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Abstract

Performing alchemical transformations, in which one molecular system is nonphys-

ically changed to another system, is a popular approach adopted in performing free

energy calculations associated with various biophysical processes, such as protein-ligand

binding or the transfer of a molecule between environments. While the sampling of

alchemical intermediate states in either parallel (e.g., Hamiltonian replica exchange) or

serial manner (e.g., expanded ensemble) can bridge the high-probability regions in the

configurational space between two end states of interest, alchemical methods can fail

in scenarios where the most important slow degrees of freedom in the configurational

space are in large part orthogonal to the alchemical variable, or if the system gets

trapped in a deep basin extending in both the configurational and alchemical space.

To alleviate these issues, we propose to use alchemical variables as an additional di-

mension in metadynamics, making it possible to both sample collective variables and to
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enhance sampling in free energy calculations simultaneously. In this study, we validate

our implementation of “alchemical metadynamics” in PLUMED with test systems and

alchemical processes with varying complexities and dimensions of collective variable

space, including the interconversion between the torsional metastable states of a toy

system and the methylation of a nucleoside both in the isolated form and in a duplex.

We show that multi-dimensional alchemical metadynamics can address the challenges

mentioned above and further accelerate sampling by introducing configurational collec-

tive variables. The method can trivially be combined with other metadynamics-based

algorithms implemented in PLUMED. The necessary PLUMED code changes have

already been released for general use in PLUMED 2.8.

Introduction

With the fast advent of high-performance computing and parallel computing over the years,

molecular dynamics (MD) and Monte Carlo (MC) simulations have become increasingly

useful in elucidating the dynamics of transformation processes of condensed matter systems.

They are most useful when the system can sample efficiently from all the energetically

relevant conformations, in which case we can extract valuable thermodynamic and structural

information about the system, such as the solvation free energy of a molecule or the binding

ensemble of a binding complex. However, comprehensive sampling in the phase space is

generally challenging in traditional MD simulations because the system must rely on very

rare fluctuations to cross the free energy barriers that separate metastable states of interest.

In most systems of interest, this low transition probability between metastable states makes

the timescale required for achieving system ergodicity in unbiased sampling impractically

long.

To address this challenge, a wide variety of advanced sampling methods have been de-

veloped in the past decades.1 One particular flavor of advanced sampling methods involves

sampling along a set of predefined functions of system coordinates, or collective variables
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(CVs). Traditionally, CVs could be any function of the atomic coordinates of the system,

but the optimal ones should correspond to the slowest degrees of freedom that distinguish

different metastable states. Methods relying on the use of CVs include umbrella sampling,2

adaptive biasing force,3 metadynamics4 and their variations.5–7

Another category of advanced sampling methods is known as generalized ensemble al-

gorithms, which includes simulated tempering,8 replica exchange,9,10 expanded ensemble,11

λ-dynamics,12 and their variations.13,14 These methods do not require any predefined CVs,

but a series of intermediate or auxiliary states with modified probabilities of the system co-

ordinates. These states are typically defined by varying the temperature or the Hamiltonian

of the system. The motivation to introduce these states is often physical. For example,

alchemically connecting two end states with a molecule deleted or “mutated” is usually the

most efficient way to calculate many free energy differences.15 Sampling using temperature

as an auxiliary variable can also allow researchers to calculate thermodynamic observables of

interest as a function of temperature, while simulations with alchemical intermediate states

are useful for calculating the free energy difference between the end states of alchemical

processes. In free energy calculations, sampling in alchemical intermediate states obviates

the need to define CVs, which could be non-trivial in systems where the slowest-relaxing

coordinates corresponding to a given process are not intuitive, such as the escape of a ligand

from a buried binding pocket.16,17

Importantly, these additional states can also remove or lessen the kinetic barriers with

states of interest at the intermediate states, either by the intentional choice of additional

states, or as a useful side effect. As the system jointly samples the coordinate/configurational

space and this additional sampling direction, nonphysical pathways are created allowing the

system to circumvent free energy barriers in the configurational space (scenario A in Figure

1). Increased probability overlap between adjacent intermediate states can often enhance

the diffusion in not only the temperature/Hamiltonian direction, but also the configurational

space. In replica exchange, these states are sampled with the ensembles progressing forwards
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in time in parallel. While no explicit weights are applied, the swaps between replicas enforce

that all states are sampled equally, which can be regarded as a form of implicit weights. In

serial approaches, a single simulation can move between states in either discrete (expanded

ensemble) or continuous space (λ-dynamics). In order to have even sampling between the

states, one must add biases or weights to the higher free energy states so they can be sampled.

These explicit weights, which are absent in replica exchange, similarly modify the underlying

free energy surface as the biasing potentials in metadynamics do.

Although sampling in the alchemical variable can create new ensembles where the slowest

physical collective variables are no longer so slow, it does not necessarily enhance sampling

where the configurational barriers are almost orthogonal to the alchemical direction. For

example, a configurational free energy barrier can be present for all the alchemical states

(scenario B in Figure 1) so that the system could remain stuck even if it can drift to other al-

chemical states or cross free energy barriers along the alchemical direction. Another scenario

that could possibly trap the system is the presence of large free energy basins in both the

configurational and alchemical directions (scenario C in Figure 1). In this scenario, the bias

purely along the alchemical direction can only facilitate even sampling between alchemical

states, but not sampling along the configurational direction. That is, even if the system

can construct slices of flat distributions along the alchemical direction at different values of

the configurational CVs, it is not guaranteed that these slices will flatten the surface in the

configurational direction, so the system can remain stuck in the configurational space. An

extreme case of applying only the alchemical bias in scenario C is to finally get a surface

similar to the one in scenario B, where the system can sample the alchemical direction with

ease along some configurational degrees of freedom, but there are free energy barriers in the

configurational direction that can not be surmounted by thermal fluctuations.

Currently, the challenges mentioned above can be addressed to varying extents. For ex-

ample, scenario C in Figure 1 might happen in binding complexes. In simpler cases where

the ligand is not deeply buried, the challenge can be addressed to some extent with funnel
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Figure 1: Common scenarios of sampling along the alchemical direction in the phase space.
In scenario A, the free energy barrier present at λ = 0 is absent from larger λ values, so the
system can go around the free energy barrier by pure alchemical sampling. On the other
hand, pure alchemical bias could fail to accelerate configurational sampling in scenarios B
and C. In scenario B, the free energy barrier extending across all λ states prevents the system
from sampling both metastable states at λ being 0. In scenario C, the free energy basin in
both the alchemical and configurational directions can trap the system during the adaptive
build-up of the alchemical weights.

metadynamics,18 or the application of a carefully tuned distance restraint applied between

the receptor and the ligand19 by preventing the ligand from drifting away and therefore effec-

tively shortening the timescale of sampling the configurational direction. Multi-dimensional

replica exchange, where umbrella biasing potentials10 are applied, could be another useful

method addressing scenario C in Figure 1. However, the expression of the applied restraints

might not be sufficiently flexible to adequately bias complicated configurational CVs. This

approach also requires an impractical number of replicas with properly pre-determined spac-

ing and force constants with complicated exchange rules if the CV space is multi-dimensional.

The alchemical flying Gaussian method20 or the conveyor belt method combined with specific

biasing21 does not bias the alchemical but only configurational space in alchemical sampling.

Although these methods might have difficulties getting the system out of free energy basins

in scenario C in Figure 1, they might be sufficient to overcome the extended configurational

free energy barrier in scenario B in Figure 1. Methods such as λ local elevation umbrella

sampling (λ-LEUS),22,23 orthogonal space random walk (OSRW),24 double-integration or-

thogonal space tempering (DI-OST),25 and adaptive landscape flattening (ALF),26 which all
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work with continuous alchemical space in their proposals, are able to apply biasing potentials

in both the alchemical or configurational directions. Theoretically, they can facilitate the es-

cape of the system from the deep free energy basins shown in scenario B in Figure 1, but each

of them was implemented in a different context. In addition, their algorithmic designs and

allowed forms of configurational bias tend to be specific rather than general. For example,

OSRW does not generalize well to multiple dimensions because finding a CV that is simulta-

neously orthogonal to dH/dλ and λ is generally difficult. More recently, a unified approach27

has been proposed, which is based on on-the-fly probability enhanced sampling (OPES)28

and uses expansion CVs to characterize a non-weighted expanded ensemble target distribu-

tion updated by an iterative scheme. The target distribution can be designed to combine

alchemical degrees of freedom in a generalized ensemble, with enhanced sampling along a con-

figurational collective variable, hence helping tackle challenges posed by scenarios B and C in

Figure 1. However, the current implementation of this method is limited to linear interpola-

tion of energy endpoints and requires implementation of the energy function within PLUMED

(see https://github.com/invemichele/OPESexpanded/blob/master/water/plumed.dat).

In light of the need for a more generalized approach to address the issues in scenarios

B and C in Figure 1, especially in cases where multi-dimensional biases in the configura-

tional space are needed, we propose to use alchemical variables as an additional dimension

in metadynamics. Although an alchemical variable is not a collective variable of coordinates

whose values divide the coordinate space into disjoint sets like a center of mass distance or

radius of gyration, it has an associated free energy and dynamics, and thus can fit into the

same formalism. We term this approach alchemical metadynamics and have implemented it

in PLUMED 2.829 (initially, only for GROMACS 2020 or more recent versions). Given the

well-developed library and flexible syntax that PLUMED has for defining configurational

CVs and various types of restraints, the implementation of alchemical metadynamics within

PLUMED is particularly useful for smoothly flattening highly-dimensional free energy land-

scapes in a more general way compared to methods such as λ-LEUS, OSRW, or DI-OST. To
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demonstrate the usage of such an algorithm and validate its implementation in PLUMED,

we employed this method to estimate the free energy difference of different alchemical pro-

cesses as elaborated in the Methods section, from decoupling an argon atom or a molecule

composed of 4 interaction sites, to the methylation of a nucleobase for both the isolated form

and in a duplex.

Theory

Metadynamics

As one of the most popular CV-based advanced sampling methods, metadynamics4 accel-

erates the sampling by depositing Gaussian biasing potentials to the underlying free energy

surface of the system. The biasing potential is a function of the vector of collective vari-

ables of interest ξ, which can be regarded as a reduced dimensional space calculated from

a configuration x by the mapping Φ(x) = ξ. During the simulation, biasing potentials are

deposited to seek roughly equal sampling across the reduced dimensional space of interest.

Let the CV vector ξ be d-dimensional, i.e., ξ = (ξ1(x), ξ2(x), ..., ξd(x)). The total biasing

potential added after a period of time t can be expressed as

V (ξ, t) = W
t′<t∑

t′=kτ,k∈N

exp

(
−

d∑
i=1

(ξi − ξi(x(kτ)))
2

2σ2
i

)
(1)

where W is the height of the Gaussian, k is the number of Gaussian depositions, τ is the

deposition stride and σi is the width of the Gaussian along the i-th dimension. Notably, the

Gaussian height W can be either constant (in standard metadynamics) or time-dependent

(in well-tempered metadynamics30) during the course of the simulation, with the latter more

commonly adopted for a smoother convergence and better concentration on the physically

relevant regions of the configurational space. Specifically, the time-dependent Gaussian

height W (kτ) can be written as:
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W (kτ) = W0 exp

(
−V (ξ⃗(x(kτ)), kτ)

kB∆T

)
(2)

whereW0 is the initial Gaussian height and ∆T is a temperature parameter that incorporates

a user-defined bias factor γ = (T +∆T )/T for adjusting the decay rate of the bias. In well-

tempered metadynamics, the free energy surface as a function of the multi-dimensional CV

ξ can be estimated by the following relationship:

V (ξ, t → ∞) = − ∆T

T +∆T
F (ξ) = −

(
1− 1

γ

)
F (ξ) (3)

To efficiently obtain a reasonable estimate of the free energy difference of interest, the

dimensions of the chosen set of CVs must be as low as possible while still capturing the slowest

degrees of freedom of the system, as the space to be explored increases exponentially with

the number of CVs, leading to prohibitive time to converge weights. For multi-dimensional

metadynamics, introducing multiple interacting walkers31 to sample the same free energy

surface along different dimensions of the CVs can be a useful strategy for speeding up the

reconstruction and exploration of the free energy surface.

Alchemical metadynamics

In alchemical metadynamics, the alchemical variable λ is introduced in the generalized CV

vector ξ′ = (λ, ξ1(x), ξ2(x), ..., ξd(x)) such that the joint space of λ and ξ is sampled with

the aid of the biasing potential V (ξ′). Unlike the configurationally defined CVs, the alchem-

ical variable is not a function of atomic coordinates. In our implementation, we assume

that the alchemical variable takes discrete values, i.e., state indices that can be mapped

to vectors of coupling parameters for decoupling/switching different interactions, such as

van der Waals interactions, electrostatic interactions, or any kind of restraints. Similarly to

expanded ensemble, alchemical metadynamics alternates the sampling along the alchemical

direction and the coordinate directions. The sampling in the discrete alchemical space can
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be done by Monte Carlo sampling just as the alchemical sampling in expanded ensemble,

while the coordinate direction is sampled by molecular dynamics as in any other type of

metadynamics. Currently, our implementation of alchemical metadynamics is available in

the combination of PLUMED 2.8 interfaced with GROMACS 2020, and in any combination

of more recent versions of each. When using alchemical metadynamics, the index of the state

being visited is passed from GROMACS to PLUMED along with the system configuration

required to compute configurational CVs. PLUMED uses these alchemical indices and any

other CVs present to track the visited states of the system and calculate the metadynamics

bias, while GROMACS updates the alchemical state via MC. When calculating the energy of

the current and the candidate λ states, GROMACS includes the metadynamics bias provided

by PLUMED. This approach is compatible with all MC schemes in alchemical space offered

by GROMACS, including the Metropolis-Hastings algorithm,32 Barker transition method,33

Gibbs sampling,34,35 and Metropolized-Gibbs sampling.36,37

Theoretically, one-dimensional alchemical metadynamics, which does not apply config-

urational but only alchemical bias, is effectively equivalent to expanded ensemble with a

different weight updating procedure for allowing roughly equal sampling across alchemical

states. For example, in an expanded ensemble where the Wang-Landau algorithm38–40 is used

for weight updating, the reduced potential of the system is incremented by a Wang-Landau

incrementor whenever a move across alchemical states is attempted. This is analogous to

the periodic deposition of Gaussian potentials in 1D alchemical metadynamics, especially

when the Gaussian deposition stride is the same as the number of integration steps between

attempted moves in the alchemical space. For converging the free energy surface in the

alchemical space, both algorithms have mechanisms for decreasing the bias during the simu-

lation. In expanded ensemble, the Wang-Landau incrementor is modified by a scaling factor

whenever the state visitation reaches a specific flatness criterion. In 1D well-tempered al-

chemical metadynamics, a bias factor is applied to enforce a continuous exponential decay of

the Gaussian height, which leads to marginally smoother convergence compared to expanded
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ensemble or other similar free energy methods. There are a number of alternative strategies

that can also be pursued.41

In multi-dimensional alchemical metadynamics, introducing additional configurational

CVs can further enhance the sampling of metastable states that might have been missed

by methods that do not apply configurational biases. As the multi-dimensional biasing

potentials can flatten out the free energy landscape in both configurational and alchemical

space, the system would not get stuck in the phase space like scenarios B and C shown in

Figure 1. This approach can be easily generalized to continuous alchemical space, but such

a generalization is not explored in this study because methods such as λ-dynamics are not

currently implemented in GROMACS.

Free energy calculations

Theoretically, the free energy estimator for alchemical metadynamics is the same as the

one used in any other metadynamics, except that the CV vector is generalized with the

introduction of the alchemical variable. Upon the deposition of the biasing potential V (ξ′)

in alchemical metadynamics, the probability distribution sampled during the simulation is

P̃ (ξ′) ∝ exp(−β(F (ξ′) + V (ξ′))), where β = 1/kBT is the inverse temperature. One of the

possible options to recover the underlying free energy landscape F (ξ′) = −kBT lnP (ξ′), is

to reweight the histogram by assigning an unbiasing weight w(ξ′) to each sample with the

CV ξ′.42 Such an unbiasing weight can be expressed as

w(ξ′) ∝ exp

(
V (ξ′, tf )

kBT

)
(4)

where tf is the simulation length and V (ξ′, tf ) is the total bias accumulated up to tf . The

maximum of V (ξ′, tf ) over ξ′ is usually subtracted before taking the exponential to avoid

overflow, which does not affect the normalized weights. More frequently, V (ξ′, tf ) is replaced

with V̄ (ξ′, t0), the total bias averaged over the time period from t0 = (1−fa)tf to tf ,
43 where
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fa is the fraction over which biases are averaged. Given that tf = t0 +Nτ , V̄ (ξ′, t0) can be

written as

V̄ (ξ′, t0) =
1

N + 1

N∑
i=0

V (ξ′, t0 + iτ) (5)

where N is the number of Gaussians deposited from t0 to tf . Usually, fa is decided such

that the applied bias potential is roughly stationary with time during the period over which

V̄ is averaged. To calculate P (ξ′) and its uncertainty (hence F (ξ′) and its uncertainty), we

first discard the equilibrium phase during which the major free energy basins were being

filled,44 with a truncation fraction of ftr, which we here set to 1 − fa. Then, we divide

the remaining part of the simulation into blocks, for each of which we construct a weighted

histogram of the CVs. Lastly, we calculate the free energy from the probability averaged

over all the blocks, with the error of the free energy determined as the standard deviation

of all bootstrap iterations in block bootstrapping. In practice, the uncertainty of the free

energy is dependent on the number of blocks. Therefore, it is of good practice to calculate

the uncertainties corresponding to different numbers of blocks and report the maximum un-

certainty. Alternatively, one could perform a separate simulation using a static bias potential

and compute the weighting factors exclusively from the additional simulation, as it is done,

for instance, in metadynamics with umbrella-sampling refinement.45 Notice that this option

is more expensive, as it requires a separate simulation, but removes any potential systematic

error due to the history-dependent nature of the metadynamics biasing potential.

Methods

We validated our implementation of alchemical metadynamics with free energy calculations

for different test systems/alchemical processes with varying complexities and dimensions

of the CV space. These range from decoupling an argon atom (Case 1) from water, or

a model molecule composed of 4 interaction sites (Case 2, as shown in Figure 2) from

water, to the methylation of a nucleobase and a duplex residue (Case 3, as shown in Fig-
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ure 3). In the following subsections, we describe the simulation methods of different test

systems, along with the details of the corresponding free energy calculations. All simu-

lations were performed at 298K using GROMACS 2021.4, with the metadynamics runs

performed with PLUMED 2.8. For estimating the uncertainties of free energy differences

in each case, we considered different numbers of blocks ranging from 20 up to 2000 and

we report the maximum uncertainty. All the data and simulation inputs required to re-

produce the results reported in this study are available either in our project repository

(https://github.com/shirtsgroup/alchemical metadynamics project) or on PLUMED-NEST

(https://www.plumed-nest.org), the public repository of the PLUMED consortium,46 as

plumID: 23.003.

Case 1: Hydration of an argon atom

As a sanity check for our implementation of alchemical metadynamics, we used 1D well-

tempered alchemical metadynamics to calculate the solvation free energy of an argon atom

in TIP3P water,47 which was then compared with the result obtained from an expanded

ensemble calculation. In Case 1, the goal is to check if 1D alchemical metadynamics can

accurately reproduce the free energy of a simple system calculated by expanded ensemble

approaches.

Preparation of simulation inputs

The argon atom was solvated in a cubic box of length 2.4 nm and was energy-minimized by

the steepest descent algorithm until the maximum force was lower than 100 kJ/mol/nm. The

argon atom was modeled as a Lennard-Jones sphere with ϵ = 0.996 kJ/mol and σ = 0.341

nm. The system was then equilibrated in the NVT and then NPT ensembles, both for 200

ps. The reference temperature and pressure were maintained at 298 K and 1 bar by the

velocity rescaling method48 and a Berendsen barostat,49 respectively. Lastly, 5 ns of NPT

MD simulation with a Parrinello-Rahman barostat50,51 keeping the pressure at 1 bar was
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performed, in which the cutoff distance for van der Waals interactions was specified as 0.9

nm. The PME (particle mesh Ewald) method52 was used with a switching function between

0.89 nm and 0.9 nm for efficient calculations of long-range electrostatic interactions. A

spacing of 0.10 nm was used for the PME grids. The LINCS53 algorithm was employed to

constrain bonds involving hydrogens, with the highest order in the expansion of the constraint

coupling matrix set as 12 and the number of iterative corrections set as 2. The configuration

whose box volume was the closest to the average volume of the MD trajectory was extracted

to serve as the input configuration for expanded ensemble and alchemical metadynamics

simulations, which were both performed in an NVT ensemble to avoid any potential issues

with λ dependence of pressure. Although this could lead to a slightly different estimate of

the solvation free energy as compared to the one solved in the NPT ensemble, the objective

was simply to compare two methods with the same alchemical process in the same ensemble.

Expanded ensemble simulation

We divided our expanded ensemble calculations into two separate stages: an equilibration

and a production stage. Both stages of simulations were performed in the NVT ensemble with

6 states for decoupling the van der Waals interactions between the argon atom and the water

molecules. In the equilibration stage, we employed the Wang-Landau algorithm to adaptively

estimate the weight for each alchemical state, with the initial Wang-Landau incrementor set

as 0.5 kBT, which is usually sufficient for relatively simple systems. The histogram that kept

track of the state visitation was updated with the Metropolized-Gibbs Monte Carlo moves

between all alchemical states, which were attempted every 10 integration steps. We adopted

the default value of 0.8 for the cutoff for the flatness ratio R, which means that the histogram

was considered flat only if all intermediate states had an R value and its reciprocal larger

than 0.8. For any state, R is defined as the ratio between the count of the state and the

average count of all states. Whenever the histogram was considered flat, the state counts

were all reset to 0 and the Wang-Landau incrementor was scaled by a factor of 0.8. This
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process for updating weights was stopped when the incrementor fell below 0.001 kBT. The

equilibrated weights were then used as the frozen weights in the production simulation for

100 ns. For data analysis, we only considered the time series of the Hamiltonian obtained

from the production stage. After truncating the non-equilibrium regime37 and decorrelating

the time series, we ran MBAR54 to compute the free energy difference between the coupled

and uncoupled states, which is the solvation free energy of the system. The entire two-

stage expanded ensemble procedure was done with 3 replicates. The final estimation of the

solvation free energy is reported as the mean of the values obtained from the 3 replicates,

with its uncertainty calculated as the error propagated from the bootstrapped uncertainties

of the 3 replicates.

1D alchemical metadynamics

To compare with expanded ensemble, we adopted the same simulation length (100 ns),

starting configuration, state transition scheme (Metropolized-Gibbs sampling), and coupling

parameters of the same 6 states in 1D alchemical metadynamics, which was also done with

3 replicates. We set the initial height of the Gaussian biasing potential as 0.5 kBT, which

was the same as the initial Wang-Landau incrementor, though the weight updating schemes

modify this initial bias in different ways. While in alchemical metadynamics, the strides

for Gaussian depositions and MC moves are decoupled and do not need to be the same, we

set both strides as 10 integration steps to better compare with expanded ensemble, where

the weights are always updated whenever a move is proposed. To accommodate such a fast

pace for applying Gaussian biases, we set the bias factor as 50 to avoid an excessively fast

decay in the Gaussian height, which could potentially slow down the compensation of the

underlying free energy surface. The width of the Gaussian was set as 0.01 to avoid any

overlap between the Gaussians deposited at different λ values. Note that having such an

overlap would not invalidate the method, but might have made the comparison to expanded

ensemble less straightforward. For the solvation free energy calculation, we set the truncation
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fraction and the average fraction as 0.25 and 0.75, respectively. 1000 blocks were used in

the histogram construction, which led to a block size of 75 ps and the largest uncertainty

among the considered numbers of blocks. 200 bootstrap iterations were performed in block

bootstrapping. The mean and the propagated error of the free energy estimates from the 3

replicates are reported as the final results.

Case 2: Hydration of a 4-site system

To demonstrate the advantages of introducing configurational CVs in alchemical metady-

namics, we designed a fictitious molecule composed of 4 linearly bonded interaction sites

as the second test system (see Figure 2). We placed opposite charges on the first and last

“atoms” (+0.2e and -0.2e) and set the force constant for the only torsional angle as 60

kJ/mol so that the two torsional metastable states of the system were separated by a large

free energy barrier (around 48.5 kBT, see Figure S2A). This large free energy barrier poses

a challenge of sampling both torsional metastable states to alchemical free energy methods

that do not apply any configurational bias, such as expanded ensemble or 1D alchemical

metadynamics. Such a challenge is useful for highlighting the difference between methods

with and without the application of configurational biases in free energy calculations. With

this system, we performed 1D and 2D well-tempered alchemical metadynamics simulations

starting from either metastable state to calculate the solvation free energy of the system.

Since the cis and trans configurations have different dipole moments and effective volumes

in the solvent, configurational ensembles that are restricted to just one torsional well or the

other will have different solvation free energies. The goal is to show that 2D alchemical

metadynamics simulations starting from different torsional metastable states lead to statis-

tically consistent estimates of the solvation free energy, which cannot be accomplished by

1D alchemical metadynamics due to restricted configurational sampling.
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Figure 2: The two torsional metastable states of the system used in Case 2: A molecule
composed of 4 interaction sites. The first and last atoms have charges of +0.2e and -0.2e,
respectively, with the other two atoms uncharged.

Preparation of simulation inputs

After solvating the system in a dodecahedral box with 1 nm between the solute and box

edges, we processed the system with the same procedure of energy minimization, NVT and

NPT equilibrations, and NPT MD simulation as the one used in the argon atom system.

A structure with a volume closest to the average NPT volume was taken as the input of a

5 ns NVT 1D metadynamics run that only biased the torsional angle of the system. This

torsional metadynamics applied a Gaussian biasing potential every 500 integration steps,

with a bias factor of 10. The width and initial height of the Gaussians were set as 0.5 rad

and 1 kBT, respectively. With this setup, the system was able to sample both torsional

metastable states frequently in the torsional metadynamics (see Figure S2B), from which we

generated the structures corresponding to the trans isomer (State A) and cis isomer (State

B) for starting subsequent alchemical metadynamics elaborated in later sections. Notably,

the parameters used in the torsional metadynamics do not need to be optimal as long as

they are good enough for the simulation to generate reasonable starting configurations in

the two isomer forms.

Alchemical metadynamics

For each torsional metastable state of the system, we started both 1D and 2D well-tempered

alchemical metadynamics in an NVT ensemble, with 3 replicates for each, where the only
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torsional angle of the system was introduced as the second CV in the 2D simulations. The

MC moves between alchemical states were proposed every 10 integration steps using the

Metropolized-Gibbs MC scheme. All simulations were performed for 200 ns and adopted

a Gaussian deposition stride of 500 steps. 20 alchemical intermediate states were used to

decouple the van der Waals interactions and Coulombic interactions. 1D alchemical meta-

dynamics started with a Gaussian height of 1 kBT. A general metadynamics rule of thumb

is that the bias factor should be approximately ∆G/kBT , where ∆G is the height of the

free energy barrier to cross.30 The bias factor was thus set as 60 for the 1D alchemical

metadynamics. This choice was guided by the fact that typical free energy differences in

the alchemical space are around 50 kT (see Figure S2A) and, given the expected equilib-

rium distribution of well-tempered metadynamics, this bias factor allows a reasonably flat

histogram of lambda. On the other hand, 2D alchemical metadynamics used a Gaussian

height of 2 kBT, and a bias factor of 120 for flattening the deeper free energy basins in the

2D phase space. The widths of the Gaussian along the alchemical direction (for 1D and 2D

simulations) were set as 0.01, while the Gaussian width in the torsional dimension (for the

2D simulations) was set as 0.5 rad. While the adopted Gaussian width along the torsional

direction is slightly larger than the typically suggested value of 0.35 rads for biasing torsions,

it has been shown42 that wider Gaussians can fill free energy basins faster. For all simu-

lations, we specified a truncation fraction of 0.3 and an average fraction of 0.7. For each

simulation, the block size that led to the largest uncertainty was adopted for histogramming

in free energy calculations and 200 bootstrap iterations were used in block bootstrapping.

For each of the 4 kinds of calculations (1D or 2D simulations starting from either State A or

State B), the final results were calculated as the mean and the propagated error of the free

energy estimates from the 3 replicates.
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Case 3: Adenosine methylation in its isolated form and in a duplex

As a final example, we considered the free energy calculations associated with the modifi-

cation of adenosine (A) to N6-methylated adenosine (m6A). m6A is the most widespread

post-transcriptional modification of RNA.55 The methyl group can be either in syn or anti

configuration, distinguished by a torsional angle η (see Figure 3). When m6A is isolated (nu-

cleoside) or in a single-stranded region, the syn state is more stable than the anti state. The

reverse is true when m6A is in a duplex. This results in an effective duplex destabilization.56

The barriers associated with the η angle are relevant to the kinetics of hybridization.57 In a

previous paper,58 we studied this system using standard Hamiltonian replica exchange simu-

lations and reparametrized partial charges so as to fit thermodynamic data. 56,59 Specifically,

we separately simulated the syn- and anti - conformations. We here show how to use alchem-

ical metadynamics to recover the same information in a single simulation, and additionally

obtain information about the isomerization barrier.

Preparation of simulation inputs

All the setups have been described extensively in Piomponi et al.,58 and are available on

Zenodo (https://zenodo.org/record/6498021). We here consider the conversion of A to m6A

in an isolated nucleoside (system A1 in Ref.58) and in an RNA duplex (system A2 in Ref.,58

only the duplex system). The GROMACS input files are identical to those used in our pre-

vious work, except that here the λ ladder is sampled with the Metropolized-Gibbs algorithm

with attempted moves spaced with 100 integration steps. For the simulations reported in

this work, we used the parametrization of m6A charges reported as fit A in Ref.58

Alchemical metadynamics

Similarly to the other two systems, we use metadynamics to flatten the sampling along both

the alchemical λ state and along a physical collective variable. For this system, we tested

a modified setup where we apply two concurrent metadynamics.60 The first metadynamics
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Figure 3: (A) The 4 considered states of the alchemical transformation of A into m6A. Isomers
are characterized by the value of the torsional angle defined by atoms N1-C6-N6-H62 or N1-
C6-N6-C10. The isomers are indistinguishable in the adenine case, so ∆Gsys,A

syn/anti = 0. On

the other hand, in m6A the position of the methyl group defines the states anti and syn.
The former is the most favored for the paired m6A in a duplex, while the latter is the most
favored for the isolated nucleoside. (B) The 8 base-pairs duplex considered in this work,
shown in the case of methylated adenosine in anti state.

process is one-dimensional and acts only along the alchemical variable. Since the free energy

differences along this non-physical variable can be huge, we use a large bias factor (γ = 100).

The second, simultaneous, metadynamics process is two-dimensional and acts both on the

alchemical variable and on ηavg, an averaged torsional angle elaborated in the next section.

Since the barriers along ηavg are smaller, this second metadynamics is performed with a lower

bias factor (γ = 10). The overall bias potential acting on the system can thus be written as

Vtot(ηavg, λ) = V1(λ) + V2(ηavg, λ) (6)
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where V1 and V2 are the Gaussian biases added during the one-dimensional metadynamics

and the two-dimensional metadynamics, respectively. This combined bias potential can be

directly used for reweighting, as discussed above. Notably, by using only two collective

variables, a direct reweighting is sufficient in our case. This is at variance with the work

by Gil-Ley et al.,60 where a large number of collective variables were concurrently biased,

thus requiring a replica ladder to obtain unbiased populations. A similar issue occurs when

simultaneously biasing the total energy of a solvated system and solute-dependent CVs. In

this case, indeed, two separate metadynamics, possibly with different bias factors, can be

applied fruitfully. This was done, for instance, in the work by Deighan et al.,61 though in

a sequential rather than self-consistent procedure. The protocol is also related to the one

proposed by Chipot and Lelièvre,62 although it is here applied in (a) metadynamics context

and (b) combining potentials in 1D and 2D with the alchemical CV shared among the two

biases. This problem might also be tackled using global tempering methods, where a flat

histogram is reached on all the biased CVs.41

Metadynamics simulations were run for 60 ns, with Gaussians of initial height 12 kJ/mol,

for V1, and 1.2 kJ/mol, for V2, deposited every 500 steps. The Gaussian width along the ηavg

variable was chosen to be 0.35 rad. The 2D free energy surface was computed directly from

the bias potentials, while the 1D profile was reconstructed using reweighting. Free energy

differences and their statistical errors were computed by reweighting a second 160 ns-long

simulation where the bias potentials were kept constant. In the case of this calculation, as

has also been observed anecdotally in other cases,63 using a static bias resulted in slightly

more statistically robust free energy differences. For a comparison between the cases using

dynamic or static bias, please refer to Figure S1.

Choice of the configurational collective variable

One critical issue in this system is the proper choice of the configurational collective variable.

In the first attempt, we used the torsional angle defined as the torsion identified by atoms
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N1-C6-N6-C10 (see Figure 3). This choice was found to be suboptimal. In the production

runs, we used as a biased variable a mean torsion obtained by averaging the three torsions

identified by atoms N1-C6-N6-C10, N1-C6-N6-H61, and N1-C6-N6-H62. The average was

computed as the arctangent of the sine and cosine averages. These three torsions are coupled

by an improper torsion that maintains the group C10, N6, H61, and H62 planar, but this

torsion is insufficiently stiff to maintain the consistency between the three torsions when

enforcing the barrier crossing. When biasing the average, a diffusive behavior of the biased

CV was obtained (Figure S6B). Specifically, with the torsions N1-C6-N6-C10 (ηC10), N1-C6-

N6-H61 (ηH61), and N1-C6-N6-H62 (ηH62), the average is computed as

ηavg = atan2

(
sin(ηC10) + sin(ηH61 + π) + sin(ηH62)

3
,
cos(ηC10) + cos(ηH61 + π) + cos(ηH62)

3

)
(7)

Where atan2 is the two-argument arctan function, defined as the angle between the positive

x-axis and the vector (x, y); it is equal to arctan(y/x) when x > 0, but involves corrections

of ±π when x ≤ 0. We also note that ηH61 must be shifted by 180 degrees when taking the

average.

Free energy calculations

For this system, we are interested in calculating the following three relative free energy

differences: ∆∆Gns
syn/anti, ∆∆Gdup

syn/anti, and ∆∆G
dup/ns
syn+anti, where the first two denote the

difference in the methylation free energy between the transformation processes that lead

to a syn or anti m6A, in the isolated nucleoside (ns) and in the duplex (dup), respectively.

They can be calculated by taking the difference between the free energy differences of interest,

namely,

∆∆Gns
syn/anti = ∆Gns

anti −∆Gns
syn (8)

∆∆Gdup
syn/anti = ∆Gdup

anti −∆Gdup
syn (9)
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The same set of free energy differences (∆G’s in Equation 8 and 9) can be used to calculate

∆∆G
dup/ns
syn+anti, the relative methylation free energy between the nucleoside and the duplex

systems considering both syn and anti conformations:

∆∆G
dup/ns
syn+anti = ∆Gdup

syn+anti −∆Gns
syn+anti (10)

with

∆Gns
syn+anti = − 1

β
ln(exp(−∆Gns

syn) + exp(−∆Gns
anti)) (11)

∆Gdup
syn+anti = − 1

β
ln(exp(−∆Gdup

syn) + exp(−∆Gdup
anti)) (12)

In Equations 8, 9, 11 and 12, ∆Gns
syn, ∆Gns

anti, ∆Gduplex
syn , and ∆Gduplex

anti are the free energy

differences of converting adenosine into a syn m6A or anti m6A in either the isolated form

or the duplex, each of which can be calculated from a separate alchemical simulation at

fixed rotameric state. For example, in the work by Piomponi et al.,58 four independent

Hamiltonian replica exchange simulations were performed, each estimating one of these four

values, which combined to give estimates of the three relative free energy differences of

interest (∆∆Gns
syn/anti, ∆∆Gdup

syn/anti, and ∆∆G
dup/ns
syn+anti).

However, using alchemical metadynamics, we can sample both rotamers in a single simu-

lation methylating the adenosine. Thus, ∆Gsys
syn, ∆Gsys

anti, with
sys being either ns or dup, can be

directly obtained from a single alchemical metadynamics simulation. Given the access to all

metastable states in the alchemical and configurational space, we can calculate free energy

differences with more flexibility by considering ratios of partition functions corresponding to

different states. For example, with alchemical metadynamics, we can calculate ∆∆Gns
syn/anti

and ∆∆Gdup
syn/anti as follows, instead of using Equations 8 and 9:

∆∆Gns
syn/anti = ∆Gns, m6A

syn/anti = − 1

β
ln

(∑
i∈anti e

βV ns
tot(ηi,λ=1)∑

i∈syn e
βV ns

tot(ηi,λ=1)

)
(13)
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∆∆Gdup
syn/anti = ∆Gdup, m6A

syn/anti = − 1

β
ln

(∑
i∈anti e

βV dup
tot (ηi,λ=1)∑

i∈syn e
βV dup

tot (ηi,λ=1)

)
(14)

∆Gns, m6A
syn/anti and ∆Gdup, m6A

syn/anti , which are the free energy differences between the two rotamers

in the nucleoside and in the duplex, respectively, are not available in Hamiltonian replica

exchange but in alchemical metadynamics. Similarly, ∆Gns
syn+anti and ∆Gns

syn+anti can be

calculated as follows:

∆Gns
syn+anti = − 1

β
ln

(∑
i∈syn+anti e

βV ns
tot(ηi,λ=1)∑

i∈syn+anti e
βV ns

tot(ηi,λ=0)

)
(15)

∆Gdup
syn+anti = − 1

β
ln

(∑
i∈syn+anti e

βV dup
tot (ηi,λ=1)∑

i∈syn+anti e
βV dup

tot (ηi,λ=0)

)
(16)

so that ∆∆G
dup/ns
syn+anti can be calculated using Equation 10. In Case 3, the goal is to compare

the three relative free energy differences (∆∆Gns
syn/anti, ∆∆Gdup

syn/anti, and ∆∆G
dup/ns
syn+anti) ob-

tained from alchemical metadynamics with the values recovered from Hamiltonian replica

exchange reported in the work by Piomponi et al.58

Results and discussion

Case 1: Hydration of an argon atom

With the weights fixed at the values equilibrated by the Wang-Landau algorithm, the solva-

tion free energy of the argon atom estimated by expanded ensemble with MBAR was −3.275

kBT, with an uncertainty as small as 0.016 kBT owing to sufficiently even state visitation (see

Figure S3A). This estimation is statistically consistent with the one obtained from the 1D

alchemical metadynamics, which was −3.284 ± 0.010 kBT. Notably, the essential difference

in the weight updating approaches between the two methods makes it infeasible to compare

the performance of the methods directly. In expanded ensemble, the incrementor decreases
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in a step-wise manner and the same value is applied to all intermediate states. On the other

hand, the Gaussian height in well-tempered metadynamics continuously decays with the

amount of biases that have been deposited in the state being sampled, which means that the

potential energies of different states are elevated with different amounts depending on how

frequently the states have been visited. If we had adopted a stricter, rather than a typical

criterion for histogram flatness, the state visitation of the expanded ensemble simulation

would have been more even. This would also result in a lower uncertainty. With the chosen

parameters in our case, though, the expanded ensemble still reached a low uncertainty. More

importantly, the data collected from the two simulations are sufficient to indicate that 1D

alchemical metadynamics free energy calculations yield results that are equivalent within

statistical significance to the expanded ensemble results.

Case 2: Hydration of a 4-site system

The purpose of the second system is to demonstrate the difference in the configurational

sampling between alchemical metadynamics with and without the introduction of configu-

rational bias. Consequently, in 1D alchemical metadynamics starting from either torsional

metastable states, the accumulation of one-dimensional alchemical biases allowed the sys-

tem to freely sample all the intermediate states (see Figure S4). However, such biases did

not facilitate the compensation of the free energy wells along the torsional direction. With

the lack of direct biases in the torsional direction, the interconversion of the two isomers

became the slowest degree of freedom that trapped the system. Accordingly, it can be seen

in Figure 4A that 1D alchemical metadynamics failed to sample both metastable states re-

gardless of which torsional state the simulation was initialized in. This insufficient sampling

of the torsional space caused the dependence of the estimated solvation free energy on the

starting torsional metastable state. Specifically, the solvation free energies estimated by 1D

alchemical metadynamics starting from State A and State B were 0.649 ± 0.030 kBT and

-0.381 ± 0.029 kBT (see Figure 5), respectively. As either simulation failed to account for
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the potential energy contribution of the other metastable state, the free energy estimates

were statistically inconsistent with each other.

Figure 4: The sampled torsional angle in (A) 1D alchemical metadynamics and (B) 2D
alchemical metadynamics as a function of time. As can be seen in the figure, the sampling
in the torsional space is restricted in 1D alchemical metadynamics, but essentially complete
in its 2D analog.

By contrast, the 2D Gaussian biasing potentials in both 2D alchemical metadynamics

simulations flattened out the free energy surface both along the alchemical and torsional

directions simultaneously, so in both cases, the system was able to sample the alchemical

and torsional space exhaustively (see Figure S5 and Figure 4B). This comprehensive and

even sampling along all the slow degrees of freedom led to statistically consistent solvation

free energy estimations from State A (0.708 ± 0.031 kBT) and State B (0.694 ± 0.031

kBT), as shown in Figure 5. In addition, the 2D free energy surface of the system can be

accurately recovered from either of the two cases. Figure 6A shows an averaged 2D free

energy surfaces obtained from one of the 3 replicates, which was calculated by averaging

the 2D free energy surfaces obtained from the 2D alchemical metadynamics starting from

the two torsional metastable states. Figure 6B shows the contour plot corresponding to the

averaged 2D free energy surface in 6A. From the 2D free energy surface, it is clear that

the alchemical variable is orthogonal to the torsional angle of the system, which explains
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the ineffectiveness of the one-dimensional alchemical bias in torsional sampling. Notably,

this is exactly Scenario B in Figure 1 that can fail alchemical free energy methods that do

not apply configurational biases. Therefore, the success in Case 2 verified the usage of 2D

alchemical metadynamics in overcoming the extensive free energy barrier present in a certain

configurational CV direction.

Figure 5: The solvation free energies estimated by 1D and 2D alchemical metadynamics
starting from either states. 1D alchemical metadynamics simulations starting from different
torsional metastable states led to statistically different estimations of the solvation free en-
ergy, while the values estimated by the 2D simulations are statistically consistent with each
other.
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Figure 6: (A) The average of the 2D free energy surfaces obtained from the two 2D alchemical
metadynamics simulations starting from State A and State B. (B) The average of the contour
plots obtained from the 2D alchemical metadynamics simulations starting from State A and
State B.

Case 3: Adenosine methylation in its isolated form and in a duplex

The free energy profile along the λ state index is computed using reweighting and reported

in Figure 7A. The significant difference observed is non-physical and depends on the relative

definitions of the A and m6A force field parameters. Figure 7B shows the 2D surface as a

function of the λ state index and the averaged torsional angle ηavg, which is computed using

the usual relationship between bias and free energy,30 and then subtracting the Boltzmann-

averaged free energy along the λ state index. We notice that the residual dependence of

the free energy on λ depends on the fact that barriers on ηavg change when λ is changed.

The profiles along ηavg were computed using the relationship between the bias and the free

energy and are shown in Figure 7C. Notably, this approach allows free energy profiles along

the biased variable to be obtained simultaneously with alchemical differences. These profiles

show that the syn conformation (central basin) is favored in the m6A nucleoside, whereas

the anti conformation (lateral basins) is favored in the duplex. The final ∆∆G’s, which

represent the amount by which the methylation disfavors the duplex, are consistent with
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those reported in Ref.58 within the respective statistical errors (Figure 7D).

Importantly, as it is common in all methods based on biasing collective variables, the

choice of the collective variable is critical. In the simulations reported above, a diffusive be-

havior was observed in the collective variable after the main basins were filled. We report in

Figure S6A preliminary results obtained with a suboptimal variable where a diffusive behav-

ior along η was not obtained. Importantly, even though the exploration of λ is guaranteed by

the one-dimensional metadynamics, the inclusion of λ in the two-dimensional metadynamics

allows to effectively reconstruct free energies along ηavg that are depending on λ.

In the third case reported in this paper, the alchemical simulation of conversion from A to

m6A is an interesting physical example because it shows that alchemical metadynamics gives

simultaneous access to free energy barriers for both the two end systems. While this result

could have been obtained by performing two separate metadynamics simulations, being able

to use a single simulation has substantial advantages. First, it ensures that other possibly

slow degrees of freedom are sampled consistently in the two end states, making differential

results more reliable. For instance, if the isomerization barrier were affected by binding

with another molecule present in the simulation box, the dynamics of λ would have ensured

binding to be equally represented in the A and m6A states. Second, in cases where the

conformational transitions are better described by the physical CVs in one of the states

with respect to the other state, thus resulting in more transitions in one of the end states

when compared to the other, having a single simulation would enable the ensemble of the

slower state to benefit from the enhanced ergodicity in the faster state. These benefits could

also be obtained by combining metadynamics with Hamiltonian replica exchange along the

alchemical variable, however, at the price of higher computational cost and less flexibility in

the setup.

The combination of one-dimensional and two-dimensional bias potentials allows for si-

multaneous (a) flattening of the large artificial free energy difference along the alchemical

variable and (b) effective compensation of the torsional barriers, considering the fact that
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the precise profiles depend on the alchemical variable. The two potentials can be constructed

using different bias factor coefficients so as to optimize their capability to explore the two

profiles. This idea might also be exploited in different contexts, whenever one wants to si-

multaneously facilitate transitions over a large free energy barrier (e.g., a chemical reaction)

and, at the same time, smooth residual barriers on softer degrees of freedom.

Figure 7: (A) The free energy profile along the state index for the RNA duplex and for the
isolated nucleoside. (B) Residual free energy surface along the state index and the averaged
torsional angle for the RNA duplex (C) The free energy computed as a function of ηavg at fixed
λ = 1, both for the RNA duplex (red) and for the m6A nucleoside (blue) (D) Comparison of
∆∆G obtained with alchemical metadynamics (AM) and with Hamiltonian replica exchange
(HREX) from Piomponi et al., 2022,58 with their respective statistical errors.
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Conclusions

In this study, we proposed alchemical metadynamics, which expands the configurationally-

defined sampling space allowed in traditional metadynamics with an additional alchemical

sampling direction. Alchemical metadynamics is most useful when the CV space is multi-

dimensional, including both alchemical and configurational sampling. Its ability to easily

formulate multi-dimensional biases makes it unique compared with existing methods (e.g.,

OSRW) that bias both alchemical and configurational directions but generally struggle with

two or more dimensions in the configurational space. With the configurational bias, al-

chemical metadynamics encourages the system to escape from configurational metastable

subspace that could have easily trapped the system. It retains the advantages of traditional

alchemical free energy methods, but also enables higher flexibility in sampling rough free

energy surfaces. The implementation of alchemical metadynamics natively uses the free en-

ergy functionality of the underlying MD engine (in this case, GROMACS) and therefore does

not require re-implementing CVs within the PLUMED input, as it was done in the unified

approach proposed by Invernizzi et al .27 Furthermore, since our implementation makes the

lambda variable directly visible within the PLUMED input, this variable can be biased using

any of the implemented biasing methods, including OPES.28 Finally, our implementation is

compatible with any alchemical calculation done with GROMACS. While this makes the

method code-dependent, it is possible to generalize the implementation to be compatible

with other MD engines, as long as they can pass the alchemical state energies to PLUMED

and retrieve these values.

With different test systems and alchemical processes, we demonstrated that 1D alchem-

ical metadynamics has at least comparable performance as expanded ensemble simulations,

and was able to accurately calculate the hydration free energy of argon. We also showed that

2D alchemical metadynamics could eliminate the dependence of free energy calculations on

the starting metastable state due to restricted configurational sampling in the 4-site model.

In the last case, we demonstrated that 2D alchemical metadynamics eliminated the need to
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perform multiple Hamiltonian replica exchange simulations to estimate the relative methy-

lation free energy of the adenosine systems and simultaneously reconstructed the free energy

profile along the biased torsional angle. More importantly, the success in both Cases 2 and

3 demonstrates the utility of alchemical metadynamics in overcoming challenges that can

frustrate traditional alchemical free energy methods that are not set up to bias configura-

tional CVs jointly with the alchemical biasing. We conclude that alchemical metadynamics

is promising in its ability to enhance sampling in challenging systems, such as highly flexible

protein-peptide binding complexes, or protein-nucleic acid binding complexes. The method

can be potentially combined with more sophisticated algorithms, such as path collective

variable,64 tICA,65 SGOOP,66 RAVE,67 or other similar machine learning methods68–73 to

create combined coordinate/collective variables for further improved sampling.
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Comparison of methylation free energy calculations with

dynamic and static biases

As supplementary information, we show the free energy calculations with a dynamic bias

for the nucleotide and duplex systems. These calculations are compared to the free energy

differences computed with static bias presented in the main text. Specifically, simulations at

dynamic bias were elongated up to 160 ns. For analysis, the first 60 ns were discarded, and

the bias averaged over the remaining 100 ns was used to compute weights. Different numbers

of blocks ranging from 2 to 1000 were used to construct histograms in block bootstrapping

(200 iterations) and the largest uncertainty is reported.
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The figure below shows that with dynamic bias, the free energy estimates are more precise

(lower statistical errors). This is most likely attributable to the fact that the sampling in the

CV space is more diffusive in these systems with dynamically updated weights. However,

free energy estimates computed with dynamic bias are less accurate, i.e., the results differ

more in alchemical metadynamics than in the case of Hamiltonian replica exchange (HREX).

This is probably caused by the dynamic bias adding some small amount of history-dependent

blurring.

To further demonstrate the lower accuracy of the dynamic bias computation, the free

energy difference (∆Gdup, A
syn/anti) between the two conformations of adenosine shown in Figure

3A in the main text is calculated. In the work by Piomponi et al.,1 this value was assumed

to be 0 because of the symmetry of the hydrogen atoms H61 and H62. Also, HREX used in

the previous work does not have access to the free energy landscape along the biased torsion,

so the relative error is not given for the HREX case. In alchemical metadynamics, ∆Gdup, A
anti/syn

was calculated as follows:

∆Gdup, A
syn/anti = − 1

β
ln

(∑
i∈anti e

βV dup
tot (ηi,λ=0)∑

i∈syn e
βV dup

tot (ηi,λ=0)

)
(1)

For most systems, the general understanding is that using plain metadynamics instead

of doing the two-step procedure is better.2 The result is likely system-dependent and related

to the fact that even without a dynamic bias we can see many transitions, thus a reasonable

statistical error. In this way, we are clearly in a regime where fewer transitions at equilibrium

are a safer estimate.
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Figure S1: Comparison of free energy differences computed in Ref.1 with Hamiltonian replica
exchange (HREX) and ∆∆G computed with alchemical metadynamics (AM) in this work,
for two cases: (1) static bias (as discussed in the main text) and (2) dynamic bias.
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Supplementary Figures

Figure S2: (A) The free energy profile as a function of the torsional angle. We refer to the
structures that have a torsional angle of ±180◦ and 0◦ as State A (trans isomer) and State B
(cis isomer). The torsional free energy barrier starting from either state is around 48.56 kT,
which might not be exact since the analysis was done on a very short (5 ns) simulation solely
for generating configurations at both states. (B) The histogram of the sampled torsional
angle in the torsional metadynamics. As can be seen, the system was able to sample both
states frequently during the short simulation.

Figure S3: The histograms of the state visitation in (A) expanded ensemble and (B) 1D
alchemical metadynamics of System 1. Both simulations were able to sample all the inter-
mediate states frequently.
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Figure S4: The histograms of the state visitation in the 1D alchemical metadynamics starting
from (A) State A and (B) State B. Both simulations were able to freely sample the alchemical
space.

Figure S5: The histograms of the state visitation in the 2D alchemical metadynamics starting
from (A) State A and (B) State B. Similar to the two 1D simulations of System 2, both 2D
simulations were able to freely sample the alchemical space.
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Figure S6: (A) The torsional angle N1-C6-N6-C10 as a function of time when the same
torsion was used as CV, in a simulation performed at dynamic bias potential. In the 160 ns
of simulations, the system only switched once from syn to the anti state after about 8 ns and
then back to syn after about 60 ns (B) The torsional angle N1-C6-N6-C10 as a function of
time when an averaged torsion between N1-C6-N6-C10, N1-C6-N6-H62, and N1-C6-N6-H61
(+π) was used as biasing collective variable. In this case, the system became diffusive on
N1-C6-N6-C10 after a few ns (C) N1-C6-N6-C10 versus N1-C6-N6-H62 when N1-C6-N6-C10
was used as CV (D) N1-C6-N6-C10 versus N1-C6-N6-H62 when the averaged torsion was
used as CV. The three torsions mentioned here are coupled by an improper torsion that
maintains the group C10, N6, H61, and H62 planar. The results shown here demonstrate
that the improper torsion is not sufficiently stiff to maintain the consistency between the
three torsions when enforcing the barrier crossing. As a consequence, the single N1-C6-N6-
C10 torsion is not an optimal CV to allow a proper sampling of the torsional space.
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