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Abstract—Distributed filtering is crucial in many applications
such as localization, radar, autonomy, and environmental mon-
itoring. The aim of distributed filtering is to infer time-varying
unknown states using data obtained via sensing and commu-
nication in a network. This paper analyzes continuous-time
distributed filtering with sensing and communication constraints.
In particular, the paper considers a building-block system of
two nodes, where each node is tasked with inferring a time-
varying unknown state. At each time, the two nodes obtain noisy
observations of the unknown states via sensing and perform com-
munication via a Gaussian feedback channel. The distributed
filter of the unknown state is computed based on both the sensor
observations and the received messages. We analyze the asymp-
totic performance of the distributed filter by deriving a necessary
and sufficient condition of the sensing and communication capa-
bilities under which the mean-square error of the distributed
filter is bounded over time. Numerical results are presented to
validate the derived necessary and sufficient condition.

Index Terms—Distributed inference, Kalman–Bucy filter, chan-
nel capacity, stochastic differential equation.

I. INTRODUCTION

I
NFERENCE of time-varying states, also referred to as

filtering [1], [2], [3], is critical in various applications

including localization and tracking [4], [5], [6], [7], [8], [9],

autonomy [10], [11], [12], [13], Internet-of-Things [14], [15],

[16], [17], and beyond 5G networks [18], [19], [20], [21].

In several network applications, it is preferable to perform

filtering in a distributed manner. The accuracy of distributed

filtering is affected by the sensing and communication capa-

bilities of nodes in the network. A deep understanding of such

effects is important for the efficient management of wireless

resources in the network [22], [23], [24], [25].
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Theoretical studies [26], [27], [28], [29], [30], [31], [32],

[33], [34], [35], [36], [37], [38] and efficient algorithms [39],

[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],

[51] for filtering have been studied in the literature. In partic-

ular, the boundedness of inference error over time is studied

in [36], [37], [38]. The Kalman–Bucy filter [52], [53], [54] is

investigated in [26] from an information-theoretical perspec-

tive. Specifically, a fundamental relationship between Shannon

information and Fisher information is derived therein, and an

analogy of the filter to a statistical mechanical system is estab-

lished. Those results have been extended for nonlinear filtering

in [27]. Distributed filtering is closely related to distributed

control problems [55], [56], [57], [58], [59], [60], [61], [62],

[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73],

[74], [75], [76], [77], where control signals for stabilizing a

dynamical system are generated in real time based on data

received via a channel with communication constraints. In par-

ticular, the notion of anytime capacity is introduced in [60] for

characterizing the channel quality in distributed control prob-

lems. This notion is then applied for investigating distributed

filtering problems [78], [79], [80].

This paper analyzes distributed filtering in continuous-time

scenarios. Specifically, a building-block system with two nodes

is considered where each node is tasked with inferring a time-

varying unknown state. At every time, each node obtains noisy

sensor observations of both unknown states. Moreover, one

node transmits encoded messages containing information of

the unknown state that the other node aims to infer via a

Gaussian feedback channel. The node on the receiving end

of the channel performs filtering to infer its unknown state

using both its sensor observations and its received messages.

This paper aims to establish conditions under which the mean-

square error (MSE) of the distributed filter is bounded over

time. Key contributions of this paper can be summarized as

the following; specifically, we

• derive a necessary and sufficient condition on sensing and

communication capabilities under which the MSE of the

distributed filter is bounded over time;

• establish an analogy between distributed filtering and

statistical mechanical systems, as well as derive the

evolution of energy and entropy of the system; and

• characterize the relationship between the accuracy of

distributed filtering and the capabilities of sensing and

communication.

The remaining sections are organized as follows. Section II

describes the system model. Section III derives conditions for
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TABLE I
NOTATION AND DEFINITIONS OF IMPORTANT QUANTITIES

the boundedness of MSE in distributed filtering. Section IV

establishes an analogy of the distributed filtering problem to

a statistical mechanics system. Section V provides numerical

results. Section VI concludes the paper.

Notation: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its

realization are denoted by x and x; a random vector and its

realization are denoted by x and x, respectively. The m-by-n
matrix of zeros is denoted by 0m×n; when n = 1, the m-

dimensional vector of zeros is simply denoted by 0m. The

subscript is removed if the dimension of the matrix is clear

from the context. The entry on the ith row and jth column

of a matrix A is denoted by [A]i,j . The transpose, trace,

and the column space of A are denoted by AT, tr{A}, and

C(A), respectively. Notation diag
{

A1,A2

}

represents a block

diagonal matrix with A1 and A2 being its diagonal blocks

from top left to bottom right. All random quantities in this

paper are defined on a common probability space (Ω,F ,P),
unless otherwise mentioned, where Ω is a non-empty set, F

is a σ-algebra over Ω, and P is a probability measure on

the measurable space (Ω,F ). The probability of A ∈ F is

denoted by P{A}. Notation σ(·) represents the σ-algebra gen-

erated by the random quantities (e.g., a random vector or a

collection of random vectors) in the parentheses. The distri-

bution of random vector x is denoted by Px. The Gaussian

distribution with mean vector µ and covariance matrix Σ is

denoted by N (µ,Σ). The expectation and covariance matrix

of a random vector x are denoted by E{x} and V{x}, respec-

tively. The cross-covariance matrix of random vectors x and

y is denoted by V{x, y} := E
{

(x − E{x})(y − E{y})T
}

.

The probability density function of x and the conditional

probability density function of x given y are denoted by

fx(x) and fx|y(x|y), respectively. The conditional expecta-

tion of x given F1 ⊆ F is denoted by E{x |F1}. If F1 is

the sub-σ-algebra generated by a collection of random vec-

tors {xα}α∈A, such conditional expectation is also denoted

by E
{

x

∣

∣ {xα}α∈A

}

. The conditional cross-covariance matrix

of random vectors x and y given F1 ⊆ F is denoted by

V
{

x, y
∣

∣F1

}

:= E
{

(x − E{x |F1})(y − E{y |F1})
T
∣

∣F1

}

,

and V{x |F1} is a short notation for V
{

x, x
∣

∣F1

}

. The rela-

tionship that sub-σ-algebras F1 and F2 are independent

conditioned on F3 is denoted by F1 ⊥⊥ F2 |F3. If Fi is

the sub-σ-algebra generated by a collection of random vectors

{xα}α∈Ai
for i = 1, 2, 3, such conditional independence is

also denoted by {xα}α∈A1
⊥⊥ {xα}α∈A2

| {xα}α∈A3
. If F3 is

the trivial σ-algebra {∅, Ω}, such conditional independence is

denoted by F1 ⊥⊥ F2. Given a stochastic process {xt}t�0, the

set {xτ}τ∈[s,t] is denoted by xs:t for any 0 � s � t. Notation

and definitions of important quantities used in the paper are

summarized in Table I.

II. SYSTEM MODEL

Consider a system consisting of two nodes, where each

node is associated with a time-varying unknown state. Each

node has a sensor that generates a noisy observation of both

unknown states at every time. The two nodes also communi-

cate with each other: node 2 transmits encoded messages to

node 1 via a noisy channel and receives noiseless feedback

from node 1 (see Fig. 1). The aim of node 1 is to infer its

unknown state using observations obtained by its own sensor

as well as the messages received from node 2.
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Fig. 1. Distributed filtering in a two-node system: each node i ∈ {1, 2}

obtains a sensor observation z
(i)
t

of the unknown states associated with the
two nodes at time t.

The state and observation of node i at time t � 0 are

denoted by x
(i)
t and z

(i)
t , respectively, for i = 1, 2. In particu-

lar, the state process
{

x
(i)
t

}

t�0
is described by the following

stochastic differential equation (SDE) [81], [82], [83]

dx
(i)
t = A(i)

x
(i)
t dt+B(i) dv

(i)
t ∀t ∈ [0,∞) (1)

where A(i) is a scalar and B(i) is a row vector. Both A(i)

and B(i) are deterministic quantities known to both nodes.

Process
{

v
(i)
t

}

t�0
is a Brownian motion and represents dis-

turbance to the state of node i. The initial states x
(1)
0 and x

(2)
0

are zero-mean Gaussian random variables. The observation

process
{

z
(i)
t

}

t�0
satisfies

dz
(i)
t = Γ (i)

[

x
(1)
t x

(2)
t

]T

dt+Ξ(i) dn
(i)
t ∀t ∈ [0,∞) (2)

where Γ (i) and Ξ(i) are deterministic matrices known to both

nodes. Process
{

n
(i)
t

}

t�0
is a Brownian motion and represents

noise in the sensor observations. At time 0, observation z
(i)
0 is

given by z
(i)
0 = G(i)

[

x
(1)
0 x

(2)
0

]T

+ζ(i) where G(i) is a deter-

ministic matrix known to both nodes, and ζ(i) is a zero-mean

Gaussian random vector with invertible covariance matrix. We

consider scenarios where B(i) is non-zero and Ξ(i)
(

Ξ(i)
)T

is invertible.

At each time t, node 2 transmits an encoded message

mt ∈ R to node 1 via a Gaussian feedback channel. The mes-

sage received by node 1 at time t is denoted by rt. In particular,

mt is generated by node 2 based on its sensor observations

z
(2)
0:t as well as node 1’s sensor observations z

(1)
0:t and received

messages r0:t up to time t. Consequently, mt can be writ-

ten as mt = µt

(

z
(1)
0:t , z

(2)
0:t , r0:t

)

, where the real function µt is

referred to as the encoding function at time t. A collection of

encoding functions µ0:T := {µt}t∈[0,T ] from time 0 to time

T is referred to as an encoding strategy of horizon T if the

following constraint on transmit power is satisfied

E

{

µt

(

z
(1)
0:t , z

(2)
0:t , r0:t

)2
}

� P ∀t ∈ [0, T ] (3)

where P is a constant representing the power constraint. The

set of encoding strategies of horizon T is denoted by MT .

The process of the received messages satisfies

drt = mt dt+ κ dwt r0 = 0 (4)

where {wt}t�0 is one-dimensional Brownian motion, which

represents additive Gaussian noise in the channel, and κ deter-

mines the power of noise. The capacity of this continuous-time

Gaussian channel is [84, Chapter 16]

C := P/
(

2κ2
)

. (5)

Node 1 aims to infer its unknown state in real time based

on its own sensor observations and the messages received

from node 2. Specifically, node 1 computes an estimator of

x
(1)
t at time t based on z

(1)
0:t and r0:t. This estimator is thus

σ
(

z
(1)
0:t , r0:t

)

-measurable. For an arbitrary encoding strategy

µ0:t employed by node 2, the minimum-mean-square-error

(MMSE) estimator x̂
(1)
t of x

(1)
t at node 1 is

x̂
(1)
t := E

{

x
(1)
t

∣

∣

∣
z
(1)
0:t , r0:t

}

.

This estimator is referred to as the distributed filter and its

MSE et(µ0:t) is given by

et
(

µ0:t

)

:= E

{(

x
(1)
t − E

{

x
(1)
t

∣

∣

∣
z
(1)
0:t , r0:t

})2}

.

The MSE et(µ0:t) is affected by the encoding strategy

employed by node 2. Define ĕT as the infimum of the MSE

for the distributed filter at time T over all encoding strategies

that satisfy the power constraints (3), i.e.,

ĕT := inf
µ0:T∈MT

eT
(

µ0:T

)

.

The next section studies conditions under which {ĕT }T�0 is

bounded.

III. BOUNDEDNESS OF MSE FOR DISTRIBUTED

FILTERING

The section presents a necessary and sufficient condition

for {ĕT }T�0 to be bounded. Before presenting this condition,

some definitions are introduced. First, given an n-by-n real

matrix F and a real matrix C with n columns, define the unob-

servable subspace for (C,F ) as the kernel of the observability

matrix O(C,F ) :=
[

CT FTCT . . . (F n−1)TCT
]T

. In

other words, this unobservable subspace is given by
{

x :
O(C,F )x = 0

}

. Second, define

A := diag
{

A(1), A(2)
}

(6a)

Γ :=
[

(

Γ (1)
)T (

Γ (2)
)T

]T

. (6b)

Third, define an encoding function µp
t at time t as

µp
t

(

z
(1)
0:t , z

(2)
0:t , r0:t

)

= αt

(

E

{

x
(1)
t

∣

∣

∣
z
(1)
0:t , z

(2)
0:t

}

− E

{

x
(1)
t

∣

∣

∣
z
(1)
0:t , r0:t

})

(7)

where αt > 0 is a scalar such that

E

{

µp
t

(

z
(1)
0:t , z

(2)
0:t , r0:t

)2
}

= P .
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The intuition for this encoding function is that node 2 transmits

to node 1 the knowledge of x
(1)
t that is available to node 2 but

not available to node 1. Detailed interpretation of this encoding

function can be found in [85].

The necessary and sufficient condition is presented in the

next proposition.

Proposition 1: Set {ĕT }T�0 is bounded if and only if at

least one of the following two conditions holds:

1) Vector [1 0]T is orthogonal to the unobservable sub-

space of (Γ (1),A), or A(1) < 0.

2) Vector [1 0]T is orthogonal to the unobservable sub-

space of (Γ ,A) and C > A(1), where C is the capacity

of the channel given by (5).

If Condition 1 holds, then
{

eT
(

µ0:T

)}

T�0
is bounded for

arbitrary encoding strategies µ0:T . If Condition 2 holds, then
{

eT
(

µp
0:T

)}

T�0
is bounded for the encoding strategy µp

0:T .

Proof: See Appendix A. �

Proposition 1 shows that the MSE of a distributed filter is

affected by the sensing and communication capabilities of the

system as well as the variation rate of node 1’s unknown state

indicated by A(1). In particular, if Condition 1 of Proposition 1

holds, then node 1 can construct an estimator of x
(1)
t with

bounded MSE using only its own observations z
(1)
0:t and not

the received messages. If Condition 1 does not hold, then

node 1 also needs to use messages received from node 2 to

ensure the boundedness of the MSE, and the channel capac-

ity is required to be larger than the variation rate of node 1’s

unknown state. One method to meet this capacity requirement

is to allocate more communication resources to node 2 and

increase its transmit power.

Remark 1: Condition 2 is analogous to the data rate theo-

rem for control under constraint problems, which states that

a linear system can be stabilized based on messages received

via a channel if the data rate or channel capacity is above

a threshold determined by the system dynamics [59], [60],

[61], [62], [63], [64], [70], [72], [73]. Different from existing

works where the receiver does not perform sensing, node 1

in this paper combines both the received messages with its

own sensing observations for computing the distributed filter.

Under this scenario, a data rate theorem in terms of the chan-

nel’s Shannon capacity is established in Proposition 1. Note

that another information-theoretical notion for studying control

under communication constraints problems and sequential rate

distortion problems is the directed mutual information [86],

[87], [88], [89], [90] introduced in [91].

If Condition 2 holds, then node 2 can employ the encoding

strategy given by (7) and the MSE of the distributed filter is

guaranteed to be bounded over time. The following corollary

shows a favorable property of this encoding strategy.

Corollary 1: If there exists an encoding strategy µ0:T for

every T � 0 such that
{

eT
(

µ0:T

)}

T�0
is bounded, then

{

eT
(

µp
0:T

)}

T�0
is also bounded.

Proof: If
{

eT
(

µ0:T

)}

T�0
is bounded, then {ĕT }T�0 is also

bounded since ĕT � eT (µ0:T ) by definition. Therefore, at least

one of the two conditions in Proposition 1 holds, and thus
{

eT
(

µp
0:T

)}

T�0
is bounded. �

Corollary 1 shows that if the aim of the encoding strat-

egy is to ensure the MSE of the distributed filter is bounded,

then the proposed encoding strategy can be employed without

considering other strategies, including nonlinear ones. In

particular, if the MSE of the distributed filter is unbounded

when the proposed encoding strategy is employed, then such

MSE would also be unbounded for any other encoding

strategy.

IV. ANALOGY TO A STATISTICAL MECHANICAL SYSTEM

This section introduces a stochastic process {st}t�0 associ-

ated with the distributed filtering problem and establishes an

analogy of this process to a statistical mechanical system. To

this end, define xt, yt, and x̂t as

xt :=
[

x
(1)
t x

(2)
t

]T

(8a)

yt := E

{

xt

∣

∣

∣
z
(1)
0:t , z

(2)
0:t

}

(8b)

x̂t := E

{

xt

∣

∣

∣
z
(1)
0:t , r0:t

}

. (8c)

In other words, xt represents the joint unknown state of both

nodes. Random vectors yt and x̂t are both estimators of xt. In

particular, yt is the MMSE estimator of xt based on observa-

tions z
(1)
0:t and z

(2)
0:t . In other words, yt is the centralized MMSE

estimator of xt based on sensor observations of both nodes.

On the other hand, x̂t represents the distributed MMSE estima-

tor of xt based on sensor observations and received messages

obtained by node 1. Define st as

st :=
[

x
T
t y

T
t x̂

T
t

]T

.

An analogy of {st}t�0 to a statistical mechanical system is

established in scenarios where the following conditions hold.

First, the encoding strategy employed by node 2 belongs to a

class of linear encoding strategies with the encoding function

µt at time t given by

µt

(

z
(1)
0:t , z

(2)
0:t , r0:t

)

= βT
t yt + gt

(

z
(1)
0:t , r0:t

)

(9)

where βt is a deterministic vector and gt is an affine function.

In particular, βt and gt are design parameters for the encoding

strategy. In fact, the encoding strategy in (7) belongs to this

class of strategies and is obtained by setting βt = [αt 0]T

and gt(z
(1)
0:t , r0:t) = −αtE

{

x
(1)
t

∣

∣ z
(1)
0:t , r0:t

}

. Second, A(i) is

negative for i = 1, 2. Third, βt and V
{

xt

∣

∣ z
(1)
0:t , r0:t

}

con-

verge as t approaches infinity. In particular, the second and

third conditions ensure that V{st} converges as t approaches

infinity. Note that xt, z
(1)
0:t , and r0:t are jointly Gaussian if

linear encoding strategies are employed, and thus instantia-

tions of these random quantities do not affect the value of

V
{

xt

∣

∣ z
(1)
0:t , r0:t

}

.

Consider a statistical mechanical system Πs associated with

the process {st}t�0. A microstate of the statistical mechanical

system is represented by a vector s ∈ R
3n, where n is the

dimension of xt. The Hamiltonian Hs(s) of s is defined as

Hs(s) :=
1

2
sTΣ−1

s
s

where Σs := limt→∞ V{st}. Macroscopic properties of Πs

at time t, including average energy Es

t , entropy Ss

t , and free

energy F s

t , are defined as

Es

t := E
{

Hs(st)
}

(10a)
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Fig. 2. Decomposition of the statistical mechanical system Π
s into three subsystems associated with the conditional state {x̃t}t�0, the conditional estimator

{ỹ
t
}
t�0, and the distributed estimator {x̂t}t�0, respectively. Arrows in the figure indicate the energy flows among the three subsystems and a heat bath.

Ss

t := −D
(

Pst

∥

∥λL

)

(10b)

F s

t := Es

t − Ss

t (10c)

where D
(

Pd

∥

∥λL

)

represents the relative entropy, namely the

Kullback-Leibler divergence, of the probability distribution Pd

with respect to the Lebesgue measure λL. The macroscopic

properties defined in (10) depend on the distribution of st,

which evolves according to the Fokker-Planck equation (i.e.,

Kolmogorov forward equation) since {st}t�0 is a diffusion

Markov process. The evolution of the distribution of st corre-

sponds to the interaction between Πs and a unit-temperature

heat bath, which drives the process {st}t�0 to its invariant

distribution N (0,Σs). The free energy of Πs can be shown to

be non-increasing with time and achieve minimal value when

{st}t�0 converges to its invariant distribution [26], [27].

The statistical mechanical system Πs is decomposed into

three physically distinct subsystems. To this end, define “con-

ditional state” x̃t and “conditional estimator” ỹt as

x̃t := xt − yt (11a)

ỹt := yt − x̂t . (11b)

In particular, −x̃t is the estimation error of the centralized

MMSE estimator of xt; random vector −ỹt is the addi-

tional estimation error of the distributed filter of xt compared

to the centralized MMSE estimator. The next proposition

shows properties related to x̃t, ỹt, and x̂t that enable the

decomposition of Πs.

Proposition 2: The following statements hold:

1) Processes {x̃t}t�0, {ỹt}t�0, and {x̂t}t�0 are all

Markovian.

2) (Energy is additive): Es

t = E x̃

t +E ỹ

t +E x̂

t , with E x̃

t , E ỹ

t ,

and E x̂

t defined as

E x̃

t :=
1

2
E

{

x̃
T
t Σ

−1
x̃

x̃t

}

(12a)

E ỹ

t :=
1

2
E

{

ỹ
T
t Σ

−1
ỹ

ỹt

}

(12b)

E x̂

t :=
1

2
E

{

x̂
T
t Σ

−1
x̂

x̂t

}

. (12c)

Here Σx̃ := limt→∞ V{x̃t}, Σỹ := limt→∞ V{ỹt}, and

Σx̂ := limt→∞ V{x̂t}.

3) (Entropy is additive): Ss

t = S x̃

t + S ỹ

t + S x̂

t , with S x̃

t , S ỹ

t ,

and S x̂

t defined as

S x̃

t := −D
(

Px̃t

∥

∥λL

)

(13a)

S ỹ

t := −D
(

Pỹt

∥

∥λL

)

(13b)

S x̂

t := −D
(

Px̂t

∥

∥λL

)

. (13c)

Proof: See Appendix B. �

Proposition 2 shows that the statistical mechanical system

Πs can be decomposed into three subsystems Πx̃, Πỹ, and Πx̂,

which are associated with the conditional state {x̃t}t�0, the

conditional estimator {ỹt}t�0, and the distributed estimator

{x̂t}t�0, respectively (see Fig. 2). Quantities E x̃

t , E ỹ

t , and E x̂

t

given in (12) represent the average energy of Πx̃, Πỹ, and Πx̂,

respectively, whereas S x̃

t , S ỹ

t , and S x̂

t given in (13c) represent

the entropy of Πx̃, Πỹ, and Πx̂, respectively. The energy and

entropy of the three subsystems vary with time as they inter-

act with each other and with the heat bath. In particular, the

variation rates of energy associated with the three subsystems

are given by (82) in Appendix C.

Figure 2 shows the energy flows among the three subsys-

tems and the heat bath. The rates of these energy flows depend

on the evolution of the distributions of x̃t, ỹt, and x̂t. These

rates are evaluated as follows. First, consider the rate d
dtE

B→x̃

t

of the energy flow from the heat bath to the conditional state.

The conditional state absorbs energy from the heat bath and

supplies energy to the conditional estimator. If the conditional

state is disconnected with the conditional estimator at time

t and only interacts with the heat bath, then d
dtE

B→x̃

t would

equal the variation rate d
dtE

x̃

t of the average energy of the con-

ditional state. Meanwhile, such disconnection corresponds to

the scenario where observations become unavailable at time

t for the centralized MMSE estimator yt of state xt. Since

x̃t = xt − yt, if the observations become unavailable, then

the distribution of the conditional state x̃t would evolve in the

same manner as xt. Consequently, d
dtE

B→x̃

t can be obtained

by the following two methods. The first method is setting

Γ = 0 in (82a) to remove the effect of observations. The

second method evaluates d
dtE

B→x̃

t as

d

dt
EB→x̃

t =
1

2
tr
{ d

dt
V{xt}

∣

∣

∣

V{xt}=V{x̃t}
Σ−1

x̃

}

. (14)

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2023 at 04:05:44 UTC from IEEE Xplore.  Restrictions apply. 



672 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Both methods lead to the same result. The rate d
dtE

x̃→ỹ

t of

the energy flow from the conditional state to the conditional

estimator is thus

d

dt
E x̃→ỹ

t =
d

dt
EB→x̃

t −
d

dt
E x̃

t . (15)

The rate d
dtE

B→ỹ

t of the energy flow from the heat bath

to the conditional estimator is computed as follows. If the

conditional estimator is disconnected with the distributed esti-

mator at time t, then the sum of d
dtE

B→ỹ

t and d
dtE

x̃→ỹ

t would

equal the variation rate d
dtE

ỹ

t of the average energy of the con-

ditional estimator. Meanwhile, such disconnection corresponds

to the scenario where observations and received messages

become unavailable to the distributed estimator at time t, and

thus the distribution of the conditional estimator ỹt would

evolve in the same manner as yt. As a result,

d

dt
EB→ỹ

t =
1

2
tr
{ d

dt
V{yt}

∣

∣

∣

V{yt}=V{ỹt}
Σ−1

ỹ

}

−
d

dt
E x̃→ỹ

t .

(16)

The rates of energy flows from the conditional estimator to

the distributed estimator d
dtE

ỹ→x̂

t and from the distributed

estimator to the heat bath d
dtE

x̂→B
t are given by

d

dt
E ỹ→x̂

t =
d

dt
EB→ỹ

t +
d

dt
E x̃→ỹ

t −
d

dt
E ỹ

t (17)

d

dt
E x̂→B

t =
d

dt
E ỹ→x̂

t −
d

dt
E x̂

t . (18)

Derivation of the energy flow rates in (14)–(18) is presented

in Appendix C. As time t approaches infinity, the distribu-

tions of x̃t, ỹt, and x̂t converge to N (0,Σx̃), N (0,Σỹ),
and N (0,Σx̂), respectively. Moreover, the average energy

of Πx̃, Πỹ, and Πx̂ also converge to their stationary values,

respectively. This can be seen from the following equations

lim
t→∞

( d

dt
EB→x̃

t −
d

dt
E x̃→ỹ

t

)

= 0

lim
t→∞

( d

dt
E x̃→ỹ

t +
d

dt
EB→ỹ

t −
d

dt
E ỹ→x̂

t

)

= 0

lim
t→∞

( d

dt
E ỹ→x̂

t −
d

dt
E x̂→B

t

)

= 0 .

The linear assumption (9) on encoding functions simplifies

the analogy of the distributed filtering problem to the statistical

mechanical system. In particular, each subsystem of the statis-

tical mechanical system is associated at time t with a random

vector related to the conditional expectation of xt. This is pos-

sible because processes {xt}t�0,
{

z
(1)
t

}

t�0
,
{

z
(2)
t

}

t�0
, and

{rt}t�0 are jointly Gaussian. Consequently, the conditional

expectations become sufficient statistics for xt. For example,

x̂t defined in (8c) is a sufficient statistic of z
(1)
0:t and r0:t for xt.

As a result, x̂t retains all the information about xt contained in

z
(1)
0:t and r0:t. However, this would not hold if nonlinear encod-

ing functions are employed and thus {xt}t�0,
{

z
(1)
t

}

t�0
, and

{rt}t�0 are longer jointly Gaussian. As a result, the condi-

tional expectation x̂t alone cannot be used for establishing the

analogy as it does not capture all the information of xt. Instead,

the conditional probability distribution of xt given
{

z
(1)
t

}

t�0

and {rt}t�0 is needed in this case. Note that x̂t is only the first

Fig. 3. MSE of the (d) distributed filter under different channel capacities
when node 2 employs the proposed encoding strategy, and (c) the centralized
MMSE estimator.

moment corresponding to such a conditional probability distri-

bution and thus contains less information than this distribution.

In fact, establishing analogies of nonlinear filtering problems

to statistical mechanical systems is more complicated than that

of linear filtering problems. For example, [27] derives an anal-

ogy of a centralized nonlinear filtering problem to a statistical

mechanical system consisting of multiple subsystems. There,

each statistical mechanical subsystem is associated with a ran-

dom probability measure, which is an element in the space of

probability measures. By contrast, in the distributed filtering

problem in this paper with linear encoding functions, each

subsystem is associated with a random vector, which is an

element in a Euclidean space.

V. NUMERICAL RESULTS

This section presents a numerical example where the dimen-

sion of v
(i)
t is one, and thus B(i) becomes a scalar for

i ∈ {1, 2}. Deterministic quantities in (1) and (2) are set to

A(1) = 0.05 B(1) = 2

A(2) = −0.05 B(2) = 1

Γ (1) = [0 1] Ξ(1) = 2

Γ (2) = [1 −1] Ξ(2) = 1 .

At time 0, V
{

x
(1)
0

}

= V
{

x
(2)
0

}

= 1.2, G(i) is set to G(i) =

0.1Γ (i), and V
{

ζ(i)
}

= Ξ(i) for i = 1, 2. It can be seen

that (Γ ,A) is observable, where we recall that Γ and A

are defined in (6). However, [1 0]T is not orthogonal to the

unobservable subspace of
(

Γ (1),A
)

, which is C
([

1 0
]T)

. As

a result, Condition 1 of Proposition 1 does not hold. According

to this proposition, when the proposed encoding strategy is

employed, the MSE of the distributed filter is bounded if and

only if Condition 2 holds, which translates to C > A(1).

This section shows the accuracy of the distributed filter when

C is chosen from the set
{

0.99A(1), A(1), 1.02A(1), 20A(1)
}

nats/s. Note that A(1) is the threshold of the channel capacity

that determines whether the MSE of the distributed filter is

bounded or not, whereas 0.99A(1) and 1.02A(1) are values

close to this threshold.
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Figure 3 shows the MSE of the distributed filter as a

function of time t for different channel capacities when the

proposed encoding strategy is employed. The MSE of the

centralized MMSE estimator represented by curve (c) is also

shown for comparison. Such an MSE converges after some

time. The convergence of the MSE for the distributed fil-

ter depends on the channel capacity. Specifically, such MSE

increases with time when C = 0.99A(1) or C = A(1). By

contrast, the MSE of the distributed filter converges when

C = 1.02A(1) or C = 20A(1), and the MSE is signifi-

cantly smaller in the latter case when t is large. This example

shows that higher channel capacity improves the performance

of distributed filtering, which supports Proposition 1.

VI. CONCLUSION

This paper analyzed continuous-time distributed filtering

with sensing and communication constraints. In particular, a

building-block system with two nodes has been considered,

where each node is tasked to infer a time-varying unknown

state. In particular, node 2 transmits encoded messages con-

taining information of the unknown state that node 1 attempts

to infer via a Gaussian feedback channel. The paper derived a

necessary and sufficient condition on the sensing and commu-

nication capabilities of the nodes under which the MSE of the

distributed filter is bounded over time. Specifically, the con-

dition indicates that if node 1 needs to rely on the received

messages to achieve bounded MSE, then the capacity of the

channel from node 2 to node 1 must be larger than a thresh-

old determined by the dynamic model of node 1’s unknown

state. Moreover, the paper established an analogy between

the distributed filtering problem and a statistical mechanical

system. The paper shows the effects of sensing and commu-

nication capabilities on the accuracy of distributed filtering

and provides insights for efficient allocation of sensing and

communication resources in networked systems.

APPENDIX A

PROOF OF PROPOSITION 1

This section first introduces a lemma and a few definitions

used for proving Proposition 1. Then, Proposition 1 is proved.

A. Lemma and Definitions Used for Proving Proposition 1

A lemma used in the proof is presented as follows. Consider

Gaussian processes {θt}t�0 and {ξt}t�0 described by the

following SDE

dθt = Aθt dt+B dνt

dξt = Gθt dt+L dωt

where A, B, G, and L are deterministic matrices such that

both BBT and LLT are invertible; θ0 and ξ0 are jointly

Gaussian; {νt}t�0 and {ωt}t�0 are Brownian motions such

that θ0, ξ0, {νt}t�0, and {ωt}t�0 are independent. The

following lemma shows the relationship between the bound-

edness of the inference error for {θt}t�0 and unobservable

subspaces.

Lemma 1: For any vector h orthogonal to the unobservable

space of (G,A), the set
{

hT
V{θt | ξ0:t}h

}

t�0
is bounded.

Proof: See [92, Appendix A.3.1]. �

Next, some definitions are introduced. Recall the concate-

nated state xt and its estimator yt defined in (8a) and (8b),

respectively. Define the error covariance matrix of yt as

Ec
t := V

{

xt − yt

}

. (19)

Using Kalman–Bucy filtering results [84], {yt}t�0 can be

shown to satisfy

dyt =
(

A−Ec
tΓ

T
(

ΞΞT
)−1

Γ
)

yt dt

+ Ec
tΓ

T
(

ΞΞT
)−1

dzt (20)

where

Ξ := diag
{

Ξ(1), Ξ(2)
}

(21a)

zt :=
[

(

z
(1)
t

)T (

z
(2)
t

)T
]T

. (21b)

Process {yt}t�0 can be represented in terms of an inno-

vation process. To this end, define processes
{

η̃
(i)
t

}

t�0
and

{

η
(i)
t

}

t�0
for i = 1, 2 as

dη̃
(i)
t = dz

(i)
t − Γ (i)

yt dt η̃
(i)
0 = z

(i)
0 (22a)

dη
(i)
t =

(

Ξ(i)
(

Ξ(i)
)T

)−1/2

dη̃
(i)
t η

(i)
0 = z

(i)
0 . (22b)

Moreover, define

ηt :=
[

(

η
(1)
t

)T (

η
(2)
t

)T
]T

for t � 0 . (23)

The process {ηt}t�0 is referred to as a scaled innovation

process in this paper. Processes {ηt − η0}t�0 is a Brownian

motion [93, Ch. 4.4], and σ(η0:t) = σ
(

z
(1)
0:t , z

(2)
0:t

)

[83, Ch. 7.5].

Combining (20)–(23) gives

dyt = Ayt dt+Ec
tΓ

T
(

ΞΞT
)−1/2

dηt . (24)

Note that x̂t defined in (8c) is the MMSE estimator of yt

based on z
(1)
0:t and r0:t. In particular, it can be verified that

xt − yt ⊥⊥ z
(1)
0:t , r0:t. Consequently,

x̂t = E

{

yt

∣

∣

∣
z
(1)
0:t , r0:t

}

which shows that x̂t is the MMSE estimator of yt based on

z
(1)
0:t and r0:t. Define Qt as the error covariance matrix of x̂t

as an estimator of yt, i.e.,

Qt := V
{

yt − x̂t

}

. (25)

Matrix Qt is affected by the encoding strategy employed by

node 2. In particular, if the encoding strategy µp
0:T is employed

with µp
t given by (7), then Qt can be shown to satisfy the

following ordinary differential equation

dQt

dt
= AQt +QtA

T +Ec
tΓ

T
(

ΞΞT
)−1

ΓEc
t

−
P

κ2

1

[Qt]1,1
Qt diag{1, 0}Qt

− (Ec
t +Qt)

(

Γ (1)
)T

(

Ξ(1)
(

Ξ(1)
)T

)−1

Γ (1)

× (Ec
t +Qt) (26)
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for all t ∈ [0, T ].

Define y
(1)
t as

y
(1)
t := E

{

x
(1)
t

∣

∣

∣
z
(1)
0:t , z

(2)
0:t

}

for t ∈ [0, T ] . (27)

Note that x̂
(1)
t and y

(1)
t are first entries of x̂t and yt, respec-

tively. Moreover, define εt
(

µ0:t

)

as

εt
(

µ0:t

)

:= V

{

y
(1)
t − x̂

(1)
t

}

. (28)

The quantity εt
(

µ0:t

)

is related to et
(

µ0:t

)

as follows

et
(

µ0:t

)

=
[

Ec
t

]

1,1
+ εt

(

µ0:t

)

. (29)

B. Detailed Proof of Proposition 1

Proof (Sufficiency): Note that ĕT � eT (µ0:T ) �

V
{

x
(1)
T

∣

∣ z
(1)
0:T

}

� V
{

x
(1)
T

}

for an arbitrary encoding strategy

µ0:T . If [1 0]T is orthogonal to the unobservable subspace

of
(

Γ (1),A
)

, then Lemma 1 shows that
{

V
{

x
(1)
T

∣

∣ z
(1)
0:T

}}

T�0

is bounded. If A(1) < 0, then
{

V
{

x
(1)
T

}}

T�0
is bounded.

Therefore, Condition 1 in Proposition 1 ensures that
{

ĕT
}

T�0
is bounded. Moreover, for arbitrary encoding strategies µ0:T ,

it can be shown that
{

eT
(

µ0:T

)}

T�0
is also bounded.

Next, assume that Condition 2 holds instead. Consider an

encoding strategy µ̌0:T with encoding function µ̌t at time t
defined as

µ̌t

(

z
(1)
0:t , z

(2)
0:t , r0:t

)

:= α̌t

(

y
(1)
t − E

{

y
(1)
t

∣

∣

∣
r0:t

})

where α̌t is a scalar such that

V

{

α̌t

(

y
(1)
t − E

{

y
(1)
t

∣

∣

∣
r0:t

})}

= P . (30)

Note that µ̌0:T is a linear encoding strategy, i.e., µ̌t is a linear

function for all t ∈ [0, T ]. Let εT
(

µ̌0:T

)

represent the MMSE

for inferring y
(1)
T based on z

(1)
0:T and r0:T if strategy µ̌0:T is

employed. In addition, let ε̌T
(

µ̌0:T

)

represent the MMSE for

inferring y
(1)
T based only on r0:T if µ̌0:T is employed. Then

εT
(

µ̌0:T

)

� ε̌T
(

µ̌0:T

)

. Viewing ε̌T
(

µ̌0:T

)

as a function of

T , we can show that this function solves the following initial

value problem

d

dT
ε̌T

(

µ̌0:T

)

=
(

2A(1) −
P

κ2

)

ε̌T
(

µ̌0:T

)

+
[

1 0
]

Ec
TΓ

T
(

ΞΞT
)−1

ΓEc
T

[

1
0

]

(31a)

ε̌0
(

µ̌0

)

= V

{

y
(1)
0

∣

∣

∣
z
(1)
0

}

(31b)

where Ec
t , Γ , and Ξ are defined in (19), (6b), and (21a),

respectively. To derive (31), we observe that y
(1)
t defined

in (27) is the first component of yt defined in (8b). Combining

this with (24) gives

dy
(1)
t = A(1)

y
(1)
t dt+ [1 0] Ec

tΓ
T
(

ΞΞT
)−1/2

dηt (32)

where ηt is defined in (23). If the encoding strategy µ̌0:T is

employed, then the received messages r0:T satisfy

drt = α̌t

(

y
(1)
t − E

{

y
(1)
t

∣

∣

∣
r0:t

})

dt+ κ dwt . (33)

The relationship (31) is then obtained by combining (30), (32),

and (33). If Condition 2 of Proposition 1 holds, then the

solution ε̌T
(

µ̌0:T

)

to (31) is unique, and
{

ε̌T
(

µ̌0:T

)}

T�0
is

bounded. Moreover, according to Lemma 1,
{[

Ec
T

]

1,1

}

T�0
is

bounded. Note that

ĕT � eT
(

µ̌0:T

)

=
[

Ec
T

]

1,1
+ εT

(

µ̌0:T

)

�
[

Ec
T

]

1,1
+ ε̌T

(

µ̌0:T

)

(34)

where (29) is used for obtaining the equality in (34).

Since both
{[

Ec
T

]

1,1

}

T�0
and

{

ε̌T
(

µ̌0:T

)}

T�0
are bounded,

{

ĕT
}

T�0
is also bounded.

Next, it is proved that
{

eT
(

µp
0:T

)}

T�0
is bounded if

Condition 2 of Proposition 1 holds. If the encoding strat-

egy µp
0:T is employed, then QT satisfies (26). Omitting the

term after the second minus sign in (26), which is a positive

semidefinite (PSD) matrix, we obtain

dQt

dt
� AQt +QtA

T +Ec
tΓ

T
(

ΞΞT
)−1

ΓEc
t

−
P

κ2

1

[Qt]1,1
Qt diag{1, 0}Qt . (35)

Here, X � Y represents that Y −X is PSD for symmetric

matrices X and Y . Definitions (8) and (27) show that y
(1)
t =

[1 0] yt and x̂
(1)
t = [1 0] x̂t. Combining these with (25)

and (28) give εT
(

µp
0:T

)

= [1 0] QT [1 0]T. Therefore, left

and right multiplying (35) by [1 0] and [1 0]T, respectively,

and combining the result with ε0
(

µp
0

)

, we obtain

d

dT
εT

(

µp
0:T

)

�

(

2A(1) −
P

κ2

)

εT
(

µp
0:T

)

+ [1 0] Ec
TΓ

T
(

ΞΞT
)−1

ΓEc
T

[

1
0

]

(36a)

ε0
(

µp
0

)

= V
{

y
(1)
0

∣

∣ z
(1)
0

}

. (36b)

Comparing (31) with (36) and applying of [94, Ch. 3, Th. 4.1]

gives εT
(

µp
0:T

)

� εT
(

µ̌0:T

)

. Combining this with (29) gives

eT (µ
p
0:T ) � [Ec

T ]1,1 + ε̌T
(

µ̌0:T

)

.

Since both
{

[Ec
T ]1,1

}

T�0
and

{

ε̌T
(

µ̌0:T

)}

T�0
are bounded,

{

eT
(

µp
0:T

)}

T�0
is also bounded.

Necessity: Assume that
{

ĕT
}

T�0
is bounded and

Condition 1 of Proposition 1 does not hold. It will be

shown that Condition 2 must hold. To see that [1 0]T is

orthogonal to the unobservable subspace of (Γ ,A), note that

[Ec
T ]1,1 � ĕT since the MSE of x

(1)
T achieved by the cen-

tralized MMSE estimator is no larger than that achieved

by the distributed filter regardless of the employed encod-

ing strategies. Since
{

ĕT
}

T�0
is bounded,

{

[Ec
T ]1,1

}

T�0
is

also bounded. If A(1) > 0, vector [1 0]T must be orthog-

onal to the unobservable subspace of (Γ ,A) to ensure the

boundedness of
{

[Ec
T ]1,1

}

T�0
.

It is next shown that C > A(1). If Condition 1 of

Proposition 1 does not hold, then there exists a vector u �= 0

that satisfies the following equalities

Γ (1) exp{At}BBTu = 0 ∀t � 0 (37a)

ATu = A(1)u (37b)

where

B := diag
{

B(1), B(2)
}

. (38)
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In fact, if [1 0]T is not orthogonal to the unobservable sub-

space of
(

Γ (1),A
)

, then either (i) C
((

Γ (1)
)T)

⊆ C
(

[0 1]T
)

,

or (ii) C
((

Γ (1)
)T)

= C
(

[1 a]T
)

for some a �= 0, and

A = A(1)I . For situation (i), let u = [1 0]T; for situ-

ation (ii), choose u satisfying [1 a] BBTu = 0. Define

e
(

uT
xT ;µ0:T

)

as the MMSE for inferring uT
xT based on

z
(1)
0:T and r0:T if encoding strategy µ0:T is employed. Moreover,

define

ĕ
(

uT
xT

)

:= inf
µ0:T∈MT

e
(

uT
xT ;µ0:T

)

(39)

where MT represents the set of encoding strategies of hori-

zon T . If
{

ĕT
}

T�0
is bounded, then

{

ĕ
(

uT
xT

)}

T�0
can be

shown to be also bounded. It will be shown in the follow-

ing that C > A(1) must hold to ensure
{

ĕ
(

uT
xT

)}

T�0
is

bounded.

Note that node 1 computes the distributed filter by combin-

ing the received messages with its own sensor observations.

This makes proving the necessity of Condition 2 challenging,

as reasoning in existing literature where the receiver node does

not obtain sensor observations cannot be applied directly. To

address this challenge, consider the situation where node 2

can exploit observations obtained by node 1 in future time for

generating transmitted messages. In particular, for a given hori-

zon T , suppose node 2 can exploit the observations z
(1)
0:T for

generating transmitted message at any t ∈ [0, T ]. Therefore,

the signal transmitted by node 2 at time t can be written

as µt,T

(

z
(1)
0:T , z

(2)
0:t , r0:t

)

, where measurable function µt,T is

referred to as a generalized encoding function. A collection

of generalized encoding functions {µt,T }t∈[0,T ] is referred to

as a generalized encoding strategy of horizon T if the power

constraint (3) is satisfied with µt replaced by µt,T . Define

µ0:t,T := {µτ,T }τ∈[0,t] for t ∈ [0, T ]. If a generalized encod-

ing strategy µ0:T,T is employed, then the received message

rt is σ
(

z
(1)
0:T , z

(2)
0:t ,w0:t

)

-measurable. Define e
(

uT
xt;µ0:t,T

)

as

the MMSE for inferring uT
xt based on z

(1)
0:T and r0:t if gen-

eralized encoding strategy µ0:T,T is employed by node 2.

Moreover, define ĕ
(

uT
xT ;T

)

as

ĕ
(

uT
xT ;T

)

:= inf
µ0:T,T∈M̃T

e
(

uT
xT ;µ0:T,T

)

(40)

where M̃T represents the set of generalized encoding strate-

gies of horizon T . Since MT ⊆ M̃T , comparing (39) and

(40) gives

ĕ
(

uT
xT

)

� ĕ
(

uT
xT ;T

)

. (41)

Define yt,T as the MMSE estimator of uT
xt based on z

(1)
0:T

and z0:t, i.e.,

yt,T := E

{

uT
xt

∣

∣

∣
z
(1)
0:T , z

(2)
0:t

}

for t ∈ [0, T ] . (42)

In addition, define e(yt,T ;µ0:t,T ) as the MMSE for inferring

yt,T based on z
(1)
0:T and r0:t if generalized encoding strategy

µ0:T,T is employed, i.e.,

e(yt,T ;µ0:t,T ) := V

{

yt,T − E

{

yt,T

∣

∣

∣
z
(1)
0:T , r0:t

}}

.

It can be verified that e
(

uT
xt;µ0:t,T

)

� e
(

yt,T ;µ0:t,T

)

.

To see this, note that uT
xt − yt,T ⊥⊥ z

(1)
0:T , z

(2)
0:t since the

random vectors involved are jointly Gaussian. Moreover,

uT
xt − yt,T ⊥⊥ w0:t

∣

∣ z
(1)
0:T , z

(2)
0:t as w0:t ⊥⊥ xt, z

(1)
0:T , z

(2)
0:t . Since

r0:t is σ
(

z
(1)
0:T , z

(2)
0:t ,w0:t

)

-measurable if µ0:T,T is employed,

Lemma 1 of [85] can be applied to conclude that uT
xt −

yt,T ⊥⊥ z
(1)
0:T , r0:t, yt,T . Therefore,

e
(

uT
xt;µ0:t,T

)

= E

{(

yt,T − E

{

uT
xt

∣

∣

∣
z
(1)
0:T , r0:t

})2}

+ E

{

(

uT
xt − yt,T

)2
}

� E

{(

yt,T − E

{

uT
xt

∣

∣

∣
z
(1)
0:T , r0:t

})2}

(a)
= e

(

yt,T ;µ0:t,T

)

(43)

where equality (a) is because

E

{

uT
xt

∣

∣

∣
z
(1)
0:T , r0:t

}

= E

{

E

{

uT
xt

∣

∣

∣
z
(1)
0:T , z

(2)
0:t , r0:t

}
∣

∣

∣
z
(1)
0:T , r0:t

}

= E

{

E

{

uT
xt

∣

∣

∣
z
(1)
0:T , z

(2)
0:t

} ∣

∣

∣
z
(1)
0:T , r0:t

}

= E

{

yt,T

∣

∣

∣
z
(1)
0:T , r0:t

}

.

Combining (40), (41), and (43) gives

ĕ
(

uT
xT

)

� inf
µ0:T,T∈M̃T

e
(

yT,T ;µ0:T,T

)

. (44)

A lower bound of the right-hand side (RHS) of (44) is

derived as follows. Choose t and s such that 0 � t � s � T .

According to the chain rule of mutual information,

I
(

ys,T ; z
(1)
0:T , r0:s

)

= I
(

ys,T ; z
(1)
0:T , r0:t

)

+ I
(

ys,T ; rt:s
∣

∣ z
(1)
0:T , r0:t

)

. (45)

The second term on the RHS of (45) can be shown to satisfy

I
(

ys,T ; rt:s
∣

∣ z
(1)
0:T , r0:t

)

�

∫ s

t

C dτ = C(s− t) (46)

where C is the channel capacity given by (5). To investigate

the first term on the RHS of (45), the following conditional

independence will be used

ys,T ⊥⊥ z
(1)
0:T , r0:t

∣

∣ yt,T . (47)

To see this, define a scaled innovation process {ητ,T }τ∈[0,T ]

as

dητ,T =
(

ΞΞT
)−1/2

(

dz(2)τ − Γ (2)
τ E

{

xτ

∣

∣

∣
z
(1)
0:T , z

(2)
0:τ

}

dτ
)

η0,T = z
(2)
0 .

Process {ητ,T − η0,T }τ∈[0,T ] can be shown to be a Brownian

motion that satisfies

{

ητ,T − η0,T
}

τ∈[0,T ]
⊥⊥ z

(1)
0:T ,η0,T . (48)

Moreover,

σ
(

z
(1)
0:T , z

(2)
0:τ

)

= σ
(

z
(1)
0:T ,η0:τ,T

)

∀τ ∈ [0, T ] (49)

where η0:τ,T := {ητ̃ ,T }τ̃∈[0,τ ]. Define qτ for τ ∈ [0, T ] as
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qτ := E

{

uT
xτ

∣

∣

∣
z
(1)
0:T , z

(2)
0:τ

}

− E

{

uT
x0

∣

∣

∣
z
(1)
0:T , z

(2)
0

}

−

∫ τ

0

E

{

uTAxτ̃

∣

∣

∣
z
(1)
0:T , z

(2)
0:τ̃

}

dτ̃ (50)

= yτ,T − y0,T −

∫ τ

0

A(1)
yτ̃ ,T dτ̃ (51)

where (51) is obtained using (37b) and (42). Equation (50)

shows that qτ is σ
(

z
(1)
0:T , z

(2)
0:τ

)

-measurable, and it is thus also

σ
(

z
(1)
0:T ,η0:τ,T

)

-measurable. Moreover, the independence

qt2 − qt1 ⊥⊥ σ
(

z
(1)
0:T , z

(2)
0:t1

)

= σ
(

z
(1)
0:T ,η0:t1,T

)

(52)

holds for all 0 � t1 � t2 � T . In particular, since qt2 , qt1 ,

z
(1)
0:T , z

(2)
0:t1

are jointly Gaussian, (52) holds if

E
{

z
(1)
τ

(

qt2 − qt1

)}

= 0 ∀τ ∈ [0, T ] (53a)

E
{

z
(2)
τ

(

qt2 − qt1

)}

= 0 ∀τ ∈ [0, t1] (53b)

according to the monotone class lemma [95, Appendix A1].

Let φ represent an arbitrary random vector that is

σ
(

z
(1)
0:T , z

(2)
0:t1

)

-measurable. We can derive (54), shown at the

bottom of the page, where vt̃ :=
[

(

v
(1)

t̃

)T (

v
(2)

t̃

)T
]T

. In

particular, (54a) is obtained using (50) and the following

relationship

E

{

E

{

xt̃

∣

∣

∣
z
(1)
0:T , z

(2)

0:t̃

} ∣

∣

∣
z
(1)
0:T , z

(2)
0:t1

}

= E

{

xt̃

∣

∣

∣
z
(1)
0:T , z

(2)
0:t1

}

∀t̃ � t1 .

Setting φ = z
(1)
τ in (54), applying Fubini’s Theorem, and using

the independence between
{

n
(1)
t

}

t�0
and {vt}t�0, we obtain

E

{

z
(1)
τ (qt2 − qt1)

}

=

∫ τ

0

E

{

Γ (1)
xτ̃

(

∫ t2

t1

B dvt̃

)T

u
}

dτ̃ .

(55)

Combining (1) with (8a), we can write xτ̃ as

xτ̃ = exp{Aτ̃}x0 +

∫ τ̃

0

exp
{

A(τ̃ − s̃)
}

B dvs̃ .

Consequently,

E

{

Γ (1)
xτ̃

(

∫ t2

t1

B dvt̃

)T

u

}

=

∫ min{τ̃ ,t2}

t1

Γ (1) exp
{

A(τ̃ − t̃)
}

BBTu dt̃ = 0 (56)

where the first and second equality are due to the Itô isometry

and (37a), respectively. Substituting (56) into (55) gives (53a).

Setting φ = z
(2)
τ in (54) and using the relationship z

(2)
τ ⊥⊥

∫ t2
t1

B dvt̃ for all τ ∈ [0, t1], we obtain (53b), and thus (52)

holds. In particular, (52) shows that qτ ⊥⊥ z
(1)
0:T ,η0,T as q0 = 0

by definition. Since qτ is σ
(

z
(1)
0:T ,η0:τ,T

)

-measurable, there

exists a function gT : [0, T ] �→ R
1×k2 , where k2 is the

dimension of z
(2)
τ , such that [93, Ch. 3]

qτ =

∫ τ

0

gT (τ̃) dητ̃ ,T ∀τ ∈ [0, T ] . (57)

Combining (51) with (57) shows that {yτ,T }τ∈[0,T ] satisfies

dyτ,T = A(1)
yτ,T dτ + gT (τ) dητ,T (58)

and thus ys,T can be written as

ys,T = exp
{

A(1)(s− t)
}

yt,T

+

∫ s

t

exp
{

A(1)(s− τ)
}

gT (τ) dητ,T .

Since {ητ,T − η0,T }τ∈[0,T ] is a Brownian motion and satis-

fies (48),
∫ s

t

exp
{

A(1)(s− τ)
}

gT (τ) dητ,T

⊥⊥ σ
(

z
(1)
0:T ,η0:t,T

)

= σ
(

z
(1)
0:T ,η0:t,T , yt,T

)

where the equality is obtained based on (42) and (49).

Applying [85, Lemma 2] gives ys,T ⊥⊥ z
(1)
0:T ,η0:t,T | yt,T .

Since w0:t ⊥⊥ z
(1)
0:T , z

(2)
0:t , yt,T , ys,T , Equation (47) is obtained

by applying [85, Lemma 1].

Using [85, Lemma 3], the first term on the RHS of (45)

satisfies

I
(

ys,T ; z
(1)
0:T , r0:t

)

� f
(

I
(

yt,T ; z
(1)
0:T , r0:t

)

;V
{

[ ys,T yt,T ]
T
}

)

. (59)

Combining (45), (46), and (59) gives

I
(

ys,T ; z
(1)
0:T , r0:s

)

− I
(

yt,T ; z
(1)
0:T , r0:t

)

� ϕT (s− t, t)− ϕT (0, t)

where function ϕT is defined as

ϕT (∆, t) := f
(

I
(

yt,T ; z
(1)
0:T , r0:t

)

;V
{

[ yt+∆,T yt,T ]
T
}

)

+C∆ for t ∈ [0, T ], ∆ ∈ [0, T − t]

with ϕT (0, t) = I
(

yt,T ; z
(1)
0:T , r0:t

)

in particular. Therefore,

d

dt
I
(

yt,T ; z
(1)
0:T , r0:t

)

� lim
s↘t

1

s− t
(ϕT (s− t, t)− ϕT (0, t))

= C −
1

2
V{yt,T }

−1
(

exp
{

2I
(

yt,T ; z
(1)
0:T , r0:t

)

}

−1
)

gT (t)g
T
T (t) (60)

E
{

φ(qt2 − qt1)
}

= E

{

E

{

φuT
(

xt2 − xt1 −

∫ t2

t1

Axt̃ dt̃
) ∣

∣

∣
z
(1)
0:T , z

(2)
0:t1

}}

(54a)

= E

{

φuT
(

xt2 − xt1 −

∫ t2

t1

Axt̃ dt̃
)}

= E

{

φuT

∫ t2

t1

B dvt̃

}

(54b)
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where s ↘ t represents that s approaches t from above. Define

function IT (t) as the solution to the following initial value

problem on [0, T ]

d

dt
IT (t) = C −

1

2
V{yt,T }

−1
(

exp
{

2IT (t)
}

− 1
)

gT (t)g
T
T (t)

(61a)

IT (0) = I
(

y0,T ; z
(1)
0:T

)

. (61b)

Comparing (60) with (61) and applying [94, Ch. 3,

Th. 4.1] gives I
(

yT,T ; z
(1)
0:T , r0:T

)

� IT (T ). Applying

[85, Lemma 4],

e
(

yT,T ;µ0:T,T

)

� V
{

yT,T

}

exp
{

−2I
(

yT,T ; z
(1)
0:T , r0:T

)

}

� V
{

yT,T

}

exp
{

− 2IT (T )
}

. (62)

Moreover, using (58) and (61), V{yT,T } exp{−2IT (T )} can

be written as

V
{

yT,T

}

exp
{

− 2IT (T )
}

= V
{

y0,T

}

exp
{

−2I
(

y0,T ; z
(1)
0:T

)

+ 2
(

A(1) − C
)

T
}

+

∫ T

0

exp
{

2
(

A(1) − C
)

(T − τ)
}

gT (τ)g
T
T (τ) dτ . (63)

Combining (62) and (63), if C � A(1), then

e
(

yT,T ;µ0:T,T

)

�

∫ T

0

gT (τ)g
T
T (τ) dτ . (64)

Using (57) and the Itô isometry, and then using (50),
∫ T

0

gT (τ)g
T
T (τ) dτ

= E
{

(qT − q0)
2
}

= E

{

(

yT,T − y0,T −

∫ T

0

A(1)
yτ,T dτ

)2
}

. (65)

According to (58), the following holds

E{yt,T ys,T } = exp
{

A(1)(s− t)
}

V{ys,T } (66)

for all t and s such that 0 � t � s � T . Substituting (66)

into (65),
∫ T

0

gT (τ)g
T
T (τ) dτ = V

{

yT,T

}

− V
{

y0,T

}

− 2A(1)

∫ T

0

V
{

yτ,T

}

dτ . (67)

Recalling the definition (42), and using the law of total

covariance,

V
{

yτ,T

}

= V
{

uT
xτ

}

− V

{

uT
xτ

∣

∣

∣
z
(1)
0:T , z

(2)
0:τ

}

∀τ ∈ [0, T ] .

(68)

In addition, combining (1) with (8a) and (37b),

V
{

uT
xT

}

= 2A(1)

∫ T

0

V
{

uT
xτ

}

dτ

+ uTBBTuT + V
{

uT
x0

}

. (69)

Substituting (68) and (69) into (67) gives
∫ T

0

gT (τ)g
T
T (τ) dτ

= uTBBTuT − V

{

uT
xT

∣

∣

∣
z
(1)
0:T , z

(2)
0:T

}

+V

{

uT
x0

∣

∣

∣
z
(1)
0:T , z

(2)
0

}

+2A(1)

∫ T

0

V

{

uT
xτ

∣

∣

∣
z
(1)
0:T , z

(2)
0:τ

}

dτ . (70)

Combining (44), (64), and (70)

ĕ
(

uT
xT

)

�

∫ T

0

gT (τ)g
T
T (τ) dτ

� uTBBTuT − V

{

uT
xT

∣

∣

∣
z
(1)
0:T , z

(2)
0:T

}

. (71)

The set
{

V
{

uT
xT

∣

∣ z
(1)
0:T , z

(2)
0:T

}}

T�0
can be verified to be

bounded. Therefore, if C � A(1), then
{

ĕ
(

uT
xT

)}

T�0
is

unbounded according to (71). However, recall that if {ĕT }T�0

is bounded, then
{

ĕ
(

uT
xT

)}

T�0
must be bounded. This

shows that if Condition 1 of Proposition 1 does not hold, then

C > A(1) is necessary to ensure that {ĕT }T�0 is bounded.�

APPENDIX B

PROOF OF PROPOSITION 2

A lemma to be used in the proof is presented first.

Lemma 2: Consider vector processes {θt}t�0 and {ξt}t�0

described by the following SDE

dθt = Atθt dt+Bt dνt (72a)

dξt =
(

Gtθt + gt
(

ξ0:t
)

)

dt+ Ft dνt +Lt dωt (72b)

where At, Bt, Gt, Ft, and Lt are deterministic matrices

such that LtL
T
t is invertible for all t � 0; gt is a lin-

ear function; {νt}t�0 and {ωt}t�0 are independent Brownian

motions. Moreover, θ0 and ξ0 are jointly Gaussian and are

independent of {νt}t�0 and {ωt}t�0. Suppose regularity con-

ditions for the existence of a strong solution to SDE (72) hold

(see [84, Ch. 12]). Then processes
{

θ̂t
}

t�0
and

{

θ̃t
}

t�0
are

both Markov, where θ̂t := E
{

θt
∣

∣ ξ0:t
}

and θ̃t := θt − θ̂t.

Proof: According to [84, Th. 12.7], process
{

θ̂t
}

t�0
satis-

fies

dθ̂t = Atθ̂t dt+Ht

(

dξt −
(

Gtθ̂t + gt
(

ξ0:t
)

)

dt
)

(73)

where Ht is defined as

Ht :=
(

BtF
T
t + V

{

θt
∣

∣ ξ0:t
}

GT
t

)(

FtF
T
t +LtL

T
t

)−1
.

Combination of (72) and (73) shows that
{

θ̃t
}

t�0
satisfies the

following SDE

dθ̃t =
(

At −HtGt

)

θ̃t dt+
(

Bt −HtFt

)

dνt −HtLt dωt .

Therefore,
{

θ̃t
}

t�0
is a Markov process [82, Ch. 7]. Moreover,

define a scaled innovation process {ηt}t�0 as

dηt =
(

FtF
T
t +LtL

T
t

)−1/2(

dξt −
(

Gtθ̂t + gt
(

ξ0:t
)

)

dt
)

(74a)

η0 = ξ0 . (74b)

Process {ηt−η0}t�0 can be shown to be a Brownian motion.

Combining (73) and (74), process
{

θ̂t
}

t�0
satisfies

dθ̂t = Atθ̂t dt+Ht

(

FtF
T
t +LtL

T
t

)1/2

dηt .
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Therefore,
{

θ̂t
}

t�0
is also a Markov process. �

The three statements in Proposition 2 are proved next.

Proof:

Statement 1: Setting θt = xt and ξt =
[

(

z
(1)
t

)T (

z
(2)
t

)T
]T

in Lemma 2 shows that {x̃t}t�0

is a Markov process. Setting i = 1 in (22b) and using (24),

we obtain

dz
(1)
t = Γ (1)

yt dt+
(

Ξ(1)
(

Ξ(1)
)T

)1/2

dη
(1)
t . (75)

Moreover, process {rt}t�0 satisfies

drt =
(

βT
t yt + gt

(

z
(1)
0:t , r0:t

)

)

dt+ κ dwt . (76)

Combining (24), (75), as well as (76), and applying Lemma 2,
{

E
{

yt

∣

∣ z
(1)
0:t , r0:t

}}

t�0
and

{

yt − E
{

yt

∣

∣ z
(1)
0:t , r0:t

}}

t�0
are

shown to be Markov processes. Note that

x̂t = E

{

E

{

xt

∣

∣

∣
z
(1)
0:t , z

(2)
0:t , r0:t

}
∣

∣

∣
z
(1)
0:t , r0:t

}

(a)
= E

{

E

{

xt

∣

∣

∣
z
(1)
0:t , z

(2)
0:t

} ∣

∣

∣
z
(1)
0:t , r0:t

}

= E

{

yt

∣

∣

∣
z
(1)
0:t , r0:t

}

(77)

where equality (a) is obtained using the relationship

x
(1)
t , x

(2)
t ⊥⊥ r0:t

∣

∣ z
(1)
0:t , z

(2)
0:t

which is proved in [85, Lemma 5]. Therefore, {ỹt}t�0 and

{x̂t}t�0 are Markov processes.

Statement 2: Random vectors x̃t, ỹt, and x̂t can be shown to

be independent. Specifically, using the independence between

the channel noise process and the state disturbance and sensor

observation processes, we can show that

xt, z
(1)
0:t , z

(2)
0:t ⊥⊥ w0:t . (78)

Moreover, (8b) and (11a) shows that x̃t is σ
(

xt, z
(1)
0:t , z

(2)
0:t

)

-

measurable. Combining this with (78), we obtain x̃t ⊥⊥ w0:t.

In addition, (8b) and (11a) indicate that x̃t ⊥⊥ z
(1)
0:t , z

(2)
0:t .

Therefore, x̃t ⊥⊥ z
(1)
0:t , z

(2)
0:t ,w0:t as the involved random

quantities are jointly Gaussian. Since both ỹt and x̂t are

σ
(

z
(1)
t , z

(2)
t ,w0:t

)

-measurable, the relationship x̃t ⊥⊥ ỹt, x̂t

holds. In addition, combining (11b) with (77) shows that

ỹt ⊥⊥ x̂t. Therefore, x̃t, ỹt, and x̂t are independent as they are

jointly Gaussian. As a result, V{st}
−1

can be written as (79),

which is shown at the bottom of the page. Therefore,

1

2
s
T
t V

{

sτ

}−1
st =

1

2

(

x̃
T
t V

{

x̃τ

}−1
x̃t + ỹ

T
t V

{

ỹτ

}−1
ỹt

+ x̂
T
t V

{

x̂τ

}−1
x̂t

)

.

Letting τ in the above equation approach infinity and taking

the expectation, the equation Es

t = E x̃

t +E ỹ

t +E x̂

t is obtained.

Statement 3: Since x̃t, ỹt, and x̂t are independent, the

following holds

Ss

t = −D
(

Pst

∥

∥λL

)

= −D
(

P[x̃Tt ỹ
T

t x̂
T

t ]T

∥

∥λL

)

= S x̃

t + S ỹ

t + S x̂

t .

This is the desired result. �

APPENDIX C

DERIVATION OF ENERGY VARIATION AND ENERGY

FLOW RATES

Using Kalman–Bucy filtering results, we obtain

d

dt
V
{

xt

}

= AV
{

xt

}

+ V
{

xt

}

AT +BBT (80a)

d

dt
V
{

x̃t

}

= AV
{

x̃t

}

+ V
{

x̃t

}

AT +BBT

− V
{

x̃t

}

ΓT
(

ΞΞT
)−1

ΓV
{

x̃t

}

(80b)

d

dt
V
{

yt

}

= AV
{

yt

}

+ V
{

yt

}

AT

+ V
{

x̃t

}

ΓT
(

ΞΞT
)−1

ΓV
{

x̃t

}

(80c)

where

A :=

[

A(1)
0

0 A(2)

]

B :=

[

B(1)
0

0 B(2)

]

Γ :=

[

Γ (1)

Γ (2)

]

Ξ :=

[

Ξ(1)
0

0 Ξ(2)

]

.

V
{

st
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=

£

¤

¤

¥

V
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−V

{

x̃t
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0

−V
{

x̃t

}−1
V
{

ỹt

}−1
+ V

{

x̃t
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−V

{
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0 −V
{

ỹt
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. (79)

d

dt
E x̃

t =
1

2
tr
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2AV
{
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(
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(82a)

d
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2
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d
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E x̂
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2
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. (82c)
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According to optimal filtering results for the system described

by (24), (75), and (76),

d

dt
V
{

ỹt

}

= AV
{

ỹt

}

+ V
{

ỹt

}

AT − V
{

ỹt

}

βtκ
−2βT

t V
{

ỹt

}

+ V
{

x̃t

}

ΓT
(

ΞΞT
)−1

ΓV
{

x̃t

}

−
(

V
{

x̃t

}

+ V
{

ỹt

})(

Γ (1)
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(

Ξ(1)
(

Ξ(1)
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)−1

× Γ (1)
(

V
{

x̃t

}

+ V
{

ỹt

})

(81a)

d

dt
V
{

x̂t

}

=
d

dt
V
{

yt

}

−
d

dt
V
{

ỹt

}

. (81b)

Combining (80b) and (81) with (12) gives (82), shown at the

bottom of the previous page. The rates of energy flows are

obtained by combining (14)–(18) with (80a), (80c), and (82).

The results are given in of [92, Appendix A.3.3, eq. (A.91)].

REFERENCES

[1] T. Kailath, “A view of three decades of linear filtering theory,” IEEE

Trans. Inf. Theory, vol. 20, no. 2, pp. 146–181, Mar. 1974.
[2] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood

Cliffs, NJ, USA: Prentice-Hall, 1979.
[3] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tuto-

rial on particle filters for Online nonlinear/non-Gaussian Bayesian
tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188,
Feb. 2002.

[4] M. Z. Win et al., “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[5] A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win, “Soft
information for localization-of-things,” Proc. IEEE, vol. 107, no. 11,
pp. 2240–2264, Nov. 2019.

[6] S. Gezici et al., “Localization via ultra-wideband radios: A look at posi-
tioning aspects for future sensor networks,” IEEE Signal Process. Mag.,
vol. 22, no. 4, pp. 70–84, Jul. 2005.

[7] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network
localization and navigation,” Proc. IEEE, vol. 106, no. 7, pp. 1136–1165,
Jul. 2018.

[8] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation With

Applications to Tracking and Navigation. Hoboken, NJ, USA: Wiley,
Jul. 2001.

[9] M. Chiani, A. Giorgetti, and E. Paolini, “Sensor radar for object
tracking,” Proc. IEEE, vol. 106, no. 6, pp. 1022–1041, Jun. 2018.

[10] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar,
“Autonomous flight for detection, localization, and tracking of moving
targets with a small quadrotor,” IEEE Robot. Autom. Lett., vol. 2, no. 3,
pp. 1762–1769, Jul. 2017.

[11] D. Wu, D. Chatzigeorgiou, K. Youcef-Toumi, and R. Ben-Mansour,
“Node localization in robotic sensor networks for pipeline inspec-
tion,” IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 809–819,
Apr. 2016.

[12] R. Karlsson and F. Gustafsson, “The future of automotive localiza-
tion algorithms: Available, reliable, and scalable localization: Anywhere
and anytime,” IEEE Signal Process. Mag., vol. 34, no. 2, pp. 60–69,
Mar. 2017.

[13] G. Zhan and W. Shi, “LOBOT: Low-cost, self-contained localization of
small-sized ground robotic vehicles,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 4, pp. 744–753, Apr. 2013.

[14] S. G. Nagarajan, P. Zhang, and I. Nevat, “Geo-spatial location estima-
tion for Internet of Things (IoT) networks with one-way time-of-arrival
via stochastic censoring,” IEEE Internet Things J., vol. 4, no. 1,
pp. 205–214, Feb. 2017.

[15] N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and Z. Han,
“Data collection and wireless communication in Internet of Things (IoT)
using economic analysis and pricing models: A survey,” IEEE Commun.

Surveys Tuts., vol. 18, no. 4, pp. 2546–2590, 4th Quart., 2016.
[16] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,

“Efficient multi-sensor localization for the Internet of Things: Exploring
a new class of scalable localization algorithms,” IEEE Signal Process.

Mag., vol. 35, no. 5, pp. 153–167, Sep. 2018.
[17] S. Alletto et al., “An indoor location-aware system for an IoT-based

smart museum,” IEEE Internet Things J., vol. 3, no. 2, pp. 244–253,
Apr. 2016.

[18] A. Conti et al., “Location awareness in beyond 5G networks,” IEEE

Commun. Mag., vol. 59, no. 11, pp. 22–27, Nov. 2021.
[19] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on

UAV communications for 5G and beyond,” Proc. IEEE, vol. 107, no. 12,
pp. 2327–2375, Dec. 2019.

[20] F. Morselli, S. M. Razavi, M. Z. Win, and A. Conti, “Soft
information based localization for 5G networks and beyond,”
IEEE Trans. Wireless Commun., early access, May 16, 2023,
doi: 10.1109/TWC.2023.3275122.

[21] G. Torsoli, M. Z. Win, and A. Conti, “Blockage intelligence in complex
environments for beyond 5G localization,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 6, pp. 1688–1701, Jun. 2023.

[22] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor, “Network
operation strategies for efficient localization and navigation,” Proc.

IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018.
[23] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allocation

for wireless relay channels,” IEEE Trans. Inf. Theory, vol. 51, no. 6,
pp. 2020–2040, Jun. 2005.

[24] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas

Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.
[25] Y. Shen, W. Dai, and M. Z. Win, “Power optimization for network

localization,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1337–1350,
Aug. 2014.

[26] S. K. Mitter and N. J. Newton, “Information and entropy flow in the
Kalman-Bucy filter,” J. Stat. Phys., vol. 118, pp. 145–176, Jan. 2005.

[27] N. J. Newton, “Interactive statistical mechanics and nonlinear filtering,”
J. Stat. Phys., vol. 133, no. 4, pp. 711–737, Sep. 2008.

[28] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization–
Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 4956–4980, Oct. 2010.

[29] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of
wideband localization–Part II: Cooperative networks,” IEEE Trans. Inf.

Theory, vol. 56, no. 10, pp. 4981–5000, Oct. 2010.
[30] T. E. Duncan, “On the calculation of mutual information,” SIAM J.

Applied Math., vol. 19, no. 1, pp. 215–220, Jul. 1970.
[31] M. H. A. Davis, “Detection, mutual information and feedback

encoding: Applications of stochastic calculus,” in Communication

Systems and Random Process Theory, J. Skwirzynski, Ed. Dordrecht,
The Netherlands: Springer, 1978, pp. 705–720.

[32] T. T. Kadota, M. Zakai, and J. Ziv, “Mutual information of the white
Gaussian channel with and without feedback,” IEEE Trans. Inf. Theory,
vol. 17, no. 4, pp. 368–371, Jul. 1971.

[33] E. Mayer-Wolf and M. Zakai, “On a formula relating the Shannon
information to the Fisher information for the filtering problem,” in
Filtering and Control of Random Processes (Lecture Notes in Control
and Information Sciences), vol. 61. New York, NY, USA: Springer, 1984,
pp. 164–171.

[34] Y. Shen, S. Mazuelas, and M. Z. Win, “Network navigation: Theory
and interpretation,” IEEE J. Sel. Areas Commun., vol. 30, no. 9,
pp. 1823–1834, Oct. 2012.

[35] F. Zabini and A. Conti, “Inhomogeneous Poisson sampling of finite-
energy signals with uncertainties in Rd,” IEEE Trans. Signal Process.,
vol. 64, no. 18, pp. 4679–4694, Sep. 2016.

[36] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, “Stochastic stability of
the discrete-time extended Kalman filter,” IEEE Trans. Autom. Control,
vol. 44, no. 4, pp. 714–728, Apr. 1999.

[37] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state
estimation for nonlinear discrete-time systems: Stability and moving
horizon approximations,” IEEE Trans. Autom. Control, vol. 48, no. 2,
pp. 246–258, Feb. 2003.

[38] S. Das and J. M. F. Moura, “Consensus+innovations distributed Kalman
filter with optimized gains,” IEEE Trans. Signal Process., vol. 65, no. 2,
pp. 467–481, Jan. 2017.

[39] S. Kar and J. M. F. Moura, “Consensus + innovations distributed infer-
ence over networks: Cooperation and sensing in networked systems,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 99–109, May 2013.

[40] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3575–3605,
Jun. 2012.

[41] U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed sensor localization
in random environments using minimal number of anchor nodes,” IEEE

Trans. Signal Process., vol. 57, no. 5, pp. 2000–2016, May 2009.
[42] Z. Liu, W. Dai, and M. Z. Win, “Mercury: An infrastructure-free system

for network localization and navigation,” IEEE Trans. Mobile Comput.,
vol. 17, no. 5, pp. 1119–1133, May 2018.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2023 at 04:05:44 UTC from IEEE Xplore.  Restrictions apply. 



680 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

[43] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network local-
ization and navigation with scalable inference and efficient operation,”
IEEE Trans. Mobile Comput., vol. 21, no. 6, pp. 2072–2087, Jun. 2022.

[44] F. S. Cattivelli and A. H. Sayed, “Analysis of spatial and incremen-
tal LMS processing for distributed estimation,” IEEE Trans. Signal

Process., vol. 59, no. 4, pp. 1465–1480, Apr. 2011.

[45] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2069–2084, Sep. 2010.

[46] A. A. Saucan and M. Z. Win, “Information-seeking sensor selec-
tion for ocean-of-things,” IEEE Internet Things J., vol. 7, no. 10,
pp. 10072–10088, Oct. 2020.

[47] G. Papa, P. Braca, S. Horn, S. Marano, V. Matta, and P. Willett,
“Multisensor adaptive Bayesian tracking under time-varying target
detection probability,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 5,
pp. 2193–2209, Oct. 2016.

[48] P. Braca, P. Willett, K. LePage, S. Marano, and V. Matta, “Bayesian
tracking in underwater wireless sensor networks with port-starboard
ambiguity,” IEEE Trans. Signal Process., vol. 62, no. 7, pp. 1864–1878,
Apr. 2014.

[49] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky,
“Nonparametric belief propagation for self-localization of sensor net-
works,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 809–819,
Apr. 2005.

[50] J. Prieto, S. Mazuelas, and M. Z. Win, “Context-aided inertial navigation
via belief condensation,” IEEE Trans. Signal Process., vol. 64, no. 12,
pp. 3250–3261, Jun. 2016.

[51] S. Mazuelas, Y. Shen, and M. Z. Win, “Belief condensation filtering,”
IEEE Trans. Signal Process., vol. 61, no. 18, pp. 4403–4415, Sep. 2013.

[52] R. E. Kalman and R. S. Bucy, “New results in linear filtering and
prediction theory,” J. Basic Eng., vol. 83, pp. 95–108, Mar. 1961.

[53] P. L. Falb, “Infinite-dimensional filtering: The Kalman–Bucy fil-
ter in Hilbert space,” Inf. Control, vol. 11, nos. 1–2, pp. 102–137,
Jul.-Aug. 1967.

[54] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical

System Theory. New York, NY, USA: McGraw-Hill, 1969.

[55] S. K. Mitter, “Control with limited information,” Eur. J. Control., vol. 7,
nos. 2–3, pp. 122–131, 2001.

[56] V. S. Borkar and S. K. Mitter, “LQG control with communication
constraints,” in Communications, Computation, Control, and Signal

Processing: A Tribute to Thomas Kailath, A. Paulraj, V. Roychowdhury,
and C. D. Schaper, Eds. New York, NY, USA: Springer, 1997,
pp. 365–373.

[57] V. S. Borkar and S. K. Mitter, “Markov control problems under com-
munication constraints,” Commun. Inf. Syst., vol. 1, no. 1, pp. 15–32,
2001.

[58] S. Tatikonda, A. Sahai, and S. K. Mitter, “Stochastic linear control over
a communication channel,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1549–1561, Sep. 2004.

[59] S. Tatikonda and S. K. Mitter, “Control under communication con-
straints,” IEEE Trans. Autom. Control, vol. 49, no. 7, pp. 1056–1068,
Jul. 2004.

[60] A. Sahai and S. K. Mitter, “The necessity and sufficiency of anytime
capacity for stabilization of a linear system over a noisy communication
link–Part I: Scalar systems,” IEEE Trans. Inf. Theory, vol. 52, no. 8,
pp. 3369–3395, Aug. 2006.

[61] N. C. Martins, M. A. Dahleh, and N. Elia, “Feedback stabilization of
uncertain systems in the presence of a direct link,” IEEE Trans. Autom.

Control, vol. 51, no. 3, pp. 438–447, Mar. 2006.

[62] P. Minero, M. Franceschetti, S. Dey, and G. N. Nair, “Data rate theo-
rem for stabilization over time-varying feedback channels,” IEEE Trans.

Autom. Control, vol. 54, no. 2, pp. 243–255, Feb. 2009.

[63] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control
under data rate constraints: An overview,” Proc. IEEE, vol. 95, no. 1,
pp. 108–137, Jan. 2007.

[64] G. N. Nair and R. J. Evans, “Exponential stabilisability of finite-
dimensional linear systems with limited data rates,” Automatica, vol. 39,
no. 4, pp. 585–593, Apr. 2003.

[65] M. J. Khojasteh, M. Hedayatpour, J. Cortés, and M. Franceschetti,
“Exploiting timing information in event-triggered stabilization of lin-
ear systems with disturbances,” IEEE Trans. Control Netw. Syst., vol. 8,
no. 1, pp. 15–27, Mar. 2021.

[66] M. J. Khojasteh, P. Tallapragada, J. Cortés, and M. Franceschetti, “The
value of timing information in event-triggered control,” IEEE Trans.

Autom. Control, vol. 65, no. 3, pp. 925–940, Mar. 2020.

[67] T. Simsek, R. Jain, and P. Varaiya, “Scalar estimation and control with
noisy binary observations,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1598–1603, Sep. 2004.
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