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ABSTRACT

Location awareness is crucial for numerous applications in

fifth generation (5G) and beyond ecosystems. Localization-

of-things (LoT) via soft information (SI) enables accurate

localization, tracking, and navigation of networked nodes.

This paper demonstrates real-time SI-based LoT using ultra-

wideband (UWB) radios. We consider two data collection

approaches and evaluate them via network experimentation

in an indoor environment. Experimental results show the

potential of SI-based LoT using UWB technology to satisfy

service level requirements of 5G and beyond ecosystems.

Index Terms— Localization-of-things, soft information,

machine learning, UWB, experimentation.

1. INTRODUCTION

Location awareness [1] is crucial for numerous applications in

fifth generation (5G) and beyond ecosystems [2–4] including

autonomy [5], smart environments [6], and the Internet-of-

Things [7]. The recently proposed soft information (SI) ap-

proach enables accurate localization-of-things (LoT) [8]. In

particular, LoT requires adequate acquisition and exploitation

of SI from measurements and contextual data. This calls for

experimental efforts focused on data collection for learning

SI from measurements.

Location-aware networks consist of anchors with known

positions and agents with unknown positions. To obtain po-

sition information, agents perform inter- and intra-node mea-

surements. Inter- and intra-node measurements can be ob-

tained via radio signals [9] and inertial sensors [10], respec-

tively. Specifically, ultra-wideband (UWB) signals [11, 12]

are well-suited for inter-node measurements because of their

fine delay resolution and robustness to complex wireless envi-

ronments [11–15]. Owing to its precise positioning capabili-

ties and recent penetration in the market of consumer devices,
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UWB technology has been considered for providing high-

accuracy localization in 5G and beyond ecosystems [16].

Existing localization algorithms infer the positions of

agents via hard-decision techniques based on single-value

estimates (SVEs) such as range estimates from inter-node

measurements. The performance of such algorithms degrades

in complex wireless environments due to biases caused by

multipath propagation and non-line-of-sight (NLOS) condi-

tions. In this regard, machine learning methods have been

employed to identify the propagation conditions and mitigate

their effects in SVEs [17–19]. In particular, SI-based localiza-

tion considers the relationships between measurements and

position information in a probabilistic approach [8, 20]. Such

relationships are encapsulated by generative models that can

be learned from measurements and allow soft-decision local-

ization based on the odds of all the possible position features.

A fundamental aspect for unleashing the capabilities of

SI-based LoT is how to collect measurements for learning SI.

In particular, a well-designed data collection methodology

will enable learning reliable generative models for high-

accuracy SI-based LoT. The goal of this paper is to demon-

strate real-time SI-based LoT under different data collection

approaches using off-the-shelf UWB radios. The key idea

consists of performing network experimentation [21] to col-

lect measurements for learning SI.

This paper demonstrates real-time SI-based UWB LoT

under two different data collection approaches via network

experimentation in an indoor environment. The key contribu-

tions of this paper are as follows:

" demonstration of real-time SI-based UWB LoT via net-

work experimentation in an indoor environment; and

" quantification of the performance provided by genera-

tive models under different data collection approaches.

The remaining sections are organized as follows: Sec-

tion 2 presents an overview of SI-based LoT. Section 3 de-

scribes the network experiments. Section 4 presents the ex-

perimental results. Finally, Section 5 gives our conclusions.
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Notations: Random variables (RVs) are displayed in sans

serif, upright fonts; their realizations in serif, italic fonts. Vec-

tors are denoted by bold lowercase letters. For example, a

variable is denoted by x; and a random vector and its realiza-

tion are denoted by x and x, respectively. Sets are denoted

by calligraphic font. For example, a set is denoted by X .

The function fx(x) denotes the probability distribution func-

tion (PDF) of a RV x; and fx|y(x|y) denotes the PDF of x

conditioned on y = y. Operators E{·} and P{·} denote the

expectation and probability of the argument. The norm of a

vector x is denoted by ‖x‖.

2. PRELIMINARIES

This section presents an overview of SI-based LoT focused

on the setting that will be evaluated via experimentation.

2.1. System Model

Consider a non-cooperative location-aware network consist-

ing of Nb anchors and a single agent. The index set of an-

chors is denoted by Nb = {1, 2, . . . , Nb}. The positions of

the agent and anchor i are denoted by p and pi, respectively.

The distance between the agent and anchor i is denoted by

di = ‖p 2 pi‖. The goal is to determine the agent position

based on inter-node measurements and environmental infor-

mation. Let yi denote the inter-node measurements that the

agent obtains from anchor i. The measurements in yi are

related to a feature vector θi that depends on p. In particu-

lar, we consider range measurements yi = [d̂i] and features

θi = [di]. Furthermore, let µ denote the environmental infor-

mation. Such information provides prior knowledge for the

inference of p. Specifically, we consider the context provided

by a digital map.

2.2. SI-based LoT

SI-based LoT exploits soft feature information (SFI) and soft

context information (SCI) to infer the positions of agents [8].

Specifically, SFI and SCI encapsulate the position informa-

tion provided by measurements and the environmental infor-

mation provided by contextual data, respectively.

In a non-Bayesian setting, the positions and features are

unknown parameters. In this setting, the SFI provided by a

measurement y is a function of the feature vector θ given by

Ly(θ) ? fy(y; θ) . (1)

In a Bayesian setting, the positions and features are consid-

ered as RVs and the SFI is given by

Ly(θ) ? fy|θ(y|θ) . (2)

In particular, we consider soft range information (SRI) ob-

tained from range measurements, i.e., L
d̂
(d).

The SCI provided by contextual data is a function of the

feature vector θ. In a Bayesian setting, the SCI provided by a

digital map can be incorporated as a prior distribution of the

agent position. Hence, the SCI provided by µ is given as

Φµ(p) ? fp(p;µ) . (3)

In non-cooperative localization, the position of the agent

is inferred based on the measurements and contextual data

obtained. In a non-Bayesian setting, the position estimate is

given by

p̂ = arg max
p̃

∏

i∈Nb

L
d̂i
(d̃i) . (4)

where d̃i = ‖p̃2 pi‖. In contrast to (4), SCI can be incorpo-

rated directly in a Bayesian setting. Considering the SCI, the

position estimate is given by

p̂ = arg max
p̃

Φµ(p̃)
∏

i∈Nb

L
d̂i
(d̃i) . (5)

2.3. Acquisition and Exploitation of SI for LoT

SI-based LoT consists of three steps: (i) acquisition of mea-

surements and contextual data; (ii) characterization of SFI and

SCI; and (iii) position inference based on SFI and SCI [8].

The SFI can be characterized by a generative model [8, 20].

Such a model can be obtained from measurements and posi-

tion features via machine learning techniques [22]. The SFI of

a new measurement y is obtained from the generative model

for Ly(θ). SI-based algorithms for LoT are divided in two

phases, namely offline training and online operation [8]. In

the training phase, a generative model is learned from mea-

surements, position features, and contextual data. In the oper-

ation phase, the SI of new measurements and contextual data

is determined from the generative model to infer the positions

of agents. The training phase is performed offline since it

requires acquiring measurements and learning SI from them.

The operation phase is performed online since it determines

the SI of new measurements to infer the positions of agents.

The characterization of SFI from measurements can be

challenging, especially for complex wireless environments.

Machine learning techniques to learn generative models for

SFI include fitting Gaussian mixture models [8], kernel den-

sity estimation [20], and deep neural networks [23]. While

the SI framework can be applied using any kind of measure-

ments and features, the methodology and techniques to learn

and exploit SI are technology-dependent. For example, pre-

processing techniques may be required to facilitate training.

Moreover, the obtained measurements can have high dimen-

sionality, e.g., vectors with samples of the received waveform.

In such a case, dimensionality reduction is crucial for effi-

cient LoT [8].
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Fig. 1. Experimentation environment at the Department of

Engineering, University of Ferrara.

3. NETWORK EXPERIMENTATION

This section describes the network experiments for collecting

measurements to learn SI and evaluate SI-based LoT.

3.1. Measurement Setup

Consider a location-aware network with Nb anchors and a

single agent. The anchor deployment is fixed and Nl land-

mark positions with index set Nl = {1, 2, . . . , Nl} are con-

sidered. Specifically, the considered LoT system consists of

UWB radios providing only range measurements. The UWB

radios employed in the experimentation are compliant with

the IEEE 802.15.4 standard. Such radios operate at 3.9 GHz

with 500 MHz bandwidth, and provide a range measurement

via a proprietary two-way ranging technique every 100 ms.

The network experiments are performed in a typical in-

door environment at the Department of Engineering, Univer-

sity of Ferrara (see Fig. 1). The experimental setup consists

of Nb = 3 anchors (labeled B1-B3) and Nl = 51 landmarks.

Fig. 2 shows the map of the experimentation environment

with the positions of anchors and landmarks. The choice of

the anchor deployment is to have at least one anchor in NLOS

conditions for most landmark positions. This choice is made

to demonstrate SI-based localization techniques in a challeng-

ing scenario where conventional methods typically fail to pro-

vide desirable performance.

3.2. Measurement Campaign

Network experiments for acquiring measurements to learn SI

can be performed under two different approaches. The first

approach consists of collecting measurements to provide a

general description of SFI for operating in environments simi-

lar to the experimentation environment but not necessarily the

same [8, 20]. Examples of network experiments for this pur-

pose include those involving two nodes in line-of-sight (LOS)

conditions with different types of clutter and NLOS condi-

tions with different types of blockages at different separation

distances (e.g., see [21]). In contrast, the second approach
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Fig. 2. Map of the experimentation environment with the po-

sitions of anchors (red annulus) and landmarks (blue crosses).

The grey areas represent locations that cannot be accessed by

the nodes.

consists of collecting measurements to provide a specific de-

scription of SFI for operating in the same environment. In this

approach, the goal is to collect measurements for characteriz-

ing the SFI provided by each anchor in a fixed position. While

the first approach enables accurate localization by learning a

single general model for any anchor operating in similar en-

vironments, the latter can provide enhanced localization per-

formance in the specific environment by learning a model for

each deployed anchor. In the following, we refer to these ap-

proaches as general and site-specific, respectively.

The characterization of the SFI provided by an anchor re-

quires measurements with the agent placed in different posi-

tions. First, we collect measurements between an anchor and

an agent in general settings considering both LOS and NLOS

conditions for distances ranging from 0.3 to 15 m. The ex-

periments for LOS conditions are performed in the two areas

of the experimentation environment, namely the corridor and

the meeting room (see Fig. 1). The experiments for NLOS

are performed between the two areas with walls and doors as

blockages considering different angles among the nodes. In

the site-specific setting, the range measurements are collected

for the three anchors in Fig. 2 with the agent placed in all the

considered landmarks. The experiments in both settings con-

sist of placing the agent in the corresponding position with

the antenna pointing to four predefined directions. To pro-

vide further robustness to the wireless environment, two type

of experimental conditions are considered: (i) static environ-

ment, where the channel conditions are determined by the

walls and clutter (chairs and tables), and (ii) dynamic envi-

ronment, where the channel conditions are changed over time

by a person walking in the experimentation environment.
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Table 1. Performance of localization methods with general

and site-specific models. Localization error evaluated in cm.
Method emed e95 Po(10) Po(50) Po(100)

G1 37.5 162.6 83.5% 37.7% 15.0%

G2 41.6 154.0 85.2% 42.9% 16.3%

G4 34.1 174.7 85.94% 35.13% 15.0%

S1 31.5 105.6 93.3% 19.6% 6.5%

S2 14.8 135.2 63.8% 16.3% 7.3%

S4 14.7 129.1 62.6% 13.6% 6.7%

S1 + SCI 31.5 101.6 93.3% 19.6% 5.3%

S2 + SCI 14.6 102.4 63.5% 15.2% 5.5%

S4 + SCI 14.5 107.5 62.4% 12.7% 5.5%

4. EXPERIMENTAL RESULTS

This section evaluates real-time SI-based LoT under the two

data collection approaches considered.

4.1. Performance Metrics

Consider the localization error and localization error outage

(LEO) as the performance metrics for the evaluation of SI-

based LoT [21]. Specifically, the localization error for an

agent placed at p is given by

e(p) = ‖p̂2 p‖ . (6)

The LEO is given in terms of the outage probability based on

the localization error as

Po(eth) = P{e(p) > eth} = E
{

1(eth,∞)

(

e(p)
)}

(7)

where eth is the target error and 1A(x) = 1 when x * A and

0 otherwise. We consider the median and 95th percentile of

the localization error, which are given in terms of the LEO as

emed = P−1
o (0.5) and e95 = P−1

o (0.05), respectively.

4.2. Performance of SI-based LoT

The localization performance is evaluated for different gen-

erative models learned from the collected measurements. We

consider learning SRI by fitting training measurements to

Gaussian mixture models with different number of compo-

nents, namely 1, 2, and 4. The measurements of the general

setting are all employed for training. The measurements of

the site-specific setting are separated for training (70%) and

performance evaluation (30%). The localization methods

using SRI learned from measurements for general and site-

specific settings are denoted as Gi and Si, where i indicates

the number of components in the Gaussian mixture models.

We evaluate the performance provided by the generative mod-

els on the test data obtained in the site-specific setting. The

performance is also evaluated considering SCI provided by a

digital map of the experimentation environment. Specifically,

the SCI is modeled as a uniform distribution over the set of

allowed positions (i.e., the white area in Fig. 2).
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Fig. 3. LEO for localization methods with general and site-

specific models.

Table 1 shows the performance of different localization

methods with general and site-specific models on validation

data. We observe that the generative models learned from

site-specific measurements provide higher localization accu-

racy. For example, the localization method S2 reduces the

median localization error with respect to G2 by 64%. Fur-

thermore, SCI provides a further performance improvement

by adding map information. Note that methods using site-

specific models in combination with SCI can provide subme-

ter accuracy for 94% of the cases. In addition, these tech-

niques can achieve a localization accuracy below 10 cm for

at most 37% of the cases. To provide a further comparison,

Fig. 3 shows the LEO for different localization techniques

on validation data, where we observe the gain provided by

training with site-specific measurements over the case with

those in a general setting. While a site-specific data collec-

tion can improve localization accuracy, it requires a training

phase with higher complexity, i.e., measurements with all the

deployed anchors. Therefore, there is a tradeoff between the

complexity of the training phase and the localization perfor-

mance. In the deployed LoT system with the developed mod-

els, the position estimate is updated before new measurements

are available, confirming real-time operation.

5. CONCLUSION

This paper demonstrates real-time SI-based UWB LoT under

two different data collection approaches. We performed net-

work experimentation to collect measurements for learning SI

and evaluating SI-based LoT. Experimental results show that

SI-based techniques using only range measurements can pro-

vide desirable localization performance, especially with gen-

erative models learned from site-specific measurements. In

particular, the results reveal a tradeoff between the complex-

ity of the training phase and localization performance. This

experimental work shows the potential of SI-based LoT using

UWB technology to satisfy service level requirements of 5G

and beyond ecosystems.
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