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Abstract—Optimizing the resource utilization is essential for
efficiently providing reliable location awareness in complex wire-
less environments. This paper presents a data-driven approach
to node prioritization for efficient localization based on neural
networks. We develop a node prioritization strategy for power
allocation consisting of offline training and online operation. In
the offline phase, we train a neural network to approximate a
mapping of node prioritization decisions obtained via model-
based optimization. In the online phase, the trained neural
network is employed to determine the resource allocation. A case
study validates the proposed approach and compares it against
conventional methods based on uniform power allocation.

Index Terms—Localization, node prioritization, network oper-
ation, neural networks, optimization.

I. INTRODUCTION

Location awareness [1] is crucial for numerous applications
including autonomy [2], public safety [3], and the Internet-
of-Things [4]. In location-aware networks, localization per-
formance depends on the wireless resources, deployment of
nodes, and propagation conditions. To achieve satisfactory per-
formance, location-aware networks require efficient strategies
for optimizing their operation [5]. Efficient network operation
is challenging because the resource utilization must adapt to
the wireless propagation conditions.

The Third Generation Partnership Project (3GPP) has de-
fined positioning service level requirements in terms of ac-
curacy, availability, and latency [6], [7]. Furthermore, en-
ergy efficiency is crucial to enable low-power high-accuracy
localization and extend the network lifetime [8]. While lo-
calization algorithms have a key role in providing accurate
localization [9], [10], network operation strategies are essential
to obtain reliable position information and meet service-
level requirements, especially in mission critical applications
under resource constraints [11]. Network operation strategies
for localization include allocation of wireless resources [12],
selection and coordination of transmitting nodes [13], and
placement of nodes [14]. In particular, node prioritization
strategies for the allocation of wireless resources can benefit
efficient localization by reducing the amount of transmissions
and energy consumption.

Conventional network operation strategies focus on im-
proving communication performance [15], [16]. Despite their
effectiveness in providing reliable communication, their ap-
plicability for localization is restricted by the contrasting

performance metrics in the design objectives. Specifically,
node prioritization strategies for localization are developed in
a model-based approach [12], [17], [18]. The design of such
strategies involves establishing a system model and formulat-
ing an optimization problem. While such strategies can provide
satisfactory gains in the localization performance, solving the
underlying optimization problem can be prohibitive for reliable
online operation. Furthermore, the parameter uncertainty can
produce inadequate node prioritization decisions in complex
wireless environments due to the use of simplified models.
This motivates the use of data-driven approaches enabled by
machine learning and, more specifically, neural networks.' In
particular, data-driven solutions are considered to cope with
the growing complexity of next generation networks [20].

The goal of this paper is to explore the use of neural net-
works to produce node prioritization decisions for efficient
localization in a data-driven approach. The key idea is to
exploit the approximation capabilities of neural networks [21]
to fit a mapping of node prioritization decisions obtained via
model-based optimization.

This paper presents a data-driven approach to node prior-
itization for efficient localization based on neural networks.
We develop a two-phase node prioritization strategy consisting
of offline training and online operation that exploits domain
knowledge from model-based optimization. The key contribu-
tions of this paper are:

e development of a data-driven node prioritization strategy
for efficient localization based on neural networks; and

e quantification of the localization performance gain pro-
vided by the proposed node prioritization strategy.

The remaining sections are organized as follows. Section II
presents the system model and the node prioritization problem.
Section III describes the proposed data-driven node priori-
tization strategy. Section IV presents a case study. Finally,
Section V gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a variable is denoted by x;
a random vector and its realization are denoted by x and x,

!Data-driven approaches based on machine learning have been explored
recently for different applications in wireless communications [19].
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respectively; a matrix is denoted by X. Sets are denoted by
calligraphic font. For example, a set is denoted by X. The
m-dimensional vector of zeros (resp. ones) is denoted by Oy,
(resp. 1,,): the subscript is removed when the dimension of
the vector is clear from the context. The transpose of a vector
x is denoted by xT. The trace of a matrix X is denoted by
tr {X }. The Euclidean norm and direction of a vector « are
denoted by ||x|| and L, respectively. Notation a = b denotes
that each element of vector a is greater than or equal to the
corresponding element of vector b.

II. PROBLEM FORMULATION

This section describes the system model, presents the perfor-
mance metric, and formulates the node prioritization problem.

A. System Model

Consider a 2D non-cooperative location-aware network
composed by a single agent with unknown position and Ny, an-
chors with known positions. We consider the single agent case
because the localization processes of non-cooperative nodes
are independent [22]. The index set of anchors is denoted by
M, ={1,2,..., Ny }. The positions of the agent and anchor k
are denoted by p and py, respectively. The distance and angle
between the positions of the agent and anchor & are denoted by
di(p) = |[p — pill and éx(p) = Z(p — pr). respectively. The
agent performs inter-node measurements with anchors to infer
its position. The goal is to allocate the transmitting power for
inter-node measurements to maximally improve localization
performance. We consider that the total amount of available
transmitting power is subject to a fixed upper constraint.

The received waveform for inter-node measurements be-
tween the agent and anchor k is modeled as

Ly
ri(t) = \/ukGZag)s(t—Tél)) + 2(t) (1)
1=0

where wy is the transmitting power, G is a gain that de-
pends on the antenna directivity and center frequency, s(t)
is the transmitted waveform, [, is the number of received
multipath components, «;’ and Tk) are the amplitude and
delay of the ray [, and zy(t) is the observation noise de-
scribed by an additive white Gaussian process with two-
sided power spectral density Ny/2. The coefficients of the
wireless channel between the agent and anchor % are denoted
by wy — a7V, ) 72 ol D] e rela.
tionship between T,El) and the agent position is given by

1
) = “ldk(p) + by @)

where c is the propagation speed of the signal and b,(f) >0

is a range bias. More specifically, b;ﬂl) =0 and b;cl) > 0 for
line-of-sight (LOS) and non-line-of-sight (NLOS) conditions,
respectively [25].

2Note that wy, is a realization of the random vector wy, since the channel
coefficients are described statistically (e.g., see [23], [24]).

B. Localization Performance Metric

The equivalent Fisher information matrix (EFIM) for the
agent position p as a function of the node prioritization vector
(NPV) w = [u1, ug,...,un,]T can be expressed as [22]

Ny
J(u;p,w) =Y upli(p, wi)J: (6x(p)) 3
k=1

where w = [w{,wy,...,w}, |*. In particular, & (p,ws)

is the range information intensity (RII) of the inter-node
measurement with anchor k as a function of p and wy, and
J: () is the range direction matrix (RDM) with angle ¢. The
RII & (p, wy) and RDM J,.(¢) are given, respectively, by

8 202
Gpw) = T 1 v pow)] opw) (o)
B cos? ¢ Cos ¢ sin ¢
Ji(0) = cosgsing  sin’¢ (4b)

where [ is the effective bandwidth of the transmitted wave-
form s(t), xx(p,ws) € [0,1) is the path-overlap coefficient
(POC) describing the degradation of the RII due to multipath
propagation, and g (p, wi) = G(ag))z/No is the signal-to-
noise ratio (SNR) of the first received path.

The mean-square error of the position estimator as a func-
tion of the NPV w is lower bounded by

Puip,w) = t{[J(uwip,w)] '} ®)

which is referred to as the squared position error bound
(SPEB) [22]. This performance metric can be employed for
the design of node prioritization strategies since it is a measure
of localization performance that is asymptotically achievable
by maximum likelihood estimators [5].

C. Node Prioritization Problem

The node prioritization module aims to minimize the posi-
tion error by optimally allocating the transmitting power for
inter-node measurements with anchors. Specifically, the node
prioritization problem can be formulated as

Ppaw : minimize P (u;p, w) (6a)
u

subject to uTl— Pp <0 (6b)

w0 (6¢)

in which (6b) describes the constraint on the total transmitting
power Pr and (6¢) indicates that the transmitting powers in
the NPV are nonnegative.

The objective in (6a) is convex for v = 0 given p and w [5].
Therefore, &, . is a convex program that can be solved via
conventional convex optimization techniques, e.g., interior-
point methods [26]. Such a problem can be further trans-
formed into a second-order cone program (SOCP) to obtain
a formulation that is more amenable to efficient optimization
engines [5]. In particular, let u* = [u}, u3, ..., u}, ]" denote
the optimal solution to (6). The set of indices of the prioritized
nodes in u* is denoted by N = {k : up > 0} with
Ny = |/\/£)k |. The sparsity property of the optimal NPV [5]
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determines that the transmitting resources are allocated to at
most three anchors, i.e., N, < 3. Such a property implies
that only a subset of anchors will be used for inter-node
measurements while keeping the rest inactive.

ITII. DATA-DRIVEN NODE PRIORITIZATION STRATEGY

This section describes the node prioritization strategy based
on neural networks.

A. Node Prioritization Strategy

Node prioritization strategies based on (6) require knowl-
edge of the agent position and channel coefficients for all
the anchors in the network. In practice, such strategies rely
on estimates of the agent position and channel qualities of a
subset of anchors. In particular, solving (6) can be prohibitive
for online operation due to the use of iterative optimization
techniques, e.g., interior-point methods [26]. To address these
issues, we consider a data-driven approach employing a neural
network to fit a mapping of node prioritization decisions.

Consider that the agent performs measurements with a
subset of Ny anchors in an arbitrary order to first obtain
information regarding the channel qualities. From the sparsity
property of the NPV, the node prioritization strategy requires
knowledge from Ng > 3 anchors. The set of indices of
the anchors selected for such measurements is denoted by
N; = {s1,82,...,8n.} C MNp. Such a subset can be any
permutation of A}, with cardinality Ns. Note that the coef-
ficients Ay = & (p,wy) and ¢ = ¢r(p) summarize all
the information regarding the wireless channel and network
deployment with respect to anchor k € N,,. Therefore, we
rewrite the EFIM for the agent position p as a function of the

NPV 4 = [’lil,’lig, e ,’(jNS]T as
NS
J(isp, X, @) =Y it e (Hr) @)
k=1
where A = [\, As, ..., AN ]T and @ = [21, @2, ..., ¢n.]T

with 4y = us,, Ak = A, and @ = @,,. With this
parameterization, the SPEB can be rewritten as

N !
P(u;p, A, p) = tr{ [J(u;p, X, )] } : ®)

Then, we can reformulate the node prioritization problem as
9’??75\#3 : miniﬁmize ’ﬁ(ﬁ;p, A, @) (9a)

subject to @'l — Pr <0 (9b)

u=0. (9¢)

Note that the optimal solutions to problems (6) and (9) are
equivalent if and only if N C M. In other words, the optimal
solution to (9) provides the same performance obtained with
the optimal solution to the problem with full knowledge of
the channel coefficients and network deployment in (6) if the
information of the anchors indexed by N; is available.

We consider an abstraction of the model-based optimization
in (9) as a mapping of the node prioritization decisions, ,
given the state x = [pT,S\T,gZJT]T. Let X and U denote

the state space and the decision space, respectively, such that
x € X and u € U. The goal is to design a decision rule
f X = U. Let F denote a parametric family of decision
rules with parameter space ¥. For each @ € ¥, we have
a decision rule f(x,v) € F. In particular, we develop a
node prioritization strategy consisting of two phases, namely
offline training and online operation. In the offline phase,
we determine the parameters i) that provide an adequate
decision rule based on training data. Specifically, we consider
a neural network architecture to approximate a mapping of the
node prioritization decisions obtained by solving the model-
based optimization in (6) [27]. In this regard, we exploit the
approximation capabilities of fully-connected neural networks
[21] to provide an abstraction of model-based optimization. In
the online phase, the trained neural network is employed to
determine the node prioritization decisions.

B. Offline Training

The goal of offline training is to determine the parameters
1 € V¥ that provide an adequate mapping of node prioritization
decisions based on training data. Let {y™), w*(™}, crn
denote the training data indexed by Aipain considering the
information from all the anchors in the network. In the generic
case, y = [pT, AT, T]T is the state of the system with
A=A, 02, 8T and @ = [p1, 2, ..., 0N, | T, and u*
is obtained by solving (6), e.g., by transforming the problem
into an SOCP and using an interior-point method. We consider
data augmentation [21] to take into account different subsets
N, with arbitrary orders and the uncertainty of parameter
estimation. For each instantiation of the augmented data, the
subset N includes the indices of the prioritized anchors
and we consider estimates of p, X, and @ while keeping
the node prioritization decision @ fixed. Then, we have the
augmented training data {:Iz(m),iL*(m)}m6 ... indexed by
Nirain with |j\v/train| > |Nirain|- Given a predefined neural
network architecture, the goal is to determine the parameters
Y* € ¥ for its specific family of parametric decision rules
flx,¢) € F with ¢p € ¥. We refer the reader to [21] for
details on training neural networks.

C. Online Operation

In the online phase, the location-aware network first obtains
measurements from Ny anchors to retrieve the channel quali-
ties. Given an estimate of the agent position, p, and estimates
of the RIIs A and angles ¢ with respect to the anchors with
indices in N, the node prioritization module evaluates

o= f(z,¢7) (10)

where £ = [ﬁT,XT,cﬁT]T. After evaluating (10), @ is
post-processed to guarantee the fulfillment of the problem
constraints, i.e., the total power constraint in (9b) and the
nonnegativity of individual power levels in (9c). The post-

processed NPV is the online node prioritization decision 4.
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Fig. 1. Anchor deployment according to the 3GPP indoor open office layout.

IV. CASE STUDY

This section validates the proposed node prioritization strat-
egy in a case study. We consider ultra-wideband (UWB)
technology [28] based on the IEEE 802.15.4a standard [29].
Specifically, N, = 12 anchors are placed according to the
layout of the 3GPP indoor open office scenario (see Fig. 1)
[23]. The nodes emit UWB root raised cosine pulses com-
pliant with the IEEE802.15.4a standard [29]. The channel
coefficients are modeled according to the IEEE802.15.4a
channel model for the indoor office scenario [24]. We consider
spatially-consistent LOS/NLOS states and channel coefficients
[30] with the parameters of the 3GPP indoor open office
scenario [23]. The RII between nodes in LOS conditions
are determined following [31]. The RII between nodes in
NLOS conditions is set to zero. The noise figure, center
frequency, and maximum power spectral density are 10dB,
6.489 GHz, and -41.3 dBm/MHz, respectively [29]. The trans-
mitting power constraint is set to Pr = 200nW. The training
dataset has |Nipain| = 10000 instantiations of the node
prioritization problem considering random placement of the
agent and full knowledge of the scenario parameters. For each
instantiation of training data, the node prioritization problem
is solved using CVX [32]. The training data is augmented
to |Mrain| = 50000 instantiations with the considerations in
Section III-B. We consider 70% of the data for training and
30% for validation. The localization performance is evaluated
on new instantiations of testing data.

We consider node prioritization strategies with Ny = 4,5,
and 6 anchors. For each value of Ny we train a different
neural network architecture. We consider fully-connected neu-
ral networks consisting of three hidden layers with 64, 128,
and 16 neurons, respectively. The input and output layers of
each architecture have sizes of 2Ny + 2 and Nj, respectively.
The activation functions are rectified linear units. We train
the neural networks via backpropagation using the Adam
algorithm [21] with 30 epochs and batch size of 128. The
loss function for training is the half-mean-square error.

Table I shows the mean values of the root-mean-square error
(RMSE) and loss function evaluated with training and valida-
tion data. The training and validation metrics are evaluated for
the last batch in the training process and all the instantiations
in the validation data, respectively. The small values of the
RMSE and loss function indicate an adequate fitting of the

TABLE I
TRAINING AND VALIDATION RESULTS FOR DIFFERENT
NEURAL NETWORK ARCHITECTURES.

N Training Validation
° RMSE | loss | RMSE | loss
4 0.40 0.08 0.47 0.11
5 0.48 0.12 0.57 0.16
6 0.58 0.17 0.64 0.20
1 T T T T T —]
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Fig. 2. ECDF of the position error metric for different node prioritization
strategies based on random selection with uniform prioritization (dashed lines)
and the proposed data-driven approach using neural networks (solid lines). The
model-based optimization is shown as benchmark.

desired mapping in the training phase. Note that the RMSE of
the predicted NPV increases with Ng. For example, the values
of the RMSE for 4 and 6 selected anchors are 0.40 and 0.58,
which imply an increase of 45%. This increase is due to the
sparsity in the optimal NPV since the trained neural network
cannot predict exact zeros for the inactive nodes.

Next, we evaluate the performance provided by the trained
neural network in online operation. We compare the following
node prioritization strategies:

o model-based optimization — resource allocation based
on (6) with full knowledge of the scenario parameters;

o random selection with uniform prioritization — Ny an-
chors in LOS conditions are selected randomly and the
available power is equally divided among them;

« data-driven node prioritization — N anchors are selected
and the resource allocation is performed with the trained
neural network using estimated parameters.

In the latter strategy, we employ a second neural network for
node selection based on the estimate of the agent position. The
performance is evaluated in terms of the empirical cumulative
distribution function (ECDF) of the position error metric (the
square root of the SPEB).

Fig. 2 shows the performance of the proposed node prioriti-
zation strategies for different values of N;. We can observe that
the data-driven node prioritization strategies outperform con-
ventional strategies based on random selection with uniform
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prioritization. In the latter strategies, increasing Ny improves
the performance since it is more likely to select favorable
nodes. In the data-driven node prioritization strategies, increas-
ing Ny is not favorable due to a less accurate training (see
Table I). Note that the performance of the data-driven node
prioritization strategy with Ny = 4 nodes approaches that of
model-based optimization. For example, the position errors
of the data-driven node prioritization strategy with Ny = 4
and the model-based optimization at the 90th percentile are
0.91 and 0.87 m, respectively, implying a performance loss of
5%. At such mark, the strategy based on random selection
with uniform prioritization for Ny = 6 provides an error of
1.50 m. This implies that the data-driven strategy improves the
performance by 42% with 2 active nodes less. While there is a
slight loss compared to the benchmark, the proposed strategy
based on neural networks is near-optimal with a reduced
amount of information and under parameter uncertainty.

V. CONCLUSION

This paper presented a data-driven approach to node priori-
tization for efficient localization based on neural networks. We
developed a node prioritization strategy for power allocation
consisting of offline training and online operation that exploits
domain knowledge from model-based optimization. Numerical
results validate the proposed strategy and show its near-
optimality with less information available and under parameter
uncertainty. The domain knowledge incorporated in the offline
phase enables efficient training of reliable node prioritization
controllers. The proposed node prioritization strategy shows
the effectiveness of neural networks for improving localization
performance in complex wireless environments.
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