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Abstract—The massive amount of data related to spatiotem-
poral mobility offers new opportunities to understand human
behaviors. However, with the increase of volume and complexity
of mobility data, it has become challenging to retrieve important
information and critical features of spatiotemporal mobility. In
particular, predicting large-scale travel demands is challenging
and requires a high computational load. This paper introduces a
data-driven approach for estimating high-dimensional travel de-
mands. We propose a method to identify mobility patterns using
a probabilistic tensor decomposition approach for interpreting
the complexity and uncertainty of mobility data. Expectation-
maximization (EM) algorithm is applied for inferring mobility
patterns. A case study is presented, where the proposed model is
applied to New York city taxi data. The results show the model
performance according to the number of origin and destination
patterns and the number of trip data used. The probabilistic
modeling results provide a deeper understanding of large-scale
mobility data in the spatiotemporal dimension.

Index Terms—Human mobility, travel demand modeling, prob-
abilistic mobility pattern, tensor decomposition, data-driven es-
timation

I. INTRODUCTION

Mobility data are essential to understand human activities
and evaluate mobility systems. Over the past decade, informa-
tion and communications technologies have helped to obtain
large quantities of mobility data [1] such as smart phone data
[2], [3], taxi trip data [4], and smart card transit data [5], [6].

Travel demand models have been determined in the last
decades using mobility data including the four-step models,
activity-based models, and statistical models [7], [8]. As the
knowledge of travel demand in terms of origin and destination
became important to plan efficient routes for decision making
in transport service design, route planning, and fleet manage-
ment [9], [10], there has been active discussion of origin-
destination (OD) demand estimation in previous literature.
Autoregressive integrated moving average (ARIMA) [11],
[12], Poisson model [12], least-square modeling [13], and
Kalman-filter [14] are well-known approaches for estimating
time-series travel demand using historical data.

With the increased number of attributes and the spatial and
temporal resolution of data, it becomes challenging to reveal
major mobility patterns [15]. As a part of an effort to find the
low-order dynamics that makes spatiotemporal patterns, the
application of decomposition approaches to traffic data has
recently received attentions. The goal of tensor decomposition
is to capture the multi-dimensional structural dependencies

by clustering data attributes and forcing representations of
large datasets in terms of a small number of substructures
[16]. Given its strength in retrieving information from large
datasets, tensor decomposition has played an important role
in discovering urban travel patterns [17]. Regardless of the
number of attributes, identification of spatial and temporal
travel patterns has been the major goal of the travel pattern
identification research using tensor decomposition [18]-[21].

Most of the OD demand estimation studies over the past
decades have focused on the quantity of travel demand. On
the other hand, as reliability and resilience become issues in
many mobility services, a more comprehensive understanding
of demand stochasticity is required for transportation systems
[22]. Few previous studies have identified spatial and temporal
mobility patterns using a multi-way probabilistic factorization
[15]. To expand the usability of the mobility patterns to predict
future demand, it needs identification of patterns that are
fixed or changeable over time, which helps to reduce the
computational cost, especially when the data dimension is
large. In addition, the effect of the number of patterns to
the demand estimation accuracy needs to be further examined
[15], [171, [23], [24].

The goal of this paper is to identify spatiotemporal mobility
patterns from high-dimensional datasets using probabilistic
tensor decomposition. We design an estimation algorithm to
infer probabilistic mobility patterns, which allows to interpret
the complexity and uncertainty inherent in the mobility data.
We advocate the importance of temporal interactions among
OD patterns to improve efficiency and accuracy of the demand
estimation. The key contributions of this paper are as follows:

e we provide a probabilistic characterization of mobility
patterns via a probabilistic tensor decomposition ap-
proach;

e we investigate how the number of possible spatiotemporal
mobility patterns affects the demand estimation accuracy;
and

e we apply the proposed model to New York city taxi data
to reveal key trip information.

The remaining sections are organized as follows: Section II
presents an approach for modeling and estimating trip demand.
Section III provides modeling and estimation results using
New York taxi data. Finally, Section IV gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors

3333

Authorized licensed use limited to: MIT Libraries. Downloaded on October 24,2023 at 17:47:54 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE International Conference on Communications (ICC): SAC Big Data Track

and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and its
realization are denoted by x and x; a random matrix and its
realization are denoted by X and X, respectively. Sets and
random sets are denoted by upright sans serif and calligraphic
font, respectively. For example, a random set and its realization
are denoted by X and X, respectively.

II. TRAVEL DEMAND MODEL ESTIMATION

This section presents the framework on OD demand mod-
eling in a probabilistic way. The goal of this section is to
characterize the demand probability distribution by discover-
ing basis mobility patterns and temporal interactions among
patterns.

A. Probabilistic trip demand model

A set of observed trip data X £ {x;,Vi = 1,2,...,n}
consists of realizations of the independent and identically
distributed (i.i.d.) random trip demand x; £ [o;,d;, t;]T with
the common probability mass function (PMF) py(x). The
random variables o;,d;, and t; represent the indices of the
origin, destination, and departure time of the trip demand
such that o; € {1,2,...,W,},d; € {1,2,... Wy}, t; €
{1,2,...,W;}. Similarly, the i-th trip data is expressed as

z; = [oi,di ;] Vi=1,2,...n. (1

The spatial and temporal probability distribution of trip
demand can be expressed as a W, x W4 x W; tensor V.
Each element of V is defined as

[V]CO7Cd7Ct :px([co,cd,ct]T) (2)

where c¢,, ¢4, and ¢ are the cell indices of the origin, destina-
tion, and time axes of V/, respectively.

We aim to reveal the origin pattern and destination pattern
inherent in the trip data & and their temporal interactions
based on a probabilistic factorization approach. While an
arbitrary tensor can be broken down using traditional tensor
decomposition techniques, the probabilistic trip demand tensor
can only be decomposed if certain conditions are met: i) the
sum of the modeled tensor is 1 and ii) each pattern as well as
temporal interactions are probabilistic. Given these constraints,
we employ a probabilistic factorization approach to achieve
the desired results. Specifically, the time domain is deliber-
ately left undecomposed to retain the temporal interactions
between origin and destination patterns. From this approach,
we provide insights on the correlation between the patterns
over time.

Latent class models are applied in this paper to infer the
distribution py(x) in order to establish a connection between
observed multivariate categorical data and a set of latent
classes. This connection is necessary to capture the interac-
tions between origin and destination pattern. The distribution
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Fig. 1. Description on @) and @),

px(x) is assumed to follow the categorical distribution with a
parameter O, i.e., ¢ (x; @) with

6 L[0 e 3)

where ©(©) and ©?) denote the origin pattern and destination
pattern, respectively. When the numbers of patterns in origins
and destinations are set to K, and Kjg, respectively, the
dimensions of @) and @Y are given by K, x W, and
K4 x Wy, respectively. For example, let us assume that we
have trip data composed of four origins and five destinations,
where W, = 4 and Wy = 5. Since we want to find
macroscopic movement patterns based on the trip data, the
number of origin and destination patterns is set as smaller than
that of the origins and destinations, i.e, K, =2 and K4 = 3.
In this case, @) and @@ can be described as Figure 1.

In detail, the k-th row of @(°) is the k-th origin pattern
and denoted as 01(;:,)7 ko =1,2,..., K,. Each element of 0,(62),

which is denoted as 91(:23%, represents the composition ratio
oD

of a cell ¢, in the k-th origin. In a similar way, 6, ; is
the element of 0,(5). These distributions should satisfy the

following constraints:

Ws Wy
> = el =1. )
co=1 cq=1

As a source of modeling occurrence probability distribution
of the trip demand, a core tensor II is defined as temporal
interaction information among @) and @(?). Since there are
K, origin basis patterns and K4 destination basis patterns,
there are KKy interactions for each time. Since the length
of time is W4, the dimension of IT is (K,, K4, W;). For each
time index cg, the probability that a trip belongs to the k,-th
origin pattern and the kq-th destination pattern is defined as
Wl(citk)d’ which satisfies

3 T =1 (5)
ko, ka

Using @ and II, the occurrence probability of x; = x; is
modeled by a parameterized function as px(x;) = ¢« (x;; O),
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which is given by

W(i;0) = P{x; = z;; O}
K, Ka
ti o d
= Z Z ﬂ'](fok);do(()iz?ool(iil)cd' (6)
ko=1kq=1

In (6), the probability that o, is o, and belongs to the k, pattern
is given by 95?,10, and the probability that d; is d; and belongs
to the kq pattern is given by 955,)6(1.

B. Model inference

For  tractable maximum  likelihood  estimation
of ® using the expectation-maximization (EM)
algorithm, we introduce latent variables z; S
{[ko,kd]T|ko — 1,2, Ko kg = 1,2,...,Kd} on the
joint membership across all combinations of the OD patterns.
From (6), the joint probability that x; = x; and z; = z;, Vi is
given by

(x4 g0) gl

I(zi=[ko,kal)
koka” oiko dqzkd]

)

where I is an indicator function with I = 1 if e is true and 0
otherwise. The log likelihood of ® can be written as,

n K, Kg
S S e o)
i=1 ko=1kq=1

(log w(t ) +log 9(0) _+log Géd,)gd). )

The EM algorithm first initializes & and I with random
values satisfying (4) and (5). Then, the following iterative
procedures successively approximate @ until certain conver-
gence criterion is met. Parameters updated at ¢-th iteration are
denoted as @ and IT!.

o E-step compute the expected log likelihood of @ as
follows,

Ezixot-1 {IOgPX,Z(X, Z;0)|X; @[t—ll}
K, Kga

:Z Z Z yoka [1Ogﬂ—k oy +1og9 —|—log9 }

i=1 ko=1 ka=1
(10)

= [koy ka]) i O 11}
{2 = ko, kalwi; 011}
(11)
e M-step Update ® with

el argmaxEZ|X;@[t71]{1ogpx_,z(X, Z,0)|x; @[t*”}.
e

12)

In (10), vakd can be updated by applying the Bayes’
theorem as follows,

Kok kk[tle(ok dk
7 = Il @ (3)
Shi St mons ok, B,
where ﬂ',(: ,2” denotes the ¢-th updated value of w,(g ]2 The

optimal solution for the problem in (12) can be derived
analytically, and the new value of @[ is updated given by

Ko o
g _ Dic1 D ket de 1 Hoi = co, ko = ké)”Yf ha

cokl T o
Ez 1Zk0_1 de 1 I(ko = ké)ﬁ ha
(14)
Kok
gDl _Zz IZk =1 kd 1 Udi = ca, ka = Ky
cak!, T
A Zz 1 Zko_l de 1 I(kq = ké)%{c oha
s5)
where 6‘ t and H(d [t] denote the t-th updated value of
H(Ok, and 9( 3@, , respectlvely Since II denotes the probability

that a trip belongs to the k,-th origin pattern and the k4-th
destination pattern, based on (11), IT [t is updated as

Z ,ykokd
3

Ge, =1

ot _ 1

Ne,

(16)
where 7., denotes an index of the observed trip data that have
the departure time ¢; belonging to c;, while n., is the number
of the observed trip data that fall into under this category.

Using the result of the EM algorithm, i.e., ® and IT, V in
(2) is obtained by as follows,

V(@) mew. (17)

ITI. CASE STUDY
A. Data description

We use yellow taxi trip record data in New York city. Taxi
and Limousine Commission opens the taxi trip data from 2009.
The taxi trip data have individual trip information including
pick-up and drop-off location, pick-up and drop-off date/time,
trip distances, fares, payment types, and number of passengers
etc. Pick-up and drop-off locations are indicated by 260 taxi
zone IDs, of which 66 are taxi zones in Manhattan. The data
have been frequently used in various works for human trip
behavior analysis and demand estimation [25], [26].

In particular, we use the records of pick-up and drop-off
location, date/time, and number of passengers of individual
trips that occurred during December 2018. In December 2018,
the number of trips by yellow taxis is 24,648,499, and the
average daily number of trips is about 48,600. A single trip
is represented by a multivariate tuple with three attributes of
origin zone ID, destination zone ID, and departure time as in
(1). The trip information fits with the tensor representation
by aggregating departure time to 30-minute intervals since
the spatial dimension (origin and destination) has aggregated
values at the zone IDs. Then, the number of passengers of
each combination can be counted correspondingly.
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Modeling accuracy (JSD)

5 20 35 50 65
Ko, Kq

Fig. 2. Effect of K, and K4 on the modeling accuracy with K, = K.

B. Modeling performance

The New York taxi data is analyzed using the proposed
method, revealing fundamental trip patterns and temporal
interactions between patterns, and estimating the trip occur-
rence probability. The temporal range of trip pattern modeling
is set to 6:30 — 10:30 AM. The total number of possible
combinations is 265 x 265 x 8 = 540,800 and the number
of unique combinations observed is 15,175 with a minimum
count of 1 and a maximum count of 175. The number of basis
trip patterns determines the capacity of the model. More basis
patterns can describe the trip patterns in more detail, which
may help to fit better to the data, but in the meanwhile, it
makes difficult to interpret the modeling result and requires
higher computation loads. The convergence criteria is set to
be the average of relative changes in basis patterns being less
then 10~°, and maximum iteration is set to 10,000.

The accuracy of the proposed model in (17) is evaluated
by comparing it to the probability distribution given by the
sample mean of the New York taxi data such that

n

Viesor ® =S (0 = cords = carti = ). (18)
=1

3

Specifically, the Jensen-Shannon divergence (JSD) between
two probability distributions (17) and (18) is used as the model
accuracy. The JSD is non-negative and symmetric, which
becomes zero if only if two distributions are identical.

Figure 2 describes how the accuracy of the proposed model
changes according to K, and Kg. The modeling accuracy
of the y axis in the figure is measured by JSD. Each box
plot has modeling results for all time periods. As K, and Kg
increase, the difference between two distributions gets smaller,
which means the modeling accuracy increases. These results
indicate that setting K, and K4 values large help the model
to fit the data with the high capacity to describe a variety of
phenomenon. Larger K, and K4, the better ability to express
the detailed highs and lows of values.

Figure 3 shows the impact of the number of trip data used
for modeling to the model accuracy in K, = Kq = 5 case.
The number of trip data in New York city varies in different
time periods. Starting from 1,719 at 6:00 AM, it rises to
10,377 by 10:30 AM. We can observe that the JSD changes in

== Modeling accuracy (JSD)
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Fig. 3. Temporal changes in the modeling accuracy according to the number
of trip data when K, = Kq = 5.

the opposite direction to the number of trip data. The model
accuracy increases as more data are used in modeling. As
the number of trip data increases by 503.66 %, the modeling
accuracy is improved by 66.64 %. Based on Figures 2 and
3, it can be concluded that the number of basis trip patterns
and the amount of trip data sufficient to describe complex trip
behaviors are key factors for improving the modeling accuracy.

C. Basis trip patterns analysis

To analyze the modeling result in more detail, the origin and
destination basis trip patterns are visualized. To make the result
interpretable, K, and K4 are set to 5. Figure 4 and 5 display
the column factors of the basis trip patterns @(®) and ©?),
respectively. To better visualize the pattern configuration, the
values in each column are rescaled to 0-1 so that 9;10130 =
0}, /max(8).

In Figures 4 and 5, it is noticeable that Manhattan areas
show strong patterns in most of @) and @(?). Manhattan
consists of 69 taxi zones, which is larger number compared
to other areas since Manhattan occupies the high portion of
taxi demands. In both @) and @@, the 69 taxi zones
in Manhattan are grouped into four patterns except Oéo)
and 0éd), which contains trip patterns from and to John F.
Kennedy International Airport and LaGuardia Airport. From
6'” and 6\ 10 65 and 6", areas of uptown, upper-east
side and midtown-east, downtown including financial district,
and midtown are grouped to different origin and destination
patterns.

D. Temporal interactions analysis

Figure 6 shows the heat plots of II. It can be observed
that IT does not change suddenly; rather, it changes slowly
and steadily over several hours. Before morning peak hour in
6(a), trips from downtown areas described in 0&0) to outside
of Manhattan in 0éd) are exclusively dominant demand. From
morning peak hours, it can be seen that four types of trips
remain popular: from downtown to outside of Manhattan, from
airports to downtown, from uptown to midtown, and trips
within the uptown area. For the trips from and to airports,
the downtown area is the dominant origins and destinations,
and demand is consistently high during the day.
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(a) 6% (b) 6 © 65 ) 65 ©) 65

0 0.5 1

Fig. 4. Origin basis trip patterns ©©) modeled when K, = 5.

Sup,

O (b) 6L © 65 @ 6} @ 65

Fig. 5. Destination basis trip patterns @(4) modeled when K4 = 5.

i : 3 4 5 i : 3 4 5 i : 3 4 5 i 2 ] 4 5 i 2 ] 4 5
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(a) IT1 6:00-6:30 AM (b) IT2 6:30-7:00 AM (c) II3 7:00-7:30 AM (d) IT4 7:30-8:00 AM (e) ITs 8:00-8:30 AM

i 2 3 4 5 i 2 3 4 5 1 2 3 4 5 1 2 3 4 5
kq ka ka ka
(g) ITe 8:30-9:00 AM (h) IT7 9:00-9:30 AM (i) ITg 9:30-10:00 AM (j) IT9 10:00-10:30 AM

Fig. 6. Temporal interactions IT modeled when K, = K4 = 5.
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IV. CONCLUSION

This paper proposed a travel demand estimation model for
identifying spatiotemporal mobility patterns using a tensor
factorization. We utilized a probabilistic tensor factorization
approach to reveal basis patterns and temporal interactions
between patterns to model the probability distribution of trip
demand. EM algorithm is applied for inferring mobility pat-
terns efficiently. The model was applied to New York taxi data
with 260 origins and destinations. The low-rank approximation
results allowed us to analyze the basis patterns of the New
York taxi trips. Results show the modeling performance with
respect to the number of patterns and amount of trip data
used. In addition, the result of the clustered mobility patterns
reveal the underlying spatiotemporal structure of highly com-
plex human mobility data. The proposed approach enriches
the information in mobility data by providing intuitive low-
dimensional trip patterns of multi-dimensional mobility.
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