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Continuous-Time Distributed Filtering
With Sensing and Communication Constraints

Zhenyu Liu"™, Member, IEEE, Andrea Conti
and Moe Z. Win

Abstract—Distributed filtering is crucial in many applications
such as localization, radar, autonomy, and environmental mon-
itoring. The aim of distributed filtering is to infer time-varying
unknown states using data obtained via sensing and commu-
nication in a network. This paper analyzes continuous-time
distributed filtering with sensing and communication constraints.
In particular, the paper considers a building-block system of
two nodes, where each node is tasked with inferring a time-
varying unknown state. At each time, the two nodes obtain noisy
observations of the unknown states via sensing and perform com-
munication via a Gaussian feedback channel. The distributed
filter of the unknown state is computed based on both the sensor
observations and the received messages. We analyze the asymp-
totic performance of the distributed filter by deriving a necessary
and sufficient condition of the sensing and communication capa-
bilities under which the mean-square error of the distributed
filter is bounded over time. Numerical results are presented to
validate the derived necessary and sufficient condition.

Index Terms—Distributed inference, Kalman-Bucy filter, chan-
nel capacity, stochastic differential equation.

I. INTRODUCTION

NFERENCE of time-varying states, also referred to as

filtering [1], [2], [3], is critical in various applications
including localization and tracking [4], [5], [6], [7], [8], [9],
autonomy [10], [11], [12], [13], Internet-of-Things [14], [15],
[16], [17], and beyond 5G networks [18], [19], [20], [21].
In several network applications, it is preferable to perform
filtering in a distributed manner. The accuracy of distributed
filtering is affected by the sensing and communication capa-
bilities of nodes in the network. A deep understanding of such
effects is important for the efficient management of wireless
resources in the network [22], [23], [24], [25].
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Theoretical studies [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38] and efficient algorithms [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [501,
[51] for filtering have been studied in the literature. In partic-
ular, the boundedness of inference error over time is studied
n [36], [37], [38]. The Kalman—Bucy filter [52], [53], [54] is
investigated in [26] from an information-theoretical perspec-
tive. Specifically, a fundamental relationship between Shannon
information and Fisher information is derived therein, and an
analogy of the filter to a statistical mechanical system is estab-
lished. Those results have been extended for nonlinear filtering
in [27]. Distributed filtering is closely related to distributed
control problems [55], [56], [57], [58], [59], [60], [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73],
[74], [75], [76], [77], where control signals for stabilizing a
dynamical system are generated in real time based on data
received via a channel with communication constraints. In par-
ticular, the notion of anytime capacity is introduced in [60] for
characterizing the channel quality in distributed control prob-
lems. This notion is then applied for investigating distributed
filtering problems [78], [79], [80].

This paper analyzes distributed filtering in continuous-time
scenarios. Specifically, a building-block system with two nodes
is considered where each node is tasked with inferring a time-
varying unknown state. At every time, each node obtains noisy
sensor observations of both unknown states. Moreover, one
node transmits encoded messages containing information of
the unknown state that the other node aims to infer via a
Gaussian feedback channel. The node on the receiving end
of the channel performs filtering to infer its unknown state
using both its sensor observations and its received messages.
This paper aims to establish conditions under which the mean-
square error (MSE) of the distributed filter is bounded over
time. Key contributions of this paper can be summarized as
the following; specifically, we

« derive a necessary and sufficient condition on sensing and
communication capabilities under which the MSE of the
distributed filter is bounded over time;

o establish an analogy between distributed filtering and
statistical mechanical systems, as well as derive the
evolution of energy and entropy of the system; and

o characterize the relationship between the accuracy of
distributed filtering and the capabilities of sensing and
communication.

The remaining sections are organized as follows. Section II

describes the system model. Section III derives conditions for
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TABLE I
NOTATION AND DEFINITIONS OF IMPORTANT QUANTITIES

Notation Definition Notation Definition
ng) state of node 4 at time ¢ A® scalar that determines the evolution of ng)
i random vector corresponding to disturbances to the state of ] . . . .
vi” node i v sponding 18t zgl) observation obtained by the sensor of node 7 at time ¢
; . . . . . i random vector corresponding to noise in the observations
r® sensor gain matrix for observations obtained by node 7 ngi) om Vi responding 15¢ 1 vatt
obtained by node 7
my message transmitted from node 2 to node 1 at time ¢ re message received by node 1 from node 2 at time ¢
. . . encoding strategy of horizon 7" consisting of encoding func-
encoding function employed for generating m . .
243 g ploy g g m Ho:T tions yu; for ¢t € [0, T
. . random variable corresponding to noise in the communica-
P constraint on the transmit power wi .
tion channel
scalar determining the power of noise in the communication . L
K & p C capacity of the communication channel
channel
(1) . . .
. L . mean-square error of X if encoding strate; ;¢ 1S
x,(sl) distributed filter of xgl) computed by node 1 at time ¢ et (po:t) d t g gy Ho:t
employed
. infimum of the MSE for the distributed filter at time 7" over p . . . . .
ér . . My encoding function at time ¢ in the proposed encoding strategy
all encoding strategies
A diagonal matrix with A() and A(®) on the diagonal r vertical concatenation of I'*) and I"(2)
. . (1) (2) centralized minimum-mean-square-error estimator of x; us-
Xt vertical concatenation of x;’ and x; \a . (1) (2
ing z;.; and zg;
R distributed minimum-mean-square-error estimator of x; us- . . . N
Xt N (1) St vertical concatenation of x¢, y,, and X¢
ing z.; and rg.¢
- .. . - conditional estimator defined as the difference between
Xt conditional state defined as the difference between x; and y, Y . ! ! W Yt

and X¢

the boundedness of MSE in distributed filtering. Section IV
establishes an analogy of the distributed filtering problem to
a statistical mechanics system. Section V provides numerical
results. Section VI concludes the paper.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and z; a random vector and its
realization are denoted by x and «, respectively. The m-by-n
matrix of zeros is denoted by 0,,x,; when n = 1, the m-
dimensional vector of zeros is simply denoted by 0,,. The
subscript is removed if the dimension of the matrix is clear
from the context. The entry on the ith row and jth column
of a matrix A is denoted by [A]; ;. The transpose, trace,
and the column space of A are denoted by A", tr{ A}, and
C(A), respectively. Notation diag{Al, Ag} represents a block
diagonal matrix with A; and A, being its diagonal blocks
from top left to bottom right. All random quantities in this
paper are defined on a common probability space ({2, %, P),
unless otherwise mentioned, where {2 is a non-empty set, .7
is a o-algebra over {2, and P is a probability measure on
the measurable space ({2,.%#). The probability of A € Z is
denoted by P{A}. Notation o(-) represents the o-algebra gen-
erated by the random quantities (e.g., a random vector or a
collection of random vectors) in the parentheses. The distri-
bution of random vector x is denoted by FPy. The Gaussian
distribution with mean vector g and covariance matrix X' is
denoted by N(u, 37). The expectation and covariance matrix
of a random vector x are denoted by E{x} and V{x}, respec-
tively. The cross-covariance matrix of random vectors x and

y is denoted by V{x,y} = E{(x — E{x})(y — E{y})"}.

The probability density function of x and the conditional
probability density function of x given y are denoted by
Jx(x) and fyy(x|y), respectively. The conditional expecta-
tion of x given .#; C . is denoted by E{x|.%#,}. If % is
the sub-o-algebra generated by a collection of random vec-
tors {Xa},c.4- Such conditional expectation is also denoted
by E{x | {Xa}sc4}- The conditional cross-covariance matrix
of random vectors x and y given .%#; C .Z is denoted by
Vixy| 71} = E{(x - E{x| Zi})(y - E{y| 71 })" | A1},
and V{x|.Z1} is a short notation for V{x,x|.# }. The rela-
tionship that sub-o-algebras .%#; and %, are independent
conditioned on .#3 is denoted by .7 1L %5 | %5. If Z; is
the sub-o-algebra generated by a collection of random vectors
{Xa}aea, for i = 1,2,3, such conditional independence is
also denoted by {Xa },c 4, L {Xataca, | {Xataca, If F5is
the trivial o-algebra {@, {2}, such conditional independence is
denoted by .71 I F. Given a stochastic process {x;} . the
set {xT}TE[S,t] is denoted by x,.; for any 0 < s < t. Notation
and definitions of important quantities used in the paper are
summarized in Table I.

II. SYSTEM MODEL

Consider a system consisting of two nodes, where each
node is associated with a time-varying unknown state. Each
node has a sensor that generates a noisy observation of both
unknown states at every time. The two nodes also communi-
cate with each other: node 2 transmits encoded messages to
node 1 via a noisy channel and receives noiseless feedback
from node 1 (see Fig. 1). The aim of node 1 is to infer its
unknown state using observations obtained by its own sensor
as well as the messages received from node 2.
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Fig. 1.
obtains a sensor observation zil)
two nodes at time t.

Distributed filtering in a two-node system: each node 7 € {1,2}
of the unknown states associated with the

The state and observation of node ¢ at time t > 0 are
denoted by xgi) and zg 2 respectlvely, for ¢ = 1, 2. In particu-
lar, the state process {xt } >0 is described by the following
stochastic differential equation (SDE) [81], [82], [83]

P = A gt + BO vl vee0,00) (1)

where A is a scalar and B() is a row vector. Both A(*)
and B® are deterministic quantities known to both nodes.
Process {vgl)} +>0 18 @ Brownian motion and represents dis-

turbance to the state of node <. The initial states x( ) and x(2)
are zero-mean Gaussian random variables. The observatlon
process {zﬁ“ } 5o satisfies
T A ,
2 = r® { () xg2>] dt+ 2D dnl? vte0,00) (2)
where I'” and £ () are deterministic matrices known to both
0) . . .
nodes. Process {n;" } +>0 18 @ Brownian motion and represents
noise in the sensor observations. At time 0, observation z(()i) is
T , )
=G [ (1) x(()2)] +Z where GO is a deter-

ministic matrix known to both nodes, and ((i) is a zero-mean
Gaussian random vector with invertible covariance matrix. We
consider scenarios where B(") is non-zero and £ (Z)
is invertible.

At each time ?, node 2 transmits an encoded message
m; € R to node 1 via a Gaussian feedback channel. The mes-
sage received by node 1 at time ¢ is denoted by r,. In particular,
m; is generated by node 2 based on its sensor observations
z(()2t) as well as node 1’s sensor observations z(()}t) and received
messages ro.; up to time ¢. Consequently, m, can be writ-
ten as m; = (z(() t),zé t), ro. t) where the real function p; is
referred to as the encoding function at time t. A collection of
encoding functions .7 = {Mt}te[o,T] from time O to time
T is referred to as an encoding strategy of horizon 7' if the
following constraint on transmit power is satisfied

2
]E{,ut(z()tvz((jzt); ro: t) } < P

where P is a constant representing the power constraint. The
set of encoding strategies of horizon 7" is denoted by M.

given by z

vt € [0, 3)

The process of the received messages satisfies

dry = my dt + Kk dwy ro=20 4)

where {w;}, is one-dimensional Brownian motion, which
represents additive Gaussian noise in the channel, and x deter-
mines the power of noise. The capacity of this continuous-time
Gaussian channel is [84, Chapter 16]

C = P/(2x?). ®)

Node 1 aims to infer its unknown state in real time based
on its own sensor observations and the messages received
from node 2. Specifically, node 1 computes an estimator of
xgl) at time ¢ based on zéi? and ro.;. This estimator is thus
a(z((ﬁt),ro:t)—measurable. For an arbitrary encoding strategy
Lo+ employed by node 2, the minimum-mean-square-error

(MMSE) estimator §<§1> of xgl) at node 1 is

E{x | elroe}.

This estimator is referred to as the distributed filter and its

MSE e;(uo.¢) is given by
2
B{x" |zt roe}) |

€t (MO:t) = E{ (Xgl)

The MSE e;(uo.) is affected by the encoding strategy
employed by node 2. Define ér as the infimum of the MSE
for the distributed filter at time 7" over all encoding strategies
that satisfy the power constraints (3), i.e.,

)2&1) =

v

ér = inf

oMo er (MO:T) .

The next section studies conditions under which {é7};-, is
bounded.

III. BOUNDEDNESS OF MSE FOR DISTRIBUTED
FILTERING

The section presents a necessary and sufficient condition
for {ér} 1~ to be bounded. Before presenting this condition,
some definitions are introduced. First, given an n-by-n real
matrix F' and a real matrix C' with n columns, define the unob-
servable subspace for (C, F') as the kernel of the observability

T
maix O(C, F) = [CT FTCT ... (F")TCT| . 1n
other words, this unobservable subspace is given by {a:
O(C, F)z = 0}. Second, define

A= diag{A(l), A(Q)}
[yt )]

Third, define an encoding function p} at time ¢ as

1 2 (1 1 2
Nt(zgjt)’z(()t)vroff):af( { )’ E)t)’ g)t)}

E{xV [zroa}) @
where «; > 0 is a scalar such that

E{ut (zgg,z((fz,mt)z} =P.

(6a)

= (6b)
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The intuition for this encoding function is that node 2 transmits
to node 1 the knowledge of xgl) that is available to node 2 but
not available to node 1. Detailed interpretation of this encoding
function can be found in [85].

The necessary and sufficient condition is presented in the
next proposition.

Proposition 1: Set {ér} is bounded if and only if at
least one of the following two conditions holds:

1) Vector [1 0]T is orthogonal to the unobservable sub-

space of (I'), A), or AV < 0.
2) Vector [1 0]T is orthogonal to the unobservable sub-
space of (I, A) and C' > A(), where C is the capacity
of the channel given by (5).
If Condition 1 holds, then {er (MO’T)}T>O is bounded for
arbitrary encoding strategies pig.p. If Condition 2 holds, then
{er(ub.r) }T>0 is bounded for the encoding strategy 1§ ;-

Proof: See Appendix A. X

Proposition 1 shows that the MSE of a distributed filter is
affected by the sensing and communication capabilities of the
system as well as the variation rate of node 1’s unknown state
indicated by A(). In particular, if Condition 1 of Proposition 1
holds, then node 1 can construct an estimator of xgl) with
bounded MSE using only its own observations zélf) and not
the received messages. If Condition 1 does not hold, then
node 1 also needs to use messages received from node 2 to
ensure the boundedness of the MSE, and the channel capac-
ity is required to be larger than the variation rate of node 1’s
unknown state. One method to meet this capacity requirement
is to allocate more communication resources to node 2 and
increase its transmit power.

Remark 1: Condition 2 is analogous to the data rate theo-
rem for control under constraint problems, which states that
a linear system can be stabilized based on messages received
via a channel if the data rate or channel capacity is above
a threshold determined by the system dynamics [59], [60],
[61], [62], [63], [64], [70], [72], [73]. Different from existing
works where the receiver does not perform sensing, node 1
in this paper combines both the received messages with its
own sensing observations for computing the distributed filter.
Under this scenario, a data rate theorem in terms of the chan-
nel’s Shannon capacity is established in Proposition 1. Note
that another information-theoretical notion for studying control
under communication constraints problems and sequential rate
distortion problems is the directed mutual information [86],
[87], [88], [89], [90] introduced in [91].

If Condition 2 holds, then node 2 can employ the encoding
strategy given by (7) and the MSE of the distributed filter is
guaranteed to be bounded over time. The following corollary
shows a favorable property of this encoding strategy.

Corollary 1: If there exists an encoding strategy po.r for
every T' > 0 such that {eT(Mo:T) is bounded, then
{er (ko.r) } 7=, 1s also bounded.

Proof: If {eT (/Lo;T) }T>O is bounded, then {éT}T>o is also
bounded since ¢ < er( [LB:T) by definition. Therefore, at least
one of the two conditions in Proposition 1 holds, and thus
{er (ko.r) } 7=, is bounded. X

Corollary 1 shows that if the aim of the encoding strat-
egy is to ensure the MSE of the distributed filter is bounded,

Y10
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then the proposed encoding strategy can be employed without
considering other strategies, including nonlinear ones. In
particular, if the MSE of the distributed filter is unbounded
when the proposed encoding strategy is employed, then such
MSE would also be unbounded for any other encoding
strategy.

IV. ANALOGY TO A STATISTICAL MECHANICAL SYSTEM

This section introduces a stochastic process {s; },, associ-
ated with the distributed filtering problem and establishes an
analogy of this process to a statistical mechanical system. To
this end, define x;, y,, and X; as

T
Xy 1= {xgl) x§2)} (8a)
v = E{x |20 20} (8b)
)A(t = E{Xt Zé?t), r0:t} . (8C)

In other words, x; represents the joint unknown state of both
nodes. Random vectors y, and X; are both estimators of x;. In
particular, y, is the MMSE estimator of x; based on observa-
tions 282 and zé?t) . In other words, y, is the centralized MMSE
estimator of x; based on sensor observations of both nodes.
On the other hand, X; represents the distributed MMSE estima-
tor of x; based on sensor observations and received messages
obtained by node 1. Define s; as

11T

T T
Xy

X Yt

St ©

An analogy of {St}t>0 to a statistical mechanical system is
established in scenarios where the following conditions hold.
First, the encoding strategy employed by node 2 belongs to a
class of linear encoding strategies with the encoding function
L at time ¢ given by

1 (28,28, ro) = By, + g0 (281 ot ©)

where 3; is a deterministic vector and g; is an affine function.
In particular, 3; and g; are design parameters for the encoding
strategy. In fact, the encoding strategy in (7) belongs to this
class of strategies and is obtained by setting 3; = [a; 0]
and gt(zgt),rg:t) fatIE{xil)‘zgt),rg:t}. Second, A® is
negative for ¢ = 1,2. Third, 8; and V{x, ‘ z((ﬁt) ,Fo:t} con-
verge as t approaches infinity. In particular, the second and
third conditions ensure that V{s;} converges as t approaches
infinity. Note that x., z(()?t) , and rg.; are jointly Gaussian if
linear encoding strategies are employed, and thus instantia-
tions of these random quantities do not affect the value of
V{xt | z((ﬁg, r0:t}.

Consider a statistical mechanical system II° associated with
the process {s; }+>0. A microstate of the statistical mechanical
system is represented by a vector s € R3", where n is the
dimension of x;. The Hamiltonian H*(s) of s is defined as

1
§ST2;13

where X := lim;_, o, V{s;}. Macroscopic properties of II®
at time ¢, including average energy E7, entropy S}, and free
energy F7, are defined as

B} := E{H%(s;)}

H*(s):

(10a)
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Heat Bath

d

x—B
dt EL

_________________________

‘ \ \ il
i Conditional State X; : d Eiay Conditional Estimator y, : d Eyai i Distributed Estimator x; :

| qt -t [Tt ]
[} . 1 . 1 [} - ]
i Energy = Ef 1 - Energy = E) — Energy = Ef 1
! = 1 ! ‘ | ! % |
! Entropy = S} ] i Entropy = SY ] { Entropy = S} !
\ 7 \ 7 \ ’

Joint System II® associated with process {s;};>0: Energy = Ef, Entropy = S}

Fig. 2. Decomposition of the statistical mechanical system II% into three subsystems associated with the conditional state {it}t>0, the conditional estimator
{9,5}@0, and the distributed estimator {it}t20, respectively. Arrows in the figure indicate the energy flows among the three subsystems and a heat bath.

Sy
Fy -

_D(Pst H /\L>
B} — S}

(10b)
(10c)

where D(Pd || )\L) represents the relative entropy, namely the
Kullback-Leibler divergence, of the probability distribution Py
with respect to the Lebesgue measure A;,. The macroscopic
properties defined in (10) depend on the distribution of s,
which evolves according to the Fokker-Planck equation (i.e.,
Kolmogorov forward equation) since {s:},, is a diffusion
Markov process. The evolution of the distribution of s; corre-
sponds to the interaction between II° and a unit-temperature
heat bath, which drives the process {s;};>¢ to its invariant
distribution NV (0, X). The free energy of II® can be shown to
be non-increasing with time and achieve minimal value when
{st}+>0 converges to its invariant distribution [26], [27].

The statistical mechanical system II° is decomposed into
three physically distinct subsystems. To this end, define “con-
ditional state” x; and “conditional estimator” y, as

(11a)
(11b)

Xy

Y

=Xe =Yy

=Yy Xe-

In particular, —x; is the estimation error of the centralized
MMSE estimator of x;; random vector —y, is the addi-
tional estimation error of the distributed filter of x; compared
to the centralized MMSE estimator. The next proposition
shows properties related to x;, y,, and X; that enable the
decomposition of II°.
Proposition 2: The following statements hold:
1) Processes {Xt},5q, {¥:}i50, and {Xx¢},5, are all
Markovian. ) )
2) (Energy is additive): Ef = EX + E} + E¥, with E¥, EY,
and E¥ defined as

.1

BX = 51@{&32{%} (12a)
B

B = SE{5! 571y, (12b)
L1

EX = iE{i;FZ‘;lit} . (12¢)

Here X% :=limy_,o, V{X;}, 2§ := lim;_, o V{y,}, and
2;( = llmt_)oo V{)A(t}

3) (Entropy is additive): S = S} + SY 4+ S% with S¥, S,
and S} defined as

St = —D(P, || AL) (13a)

S} :=-D(F, || A\n) (13b)

Yi=-D(P, || \L) - (13¢)

Proof: See Appendix B. X

Proposition 2 shows that the statistical mechanical system
II® can be decomposed into three subsystems I*, 1Y, and II%,
which are associated with the conditional state {x},, the
conditional estimator {y,},,, and the distributed estimator
{Xt};>¢ respectively (see Fig. 2). Quantities EX, EY, and E}
given in (12) represent the average energy of 1%, I1Y, and I1%,
respectively, whereas S¥, S}, and S¥ given in (13c) represent
the entropy of I1*, II¥, and II¥, respectively. The energy and
entropy of the three subsystems vary with time as they inter-
act with each other and with the heat bath. In particular, the
variation rates of energy associated with the three subsystems
are given by (82) in Appendix C.

Figure 2 shows the energy flows among the three subsys-
tems and the heat bath. The rates of these energy flows depend
on the evolution of the distributions of X;, y,, and %X;. These
rates are evaluated as follows. First, consider the rate %E,EBH’”‘
of the energy flow from the heat bath to the conditional state.
The conditional state absorbs energy from the heat bath and
supplies energy to the conditional estimator. If the conditional
state is disconnected with the conditional estimator at time
t and only interacts with the heat bath, then %EtBﬁi would
equal the variation rate %E{‘ of the average energy of the con-
ditional state. Meanwhile, such disconnection corresponds to
the scenario where observations become unavailable at time
t for the centralized MMSE estimator y, of state x;. Since
X = X; — Y;, if the observations become unavailable, then
the distribution of the conditional state x; would evolve in the
same manner as X;. Consequently, %EtBﬁf‘ can be obtained
by the following two methods. The first method is setting

I' = 0 in (82a) to remove the effect of observations. The
4 pBox

second method evaluates 7 F; as
d B—x 1 d -1
4o _ Ly {7V ‘ - } 14
dt 2 \at b Vi{x}=V{&x} X (14)
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Both methods lead to the same result. The rate % Ey™Y of
the energy flow from the conditional state to the conditional
estimator is thus
i )"(Hy o d
dt dt
The rate 7 EBHy of the energy flow from the heat bath
to the conditional estimator is computed as follows. If the
conditional estimator is disconnected with the dlstrlbuted esti-
mator at time ¢, then the sum of 4 £ and < £} would
equal the variation rate 7; Ey of the average energy of the con-
ditional estimator. Meanwhile, such disconnection corresponds
to the scenario where observations and received messages
become unavailable to the distributed estimator at time ¢, and
thus the distribution of the conditional estimator y, would
evolve in the same manner as y,. As a result,

= se{ Zviv) B

Vi{y,}=V{5.} dt
(16)
The rates of energy flows from the conditional estimator to
the distributed estimator 2 EY7* and from the distributed

EtB—>X o iEx

dt (15)

d B—>y
dt

df
estimator to the heat bath ‘IE"_’B are given by
d d d d
— BT = DB B - R 17
dt" dt T dt (an
d 4.5 d d
Wk 7Eyax _ 7Ex 18
dt" dt dt (18)

Derivation of the energy flow rates in (14)—(18) is presented
in Appendix C. As time ¢ approaches infinity, the distribu-
tions of x;, y,, and x; converge to N(0,X%), N(0,Xy),
and N(0, X;), respectively. Moreover, the average energy
of TIX, II¥, and II* also converge to their stationary values,
respectively. This can be seen from the following equations

: d B—x d X—y\ __
tli>I20<th %Et ) =0
d g d d
1 ( Ex—)y 7EB—>y _ 7Ey—>x> _
A \at T g dt "’ 0
d d
: y—X _ Y x—B _
tlggo(th th )=0.

The linear assumption (9) on encoding functions simplifies
the analogy of the distributed filtering problem to the statistical
mechanical system. In particular, each subsystem of the statis-
tical mechanical system is associated at time ¢ with a random
vector related to the conditional expectation of x;. This is pos-
sible because processes {X;},, {zgl) }t>0, {z?) }t>0, and
{rt}t>0 are jointly Gaussian. Consequently, the conditional
expectations become sufficient statistics for x,. For example,
x; defined in (8c¢) is a sufficient statistic of zgt) and rg.; for x;.
As a result, x; retains all the information about x; contained in
z(() t) and rg.;. However, this would not hold if nonlinear encod-
ing functions are employed and thus {xt}t20, {zgl)} >0 and
{rt}t>0 are longer jointly Gaussian. As a result, the condi-
tional expectation X; alone cannot be used for establishing the
analogy as it does not capture all the information of x;. Instead,
the conditional probability distribution of x; given { zgl) }eso
and {r;}, is needed in this case. Note that X; is only the first
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Fig. 3. MSE of the (d) distributed filter under different channel capacities
when node 2 employs the proposed encoding strategy, and (c) the centralized
MMSE estimator.

moment corresponding to such a conditional probability distri-
bution and thus contains less information than this distribution.
In fact, establishing analogies of nonlinear filtering problems
to statistical mechanical systems is more complicated than that
of linear filtering problems. For example, [27] derives an anal-
ogy of a centralized nonlinear filtering problem to a statistical
mechanical system consisting of multiple subsystems. There,
each statistical mechanical subsystem is associated with a ran-
dom probability measure, which is an element in the space of
probability measures. By contrast, in the distributed filtering
problem in this paper with linear encoding functions, each
subsystem is associated with a random vector, which is an
element in a Euclidean space.

V. NUMERICAL RESULTS

This section presents a numerical example where the dimen-
sion of vgl) is one, and thus B becomes a scalar for
i € {1, 2}. Deterministic quantities in (1) and (2) are set to

AN =0.05 B =2
A® = —0.05 B® =1
r=p 1 =W =2
ro=np -ij 2?0 =1,

At time 0, V{xél)} = V{ng)} =12, GO is set to GW =
0.10®, and V{TW} = 2 for i = 1,2. It can be seen
that (I", A) is observable, where we recall that I and A
are defined in (6). However, [1  0]T is not orthogonal to the
unobservable subspace of (F(l), A), whichis C([1 0] T). A
a result, Condition 1 of Proposition 1 does not hold. According
to this proposition, when the proposed encoding strategy is
employed, the MSE of the distributed filter is bounded if and
only if Condition 2 holds, which translates to C' > AW,
This section shows the accuracy of the distributed filter when
C is chosen from the set {0.99 A1), AW 11,0241 2041}
nats/s. Note that A(!) is the threshold of the channel capacity
that determines whether the MSE of the distributed filter is
bounded or not, whereas 0.99 A1) and 1.02 A1) are values
close to this threshold.
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Figure 3 shows the MSE of the distributed filter as a
function of time t for different channel capacities when the
proposed encoding strategy is employed. The MSE of the
centralized MMSE estimator represented by curve (c) is also
shown for comparison. Such an MSE converges after some
time. The convergence of the MSE for the distributed fil-
ter depends on the channel capacity. Specifically, such MSE
increases with time when C' = 0.99 A1) or ¢ = AW, By
contrast, the MSE of the distributed filter converges when
C = 1.02AM or ¢ = 20AM, and the MSE is signifi-
cantly smaller in the latter case when ¢ is large. This example
shows that higher channel capacity improves the performance
of distributed filtering, which supports Proposition 1.

VI. CONCLUSION

This paper analyzed continuous-time distributed filtering
with sensing and communication constraints. In particular, a
building-block system with two nodes has been considered,
where each node is tasked to infer a time-varying unknown
state. In particular, node 2 transmits encoded messages con-
taining information of the unknown state that node 1 attempts
to infer via a Gaussian feedback channel. The paper derived a
necessary and sufficient condition on the sensing and commu-
nication capabilities of the nodes under which the MSE of the
distributed filter is bounded over time. Specifically, the con-
dition indicates that if node 1 needs to rely on the received
messages to achieve bounded MSE, then the capacity of the
channel from node 2 to node 1 must be larger than a thresh-
old determined by the dynamic model of node 1’s unknown
state. Moreover, the paper established an analogy between
the distributed filtering problem and a statistical mechanical
system. The paper shows the effects of sensing and commu-
nication capabilities on the accuracy of distributed filtering
and provides insights for efficient allocation of sensing and
communication resources in networked systems.

APPENDIX A
PROOF OF PROPOSITION 1

This section first introduces a lemma and a few definitions
used for proving Proposition 1. Then, Proposition 1 is proved.

A. Lemma and Definitions Used for Proving Proposition 1

A lemma used in the proof is presented as follows. Consider
Gaussian processes {0:}:;>0 and {§,};>0 described by the
following SDE

det = Aet dt + B dvt
d{t = Get dt + L d(a)t

where A, B, G, and L are deterministic matrices such that
both BBT and LLT are invertible; 8y and &, are jointly
Gaussian; {v:},,, and {@:},, are Brownian motions such
that 0o, &, {v:},50, and {@:}, , are independent. The
following lemma shows the relationship between the bound-
edness of the inference error for {0;}:>¢ and unobservable
subspaces.

Lemma 1: For any vector h orthogonal to the unobservable
space of (G, A), the set {h"V{0;|§y,,}h},, is bounded.

Proof: See [92, Appendix A.3.1]. X

Next, some definitions are introduced. Recall the concate-
nated state x; and its estimator y, defined in (8a) and (8b),
respectively. Define the error covariance matrix of y, as

Ef :=V{x, —y,}.

Using Kalman-Bucy filtering results [84], {y,},,, can be
shown to satisfy

(19)

dy, = (A— E{T"(287)7'r)y, dt

+ ESTT(E5™) ' dz, (20)

where
g = diag{=", 2@} (21a)
2= [ @) C1b)

Process {y,},5, can be represented in terms of an inno-
vation process. To this end, define processes {ﬁgl)} >0 and

{nii)}wo fori=1,2 as
AP = a2~ Oy, 3 =)
i =) (=T /2
n = (zo(:()) )
Moreover, define

o= [00)" @)

The process {nt}t>0 is referred to as a scaled innovation
process in this paper. Processes {1, — "lo}t>o is a Brownian
motion [93, Ch. 4.4], and o (%) = o (2{}),27)) [83, Ch. 7.5].
Combining (20)—(23) gives

(22a)

d.” 2y =2 . (22b)

fort>0. (23)

dy, = Ay, dt + ESTT (227) " ay, . (24)

Note that x, defined in (8c) is the MMSE estimator of y,
based on z((ﬁt) and rg.;. In particular, it can be verified that

Xt —y, A zg?t) , ro.¢. Consequently,

Xy = E{Yt 28?75)7 rO:t}

which shows that x, is the MMSE estimator of y, based on
z(()lf) and rg.;. Define @, as the error covariance matrix of X;
as an estimator of y,, i.e.,

Q:=V{y, —x}.

Matrix Q) is affected by the encoding strategy employed by
node 2. In particular, if the encoding strategy 1., is employed
with pb given by (7), then Q; can be shown to satisfy the
following ordinary differential equation

(25)

d _
%t — AQ, + QA" + BT (2EY) ' TE
P 1
- iacd1
GG QL0
-1
— (ES+ Qt)(p(l))T<5(1)(5(1))T) r®
x (Ef + Q) (26)
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for all t € [0, 7.

Define yil) as

v = E{xV|

Note that §<§1) and ygl) are first entries of X, and y,, respec-
tively. Moreover, define ¢; (,UO:t) as

zg?g,zg?g} for t € [0,7]. (27)

v(po) = Vi =V} (28)
The quantity & (,UO:t) is related to e, (Mo:t) as follows
et (o) = [Ef], | + et (o) - (29)
B. Detailed Proof of Proposition 1
Proof (Sufficiency): Note that ér <  er(por) <

V{2 200} < V{x{"} for an arbitrary encoding strategy
po.r. If [I 0]* is orthogonal to the unobservable subspace
of (1"(1), A), then Lemma 1 shows that {V{X(TI) |z(()2“}}T>O

is bounded. If AM) < 0, then {V{x}’}},._ is bounded.

Therefore, Condition 1 in Proposition 1 ensures that {éT} >0
is bounded. Moreover, for arbitrary encoding strategies po.7,
it can be shown that {eT (,L.L(.):T) }T>0 is f’:llso bounded..

Next, assume that Condition 2 holds instead. Consider an
encoding strategy fip.r with encoding function fi; at time ¢
defined as

rO:t})

/at (z(()1t)7 Zg)?t)v rO:t) = dt (ygl) - E{ygl) ’
B{Y e} } = .

where &; is a scalar such that
vl (s

Note that fig.7 is a linear encoding strategy, i.e., [i; is a linear
function for all ¢ € [0, T]. Let er (fio.r) represent the MMSE
for inferring y(T1 ) based on 28% and ro.p if strategy fig.7 is
employed. In addition, let &7 (jio.7) represent the MMSE for
inferring y(T1 ) based only on rg.r if fig.r is employed. Then
e ([LQ;T) < {::T<[L0;T). Viewing éT(ﬂ();T) as a function of
T, we can show that this function solves the following initial
value problem

d . .
ﬁET(MO:T> = (2A(1) -

(30)

P
?) ér (fio:r)
1

T ( =T\ 1
+[1 0] E¢r*(EE") TE% M (31a)
&0 (/10) _ V{yél) ‘z(()l)}
where Ef, I', and & are defined in (19), (6b), and (21a),
respectively. To derive (31), we observe that ygl) defined

in (27) is the first component of y, defined in (8b). Combining
this with (24) gives

(31b)

—1/2

dyV = AOyD ar 41 o) BT (EET) T am,  (32)

where 1, is defined in (23). If the encoding strategy fig.7 is
employed, then the received messages ro.7 satisfy

dry = oy (yil) — E{yﬁl) ‘ ro;t}) dt + Kk dwy .

The relationship (31) is then obtained by combining (30), (32),
and (33). If Condition 2 of Proposition 1 holds, then the

(33)
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solution &7 (fig.7) to (31) is unique, and {&r (p’O‘T)}T>O is
bounded. Moreover, according to Lemma 1, { [E%]

1,1 }T>0 18
bounded. Note that

ér < er(fio.r) = [E%]l.,l + er(fio:r)
< [E%]Ll + &7 (fio.7)

where (29) is used for obtaining the equality in (34).
Since both {[Eﬂ 1 1}T>0 and {éT (/:L();T) }T>O are bounded,
{éT}T>O is also bounded.

(34)

Next, it is proved that {eT(Mg:T)}T>o is bounded if
Condition 2 of Proposition 1 holds. If the encoding strat-
egy pg.p is employed, then Qp satisfies (26). Omitting the
term after the second minus sign in (26), which is a positive
semidefinite (PSD) matrix, we obtain

dd%t < AQi+ QAT + BT (EET) ' TES
P 1
— & ——Q, diag{1,0} Q. 35
K}Q [Qt]Ll Qt g{ }Qt ( )

Here, X <Y represents that Y — X is PSD for symmetric
matrices X and Y. Definitions (8) and (27) show that ygl) =
1 0]y, and 5" =[1 0] %,. Combining these with (25)
and (28) give er () =[1 0] Qr [l 0]". Therefore, left
and right multiplying (35) by [I 0] and [1 0], respectively,
and combining the result with £¢ (ug), we obtain

d P
rer(ubr) < (247 = ) er ()
+[1 0 BT (EET)'TE; H (36a)

dT
by _ A\ (1) (1) 36b
co(uf) {vo'lzo"}- (36b)

Comparing (31) with (36) and applying of [94, Ch. 3, Th. 4.1]
gives e (MS:T) Ler ([L();T). Combining this with (29) gives
eT(Mg:T) < [E%]l,l +eér (ﬂOIT) .

Since both {[E%]l,l}T>0 and {&r (ﬂo;T)}T>O are bounded,

{er(1b.7) }T>0 is also bounded.

Necessity: Assume  that {éT}T20 is bounded and
Condition 1 of Proposition 1 does not hold. It will be
shown that Condition 2 must hold. To see that [1 0]T is
orthogonal to the unobservable subspace of (I', A), note that
[ES]11 < ér since the MSE of X(T1 ) achieved by the cen-
tralized MMSE estimator is no larger than that achieved
by the distributed filter regardless of the employed encod-
ing strategies. Since {éT}T>o is bounded, {[E%]lvl}Tgo is
also bounded. If AM) > 0, vector [1 0] must be orthog-
onal to the unobservable subspace of (I', A) to ensure the
boundedness of {[E%]1=1}T>o'

It is next shown that ¢ > A(M. If Condition 1 of

Proposition 1 does not hold, then there exists a vector u # 0
that satisfies the following equalities

I'Vexp{At}BBTu =0 vt >0 (37a)
ATy = AWy (37b)

where
B = diag{B(l), B® } (38)
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In fact, if [I 0] is not orthogonal to the unobservable sub-
space of (I‘(l), A), then either (i) C((I‘(l))T) - C([O 1]T),
or (i) C((r'M)") = C([1 a]T) for some a # 0, and
A = AW, For situation (i), let w = [1 0]T; for situ-
ation (ii), choose w satisfying [1 a] BBTu = 0. Define

e(uTxr; po.r) as the MMSE for inferring uw"xy based on

z(() )T and ro.r if encoding strategy po.7 is employed. Moreover,

define

é(uTxT) := inf e(uTxT;uo;T) (39)

Ho:T EMT
where M represents the set of encoding strategies of hori-
zon T. If {eT}T>O is bounded, then { (u XT)}T>O can be
shown to be also bounded. It will be shown in the follow-
ing that C' > A must hold to ensure {é(uTxT) is
bounded.

Note that node 1 computes the distributed filter by combin-
ing the received messages with its own sensor observations.
This makes proving the necessity of Condition 2 challenging,
as reasoning in existing literature where the receiver node does
not obtain sensor observations cannot be applied directly. To
address this challenge, consider the situation where node 2
can exploit observations obtained by node 1 in future time for
generating transmitted messages. In particular, for a given hori-
zon T, suppose node 2 can exploit the observations zé%j)q for
generating transmitted message at any ¢ € [0, 7. Therefore,
the signal transmitted by node 2 at time ¢ can be written
as Ht,T<Z$7)wZé?t) ,ro:t), where measurable function p; 7 is
referred to as a generalized encoding function. A collection
of generalized encoding functions {Mt,T}te[o,T] is referred to
as a generalized encoding strategy of horizon 7T if the power
constraint (3) is satisfied with p; replaced by g, . Define
Mot T = {'uTaT}Te[O,t] for t € [0, 7). If a generalized encod-
ing strategy po.7, 7 is employed, then the received message

2
ry is o’(z(() )T, zg t), wo. t)-measurable. Define e(uTxt; u0:t7T) as

the MMSE for inferring uTx; based on zg% and rg.4 if gen-
eralized encoding strategy po.7,7 is employed by node 2.
Moreover, define é(uTx7;T) as
é(uTxT;T) = inf e(uTxT;/r0:T7T)
po:T, TEMT

Y10

(40)

where Mo represents the set of generalized encoding strate-
gies of horizon 7. Since M7y C My, comparing (39) and
(40) gives

(41)
Define y; r as the MMSE estimator of u"x; based on z((f)T

and zy., i.e.,
Yi 1= E{uTxt zél%,z(gQg}
In addition, define e(yq r; tto:r,7) as the MMSE for inferring
1 . . .
y¢, 7 based on zy.. and rg.; if generalized encoding strategy
to.7,7 1s employed, i.e.,

e(ye,r; towt,T) i= V{Yt,T - ]E{Yt,T ’ z((f%, rO:t}} .

It can be verified that e(uTxt;u0:t7T) > 6<yt7T;,LL0:t,T).
1)

To see this, note that uTx; —y, 7 AL 20:T,zgft) since the

é(uTxT) > é(uTxT; T) .

fort €[0,7]. (42)

random vectors 1nv01ved are jointly Gaussian. Moreover,

u X — Yy AL woy ZOT,ZOt as wo.y Xt,ZOT,ZOt. ince
1

ro.¢ 1S J(z(())T,zét),WO t)-rneasurable if po.7,r is employed,

Lemma 1 of [85] can be applied to conclude that uTx, —
yer L Zé%q)a, ro:t,y¢ 7. Therefore,
2
B(uTxt; o) = E{ (Yt,T - E{UTXf Zé %7 ro: t}) }
2
+ E{(u Xt_ytT) }

T (1) 2
> E{(yt,T_E{u X Z();Ter:t}) }

@ e(ye,rs Hoe,r) (43)

where equality (a) is because
E{uTxt ‘ z((;)T, ro;t}
= E{]E{u xt‘zOT,ZOt,rot} ‘ZOT7I’Ot}
= E{]E{u Xt z(()l)T,zét)} ‘z(()l)T7 ro: t}
= E{Yt,T ‘ z(():)T, ro:t} .

Combining (40), (41), and (43) gives

é(ur) > inf _e(yrr;porT) - (44)

po:T, 7 EMT

A lower bound of the right-hand side (RHS) of (44) is
derived as follows. Choose ¢ and s such that 0 <t <s < T.
According to the chain rule of mutual information,

I(ys,T; zg’%’v rOzs) - I(ys,T; Zég’v rO:t)
(Yo tes | 25 ree) . (45)

The second term on the RHS of (45) can be shown to satisfy

I(yS,T; Fies | z(():}%, fo:t) < / Cdr=C(s—1t) (46)
¢

where C is the channel capacity given by (5). To investigate
the first term on the RHS of (45), the following conditional
independence will be used

yor L 250 o | yer - (47)

To see this, define a scaled innovation process {, 1} cjo 7|
as

1o = (527) (0 - {35} )

2
Nor = Z(() .

Process {1 — Mg 1}, ¢[o 7 can be shown to be a Brownian
motion that satisfies

1
{nT,T - nO,T}Te[O’T] AL Zé:%? TlO,T : (48)

Moreover,
V1 € [0,T]

o (2 25)) = o (250 Mourr) (49)

where .. 7 := {Wz p}:¢[0,,)- Define g for 7 € [0,7] as
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qr i= E{uTxT zé%)T,z((fl} - ]E{uTxo ’28%7282)}
—/ E{UTAX-,: z((ﬁ)T, 282;} dr (50)
0
= YrT —Yor — / AWy 1 d7 (51)
0

where (51) is obtained using (37b) and (42). Equation (50)
shows that q is O’(Z((;%w, zgfz)-measurable, and it is thus also

a(z((f)T, No.,.7)-measurable. Moreover, the independence

(1) (2) ) = O'(Zé?%w 'qO:thT) (52)

A, — e, AL o (2.7 20,
holds for all 0 < ¢; < to < T'. In particular, since q,, q,,
1 (@

2.7, 24, are jointly Gaussian, (52) holds if
E{z{" (9, —qi)} =0 V7 €[0,T] (53a)
E{z¥ (qi, —qi,)} =0 V7 €[0,t] (53b)

according to the monotone class lemma [95, Appendix Al].
Let ¢ represent an arbitrary random vector that is
RPIC) )-measurable. We can derive (54), shown at the

J(ZO:T» Z).¢, !
i
7 7 :

bottom of the page, where v; In

particular, (54a) is obtained using (50) and the following

relationship
iz ) =l j

]E{]E{xt~
Vit .

Setting @ = z(Tl) in (54), applying Fubini’s Theorem, and using
the independence between {ngl)} > and {Vi}t>0, we obtain

r

Combining (1) with (8a), we can write x; as

1 2

1 2
20, 2V 2, A

1 2
Z0.7>20:t, 0z

Z0.7>20:t,

E{ru)xf( “B dvg)Tu} di .

ty

{2 (a, — au) |
(55)

xz = exp{AT}xo + / exp{ A(7 — 3)} Bdv;.
0

Consequently,

E{FU)X% (/t2 B dv;)Tu}
t

1
min{7,t2} . B

= / I'Vexp{A(7 =)} BBTudi =0 (56)
t1

where the first and second equality are due to the Itd isometry
and (37a), respectively. Substituting (56) into (55) gives (53a).
Setting @ = zg) in (54) and using the relationship zg) A
Ji? Bdv; for all 7 € [0,1], we obtain (53b), and thus (52)
holds. In particular, (52) shows that q, L z((ﬁ)T, No,r asqo =0
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exists a function g7 : [0,7] ~ R'*F2 where ko is the
dimension of 2%, such that [93, Ch. 3]

ar = / gr(?)dn.y  Vre0.T]. 57)
0

Combining (51) with (57) shows that {y, 7} [0, 7] satisfies

dyrr = AWy, 1 dr + gr(7) dn, r (58)

and thus y, 7 can be written as
ysr = exp{ AW (s — ) by,1
+ / exp{AY (s — 1)} gr () dn, 1.
t

Since {0, — Mo, 0}, co,7) is @ Brownian motion and satis-
fies (48),

/ “exp{ AV (s - 1) bgr () dn

AL U(ZE)PTa ﬂo:t,T) = U(Z&w No.¢,T> Yt,T)

where the equality is obtained based on (42) and (49).

Applying [85, Lemma 2] gives yor 1L 250 Mo.0p | vz

Since wg.; AL zéT)T,zg?z,yt’T,ys,T, Equation (47) is obtained

by applying [85, Lemma 1].
Using [85, Lemma 3], the first term on the RHS of (45)
satisfies

I(Ys,T; Z(()?)T, rO:t)
< f(I(Yt,T§Z$%“a rot); V{[ys,r Yt7T]T}> . (59)

Combining (45), (46), and (59) gives

I(ysr 250 ro:s) — I(ye.3 2500 o:t)
< SDT(S - tat) - @T(Oat)

where function @ is defined as

or(At) = f(I(Yt,TQZE)?m rot); V{[yera,r Yt,T]T})
+CA fort €[0,7], Ael0,T—1

with o7(0,t) = I (ye,7; z(()?)T, ro:t) in particular. Therefore,

d 1
%I(Yt,ﬂ Zé;)Ta rO:t)
< li —t,t) —or(0,t
lim —— (er(s = 1,1) = ¢r(0,1))

1 _
=0 Mty (e 21y o)}

by definition. Since q, is a(zg)T,'noﬁwT)-measurable, there _1)9T(t)g%(t) (60)
ta
Efw(ar, —an)} = E{E{eu” (x:, —x, _/ Ax;di) |2417.25%, 1} (54a)
t1
t2 B t2
= IE{(puT (Xt2 —X¢, — Ax; dt) } = E{(puT B dv;} (54b)

t1 t1
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where s “\ t represents that s approaches ¢ from above. Define
function Ip(t) as the solution to the following initial value
problem on [0, 7]

Sn(0) = © = 3V{yer} e {2120}~ 1)gr(0gh 0
(61a)
Ir(0) = I(yo,ri20hy) - (61b)

Comparing (60) with (61) and applying [94, Ch. 3,
Th. 4.1] gives I(yrr; z((;T, ror) < Ir(T). Applying
[85, Lemma 4],
e(yr,ri porr) = V{yrr} eXp{—QI(YT,T; z((ﬁ)T, rO:T)}

> Viyrr}exp{ —2Ir(T)}. (62)
Moreover, using (58) and (61), V{yr 1} exp{—2Ir(T)} can
be written as
V{yr,r}exp{—2Ir(T)}

= V{yo T} exp{—QI(yO T; z(() )T) + Z(A(l) — C)T}

T
+ / exp{Q(A(l)fC)(T*T)}gT(T)Q
0

Combining (62) and (63), if C < A™M, then

(1) dr. (63)

T
e(yrr: porr) = / gr(r)gE(r) dr
0

Using (57) and the Itd isometry, and then using (50),

T
| arnighinyar
0
=E{(ar — q0)*}
T 2
= ]E{ (YT,T — Yo, — / A(l)y7-7T dT) } .
0
According to (58), the following holds

E{yt,r ys,7} = exp{ A (s — )} V{y, 7} (66)
< T'. Substituting (66)

(64)

(65)

for all t and s such that 0 < ¢t < s
into (65),

T
/O gr(1)gt(r) dr = Viyrz} - Viyor)

T
—~ 2A<1>/ V{yrr}dr. (67)
0

Recalling the definition (42), and using the law of total
covariance,

V{yrr}=V{u"x,} - V{uTxT

zgl)T,on} VT e [0,77].

(68)
In addition, combining (1) with (8a) and (37b),
T
V{uTxT} =240 V{uTxT} dr
0
+ u'BB™uT +V{u"x}. (69

Substituting (68) and (69) into (67) gives

T
| arnighar
0
=u"BB uT — V{’u,Tx ‘ zél%, 282%}

+V{uTx0 ’ zg%, 282)}

T
+240 /0 v{u |22 bar. a0)
Combining (44), (64), and (70)
é(uxr) > /0 " or (g dr
> w"BBTuT — V{u xT\zglg,zﬁT} 1)

The set {V{uTxr ’zOT,zOT}}T>0 can be verified to be
bounded. Therefore, if C < AW, then {¢(uT XT)}T>O is
unbounded according to (71). However, recall that if {¢7},+,
is bounded, then {é(uTxT)}T2O must be bounded. This
shows that if Condition 1 of Proposition 1 does not hold, then
C > AWM is necessary to ensure that {ér}rs, is bounded. X

APPENDIX B
PROOF OF PROPOSITION 2

A lemma to be used in the proof is presented first.
Lemma 2: Consider vector processes {0, }:>0 and {§,}:>0
described by the following SDE

det = Atet dt + Bt th
dg, = (Gtet + g (EO:t)) dt + Fy dv + Ly do,

(72a)
(72b)

where A;, B;, G, F;, and L; are deterministic matrices
such that L;L} is invertible for all t > 0; g; is a lin-
ear function; {v;},-, and {@;},, are independent Brownian
motions. Moreover, 8y and &, are jointly Gaussian and are
independent of {v;},, and {@;},,. Suppose regularity con-
ditions for the existence of a strong solution to SDE (72) hold
(see [84, Ch. 12]). Then processes {Gt}t>0 and {Bt}t>0 re

both Markov, where 0, := E{6;|&;.} and 0,:=0,—0,.

Proof: According to [84, Th. 12.7], process {Gt}t>0 satis-
fies g

a8 = A8y dt + H, (4§, — (G0 +g:(8o,) ) dt)  (73)
where H; is defined as
H,:= (B,F' +V{8,|&,}GI)(FF’ +L,L})""

Combination of (72) and (73) shows that {ét} 1> Satisfies the

following SDE
dét = (At — Hth) ét dt + (Bt — Ht.F‘t) dvt — HtLt d(u)t .

Therefore, {ét } >0 is a Markov process [82, Ch. 7]. Moreover,
define a scaled innovation process {1}, as

o (dit - (Gtét + g (F’O:t>) dt)
(74a)
(74b)

dﬂt = (FtFtT + LtLtT)

M =28-
Process {1, — M}, can be shown to be a Brownian motion.

Combining (73) and (74), process {ét satisfies

}t20

~ ~ 1/2
det = Atet dt + Ht (FtFtT + LtL;f> d'l]t .
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Therefore, {ét} 10 18 also a Markov process.
The three statements in Proposition 2 are proved next.
Proof:
Statement  1:

Setting 0 = x and § =

T
[(zgl))T (zﬁQ))T in Lemma 2 shows that {x:},,
is a Markov process. Setting ¢ = 1 in (22b) and using (24),
we obtain

1/2
dz!) = rWy,at+ (2W(ED)") Tan. @3)
Moreover, process {r;},, satisfies
dry = (5tTyt +g (zgt), r0:t)) dt + Kk dwy . (76)

Combining (24), (75), as well as (76), and ap(p%ying Lemma 2,
1

{E{yt ’ 2815)7 rO:t}}t>0 and {yt - E’{yt ‘ ZO:t ) rOi}}t}O are
shown to be Markov processes. Note that

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

holds. In addition, combining (11b) with (77) shows that
y; AL x;. Therefore, x;, y,, and X; are independent as they are
jointly Gaussian. As a result, V{st}_1 can be written as (79),
which is shown at the bottom of the page. Therefore,

1 —1 1/. ~oy-1. -y =1
§S?V{ST} st = §(XtTV{XT} % +y, V{y,} ¥,
+ 5 V{%:} 7 '%0)
Letting 7 in the above equation approach infinity and taking
the expectation, the equation E$ = E¥ + EY + EX is obtained.

Statement 3: Since X, y,, and X, are independent, the
following holds

S; = —D(P, || M) = =D(Pgzr 3¢ szpr [ M)

S¥4+ 5 4+ 5%,

X = E{E{xt 28%27 zgfg, rO:t} ‘ zé?t), l’o:t} This is the desired result. X
2 e |24 22) |2 o} —
= ]E{Yt ‘ 26?27 Fo:t} (77) DERIVATION OF ENERGY VARIATION AND ENERGY
FLOW RATES
where equality (a) is obtained using the relationship Using Kalman-Bucy filtering results, we obtain
D XD U rgy | 28,22 J ) )
which is proved in [85, Lemma 5]. Therefore, {y,},, and %V{Xt} = AV{x;} +V{x}A" + BB (80a)
{xt};>, are Markov processes. d o\ - ~ Y AT T
Statement 2: Random vectors X, ¥, and X; can be shown to %V{Xt} = AV{%} +V{x}A" + BB
be independenF. Specifically, using the it}dependence between — V{%} T (= ET)*l Iv{x} (80b)
the channel noise process and the state disturbance and sensor d
observation processes, we can show that £V{yt} = AV{yt} + V{yt}AT
xi,257,257) AL o . (78) +V{x T (EET) T IV{x,}  (800)
Moreover, (8b) and (11a) shows that Xx; is O’(Xt,Zgg,Zé?t) )- where
measurable. Combining this with (78), we obtain x; L wq.s.
In addition, (8b) and (11a) indicate that %, 1 z{!) z{%). A [Am 02} B {B(” 02]
Therefore, x; 1. z((fg7z((ft)7w0;t as the involved random 0 A® 0 B®
quantities are jointly Gaussian. Since both y, and x; are o r@ —_[EM o
J(zgl),zgz),WOZt)-measurable, the relationship x; 1L y,,%; T \r® =7l o0 =EO®O
-1 ~ -1
V{Xt} —V{Xt} 0
-1 -1 - -1 -1 - -1
Vst = | -vi{x} T iy} +vix} ~Vi{y.} (79)
~ -1 . —1 -1
0 —V{yt} V{Xt} +V{Yt}
d 5 1 - - - -
—Ef = st{ [24V{x.} + BBT - V{%}I""(£=5") ' IV{%}| 5} (82a)
d 5 1 - - =T\ —1 - - _ -
2B = Su{[24V{y,} + V{x}T"(257) ' TV{%} - V{3, }Bn BV {,)
. - T/ (1) s =(1\ T\ 1 - - _
— () + V) (D) (E0(EO) ) TO (v} +v{5.))] 55 (82b)
d _, 1 . - _ -
=B = su{[24V{%} + V{5, } BB V{3, }
. . T( (1) [ (1T ~F - - _
+(V{%} +V{5.})(rD) (2O (ED)T) TOV{x} +v{z.})| 5} (82¢)
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According to optimal filtering results for the system described
by (24), (75), and (76),

S5} = AV{y,} + V{3,) AT~ V{3, } BBV (5,)

+ V{x I (EET) T rv{x,}

- (Vg + Vi) @) (20 (z0)T)
« PO (V{x} +V{3,)) an
%V{xt} = %V{yt} - %V{it}- (810)

Combining (80b) and (81) with (12) gives (82), shown at the
bottom of the previous page. The rates of energy flows are
obtained by combining (14)—(18) with (80a), (80c), and (82).
The results are given in of [92, Appendix A.3.3, eq. (A.91)].
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