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Abstract—Accurate positional information is crucial for nu-
merous emerging applications in fifth generation (5G) and be-
yond wireless ecosystems. However, the localization requirements
defined by the 3rd Generation Partnership Project (3GPP)
are particularly challenging to achieve, especially in complex
environments such as urban scenarios, due to non-line-of-sight
conditions, outdoor-to-indoor penetration loss, and multipath
propagation. Such effects are detrimental to localization accu-
racy, especially at mmWaves. This paper introduces the concept
of blockage intelligence (BI) to provide a probabilistic represen-
tation of wireless propagation conditions. Such representation
is then exploited in soft information (SI)-based localization to
overcome the limitations of conventional localization approaches.
Localization case studies are presented according to the 3GPP-
standardized urban microcell (UMi) scenario at mmWaves with
fully 3GPP-compliant simulations. Results show that BI together
with SI-based localization is able to provide a significant perfor-
mance gain with respect to existing techniques in 5G and beyond
wireless networks.

Index Terms—5G, localization, NLOS identification, 3GPP,
wireless networks.

I. INTRODUCTION

Location awareness [1] is fundamental to network oc-

chestration and to enable a myriad of applications in fifth

generation (5G) and beyond wireless networks [2], [3], includ-

ing autonomous driving [4]–[6], smart environments [7]–[9],

and Internet-of-Things (IoT) [10]–[12]. In particular, 5G and

beyond wireless networks in urban environments can leverage

accurate localization to provide several services, including

support to first responders, traffic monitoring, and flow con-

tol [13]. In this context, 3rd Generation Partnership Project

(3GPP) study items for 5G Advanced (5GA) are putting an

increasing emphasis on expanding and enhancing the local-

ization capabilities of 5G networks [14], [15]. This can be

accomplished by leveraging other improvements expected for

5GA, including the use of artificial intelligence and machine

learning (ML) techniques as well as enhancements in the data

collection [16], [17]. However, satisfying the key performance

indicators levels required by 3GPP for localization accuarcy

is particularly challenging. Urban scenarios are characterized

by complex propagation conditions due to non-line-of-sight

(NLOS) propagation, outdoor-to-indoor (O2I) penetration loss,

and multipath propagation [18], [19]. Such impairments are

detrimental to localization accuracy, especially at millimeter

waves [20]. Therefore, enhanced localization techniques are

needed to unleash the full potential of localization in 5G and

beyond networks at mmWaves. In particular, NLOS identifi-

cation techniques are expected to provide a great benefit to

localization algorithms.

Exisiting approaches for NLOS identification exploit char-

acteristics of the wireless environment to provide binary infor-

mation on NLOS propagation conditions [21]–[23]. However,

the binary information provided by existing NLOS identifica-

tion is unable to represent the different conditions that may

generate NLOS propagation. Moreover, several techniques for

NLOS identification require a prior characterization of the

wireless environment, which is not always available, especially

in dynamic environments like urban scenarios.

The goal of this paper is to improve localization accuracy

in complex wireless environments. We introduce the concept

of blockage intelligence (BI) to overcome the limitations of

existing NLOS identification [24]. The key idea is to leverage

the rich information encapsulated in the received signals to

provide a probabilistic characterization of the wireless channel

conditions. The information provided by BI is therefore seam-

lessly integrated with the recently proposed soft information

(SI)-based localization [25] to enhance location awareness in

5G and beyond wireless networks. We advocate the use of BI

not only as a probabilistic NLOS identification, but also as an

indicator of the quality of the wireless channel conditions.

This paper introduces the concept of BI to improve location

awareness in complex urban wireless scenarios. The key

contributions of this paper can be summarized as follows:

• introduction of the BI concept for providing a probabilis-

tic characterization of wireless propagation conditions in

urban scenarios; and

• quantification of the localization performance gain en-

abled by BI in the 3GPP-standardized urban microcell

(UMi) scenario.
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The remainder of the paper is organized as follows. Sec-

tion II briefly describes localization in 5G networks; Sec-

tion III describes a method for obtaining BI; Section IV

presents two case studies in the 3GPP-standardized UMi

scenario; Finally, Section V provides our conclusions.

Notations: A random variable and its realization are denoted

by x and x; a random vector and its realization are denoted

by x and x; a set is denoted by calligraphic fonts as X . For

a vector x, its transpose is denoted by xT. For a complex

variable x, its conjugate is denoted by x∗. The smallest

integer grater or equal to x is denoted by +x,. The function

fx(x;θ) indicates the probability distribution function (PDF)

of a continous random vector x parametrized by θ. Ex|y{·|y}
denotes the expectation with respect to the random variable x

conditional on y = y.

II. LOCALIZATION IN 5G NETWORKS

The goal of localization in 5G wireless networks is to

estimate the position p ∈ R
2 of a user equipment (UE)

based on the exchange of measurements with a set of nodes,

namely gNodeBs (gNBs), with known positions and indexed

by j ∈ Nb = {1, 2, . . . , Nb}, where Nb is the number of

gNBs available for localization. 3GPP specifications define

two reference signals (RSs) obtained via orthogonal frequency

division multiplexing (OFDM) dedicated to localization, i.e.,

the positioning reference signal (PRS) for downlink (DL)

localization and the sounding reference signal (SRS) for uplink

(UL) localization [26]. The two reference signals can be

transmitted in both frequency range 1 (FR1) (i.e., central

frequency below 7.125 GHz) and frequency range 2 (FR2)

(i.e., central frequency between 24.25 GHz and 52.6 GHz)

with various time-frequency configurations [26]. According to

3GPP specifications [27], [28], the RSs can be transmitted and

processed to extract single-value estimates (SVEs) which can

be exploited to perform UE localization, including estimates

of time difference-of-arrival (TDOA), round-trip time (RTT),

and angle-of-departure (AOD).

A. Inference of SVEs

RTT and TDOA measurements are obtained based on time-

of-arrival (TOA) measurements. In particular, a conventional

approach for TOA estimation is based on the detection of the

delay associated with the earliest peak in the magnitude of the

cross-correlation between the transmitted and the received RS.

In more detail, let r[n] and s[n] denote the sampled version

of the received and of the transmitted RS, respectively. Then,

the cross-correlation between r[n] and s[n] is given by

R[n] =

Ns−1
∑

k=0

r[n]s∗[n− k] (1)

for n = 0, 1, . . . , Ns−1, where Ns is the number of samples in

the received RS. To estimate the TOA, it is possible to proceed

iteratively on (1), detecting at each iteration the strongest peak

and then removing its contribution from the cross-correlation.

After NI iterations, where NI is selected as the number of

iterations that provide the minimum average ranging error, the

TOA is estimated as the smallest delay detected during the

iterative procedure [29]. Based on TOA estimations, the RTT

is obtained as the two-way TOA, accounting for both DL and

UL, while the TDOA is obtained subtracting the TOA of a

reference gNB to the TOA obtained from all the other gNBs

available for localization [30].

B. SI-based localization

SI-based localization has been recently proposed to over-

come the limitations of existing localization algorithms.

Specifically, SI-based localization leverages machine learning

techniques to provide a statistical characterization of the rela-

tionship between UE position, measurements, and contextual

information [25]. In paticular, SI is composed of soft feature

information (SFI) and soft context information (SCI), which

are exploited jointly for localization. Let y be a measurement

obtained exchanging information with a gNB and let θ be the

positional feature associated with y. Then, the corresponding

SFI is given by

Ly(θ) ∝ fy(y;θ). (2)

For example, if y denotes an RTT measurement, the corre-

sponding positional feature denotes the real distance between

the gNB and the UE.1 Given a collection of independent

measurements obtained from different gNBs, and considering

that no contextual information is available, the UE position

can be determined as

p̂ = argmax
p̃

∏

j∈Nb

Lyj
(θj(p̃)) . (3)

The SFI is obtained as proportional to a generative model,

which is an approximation of the joint probability distribution

of measurements and positional features. The generative model

can be estimated in complex wireless scenarios fitting a

Gaussian mixture model (GMM) to a training dataset using

the expectation-maximization algorithm [31].

III. BLOCKAGE INTELLIGENCE

Localization algorithms greatly benefit from the information

provided by NLOS identification. However, existing NLOS

identification techniques are binary, which makes the localiza-

tion algorithms unable to effectively account for the different

wireless propagation situations generated by NLOS conditions.

A. Feature extraction

To overcome the limitations of existing NLOS identification

techniques, the key idea of BI is to leverage the rich informa-

tion encapsulated in 5G received signals, and specifically in the

cross-correlation (1) between the transmitted and the received

RS. On the one hand, such cross-correlation encapsulates rich

information on the wireless channel conditions. On the other

hand, it is commonly available to localization algorithms as it

is necessary for TOA estimation [32], [33]. In particular, only

the absolute value of (1) is exploited for BI, which is

g[n] = |R[n]| (4)

1Note that in such case both y and θ are scalar values.
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TABLE I
STATISTICAL FEATURES USED FOR BI

Amplitude-based features Time-based features

µa =
1

Nc

Nc−1
∑

m=0

g[m] µt =

Nc−1
∑

m=0

mTs ğ[m]

σ2

a =
1

Nc

Nc−1
∑

m=0

(g[m]− µa)
2 σ2

t =

Nc−1
∑

m=0

(mTs − µt)
2 ğ[m]

κa =
1

Nc

∑

Nc−1

m=0
(g[m]− µa)4

(σ2
a)

2
κt =

∑

Nc−1

m=0
(mTs − µt)4 ğ[m]
(

σ2
t

)

2

χa =
1

Nc

∑

Nc−1

m=0
(g[m]− µa)3

(σ2
a)

3

2

χt =

∑

Nc−1

m=0
(mTs − µt)3 ğ[m]
(

σ2
t

) 3

2

E =

Nc−1
∑

m=0

g[m]2

M = max
m

g[m]

for n = 0, 1, . . . , Nc − 1 where Nc = +Tm/Ts,, Ts is the

RS sampling time, and Tm is the maximum path delay such

that the received waveform contains positional information.

The value of Tm is selected empirically based on the char-

acteristics of the wireless scenario. However, g[n] can have

high dimensionality, especially when the RSs are transmitted

at mmWaves, and a dimensionality reduction is needed to

improve BI efficiency. We propose the use of a set of statistical

features able to capture relevant information on amplitude and

time dispersions of g[n]. The proposed set of features include

mean µ, variance σ2, kurtosis κ, and skewness χ of both the

amplitude and the time dispersion of g[n]. In addition, also the

energy E and the maximum value M of g[n] are considered.

The expressions of the features used for BI are reported in

Table I, where

ğ[n] =
g[n]

∑Nc−1
m=0 g[m]

. (5)

B. Blockage intelligence model

The rich information obtained from the aforementioned

statistical features is exploited to provide a probabilistic char-

acterization of NLOS propagation conditions. In particular, the

problem of determining the probability of NLOS can be for-

malized as a two-class supervised classification problem [36],

[37]. Let γ ∈ {+1,−1} be a binary random variable that takes

value +1 and −1 for NLOS and LOS propagation conditions,

respectively, and let ν = [½a,Ã
2
a, »a, χa,E,M, ½t,Ã

2
t , »t, χt] be

a random vector containing the estimators for the statistical

0 1 2 3 4 >51 2

-500 -250 0 250 500

-500

-250

0

250

500

Fig. 1. Layout of the 3GPP UMi scenario. The red annuluses denote the
gNBs location. The background of the figure is an example instantiation of
the number of LOS gNBs for each point of the scenario. The coordinates on
the axis are in meters.

features in Table I. By considering an exponential loss func-

tion, a model c(ν) for NLOS classification is obtained as

c(ν) = argmin
c̆ :Rd→R

Eγ|ν{e
−γc̆(ν) | ν} . (6)

Such approach for obtaining c(ν) is referred to as risk mini-

mization and entails the determination of a function that maps

a d-dimensional vector of statistical features extracted from the

received RS to a value in R which is used for classification. In

particular, equation (6) has a closed-form solution [36] given

by

c(ν) =
1

2
log

(

P{γ = +1 | ν}

1− P{γ = +1 | ν}

)

(7)

leading to

ψ(ν) = P{γ = +1 | ν} =
ec(ν)

e−c(ν) + ec(ν)
(8)

which is the NLOS probability given the set of statistical

features extracted from (1), i.e., the equation needed for BI.

However, since the joint probability distribution of γ and ν is

not known a priori, c(ν) cannot be obtained in closed-form

solving the risk minimization problem in (6). Therefore, it is

necessary to obtain an approximation of c(ν) via empirical

risk minimization (ERM) exploiting a training dataset D =
{(νn, γn)}

Nd

n=1, where Nd denotes the number of training

samples [37]. In particular, the choice of an exponential

loss function enables efficient ERM via the Real AdaBoost

algorithm [38]. Such algorithm leverages the training data to
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Fig. 2. ECDF of the horizontal localization error in the 3GPP UMi scenario at 30 GHz for (a) RS transmission without PB; and (b) RS transmission with
PB. The localization performance are reported for (1) SI-based localization with BI; (2) SI-based localization without BI; (3a) results in [34]; and (3b) results
in [35].

combine several classifiers with high-bias and low-variance

(typically one-level decision trees [39]) to obtain an additive

model which approximates c(ν) up to a constant factor which

does not affect (8).

C. Blockage intelligence in SI-based localization

The integration of existing binary NLOS identification

techniques in SI-based localization relies on determining two

different generative models, tailored to NLOS and LOS prop-

agation conditions [25]. However, the performance of SI-

based localization would benefit from the integration of the

probabilistic NLOS information provided by BI. On the one

hand, the conventional binary information is not able to ac-

count for the different wireless propagation situations that may

generate NLOS conditions. On the other hand, errors in NLOS

identification may generate significative localization errors

since the generative models are specific to the propagation

conditions. To mitigate these challenges, we propose the direct

integration of the probabilistic information provided by BI in

the measurement vector used for SI-based localization, i.e.,

y′ = [y, ψ(ν)]. This enables to describe a wide variety of

wireless propagation conditions in the SI-based localization

model, leveraging the rich positional information provided

by BI.

IV. CASE STUDIES

This section analyzes and compares the performance gain

offered by SI-based localization with BI in urban scenarios. In

particular, performance is quantified in the 3GPP-standardized

UMi scenario at mmWaves [18]. Fig. 1 shows the layout of

the UMi scenario, which is composed of 19 gNBs with three

antenna sector for each gNB. The localization performance is

evaluated in FR2, i.e., where the effect of NLOS conditions

is more critical. Specifically, the PRS and the SRS are trans-

mitted with a central frequency of 30 GHz and a bandwidth

of 400 MHz. According to 3GPP specifications, it is possible

to enable power boosting on the PRS and SRS to improve the

localization performance [26]. In the following, localization

results are therefore reported considering the RSs transmission

with and without power boosting. Specifically, the power

boosting level is set equal to 7.78 dB and 6.02 dB for PRS

and SRS transmission, respectively [28]. Results are obtained

in full compliance with 3GPP technical reports. Specifically,

the RSs are generated according to the specifications in [26],

[28], and the gNBs and UEs characteristics are set according

to [18]. The wireless channels are generated as in [18] via the

QuaDriGa channel simulator [40].

To quantify the localization performance, 200 instantiations

of the UMi scenarios with spatially consistent wireless chan-

nels and NLOS conditions were generated. For each of them,

10 UEs were deployed in the scenario with random positions

and orientations. The SVEs considered for localization are

DL-TDOA, UL-TDOA, and RTT, as in 3GPP technical re-

ports [28]. Moreover, if BI is employed for localization, the

reference gNB for TDOA measurements is selected through

BI as the gNB which provides the lowest NLOS probability,

otherwise, it is selected as the gNB which provides the

maximum reference signal received power (RSRP). The data

are divided through 10-fold cross-validation [31]. The 70% of

the training data are used for training BI as in Sec. III and

for determining the number of iterations NI the minimizes the

TOA estimation error in the ranging algorithm as in Sec. II-A.

The remaining 30% of the training data are used for training

the generative model for SI-based localization, which consists

of a GMM with 12 components. Results are reported in terms

of the ECDF F̆ (eh) of the horizontal localization error eh for
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TABLE II
LOCALIZATION ERROR PERCENTILES

WITHOUT POWER BOOSTING

Percentile

Configuration 50th 67th 80th 90th

DL-TDOA: [34] 0.90 m 2.20 m 4.20 m 9.40 m

DL-TDOA: SI 0.81 m 1.36 m 2.27 m 4.00 m

DL-TDOA: SI+BI 0.73 m 1.09 m 1.46 m 2.54 m

UL-TDOA: [34] 2.20 m 6.20 m 16.80 m 95.30 m

UL-TDOA: SI 2.36 m 4.12 m 8.84 m 64.29 m

UL-TDOA: SI+BI 1.42 m 3.33 m 7.14 m 45.96 m

RTT: [34] 1.10 m 2.60 m 5.00 m 11.60 m

RTT: SI 1.27 m 2.30 m 3.83 m 7.15 m

RTT: SI+BI 0.84 m 1.47 m 2.53 m 4.63 m

TABLE III
LOCALIZATION ERROR PERCENTILES

WITH POWER BOOSTING

Percentile

Configuration 50th 67th 80th 90th

DL-TDOA: [35] 1.30 m 3.00 m 5.70 m 9.70 m

DL-TDOA: SI 0.76 m 1.15 m 1.79 m 3.07 m

DL-TDOA: SI+BI 0.62 m 0.94 m 1.56 m 2.19 m

UL-TDOA: [35] 3.50 m 6.30 m 11.10 m 18.30 m

UL-TDOA: SI 1.21 m 2.18 m 3.39 m 7.02 m

UL-TDOA: SI+BI 1.04 m 1.73 m 2.77 m 5.89 m

RTT: [35] 2.40 m 4.80 m 8.20 m 12.70 m

RTT: SI 0.83 m 1.37 m 1.99 m 2.97 m

RTT: SI+BI 0.73 m 1.10 m 1.54 m 2.33 m

SI-based localization with and without BI. In addition, such

localization performance is compared with results in 3GPP

technical reports [28]. Specifically, the results considered are

the ones reported in [34] and in [35] for localization without

and with power boosting, respectively.

A. Results in 3GPP UMi scenario without power boosting

Fig. 2a shows the ECDF of the horizonal localization error

for RSs transmission at 30GHz without power boosting. In

addition, the most significant localization error percentiles

are reported in Table II. It can be observed that the use

of SI-based localization with BI provides a significant local-

ization accuracy improvement with respect to both SI-based

localization without BI and results in 3GPP technical reports

[34]. In particular, considering DL-TDOA measurements, the

localization performance gain at the 90th percentile is equal

to 1.46 m and 6.86 m with respect to SI-based localization

without BI and results in [34], respectively. An even larger

gain is obtained considering localization based on RTT mea-

surements. Specifically, at the 90th percentile, the localization

error of SI-based localization with BI is equal to 4.63 m, which

consists in a significant improvement compared to the 7.15 m

achieved by SI-based localization without BI and the 11.60 m

reported in [34]. Finally, it can be observed that despite the sig-

nificant gain provided by BI with respect to other techniques

for localization with UL-TDOA, the localization performance

remains unsatisfactory. This is because the transmitted power

for UL localization in UMi scenario at mmWaves without

power boosting is not sufficient to obtain reliable UL-TDOA

measurements.

B. Results in 3GPP UMi scenario with power boosting

Fig. 2b shows the ECDF of the horizonal localization error

for RSs transmission at 30GHz without power boosting. In

addition, the most significant localization error percentiles are

reported in Table III. It can be observed that localization using

SI-based localization with BI via DL-TDOA measurements

enables sub-meter localization accuracy at the 67th percentile

and an accuracy of around 2.20 m at the 90th percentile. This

represents a gain of around 1 m with respect to SI-based

localization without BI and larger than 7 m if compared to

results in [35]. Similar localization accuracies are obtained for

localization with RTT measurements. In particular, SI-based

localization with BI enables a localization performance gain at

the 90th percentile of more than 10 m with respect to results

in [35]. Finally, the use of power boosting enables efficient

localization with UL-TDOA measurements. Specifically, SI-

based localization with BI provides a localization accuracy of

5.89 m at the 90th percentile, which represents a significant

performance gain with respect to the 7.02 m achieved by SI-

based localization without BI and the 18.30 m reported in [35].

V. CONCLUSION

This paper introduced the concept of blockage intelligence

(BI) to provide a probabilistic representation of wireless propa-

gation conditions in fifth generation (5G) and beyond wireless

networks. This is obtained by leveraging the rich positional

information encapsulated in the cross-correlation between

the transmitted and received reference signals (RSs). Results

show that the knowledge of information on wireless channel

propagation conditions is vital to enhance the performance

of localization algorithms, especially for location awareness

in complex wireless scenarios. In particular, the use of BI

together with soft information (SI)-based localization in 3rd

Generation Partnership Project (3GPP) urban microcell (UMi)

scenarios at mmWaves enables a significant performance gain

with respect to the localization performance reported in 3GPP

technical reports. The proposed approach represents a step

towards fulfilling the localization service level requirements

expected for 5G and beyond wireless networks.
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