su

))}
(16b)

=: eℓ
sp(pu). (16c)

In (16a), the law of iterated expectation is used. In (16b), the

CRLB is given by using the FIM J(pu|Su) of the observation

Yu for given position pu and nuisance parameter set Su.

In (16c), we define the squared position error bound (SPEB)

as the CRLB for the position estimation, which is denoted
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by eℓ
sp(pu). Defining Xu ≜

{
χb,u : b = 1, 2, . . . , NB

}

and S̊u ≜ Su\Xu =
{
τb,u,l,φb,u,l, θb,u,l : b = 1, 2, . . . , NB,

l = 1, 2, . . . , L− 1
}

, the SPEB can be calculated as follows,

eℓ
sp(pu) = E

S̊u

{
EXu

{
tr

(
J−1

(
pu

∣∣̊Su,Xu

))∣∣∣̊Su

}}

(a)
= E

S̊u

{ ∑

Xu∈X̌

P{Xu = Xu} tr
(
J−1

(
pu

∣∣̊Su,Xu

))}

(b)≈ 1

Ns

Ns∑

n=1

∑

Xu∈X̌

NB∏

b=1

(
pL(rb,u)

)Ç
b,u

(
1−pL(rb,u)

)1−Ç
b,u

× tr
(
J−1

(
pu

∣∣S̊(n)
u ,Xu

))
. (17)

In (a), EXu
{·} is calculated using the joint LOS probability

P{Xu = Xu} for Xu ∈ X̌ , where X̌ ≜ {0, 1}NB is the set of

all possible combinations of Ç
b,u,∀b. In (b), the probability

is calculated as P{Xu = Xu} =
∏NB

b=1(pL(rb,u))Ç
b,u(1 −

pL(rb,u))1−Ç
b,u . Also, we use the sample average method

to evaluate the expectation with respect to S̊u because the

distribution of S̊u varies in different network environments.

The number of random samples is denoted by Ns, and the

nth sample of S̊u is denoted by S̊(n)
u .

The FIM J
(
pu

∣∣S̊(n)
u ,Xu

)
in (17) can be calculated as

follows. Defining S(n)
u ≜ S̊(n)

u ∪ Xu, the FIM J
(
pu

∣∣S(n)
u

)

can be expressed by a sum of NB FIMs of the independent

observations at the gNBs as

J
(
pu

∣∣S(n)
u

)
=

NB∑

b=1

J (b)
(
pu

∣∣S(n)
b,u

)
(18)

where S(n)
b,u is the subset of S(n)

u corresponding to the bth

gNB. In (18), J (b)
(
pu

∣∣S(n)
b,u

)
is the FIM of the observation

ȳb,u[K] for given S(n)
b,u at the bth gNB, which can be obtained

by transforming the FIM for the channel parameters, i.e.,

J (b)
(
ηb,u

∣∣S(n)
b,u

)
, based on the chain rule as

J (b)
(
pu

∣∣S(n)
b,u

)
=

∂ηT
b,u

∂pu

J (b)
(
ηb,u

∣∣S(n)
b,u

)(∂ηT
b,u

∂pu

)T

(19)

where ηb,u ≜ [ϕb,u,0, ¹b,u,0, Äb,u,0]
T. In (19), the transforma-

tion matrix
∂ηT

b,u

∂pu
∈ R

3×3 is derived in Appendix C. The FIM

J (b)
(
ηb,u

∣∣S(n)
b,u

)
in (19) is defined as

J (b)
(
ηb,u

∣∣S(n)
b,u

)

≜ E

{∂ ln f
ȳb,u[K]

∣∣Sb,u

(
ȳb,u[K]

∣∣S(n)
b,u ;ηb,u

)

∂ηb,u

×
∂ ln fȳb,u[K]|Sb,u

(
ȳb,u[K]

∣∣S(n)
b,u ;ηb,u

)

∂ηT
b,u

∣∣∣S(n)
b,u

}
(20)

which can be expressed by Proposition 2.

Proposition 2: The element of the ith row and the jth

column of J (b)(ηb,u|S(n)
b,u ) is given by

[
J (b)(ηb,u|S(n)

b,u )
]
i,j

=

K∑

k=1

tr
((

Σ̂
(n)
b,u [k]

)−1 ∂Σ̂
(n)
b,u [k]

∂[ηb,u]i

(
Σ̂

(n)
b,u [k]

)−1 ∂Σ̂
(n)
b,u [k]

∂[ηb,u]j

)

+ 2Ç
b,uMBPth̃

(L)
b,uℜ

{(
µ̇

(n)
b,u,i[k]

) (
Σ̂

(n)
b,u [k]

)−1
µ̇

(n)
b,u,j [k]

}

for 1 ⩽ i ⩽ 3, 1 ⩽ j ⩽ 3, where Σ̂
(n)
b,u [k] is obtained from

(15) using the parameters in S(n)
b,u . The matrix

∂Σ̂
(n)
b,u

[k]

∂[ηb,u]i
and the

vector µ̇
(n)
b,u,i[k] can be found in (47) and (49) of Appendix D,

respectively.

Proof: Refer to Appendix D. □
From (18), (19), and Proposition 2, the SPEB in (17) is

obtained.

IV. SI-BASED LOCALIZATION ALGORITHM

As shown in Fig. 2, a UL reference symbol is sent from each

UE to the gNBs for localization. In this section, an SI-based

inference algorithm for UE localization is designed. In particu-

lar, the position of a UE is estimated with maximum likelihood

(ML) criterion based on the expectation-maximization (EM)

approach, accounting for the statistical characteristics of the

received signals given in Sec. III. For notational brevity, it is

assumed that the subcarriers k = 1, 2, . . . ,K are used for

localization of the uth UE.

A. SI-Based Localization With Approximate ML Estimation

The problem is to estimate pu by observing the

received signals at the gNBs, i.e., ȳb,u[K] =
[
yT

b,u[K],

yT
b,u[K − 1], . . . ,yT

b,u[1]
]T

defined in (10). Since the signal

expression in (7) takes into account the statistical models of

the nuisance parameters including LOS existence and multi-

path scattering, all the positional information can be captured

by the SI associated with the measurements that coincides with

the likelihood function of the position [60]. Then the position

estimation problem can be formulated with ML criterion using

the log-likelihood function as

P0 : p̂u = argmax
pu

NB∑

b=1

log f(ȳb,u[K];pu)

where fȳb,u[K](ȳb,u[K];pu) is the PDF of the observation

ȳb,u[K] for a given position pu.

To solve the problem P0, the joint PDF of ȳb,u[K] should

be derived in a tractable form. However, it is difficult to have a

useful expression of the joint PDF for the signal model based

on the multi-path channel model parameterized by random

scattering environment. For instance, each element of yb,u[k]
in (7) follows the Gaussian distribution for given Ç

b,u, while

the vector yb,u[k] does not follow the multivariate Gaussian

distribution for given Ç
b,u in general. To design a tractable

localization algorithm, we approximate the distribution of

hb,u,l[k] in (7) using the Gaussian distribution with the same

mean and covariance of hb,u,l[k]. This coincides with the

fact that the sum of NLOS components follows the Gaussian

distribution as L increases by the central limit theorem.1 From

the approximation, the concatenated vector ȳb,u[K] for given
Ç

b,u and pu follows the multivariate Gaussian distribution with

1We observed that the performance loss caused by the Gaussian approxi-
mation is not significant when Lc ⩾ 10 with Lr = 20, which corresponds
to the parameter range for the 3GPP scenarios in [62].
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the PDF given by2

fȳb,u[K]|χb,u

(
ȳb,u[K]|Çb,u;pu

)

≈ φ
(
ȳb,u[K]; µ̄

(Çb,u)
b,u [K], ¯̄Σb,u[K]

)
(21)

=
K∏

k=1

φ
(
yb,u[k]; µ̃

(Çb,u)
b,u [k], Σ̃b,u[k]

)
. (22)

In (21), the covariance matrix ¯̄Σb,u[k] is given by

¯̄Σb,u[k]=MBPth̃
(N)
b,u

L−1∑

l=1

ϱb,u,lE
{
Rb,u,l[k]

}
¹E

{
Ab,u,l

}
+PnI

(23)

where the expectations are numerically calculated for given

distributions of τb,u,l, φb,u,l, and θb,u,l. The factorization in

(22) holds similarly to Proposition 1, where µ̃
(Çb,u)
b,u [k] and

Σ̃b,u[k] are obtained by substituting ¯̄Σb,u[k] for Σ̄b,u[k] in

(14) and (15), respectively. Using the LOS probability, the

joint PDF of ȳb,u[K] is given by

f(ȳb,u[K];pu)

≈ pL(rb,u)

K−1∏

k=1

φ
(
yb,u[k]; µ̃

(1)
b,u[k], Σ̃b,u[k]

)

+
(
1− pL(rb,u)

) K−1∏

k=1

φ
(
yb,u[k]; µ̃

(0)
b,u[k], Σ̃b,u[k]

)
. (24)

B. EM Algorithm for Localization

Maximization of log f(ȳb,u[K];pu) in the problem P0 is

still intractable due to the sum of products formula in (24).

To resolve this challenge, the expectation-maximization (EM)

approach is used with the concept of complete data, instead

of relying only on the observed data.

Define the random set Zb,u ≜ {ȳb,u[K],χb,u} as

complete data, including both the observed data ȳb,u[K]
and the unobserved data χb,u. A realization of Zb,u is

denoted by Zb,u. Using (22), the PDF of Zb,u can be

expressed as

fZb,u
(Zb,u;pu)

= fχb,u
(Çb,u;pu) fȳb,u[K]|χb,u

(ȳb,u[K]|Çb,u;pu)

≈
[
pL(rb,u)

K∏

k=1

φ
(
yb,u[k]; µ̃

(1)
b,u[k], Σ̃b,u[k]

)]Ç
b,u

×
[(

1−pL(rb,u)
) K∏

k=1

φ
(
yb,u[k]; µ̃

(0)
b,u[k], Σ̃b,u[k]

) ]1−Ç
b,u

where the probability mass function (PMF) of χb,u is given

by fχb,u
(Çb,u;pu) = (pL(rb,u))Ç

b,u(1− pL(rb,u))1−Ç
b,u .

Since the complete data cannot be fully observed, the

EM algorithm maximizes the expected log-likelihood. This

problem is expressed as

P1 : p̂u = argmax
pu

Eχb,u

{ NB∑

b=1

ln fZb,u
(Zb,u;pu)

∣∣∣ȳb,u[K]
}

2This can be easily shown as the vector ȳb,u[K] can be expressed by an
affine transformation of the independent Gaussian RVs for given χ

b,u.

where the expectation is taken over the conditional PMF

f(Çb,u|ȳb,u[K];pu), which is given by

f(Çb,u|ȳb,u[K];pu)=
f(Zb,u;pu)

f(ȳb,u[K];pu)
. (25)

The EM algorithm proceeds in multiple iterations including

inner iterations, where each outer iteration consists of an

expectation step and a maximization step. Consider the tth
outer iteration of the algorithm. At the expectation step, the

conditional PMF of χb,u for given ȳb,u[K] is evaluated based

on the position vector p
(t−1)
u calculated in the (t − 1)th

iteration. Then the expected log-likelihood of Zb,u can be

evaluated as a function of pu, i.e.,

ℓu

(
pu;p(t−1)

u

)
≜

NB∑

b=1

∑

Ç
b,u∈{0,1}

f
(
Ç

b,u

∣∣ȳb,u[K];p(t−1)
u

)

× ln f
(
Zb,u;pu

)
. (26)

Next, at the maximization step, the position vector is updated

by solving the following problem

P1,a : p(t)
u = argmax

pu

ℓu

(
pu;p(t−1)

u

)
. (27)

Since ℓu

(
pu;p

(t−1)
u

)
in (26) is twice differentiable with

respect to pu, a local optimal point of P1,a is found by

Newton’s method using both the gradient ∇ℓu = ∂ℓu

∂pu
∈ R

3×1

and Hessian matrix ∇2ℓu = ∂
∂pu

(∇ℓu)T ∈ R
3×3. Since the

Newton’s method can be used to find a local maximum value

only when the Hessian matrix is negative definite, a modified

ascent method is used with line search [67]. Then the position

vector is updated at the sth inner iteration of the algorithm as

p(t,s)
u = p(t,s−1)

u −D(t,s)
u ∇ℓu

(
p(t,s−1)

u ;p(t−1)
u

)
(28)

with

D(t,s)
u ≜

{ (
∇2ℓu

)−1
if −∇2ℓu{03×3

µ(t,s)
(
∇2ℓu − (|¼|+ ϵ)I

)−1
otherwise

where the superscript (t, s) indicates the sth inner iteration of

the tth outer iteration. µ(t,s) is a step size, which is determined

by the backtracking line search algorithm. ¼ is the smallest

eigenvalue of −∇2ℓu, and ϵ is a small positive number to

ensure the negative definiteness of D
(t,s)
u . The elements of

the gradient and Hessian matrix are provided in Appendix E.

Once the inner iteration for the modified ascent algorithm

converges, the position vector is updated by p
(t)
u = p

(t,s)
u

as a solution to P1,a at the tth outer iteration. After the

outer iteration of the EM algorithm converges, the estimated

position of the uth UE is determined as p̂u = p
(t)
u . The EM

algorithm for UE localization is summarized in Algorithm 1.

Since the convergence of the EM sequence to either a maxima

or a stationary point depends on the choice of starting point,

multiple initial points are used, and the solution with the

highest objective value is chosen [68].

3The probability distributions of NLOS parameters depend on the network
scenarios, e.g., Indoor, UMi, UMa, and InF, in 3GPP standard. The samples
at each iteration t are drawn from the same random seed for convergence.
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Algorithm 1 EM Algorithm for Localization of the uth UE

Require:{ȳb,u[K], qb, φ
B
b , ϑB

b , b = 1, 2, . . . , NB}, Pn,
Pt, MB

1: Set ϵ as a small positive number
2: t← 0
3: Initialize p

(t)
u with a random position

4: while p
(t)
u does not converge within max iteration do

5: t← t + 1
6: Calculate {ϕb,u,0, ¹b,u,0, Äb,u,0,∀b} using (3)
7: Obtain N samples of {τb,u,l,φb,u,l, θb,u,l,∀b, l > 0}

for given distributions3

8: Calculate ¯̄Σb,u[k] in (23) by the sample mean method
using the N samples in Step 7

9: Calculate f
(
Ç

b,u|ȳb,u[K];p
(t−1)
u

)
,∀Çb,u ∈ {0, 1}

using (25)
10: s← 0
11: p

(t,s)
u ← p

(t−1)
u

12: while p
(t,s)
u does not converge do

13: s← s + 1
14: Calculate ∇ℓu

(
p

(t,s−1)
u ;p

(t−1)
u

)

15: Calculate ∇2ℓu

(
p

(t,s−1)
u ;p

(t−1)
u

)

16: if ∇2ℓu is negative definite then

17: D
(t,s)
u ←

(
∇2ℓu

)−1

18: else
19: ¼← the smallest eigenvalue of −∇2ℓu

20: Find µ(t,s) by backtracking line search

21: D
(t,s)
u ← µ(t,s)

(
∇2ℓu − (|¼|+ ϵ)I

)−1

22: end if

23: p
(t,s)
u ← p

(t,s−1)
u −D

(t,s)
u ∇ℓu

(
p

(t,s−1)
u ;p

(t−1)
u

)

24: end while

25: p
(t)
u ← p

(t,s)
u

26: end while

27: p̂u ← p
(t)
u

Return: p̂u

C. Computational Complexity Analysis

The computational complexity of Algorithm 1 is exam-

ined in terms of the number of real scalar multiplications.

We assume that both the matrix inversion and eigenvalue

decomposition of a matrix X ∈ C
n×n require O(n3) multipli-

cations. The complexity of Algorithm 1 is mainly determined

by Step 8, Step 9, Step 14, Step 15, and Step 20. Specifically,

Step 8 and Step 9 require O(LK3M2
BNB + NLM2

BNB) and

O(NBK4M3
B) multiplications, respectively. The complexity

of calculating Step 14 and Step 15 is given by O(NBK4M3
B),

which is mainly for calculating (55). Step 20 is rarely exe-

cuted, which requires the complexity of O(JmaxNBK4M3
B)

in the worst case, where Jmax is the maximum number of iter-

ations for finding an optimal step size, and NBK4M3
B comes

from calculating the objective value.

In summary, the overall complexity is given in the worst

case as O(tmax(LK3M2
BNB + NLM2

BNB + smax(Jmax +
1)NBK4M3

B)), where tmax and smax are the maximum

numbers of outer iteration and inner iteration, respectively.

In most cases, the numbers of iterations are given as tmax < 4,

smax < 6, and Jmax = 0 in the simulations. In particular,

we will see that an indoor scenario with K = 1 and MB = 16
is shown to achieve a decimeter-level accuracy.

V. POSITION-ASSISTED COMMUNICATION

In this section, the position-assisted DL communication

scheme is described. In particular, the position estimates from

Algorithm 1 are used for determining the UE association

Ub and the BF matrix Fb for all b. This strategy reduces

the signaling overhead required for channel acquisition and

feedback.

A. UE Association and Transmit Beamforming

After estimating the positions of the UEs, the gNBs trans-

mit pilot signals so that UEs can estimate the DL channel

information. The dimension of the channel that should be

estimated in DL communication phase is reduced by fixing

the UE association and transmit BF matrices. First, the LOS

existence is detected by comparing the conditional PMF values

in (25) as

Ç̂b,u = argmax
Ç

b,u∈{0,1}

f
(
Ç

b,u|ȳb,u[K]; p̂u

)
. (29)

From (29), determine the set Ub that contains the UEs having

an LOS path from the bth gNB as

Ub =
{

u : u ∈ {1, 2, . . . , NU} and Ç̂b,u = 1
}

. (30)

Then Fb is constructed using p̂u and Ub as

Fb =
[
fb,u,∀u ∈ Ub

]
(31)

with

fb,u = aB

(
ϕ̂b,u,0, ¹̂b,u,0

)

where ϕ̂b,u,0 and ¹̂b,u,0 are obtained from p̂u using (3a) and

(3b), respectively. The more accurate the position estimation,

the higher communication rate can be provided as the beam

direction of fb,u becomes more accurate to the uth UE. The BF

matrix in (31) is also used for data transmission without any

CSI feedback from UEs. In summary, both the pilot overhead

and feedback overhead are significantly reduced by using the

position-assisted UE association and BF.

B. Receive Beamforming

The receive BF vector for the kth subcarrier at the uth

UE is denoted by wu[k]. Based on the strategy in Sec. V-A,

the signal-to-interference-plus-noise ratio (SINR) for the kth

subcarrier at the uth UE is expressed as

µu[k]=

∣∣∑
b∈Bu

√
P ′

t

|Ub|
w 

u[k]H ′
b,u[k]fb,u

∣∣2

∑NU
j=1,

j ̸=u

∣∣∑
b∈Bj

√
P ′

t

|Ub|
w

 
u[k]H ′

b,u[k]fb,j

∣∣2+P ′
n

∥∥wu[k]
∥∥2

(32)

where Bj ≜ {b : b∈ {1, 2, . . . , NB} and j ∈ Ub}. If Bu = ∅,
µu[k] is given as zero. Defining the vector heff

u,j [k] ≜
∑

b∈Bj

√
P ′

t

|Ub|
H ′

b,u[k]fb,j , (32) is expressed as

µu[k] =
w 

u[k]
(
heff

u,u[k]
(
heff

u,u[k]
) )

wu[k]

w
 
u[k]

( ∑NU
j=1,

j ̸=u

heff
u,j [k]

(
heff

u,j [k]
) 

+P ′
nI

)
wu[k]

.

(33)
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From (33), wu[k] can be optimized to maximize the SINR by

solving the problem maxwu[k] µu[k]. This is known as the gen-

eralized Rayleigh quotient problem [69], of which solution can

be obtained by the generalized eigenvector of the matrix pair of

heff
u,u[k]

(
heff

u,u[k]
) 

and
∑NU

j=1,

j ̸=u

heff
u,j [k]

(
heff

u,j [k]
) 

+P ′
nI with the

largest eigenvalue. Therefore, the uth UE only needs to obtain

the knowledge of the aggregated effective CSI heff
u,j [k],∀j.

This allows for a further reduction in pilot overhead such that

the gNBs in Bu simultaneously transmit the pilot signal for

each u. Then the required pilot overhead is Tp = NUTs, where

Ts is the OFDM symbol period. Since Tp is independent of NB

or MB, the position-assisted communication is more beneficial

in densely deployed networks with large antenna arrays.

C. Achievable Communication Rate

The achievable sum rate for a given channel realization is

given by the following general expression

R =

(
1− Tu + Tp + Tf

Tc

) K∑

k=1

NU∑

u=1

log2

(
1 + µu[k]

)
(34)

where Tu is the overhead for transmitting the reference sym-

bols for UE localization. Tp is the pilot overhead for estimating

the DL channels. Tf is the channel feedback overhead if

some information are sent from the UEs to the gNBs. Tc is

the channel coherence time as shown in Fig. 2. Note that

all the UEs occupy all the subcarriers via space division

multiple access in DL communications even if the subcarriers

are separated to the UEs during the UL localization phase.

In (34), the proposed position-assisted communication can

significantly reduce Tp and Tf by using only a short Tu for

localization.

VI. SIMULATION RESULTS

In this section, the performance of the proposed ILC method

is evaluated and compared with the theoretical limit and

baseline schemes.

A. Simulation Environment

1) Network Setting: The simulations are performed for two

3GPP scenarios: Indoor-Open office and urban micro (UMi)-

Street canyon [3], [62], as shown in Fig. 3. The specific

parameters and models for channel realizations depend on the

scenarios (see Table I). The performances are averaged over

300 channel realizations. The uniform planar arrays (UPAs)

of the nodes are assumed to be placed on yz-plane by default.

Then the orientation angles of the antenna arrays at the gNBs

are set as follows. In Fig. 3(a), (φB
b , ϑB

b ) = (−90o, 0) and

(φB
b , ϑB

b ) = (90o, 0) for the gNBs at y = 10 m and at

y = −10 m, respectively. In Fig. 3(b), each gNB has three

UPAs with (φB
b,1, ϑ

B
b,1) = (30o, 0), (φB

b,2, ϑ
B
b,2) = (−90o, 0),

and (φB
b,3, ϑ

B
b,3) = (150o, 0) to cover each 120o-sector. For

each UE, only one sector with the strongest received power

of the UL signal is activated at each gNB.

2) Comparison of Localization Accuracy: The MSE of the

proposed localization algorithm is verified for both indoor and

outdoor scenarios. For comparison, the theoretical analysis in

(17) is plotted as a lower bound of the MSE. In addition, the

conventional DP scheme in [55] is compared as a baseline

Fig. 3. 3GPP scenarios in [3] and [62]. The red rings indicate the positions
of the gNBs, and the blue dots indicate the positions of the UEs. In (b), two
cases are considered: NB = 7 and NB = 19. When NB = 7, only 7 gNBs
near the origin are used.

TABLE I

SIMULATION PARAMETERS

scheme. To show the ideal performance of the DP scheme,

it is assumed that the LOS indicators Ç
b,u are perfectly

known. Then the DP scheme finds the optimal position among

the predefined grid on the map with respect to the least

squares criterion using the received signals from the gNBs with
Ç

b,u = 1. A disadvantage of the DP is a high computational
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complexity, which depends on the resolution of grid search.

In our simulations, the grid resolution is set to be 0.01 m.

In addition, since the DP scheme is infeasible when Ç
b,u =

0,∀b, we discard this case for evaluating the performance

of DP, while the performance of the proposed algorithm is

averaged over all channel instances.

3) Comparison of Achievable Communication Rate: The

achievable rate of the proposed ILC method is compared with

two baseline communication schemes using (34). To focus on

the effect of the estimated position information on the achiev-

able communication rate, the following baseline schemes are

considered. One is the genie-aided communication scheme

having perfect knowledge of the UE positions and LOS

indicators, which constitutes the transmit BF matrices using

the exact LOS directions in (31). The DL transmission relies

on the perfect effective CSI at the UEs without channel

information feedback. The overhead terms for this scheme

are given by Tu = 0, Tp = NUTs, and Tf = 0. The other

baseline scheme is the conventional communication scheme

relying on DL channel estimation with the training overhead

of Tp = NBMBTs. In this scheme, the perfect knowledge

of LOS indicator and angles are assumed to be fed back

to each gNB for designing the directional BF, for which

the feedback overhead is given by Tf = µfBfTs where µf

denotes the conversion factor in symbols/bit depending on

the employed modulation scheme, and Bf is the feedback

amount in bits. The feedback of {Çb,u : b = 1, 2, . . . , NB}
and {(ϕb,u,0, ¹b,u,0),∀b : b ∈ Bu} from each UE requires

Bf = NUNB + 2Q
∑NU

u=1 |Bu| bits in total, where Q is the

quantization bits for a real value. We consider Q = 8 bits with-

out any quantization error. Meanwhile, the proposed scheme

is assumed to use only one symbol period for UL localization,

i.e., Tu = Ts. The DL pilot overhead and feedback overhead

are given by Tp = NUTs and Tf = 0, respectively. It is worth

noting that the proposed position-assisted communication can

increase the achievable rate by reducing the total overhead
Tu+Tp+Tf

Tc
in (34) compared to the conventional scheme.

B. Localization Accuracy

In Fig. 4, the root-mean-square error (RMSE) of the pro-

posed SI-based localization using Algorithm 1 is evaluated

for different bandwidths in 3GPP scenarios. Specifically, the

number of subcarriers Ku varies in the x-axis for the fixed

subcarrier spacing ∆f . For a given channel realization, the

position estimate is obtained by Algorithm 1 using three

different initial points. The localization accuracy is compared

to its CRLB provided in (17) and the ideal DP scheme

with knowledge of LOS indicators. Fig. 4(a) presents the

position error in Indoor-Open office scenario. As the num-

ber of subcarriers increases for given ∆f , the localization

accuracy improves because more observations are available.

In particular, the proposed SI-based localization algorithm

significantly outperforms the conventional DP scheme with

perfect LOS information by exploiting richer information of

mmWave propagation environments. It is worth noting that a

localization accuracy of less than 0.1 m error can be achieved

at fc = 28 GHz even with 1 MHz bandwidth per UE. Hence,

Fig. 4. Position error for different bandwidths: Ns = 300. |Ku| is the
number of subcarriers allocated to the UE. The conventional DP scheme
assumes that the LOS indicators are known.

simultaneous localization for multiple UEs is possible with

decimeter-level accuracies as a large bandwidth is available

in mmWave channels. In addition, it is observed that the

MSE gets closer to the theoretical bound as MB increases.

Therefore, the distribution approximation used for designing

Algorithm 1 works well particularly for gNBs equipped with

a large array. Consequently, our analytic result can be effec-

tively used for providing a design guideline without Monte

Carlo simulation. Fig. 4(b) presents the result in the outdoor

environment in UMi-Street canyon scenario. Although the

MSE is higher than that in the indoor scenario due to the

higher pathloss, a decimeter-level localization accuracy can

still be achieved depending on the chosen MB and bandwidth.

Moreover, the cooperative localization using NB = 19 gNBs

leads to a smaller position error, e.g., 0.11 m at |Ku| = 16,

compared to the case of NB = 7 which has an error of 0.15 m
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Fig. 5. Convergence behaviors of the inner loop and outer loop in Algorithm 1
for UE 1. The sequences of the objective values are plotted for different
random channel realizations and initializations in UMi-Street canyon scenario.
NB = 7, MB = 4 × 2, and K = 4.

at |Ku| = 16. This gain comes from the macrodiversity, which

provides an increased likelihood of LOS existence as well as

more signal observations. Although cooperation with a large

NB may require a high computational complexity and a high

information exchange overhead, one can choose only a subset

of gNBs having high received signal strength to efficiently

estimate the position with a reduced complexity.

In Fig. 5, the convergence behaviors of the proposed local-

ization algorithm are presented for different random channel

realizations and initializations. Fig. 5(a) shows the sequences

of the objective values along with the inner iteration at the first

outer iteration. The inner loop converges within fewer than ten

iterations in most cases. It was observed that the convergence

speed of the inner loop is even faster at the next outer iteration.

Fig. 5(b) shows the sequences of the objective values along

with the outer loop iteration. It can be seen that the algorithm

converges within only a few iterations as the second derivatives

are used to find the update direction in the algorithm.

C. Achievable Sum Rate

In Fig. 6, the average achievable sum rate of the UEs is

presented for different channel coherence times using ran-

dom channel realizations for given 3GPP scenarios. In both

Fig. 6(a) and Fig. 6(b), the proposed ILC method outperforms

the conventional communication scheme by reducing the pilot

and feedback overhead as calculated in the last paragraph

of Sec. VI-A. It is remarkable that the proposed scheme is

beneficial particularly in short Tc regime, which means that

position-assisted communication can play a key role in rapidly

changing environments with mobility. For example, in mobile

networks for pedestrians with the speed of v = 4 km/h

or CAVs with v = 30 km/h, Tc is given by Tc = 4 ms

or Tc = 0.54 ms, respectively, at fc = 28 GHz, which is

shorter than that in static networks or in sub-6 GHz channels.4

4Tc is calculated as Tc = 0.423/fD with the maximum Doppler shift
fD = v

c
fc, where v is the vehicle speed, and c is the speed of light.

Fig. 6. Achievable sum rate for different channel coherence times:
MU = 2 × 2, K = 16. The low-overhead feature of the proposed ILC
method becomes more beneficial as Tc decreases with higher mobility or
higher fc.

Moreover, the proposed ILC method approaches the genie-

aided scheme with the perfect knowledge of positions and LOS

indicators. This is possible because the SI-based localization

algorithm provides high accuracy using only one symbol

period of localization phase. Fig. 6(b) shows that a larger

sum rate is achievable for the proposed scheme using a larger

MB, while the conventional communication scheme may

suffer from increased training overhead particularly in short

Tc regime.

VII. CONCLUSION

This paper developed a cooperative ILC method for

mmWave MIMO-OFDM networks. First, an efficient ILC

frame structure was proposed for position-assisted communi-

cations. Next, the relationship between the received signals
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and the positions was characterized, which was then used

to determine the theoretical limits of mmWave localization.

Such analysis also enabled to design an SI-based localization

algorithm. The results in 3GPP network scenarios quantify

the performance gain of the proposed SI-based localization

algorithm with respect to existing techniques, In particular,

SI-based localization can achieve decimeter-level accuracy

using only a short reference signal even in harsh mmWave

environments. Therefore, the proposed ILC method achieves a

higher communication rate with a reduced overhead compared

to existing techniques, while the position error approaches the

theoretical limit. The low overhead of the proposed method

is particularly beneficial in scenarios with high mobility. The

findings in this paper serve as guidelines to design effi-

cient ILC for mmWave networks with improved localization

accuracy and enhanced communication rate in beyond 5G

applications.

APPENDIX A

A PROOF OF LEMMA 1

We show that the random vector ȳb,u[K] for given Sb,u and

pu follows the multivariate Gaussian distribution. From (7),

ȳb,u[k] for given Sb,u = {Çb,u, Äb,u,l, ϕb,u,l, ¹b,u,l,∀l =
1, 2, . . . , L− 1} can be expressed as

ȳb,u[k] =
[
Bb,u[k], IkMB

] [
³b,u

n̄b,u[k]

]
+ µ̄

(Çb,u)
b,u [k] (35)

where

Bb,u[k] ≜





bb,u,1[k] bb,u,2[k] · · · bb,u,L−1[k]
bb,u,1[k−1] bb,u,2[k−1] · · · bb,u,L−1[k−1]

...
...

. . .
...

bb,u,1[1] bb,u,2[1] · · · bb,u,L−1[1]





bb,u,l[k] ≜

√
ϱb,u,lMBPth̃

(N)
b,u e−j2Ãk∆fÄb,u,laB(ϕb,u,l, ¹b,u,l)

³b,u ≜
[
αb,u,1,αb,u,2, · · · ,αb,u,L−1

]T

n̄b,u[k] ≜
[
(nb,u[k])T, (nb,u[k − 1])T, · · · , (nb,u[1])T

]T
.

Since (35) can be seen as an affine transformation of inde-

pendent Gaussian RVs in ³b,u and n̄b,u, the random vector

ȳb,u[k] for given Sb,u = Sb,u follows the multivariate

Gaussian distribution. The mean vector and covariance

matrix given in (11) can be easily calculated from the

following definitions

µ̄
(Çb,u)
b,u [k] ≜ E

{
ȳb,u[k]|Sb,u = Sb,u

}

Σ̄b,u[k] ≜ E

{(
ȳb,u[k]−µ̄

(Çb,u)
b,u [k]

)(
ȳb,u[k]−µ̄

(Çb,u)
b,u [k]

) 

∣∣∣ Sb,u =Sb,u

}
.

APPENDIX B

A PROOF OF PROPOSITION 1

From Lemma 1, we have

fȳb,u[k]|Sb,u

(
ȳb,u[k]

∣∣Sb,u;pu

)

= φ
(
ȳb,u[k]; µ̄

(Çb,u)
b,u [k], Σ̄b,u[k]

)
. (36)

The mean vector µ̄
(Çb,u)
b,u [k] and the covariance matrix Σ̄b,u[k]

can be partitioned as

µ̄
(Çb,u)
b,u [k] =

[(
µ

(Çb,u)
b,u [k]

)T
,
(
µ

(Çb,u)
b,u [k−1]

)T
, · · · ,

(
µ

(Çb,u)
b,u [1]

)T]T

Σ̄b,u[k] =

[
Σ̄

(1,1)
b,u [k] Σ̄

(1,2)
b,u [k]

Σ̄
(2,1)
b,u [k] Σ̄

(2,2)
b,u [k]

]

where

µ
(Çb,u)
b,u [k]=Ç

b,u

√
MBPth̃

(L)
b,ue−ı2Ãk∆fÄb,u,0aB(ϕb,u,0, ¹b,u,0)

(37a)

Σ̄
(1,1)
b,u [k] = Àb,u

L−1∑

l=1

ϱb,u,lAb,u,l + PnIMB (37b)

Σ̄
(1,2)
b,u [k]= Àb,u

L−1∑

l=1

ϱb,u,l

[
Ä
(−1)
b,u,l , Ä

(−2)
b,u,l , · · · , Ä

(−k+1)
b,u,l

]
¹Ab,u,l

(37c)

Σ̄
(2,1)
b,u [k]= Àb,u

L−1∑

l=1

ϱb,u,l

[
Ä
(1)
b,u,l, Ä

(2)
b,u,l, · · · , Ä

(k−1)
b,u,l

]T
¹Ab,u,l

(37d)

Σ̄
(2,2)
b,u [k] = Σ̄b,u[k − 1] (37e)

with Àb,u ≜ MBPth̃
(N)
b,u . Note that Σ̄

(1,1)
b,u [k] is constant for all

k. Using (37), the PDF in (36) can be factorized as

fȳb,u[K]|Sb,u

(
ȳb,u[K]

∣∣Sb,u;pu

)

= fyb,u[1]|Sb,u

(
yb,u[1]

∣∣Sb,u;pu

)

×
K∏

k=2

fyb,u[k]|ȳb,u[k−1],Sb,u

(
yb,u[k]

∣∣ȳb,u[k − 1],Sb,u;pu

)

=

K∏

k=1

φ
(
yb,u[k]; µ̂

(Çb,u)
b,u [k], Σ̂b,u[k]

)
(38)

where the mean vector and covariance matrix of yb,u[k] for

given ȳb,u[k−1] and Sb,u are given as [70]

µ̂
(Çb,u)
b,u [k] =µ

(Çb,u)
b,u [k] + Σ̄

(1,2)
b,u [k]

(
Σ̄

(2,2)
b,u [k]

)−1

×
(
ȳb,u[k−1]−µ̄

(Çb,u)
b,u [k−1]

)
(39)

Σ̂b,u[k] =Σ̄
(1,1)
b,u [k]−Σ̄

(1,2)
b,u [k]

(
Σ̄

(2,2)
b,u [k]

)−1

Σ̄
(2,1)
b,u [k]. (40)

APPENDIX C

TRANSFORMATION MATRIX IN (19)

In (19), the transformation matrix
∂ηT

b,u

∂pu
∈ R

3×3 is derived

by using (3) as

∂ϕb,u,0

∂pu

=
p̊b,u,xk2 − p̊b,u,yk1

p̊2
b,u,x + p̊2

b,u,y

(41a)

∂¹b,u,0

∂pu

=
−1√

p̊2
b,u,x+p̊2

b,u,y

( p̊b,u,z

∥p̊b,u∥2
(pu−qb)−k3

)
(41b)

∂Äb,u,0

∂pu

=
1

c

pu − qb

∥pu − qb∥
(41c)

where p̊b,u is given in (4), and ki is the ith column vector of

K(ϕ, ¹) in (5).
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APPENDIX D

A PROOF OF PROPOSITION 2

For simplicity, we omit the superscript (n) in S(n)
b,u . From

the relation between the joint and conditional FIMs of multiple

observations [71], the FIM in (20), which accounts for all sub-

carriers included in ȳb,u[K] for given Sb,u, can be expressed

by the sum of conditional FIMs of each subcarrier as follows,

J (b)
(
ηb,u

∣∣Sb,u

)
=

K∑

k=1

J
(b)
k|k−1

(
ηb,u

∣∣Sb,u

)
(42)

where J
(b)
k|k−1

(
ηb,u

∣∣Sb,u

)
denotes the conditional FIM of

yb,u[k] for given ȳb,u[k − 1] and Sb,u. In particular, this

conditional FIM is defined by

J
(b)
k|k−1

(
ηb,u

∣∣Sb,u

)

≜ E

{∂ ln f
(
yb,u[k]

∣∣ ȳb,u[k−1],Sb,u;ηb,u

)

∂ηb,u

× ∂ ln f
(
yb,u[k]

∣∣ ȳb,u[k−1],Sb,u;ηb,u

)

∂ηT
b,u

∣∣∣Sb,u

}
(43)

with f
(
yb,u[1]| ȳb,u[0],Sb,u;ηb,u

)
≜ f

(
yb,u[1]| Sb,u;ηb,u

)
.

In (43), the expectation is taken over both yb,u[k]
and ȳb,u[k − 1], which can be calculated by the law

of iterated expectations Eyb,u[k],ȳb,u[k−1]{· | Sb,u} =

Eȳb,u[k−1]

{
Eyb,u[k]

{
· | ȳb,u[k−1],Sb,u

}
|,Sb,u

}
. Since the

conditional PDF of yb,u[k] for given ȳb,u[k − 1] and

Sb,u follows the Gaussian distribution as in (13), the

inner expectation can be calculated using the result in

[72, Appendix 15C]. Then the ith row and the jth column of

the conditional FIM in (43) can be expressed as
[
J

(b)
k|k−1(ηb,u|Sb,u)

]
i,j

= tr
(
Σ̂−1

b,u[k]
∂Σ̂b,u[k]

∂[ηb,u]i
Σ̂−1

b,u[k]
∂Σ̂b,u[k]

∂[ηb,u]j

)

+ 2ℜ
{

Eȳb,u[k−1]

{∂
(
½̂
(Çb,u)
b,u [k]

) 

∂[ηb,u]i
Σ̂−1

b,u[k]
∂½̂

(Çb,u)
b,u [k]

∂[ηb,u]j

∣∣∣Sb,u

}

︸ ︷︷ ︸
≜¿i,j

}

(44)

where ½̂
(Çb,u)
b,u [k] and Σ̂b,u[k] are defined in (14) and (15).

The expression in (44) can be calculated in a closed-form

for each variable in ηb,u = [ϕb,u,0, ¹b,u,0, Äb,u,0]
T. Here, the

following short notations are used for brevity

Σ̄′
b,u[k] ≜

{
0 if k = 1

Σ̄
(1,2)
b,u [k]

(
Σ̄

(2,2)
b,u [k]

)−1
if k > 1

(45)

ρ̄[k] ≜
[
Ä
(−k)
b,u,0, Ä

(−k+1))
b,u,0 , . . . , Ä

(−1)
b,u,0

]T

. (46)

Using (45), the partial derivative
∂Σ̂b,u[k]
∂[ηb,u]i

in tr(·) of (44) can

be derived as

∂Σ̂b,u[k]

∂[ηb,u]i
=






0 if i=1, 2

∂Σ̄
(1,1)
b,u [k]

∂Äb,u,0
+

´N

Äb,u,0
Σ̄′

b,u[k]Σ̄
(2,1)
b,u [k] if i=3

(47)

where
∂Σ̄

(1,1)
b,u

[k]

∂Äb,u,0
= − ´N

Äb,u,0
MBPth̃

(N)
b,u

∑L−1
l=1 ϱb,u,lAb,u,l. Note

that (47) becomes zero when i = 1, 2 because Σ̂b,u[k] is

independent of ϕb,u,0 and ¹b,u,0. Meanwhile, the term ¿i,j in

(44) is derived as follows

¿i,j = Ç
b,uMBPth̃

(L)
b,u µ̇

 
b,u,i[k]Σ̂−1

b,u[k]µ̇b,u,j [k] (48)

where µ̇
 
b,u,i[k] is defined using (45) and (46) as

µ̇b,u,1[k] ≜ e−ı2Ãk∆fÄb,u,0 ȧB,ϕ−Σ̄′
b,u[k]

(
ρ̄[k−1]¹ ȧB,ϕ

)

(49a)

µ̇b,u,2[k] ≜ e−ı2Ãk∆fÄb,u,0 ȧB,¹−Σ̄′
b,u[k]

(
ρ̄[k−1]¹ ȧB,¹

)

(49b)

µ̇b,u,3[k] ≜
( −´L

2Äb,u,0
−ı2Ãk∆f

)
e−ı2Ãk∆fÄb,u,0aB(ϕb,u,0,¹b,u,0)

− ´L

2Äb,u,0
Σ̄′

b,u[k]
(
ρ̄[k−1]¹aB(ϕb,u,0, ¹b,u,0)

)

+Σ̄′
b,u[k]

∂
(
ρ̄[k−1]¹aB(ϕb,u,0, ¹b,u,0)

)

∂Äb,u,0
(49c)

with

ȧB,ϕ ≜ −ı
∂GT

Bk(ϕb,u,0, ¹b,u,0)

∂ϕb,u,0
» aB(ϕb,u,0, ¹b,u,0) (50a)

ȧB,¹ ≜ −ı
∂GT

Bk(ϕb,u,0, ¹b,u,0)

∂¹b,u,0
» aB(ϕb,u,0, ¹b,u,0) (50b)

GB ≜ [gB,1, gB,2, . . . , gB,MB
] ∈ R

3×MB . (50c)

In (50c), gB,m is the relative position vector of the mth antenna

element with gB,1 = 03×1.

APPENDIX E

THE GRADIENT AND HESSIAN MATRIX IN ALGORITHM 1

In this section, the elements of the gradient and Hessian

matrix of ℓu

(
pu;p

(t−1)
u

)
in (26) are derived, which are used

in Algorithm 1.

A. Gradient ∇ℓu

The gradient ∇ℓu is defined by ∇ℓu =
[
∂ℓu

∂px
u
, ∂ℓu

∂p
y
u
, ∂ℓu

∂pz
u

]
T.

Using the chain rule for derivative of multi-variable functions,

∇ℓu is expressed as

∇ℓu =





∑NB

b=1

(
∂ℓu

∂ϕb,u,0

∂ϕb,u,0

∂px
u

+ ∂ℓu

∂¹b,u,0

∂¹b,u,0

∂px
u

+ ∂ℓu

∂rb,u

∂rb,u

∂px
u

)

∑NB

b=1

(
∂ℓu

∂ϕb,u,0

∂ϕb,u,0

∂p
y
u

+ ∂ℓu

∂¹b,u,0

∂¹b,u,0

∂p
y
u

+ ∂ℓu

∂rb,u

∂rb,u

∂p
y
u

)

∑NB

b=1

(
∂ℓu

∂ϕb,u,0

∂ϕb,u,0

∂pz
u

+ ∂ℓu

∂¹b,u,0

∂¹b,u,0

∂pz
u

+ ∂ℓu

∂rb,u

∂rb,u

∂pz
u

)




.

(51)

The partial derivatives ∂ℓu

∂ϕb,u,0
, ∂ℓu

∂¹b,u,0
, and ∂ℓu

∂rb,u
in (51) are

derived first. Then the remaining terms will be given.

Define the following constants for given p
(t−1)
u

À
(L)
b,u ≜ fχb,u|ȳb,u[K]

(
1
∣∣ȳb,u[K];p(t−1)

u

)
(52a)

À
(N)
b,u ≜ fχb,u|ȳb,u[K]

(
0
∣∣ȳb,u[K];p(t−1)

u

)
(52b)
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which are independent of pu and are calculated from (25).

Using (26) and (52), the partial derivatives ∂ℓu

∂ϕb,u,0
, ∂ℓu

∂¹b,u,0
,

and ∂ℓu

∂rb,u
in (51) can be obtained as

∂ℓu

∂ϕb,u,0
= À

(L)
b,u

K∑

k=1

∂

∂ϕb,u,0
lnφ

(
yb,u[k]; µ̃

(1)
b,u[k], Σ̃b,u[k]

)

(53a)

∂ℓu

∂¹b,u,0
= À

(L)
b,u

K∑

k=1

∂

∂¹b,u,0
lnφ

(
yb,u[k]; µ̃

(1)
b,u[k], Σ̃b,u[k]

)

(53b)

∂ℓu

∂rb,u

= À
(L)
b,u

∂

∂rb,u

ln pL(rb,u)+ À
(N)
b,u

∂

∂rb,u

ln
(
1− pL(rb,u)

)

+ À
(L)
b,u

K∑

k=1

∂

∂rb,u

lnφ
(
yb,u[k]; µ̃

(1)
b,u[k], Σ̃b,u[k]

)

+ À
(N)
b,u

K∑

k=1

∂

∂rb,u

lnφ
(
yb,u[k]; µ̃

(0)
b,u[k], Σ̃b,u[k]

)

(53c)

where µ̃
(0)
b,u[k] and Σ̃b,u[k] are functions of rb,u, while µ̃

(1)
b,u[k]

is a function of ϕb,u,0, ¹b,u,0, and rb,u. The partial derivatives

of lnφ
(
yb,u[k]; µ̃

(Çb,u)
b,u [k], Σ̃b,u[k]

)
with respect to η′

b,u ≜

[ϕb,u,0, ¹b,u,0, rb,u]T is given by [72]

∂

∂[η′
b,u]i

lnφ
(
yb,u[k]; µ̃

(Çb,u)
b,u [k], Σ̃b,u[k]

)

= −tr
(
Σ̃−1

b,u[k]
∂Σ̃b,u[k]

∂[η′
b,u]i

)

+
(
z̃

(Çb,u)
b,u [k]

) 
Σ̃−1

b,u[k]
∂Σ̃b,u[k]

∂[η′
b,u]i

Σ̃−1
b,u[k]z̃

(Çb,u)
b,u [k]

+ 2ℜ
{(

z̃
(Çb,u)
b,u [k]

) 
Σ̃−1

b,u[k]
∂µ̃

(Çb,u)
b,u [k]

∂[η′
b,u]i

}
(54)

with z̃
(Çb,u)
b,u [k] ≜ yb,u[k]− µ̃

(Çb,u)
b,u [k]. In (54), the derivatives

of µ̃
(Çb,u)
b,u [k] and Σ̃b,u[k] are obtained as

∂µ̃
(1)
b,u[k]

∂[η′
b,u]i

=
∂µ

(1)
b,u[k]

∂[η′
b,u]i

− ¯̄Σ′
b,u[k]

∂µ̄
(1)
b,u[k − 1]

∂[η′
b,u]i

,∀i ∈ {1, 2, 3}

∂µ̃
(0)
b,u[k]

∂[η′
b,u]i

= 0, ∀i ∈ {1, 2, 3}

∂Σ̃b,u[k]

∂[η′
b,u]i

=






0 if i ∈ {1, 2}
´N

rb,u

(
PnI − Σ̃b,u[k]

)
if i = 3

with

∂µ
(1)
b,u[k]

∂[η′
b,u]i

=






−ı
∂GT

Bk(ϕb,u,0, ¹b,u,0)

∂[η′
b,u]i

» µ
(1)
b,u[k] if i ∈ {1, 2}

−
(

´L

2rb,u

+ ı2Ãk∆f
1

c

)
µ

(1)
b,u[k] if i = 3

where GB is defined in (50c). The derivative
∂µ̄

(1)
b,u

[k−1]

∂[η′

b,u
]i

can be

obtained by concatenating
∂µ

(1)
b,u

[k′]

∂[η′

b,u
]i

for k′ = k−1, k−2, . . . , 1.

The matrix ¯̄Σ′
b,u[k] is defined in the same way with Σ̄′

b,u[k]
in (45) as

¯̄Σ′
b,u[k] ≜

{
0 if k = 1
¯̄Σ

(1,2)
b,u [k]

( ¯̄Σ
(2,2)
b,u [k]

)−1
if k > 1

(55)

where the submatrices ¯̄Σ
(1,2)
b,u [k] and ¯̄Σ

(2,2)
b,u [k] are defined

in the same way with Σ̄
(1,2)
b,u [k] and Σ̄

(2,2)
b,u [k], respectively,

in Sec. III-A. Meanwhile, in (53c), ∂
∂rb,u

ln pL(rb,u) and
∂

∂rb,u
ln

(
1 − pL(rb,u)

)
can be derived for given LOS prob-

ability models depending on the considered scenario, e.g.,

Indoor-Open office and UMi-Street canyon in 3GPP.

Next,
∂ϕb,u,0

∂pu
and

∂¹b,u,0

∂pu
in (51) can be found in (41a) and

(41b), respectively. The derivative
∂rb,u

∂pu
is given by

∂rb,u

∂pu

=
1

rb,u

(pu − qb) . (56)

From (53a), (53b), (53c), (41a), (41b), and (56), the elements

of ∇ℓu in (51) can be obtained.

B. Hessian Matrix ∇2ℓu

Using (51), the Hessian matrix can be obtained as

∇2ℓu =
∂

∂pu

(
∇ℓu

)T
. (57)

We only present the element on the first column and first row

of the matrix ∇2ℓu, i.e., ∂2ℓu

∂px
u

∂px
u

, for brevity. From the right-

hand side of (51), the second derivative of ℓu with respect to

px
u can be expressed by the chain rule as

∂2ℓu

∂px
u∂px

u

=

NB∑

b=1

∂2ℓu

∂px
u∂ϕb,u,0

∂ϕb,u,0

∂px
u

+

NB∑

b=1

∂ℓu

∂ϕb,u,0

∂2ϕb,u,0

∂px
u∂px

u

+

NB∑

b=1

∂2ℓu

∂px
u∂¹b,u,0

∂¹b,u,0

∂px
u

+

NB∑

b=1

∂ℓu

∂¹b,u,0

∂2¹b,u,0

∂px
u∂px

u

+

NB∑

b=1

∂2ℓu

∂px
u∂rb,u

∂rb,u

∂px
u

+

NB∑

b=1

∂ℓu

∂rb,u

∂2rb,u

∂px
u∂px

u

. (58)

Other elements of ∇2ℓu can also be expressed similarly.

In (58), ∂2ℓu

∂px
u∂ϕb,u,0

can be derived using (53a) as

∂2ℓu

∂px
u∂ϕb,u,0

= 2À
(L)
b,uℜ

{ K∑

k=1

(∂ϕb,u,0

∂px
u

∂Éϕ,k

∂ϕb,u,0

+
∂¹b,u,0

∂px
u

∂Éϕ,k

∂¹b,u,0
+

∂rb,u

∂px
u

∂Éϕ,k

∂rb,u

)}
(59)

where Éϕ,k ≜
(
z̃

(1)
b,u[k]

) 
Σ̃−1

b,u[k]
∂µ̃

(1)
b,u

[k]

∂ϕb,u,0
. The derivatives of

Éϕ,k with respect to ϕb,u,0, ¹b,u,0, and rb,u can be easily

obtained by using the intermediate terms given in the pre-

vious subsection. Similarly, ∂2ℓu

∂px
u∂¹b,u,0

in (58) can be obtained
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using (53b). The term ∂2ℓu

∂px
u

∂rb,u
in (58) is given by the deriva-

tive of (53c) with respect to px
u, where the second derivative

of the log of the Gaussian PDF is needed as

∂2

∂px
u∂rb,u

lnφ
(
yb,u[k]; µ̃

(Çb,u)
b,u [k], Σ̃b,u[k]

)

=
∂ϕb,u,0

∂px
u

·ϕ,k +
∂¹b,u,0

∂px
u

·¹,k +
∂rb,u

∂px
u

·r,k (60)

where

·ϕ,k = −2ℜ
{(

z̃
(Çb,u)
b,u [k]

) 
Xk

∂µ̃
(Çb,u)
b,u [k]

∂ϕb,u,0

+
(∂µ̃

(Çb,u)
b,u [k]

∂ϕb,u,0

) 
Σ̃−1

b,u[k]
∂µ̃

(Çb,u)
b,u [k]

∂rb,u

−
(
z̃

(Çb,u)
b,u [k]

) 
Σ̃−1

b,u[k]
∂2µ̃

(Çb,u)
b,u [k]

∂ϕb,u,0∂rb,u

}

·¹,k = −2ℜ
{(

z̃
(Çb,u)
b,u [k]

) 
Xk

∂µ̃
(Çb,u)
b,u [k]

∂¹b,u,0

+
(∂µ̃

(Çb,u)
b,u [k]

∂¹b,u,0

) 
Σ̃−1

b,u[k]
∂µ̃

(Çb,u)
b,u [k]

∂rb,u

−
(
z̃

(Çb,u)
b,u [k]

) 
Σ̃−1

b,u[k]
∂2µ̃

(Çb,u)
b,u [k]

∂¹b,u,0∂rb,u

}

·r,k = tr
( ´N

r2
b,u

(
(´N − 1)PnΣ̃−1

b,u[k] + ´NP 2
n Σ̃−2

b,u[k]− I
))

− 2ℜ
{(

z̃
(Çb,u)
b,u [k]

) 
Xk

∂µ̃
(Çb,u)
b,u [k]

∂rb,u

}

− ´N(1+´N)

r2
b,u

(
z̃

(Çb,u)
b,u [k]

) (
Σ̃−1

b,u[k]−PnΣ̃−2
b,u[k]

)
z̃

(Çb,u)
b,u [k]

+ 2ℜ
{
−

(∂µ̃
(Çb,u)
b,u [k]

∂rb,u

) 
Σ̃−1

b,u[k]
∂µ̃

(Çb,u)
b,u [k]

∂rb,u

+
(
z̃

(Çb,u)
b,u [k]

) (−Xk

∂µ̃
(Çb,u)
b,u [k]

∂rb,u

+Σ̃−1
b,u[k]

∂2µ̃
(Çb,u)
b,u [k]

∂rb,u∂rb,u

)}

where Xk ≜ Σ̃−1
b,u[k]

∂Σ̃b,u[k]
∂rb,u

Σ̃−1
b,u[k]. The second derivatives

of ln pL(rb,u) and ln(1−pL(rb,u)) can also be easily obtained.

The remaining terms in (58) can be obtained using (41a),

(41b), and (56).
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