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Abstract—The massive amount of data related to spatiotem-
poral mobility offers new opportunities to understand human
behaviors. However, with the increase of volume and complexity
of mobility data, it has become challenging to retrieve important
information and critical features of spatiotemporal mobility. In
particular, predicting large-scale travel demands is challenging
and requires a high computational load. This paper introduces a
data-driven approach for estimating high-dimensional travel de-
mands. We propose a method to identify mobility patterns using
a probabilistic tensor decomposition approach for interpreting
the complexity and uncertainty of mobility data. Expectation-
maximization (EM) algorithm is applied for inferring mobility
patterns. A case study is presented, where the proposed model is
applied to New York city taxi data. The results show the model
performance according to the number of origin and destination
patterns and the number of trip data used. The probabilistic
modeling results provide a deeper understanding of large-scale
mobility data in the spatiotemporal dimension.

Index Terms—Human mobility, travel demand modeling, prob-
abilistic mobility pattern, tensor decomposition, data-driven es-
timation

I. INTRODUCTION

Mobility data are essential to understand human activities

and evaluate mobility systems. Over the past decade, informa-

tion and communications technologies have helped to obtain

large quantities of mobility data [1] such as smart phone data

[2], [3], taxi trip data [4], and smart card transit data [5], [6].

Travel demand models have been determined in the last

decades using mobility data including the four-step models,

activity-based models, and statistical models [7], [8]. As the

knowledge of travel demand in terms of origin and destination

became important to plan efficient routes for decision making

in transport service design, route planning, and fleet manage-

ment [9], [10], there has been active discussion of origin-

destination (OD) demand estimation in previous literature.

Autoregressive integrated moving average (ARIMA) [11],

[12], Poisson model [12], least-square modeling [13], and

Kalman-filter [14] are well-known approaches for estimating

time-series travel demand using historical data.

With the increased number of attributes and the spatial and

temporal resolution of data, it becomes challenging to reveal

major mobility patterns [15]. As a part of an effort to find the

low-order dynamics that makes spatiotemporal patterns, the

application of decomposition approaches to traffic data has

recently received attentions. The goal of tensor decomposition

is to capture the multi-dimensional structural dependencies

by clustering data attributes and forcing representations of

large datasets in terms of a small number of substructures

[16]. Given its strength in retrieving information from large

datasets, tensor decomposition has played an important role

in discovering urban travel patterns [17]. Regardless of the

number of attributes, identification of spatial and temporal

travel patterns has been the major goal of the travel pattern

identification research using tensor decomposition [18]–[21].

Most of the OD demand estimation studies over the past

decades have focused on the quantity of travel demand. On

the other hand, as reliability and resilience become issues in

many mobility services, a more comprehensive understanding

of demand stochasticity is required for transportation systems

[22]. Few previous studies have identified spatial and temporal

mobility patterns using a multi-way probabilistic factorization

[15]. To expand the usability of the mobility patterns to predict

future demand, it needs identification of patterns that are

fixed or changeable over time, which helps to reduce the

computational cost, especially when the data dimension is

large. In addition, the effect of the number of patterns to

the demand estimation accuracy needs to be further examined

[15], [17], [23], [24].

The goal of this paper is to identify spatiotemporal mobility

patterns from high-dimensional datasets using probabilistic

tensor decomposition. We design an estimation algorithm to

infer probabilistic mobility patterns, which allows to interpret

the complexity and uncertainty inherent in the mobility data.

We advocate the importance of temporal interactions among

OD patterns to improve efficiency and accuracy of the demand

estimation. The key contributions of this paper are as follows:

• we provide a probabilistic characterization of mobility

patterns via a probabilistic tensor decomposition ap-

proach;

• we investigate how the number of possible spatiotemporal

mobility patterns affects the demand estimation accuracy;

and

• we apply the proposed model to New York city taxi data

to reveal key trip information.

The remaining sections are organized as follows: Section II

presents an approach for modeling and estimating trip demand.

Section III provides modeling and estimation results using

New York taxi data. Finally, Section IV gives our conclusions.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors
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and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its

realization are denoted by x and x; a random vector and its

realization are denoted by x and x; a random matrix and its

realization are denoted by X and X , respectively. Sets and

random sets are denoted by upright sans serif and calligraphic

font, respectively. For example, a random set and its realization

are denoted by X and X , respectively.

II. TRAVEL DEMAND MODEL ESTIMATION

This section presents the framework on OD demand mod-

eling in a probabilistic way. The goal of this section is to

characterize the demand probability distribution by discover-

ing basis mobility patterns and temporal interactions among

patterns.

A. Probabilistic trip demand model

A set of observed trip data X , {xi, ∀i = 1, 2, . . . , n}
consists of realizations of the independent and identically

distributed (i.i.d.) random trip demand xi , [oi, di, ti]
T with

the common probability mass function (PMF) px(x). The

random variables oi, di, and ti represent the indices of the

origin, destination, and departure time of the trip demand

such that oi ∈ {1, 2, . . . ,Wo}, di ∈ {1, 2, . . . ,Wd}, ti ∈
{1, 2, . . . ,Wt}. Similarly, the i-th trip data is expressed as

xi =
[

oi, di, ti
]T

, ∀i = 1, 2, . . . , n. (1)

The spatial and temporal probability distribution of trip

demand can be expressed as a Wo × Wd × Wt tensor V .

Each element of V is defined as

[V ]co,cd,ct = px([co, cd, ct]
T) (2)

where co, cd, and ct are the cell indices of the origin, destina-

tion, and time axes of V , respectively.

We aim to reveal the origin pattern and destination pattern

inherent in the trip data X and their temporal interactions

based on a probabilistic factorization approach. While an

arbitrary tensor can be broken down using traditional tensor

decomposition techniques, the probabilistic trip demand tensor

can only be decomposed if certain conditions are met: i) the

sum of the modeled tensor is 1 and ii) each pattern as well as

temporal interactions are probabilistic. Given these constraints,

we employ a probabilistic factorization approach to achieve

the desired results. Specifically, the time domain is deliber-

ately left undecomposed to retain the temporal interactions

between origin and destination patterns. From this approach,

we provide insights on the correlation between the patterns

over time.

Latent class models are applied in this paper to infer the

distribution px(x) in order to establish a connection between

observed multivariate categorical data and a set of latent

classes. This connection is necessary to capture the interac-

tions between origin and destination pattern. The distribution

θ
(o)
1

θ
(o)
2

θ
(d)
3

θ
(d)
2

θ
(d)
1

Wo = 4

Wd = 5

Fig. 1. Description on Θ(o) and Θ(d).

px(x) is assumed to follow the categorical distribution with a

parameter Θ, i.e., qx(x;Θ) with

Θ , [Θ(o),Θ(d)] (3)

where Θ
(o) and Θ

(d) denote the origin pattern and destination

pattern, respectively. When the numbers of patterns in origins

and destinations are set to Ko and Kd, respectively, the

dimensions of Θ
(o) and Θ

(d) are given by Ko × Wo and

Kd × Wd, respectively. For example, let us assume that we

have trip data composed of four origins and five destinations,

where Wo = 4 and Wd = 5. Since we want to find

macroscopic movement patterns based on the trip data, the

number of origin and destination patterns is set as smaller than

that of the origins and destinations, i.e, Ko = 2 and Kd = 3.

In this case, Θ(o) and Θ
(d) can be described as Figure 1.

In detail, the k-th row of Θ
(o) is the k-th origin pattern

and denoted as θ
(o)
ko

, ko = 1, 2, . . . ,Ko. Each element of θ
(o)
ko

,

which is denoted as θ
(o)
coko

, represents the composition ratio

of a cell co in the k-th origin. In a similar way, θ
(d)
cdkd

is

the element of θ
(d)
kd

. These distributions should satisfy the

following constraints:

Wo
∑

co=1

θ
(o)
cok

=

Wd
∑

cd=1

θ
(d)
cdk

= 1. (4)

As a source of modeling occurrence probability distribution

of the trip demand, a core tensor Π is defined as temporal

interaction information among Θ
(o) and Θ

(d). Since there are

Ko origin basis patterns and Kd destination basis patterns,

there are KoKd interactions for each time. Since the length

of time is Wt, the dimension of Π is (Ko,Kd,Wt). For each

time index ct, the probability that a trip belongs to the ko-th

origin pattern and the kd-th destination pattern is defined as

π
(ct)
kokd

, which satisfies

∑

ko,kd

π
(ct)
kokd

= 1. (5)

Using Θ and Π , the occurrence probability of xi = xi is

modeled by a parameterized function as px(xi) ≈ qx(xi;Θ),
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which is given by

qx(xi;Θ) = P{xi = xi;Θ}

=

Ko
∑

ko=1

Kd
∑

kd=1

π
(ti)
kokd

θ
(o)
oiko

θ
(d)
dikd

. (6)

In (6), the probability that oi is oi and belongs to the ko pattern

is given by θ
(o)
oiko

, and the probability that di is di and belongs

to the kd pattern is given by θ
(d)
dikd

.

B. Model inference

For tractable maximum likelihood estimation

of Θ using the expectation-maximization (EM)

algorithm, we introduce latent variables zi ∈
{

[ko, kd]
T
| ko = 1, 2, . . . ,Ko, kd = 1, 2, . . . ,Kd

}

on the

joint membership across all combinations of the OD patterns.

From (6), the joint probability that xi = xi and zi = zi, ∀i is

given by

pX,Z(X ,Z;Θ) =
n
∏

i=1

Ko
∏

ko=1

Kd
∏

kd=1

[

π
(ti)
kokd

θ
(o)
oiko

θ
(d)
dikd

]I(zi=[ko,kd])

(7)

where I is an indicator function with I = 1 if e is true and 0
otherwise. The log likelihood of Θ can be written as,

logL(Θ;X ,Z) = log pX,Z(X ,Z;Θ) (8)

=
n
∑

i=1

Ko
∑

ko=1

Kd
∑

kd=1

I(zi = [ko, kd])

×
(

log π
(ti)
kokd

+log θ
(o)
oiko

+log θ
(d)
dikd

)

. (9)

The EM algorithm first initializes Θ and Π with random

values satisfying (4) and (5). Then, the following iterative

procedures successively approximate Θ until certain conver-

gence criterion is met. Parameters updated at t-th iteration are

denoted as Θ
[t] and Π

[t].

" E-step compute the expected log likelihood of Θ as

follows,

EZ|X;Θ[t21]

{

log pX,Z(X ,Z;Θ)|X ;Θ[t21]
}

=

n
∑

i=1

Ko
∑

ko=1

Kd
∑

kd=1

γkokd
i

[

log π
(ti)
kokd

+log θ
(o)
oiko

+log θ
(d)
dikd

]

(10)

where

γkokd
i , Ezi|xi;Θ[t21]

{

I(zi = [ko, kd])|xi;Θ
[t21]

}

= P

{

zi = [ko, kd]|xi;Θ
[t21]

}

.

(11)

" M-step Update Θ with

Θ
[t]=argmax

Θ

EZ|X;Θ[t21]

{

log pX,Z(X,Z;Θ)|X ;Θ[t21]
}

.

(12)

In (10), γkokd
i can be updated by applying the Bayes’

theorem as follows,

γkokd
i =

π
(ti)[t21]
kokd

θ
(o)
oiko

θ
(d)
dikd

∑Ko

ko=1

∑Kd

kd=1 π
(ti)[t21]
kokd

θ
(o)
oiko

θ
(d)
dikd

(13)

where π
(ti)[t]
kokd

denotes the t-th updated value of π
(ti)
kokd

. The

optimal solution for the problem in (12) can be derived

analytically, and the new value of Θ[t] is updated given by

θ
(o)[t]
cok2

o
=

∑n

i=1

∑Ko

ko=1

∑Kd

kd=1 I(oi = co, ko = k2o)γ
kokd
i

∑n

i=1

∑Ko

ko=1

∑Kd

kd=1 I(ko = k2o)γ
kokd

i

(14)

θ
(d)[t]
cdk

2

d
=

∑n

i=1

∑Ko

ko=1

∑Kd

kd=1 I(di = cd, kd = k2d)γ
kokd

i
∑n

i=1

∑Ko

ko=1

∑Kd

kd=1 I(kd = k2d)γ
kokd

i

(15)

where θ
(o)[t]
cok2

o
and θ

(d)[t]
cdk

2

d
denote the t-th updated value of

θ
(o)
cok2

o
and θ

(d)
cdk

2

d
, respectively. Since Π denotes the probability

that a trip belongs to the ko-th origin pattern and the kd-th

destination pattern, based on (11), Π [t] is updated as

π
(ct)[t]
kokd

=
1

nct

nct
∑

ict=1

γkokd
i (16)

where ict denotes an index of the observed trip data that have

the departure time ti belonging to ct, while nct is the number

of the observed trip data that fall into under this category.

Using the result of the EM algorithm, i.e., Θ and Π , V in

(2) is obtained by as follows,

V ≈
(

Θ
(o)

)T
ΠΘ

(d). (17)

III. CASE STUDY

A. Data description

We use yellow taxi trip record data in New York city. Taxi

and Limousine Commission opens the taxi trip data from 2009.

The taxi trip data have individual trip information including

pick-up and drop-off location, pick-up and drop-off date/time,

trip distances, fares, payment types, and number of passengers

etc. Pick-up and drop-off locations are indicated by 260 taxi

zone IDs, of which 66 are taxi zones in Manhattan. The data

have been frequently used in various works for human trip

behavior analysis and demand estimation [25], [26].

In particular, we use the records of pick-up and drop-off

location, date/time, and number of passengers of individual

trips that occurred during December 2018. In December 2018,

the number of trips by yellow taxis is 24,648,499, and the

average daily number of trips is about 48,600. A single trip

is represented by a multivariate tuple with three attributes of

origin zone ID, destination zone ID, and departure time as in

(1). The trip information fits with the tensor representation

by aggregating departure time to 30-minute intervals since

the spatial dimension (origin and destination) has aggregated

values at the zone IDs. Then, the number of passengers of

each combination can be counted correspondingly.
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Fig. 2. Effect of Ko and Kd on the modeling accuracy with Ko = Kd.

B. Modeling performance

The New York taxi data is analyzed using the proposed

method, revealing fundamental trip patterns and temporal

interactions between patterns, and estimating the trip occur-

rence probability. The temporal range of trip pattern modeling

is set to 6:30 – 10:30 AM. The total number of possible

combinations is 265 × 265 × 8 = 540, 800 and the number

of unique combinations observed is 15,175 with a minimum

count of 1 and a maximum count of 175. The number of basis

trip patterns determines the capacity of the model. More basis

patterns can describe the trip patterns in more detail, which

may help to fit better to the data, but in the meanwhile, it

makes difficult to interpret the modeling result and requires

higher computation loads. The convergence criteria is set to

be the average of relative changes in basis patterns being less

then 1025, and maximum iteration is set to 10,000.

The accuracy of the proposed model in (17) is evaluated

by comparing it to the probability distribution given by the

sample mean of the New York taxi data such that

Vcocdct ≈
1

n

n
∑

i=1

I
(

oi = co, di = cd, ti = ct
)

. (18)

Specifically, the Jensen-Shannon divergence (JSD) between

two probability distributions (17) and (18) is used as the model

accuracy. The JSD is non-negative and symmetric, which

becomes zero if only if two distributions are identical.

Figure 2 describes how the accuracy of the proposed model

changes according to Ko and Kd. The modeling accuracy

of the y axis in the figure is measured by JSD. Each box

plot has modeling results for all time periods. As Ko and Kd

increase, the difference between two distributions gets smaller,

which means the modeling accuracy increases. These results

indicate that setting Ko and Kd values large help the model

to fit the data with the high capacity to describe a variety of

phenomenon. Larger Ko and Kd, the better ability to express

the detailed highs and lows of values.

Figure 3 shows the impact of the number of trip data used

for modeling to the model accuracy in Ko = Kd = 5 case.

The number of trip data in New York city varies in different

time periods. Starting from 1,719 at 6:00 AM, it rises to

10,377 by 10:30 AM. We can observe that the JSD changes in
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Fig. 3. Temporal changes in the modeling accuracy according to the number
of trip data when Ko = Kd = 5.

the opposite direction to the number of trip data. The model

accuracy increases as more data are used in modeling. As

the number of trip data increases by 503.66 %, the modeling

accuracy is improved by 66.64 %. Based on Figures 2 and

3, it can be concluded that the number of basis trip patterns

and the amount of trip data sufficient to describe complex trip

behaviors are key factors for improving the modeling accuracy.

C. Basis trip patterns analysis

To analyze the modeling result in more detail, the origin and

destination basis trip patterns are visualized. To make the result

interpretable, Ko and Kd are set to 5. Figure 4 and 5 display

the column factors of the basis trip patterns Θ
(o) and Θ

(d),

respectively. To better visualize the pattern configuration, the

values in each column are rescaled to 0-1 so that θ
2(o)
coko

=

θ
(o)
coko

/max(θ
(o)
ko

).
In Figures 4 and 5, it is noticeable that Manhattan areas

show strong patterns in most of Θ
(o) and Θ

(d). Manhattan

consists of 69 taxi zones, which is larger number compared

to other areas since Manhattan occupies the high portion of

taxi demands. In both Θ
(o) and Θ

(d), the 69 taxi zones

in Manhattan are grouped into four patterns except θ
(o)
5

and θ
(d)
5 , which contains trip patterns from and to John F.

Kennedy International Airport and LaGuardia Airport. From

θ
(o)
1 and θ

(d)
1 to θ

(o)
4 and θ

(d)
4 , areas of uptown, upper-east

side and midtown-east, downtown including financial district,

and midtown are grouped to different origin and destination

patterns.

D. Temporal interactions analysis

Figure 6 shows the heat plots of Π . It can be observed

that Π does not change suddenly; rather, it changes slowly

and steadily over several hours. Before morning peak hour in

6(a), trips from downtown areas described in θ
(o)
3 to outside

of Manhattan in θ
(d)
5 are exclusively dominant demand. From

morning peak hours, it can be seen that four types of trips

remain popular: from downtown to outside of Manhattan, from

airports to downtown, from uptown to midtown, and trips

within the uptown area. For the trips from and to airports,

the downtown area is the dominant origins and destinations,

and demand is consistently high during the day.
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Fig. 4. Origin basis trip patterns Θ(o) modeled when Ko = 5.
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Fig. 5. Destination basis trip patterns Θ(d) modeled when Kd = 5.
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Fig. 6. Temporal interactions Π modeled when Ko = Kd = 5.
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IV. CONCLUSION

This paper proposed a travel demand estimation model for

identifying spatiotemporal mobility patterns using a tensor

factorization. We utilized a probabilistic tensor factorization

approach to reveal basis patterns and temporal interactions

between patterns to model the probability distribution of trip

demand. EM algorithm is applied for inferring mobility pat-

terns efficiently. The model was applied to New York taxi data

with 260 origins and destinations. The low-rank approximation

results allowed us to analyze the basis patterns of the New

York taxi trips. Results show the modeling performance with

respect to the number of patterns and amount of trip data

used. In addition, the result of the clustered mobility patterns

reveal the underlying spatiotemporal structure of highly com-

plex human mobility data. The proposed approach enriches

the information in mobility data by providing intuitive low-

dimensional trip patterns of multi-dimensional mobility.
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