
1

Precise Wireless Camera Localization
Leveraging Traffic-aided Spatial Analysis

Yan He, Qiuye He, Song Fang, and Yao Liu

Abstract—Wireless cameras nowadays commonly employ motion sensors to identify that something is occurring in their fields of
vision before starting to record and notifying the property owner of the activity. In this paper, we discover that the motion sensing action
can disclose the location of the camera through a novel wireless camera localization technique we call MotionCompass. By creating
motion stimuli and sniffing wireless traffic for a response to that stimuli, a user can obtain the motion trajectories within the motion
detection zone and then use them to calculate the camera’s location. We also extend the camera localization algorithm to pinpoint
cameras in always-active mode. We develop an Android app to implement MotionCompass. Our extensive experiments using the
developed app and 18 popular wireless cameras demonstrate that for cameras with one motion sensor, MotionCompass can attain a
mean localization error of around 5 cm with less than 140 seconds. We also discuss defenses against MotionCompass. Our
localization technique builds upon existing work that detects the existence of hidden cameras, to pinpoint their exact location.

Index Terms—Motion sensor, wireless traffic analysis, variable bit rate, hidden camera, localization.

✦

1 INTRODUCTION

DUE to their flexibility and greatly simplified instal-
lation, wireless security cameras are becoming more

widely deployed than traditional wired cameras to monitor
and report trespassing or other unauthorized activity. It is
forecasted that the global wireless video monitoring and
surveillance market will increase at a high annual growth
rate of 16.85% over 2017 to 2023 in a market survey [2].

Some wireless security cameras are made visible as a
deterrence measure, but that visibility may mean (1) they
are more susceptible to damage or theft [3]; (2) burglars
may become more interested in breaking in as they think
the camera signals that there are valuables inside the prop-
erty [4]; (3) it is easier to avoid being recorded, e.g., an
adversary may find the blind spots (i.e., areas not within
the vision of the camera) and leverage them to evade being
recorded [5]. For these reasons, people may install wireless
cameras inconspicuously. They are thus naturally attractive
targets to adversaries who want to bypass the surveillance.

The rapid proliferation of wireless cameras also brings
privacy concerns associated with unauthorized video
recording [6], [7]. These cameras can be kept hidden eas-
ily such that their targets are unaware of their existence.
According to a survey of 2,023 Airbnb guests that was con-
ducted in 2019, 58% of them were concerned that property
owners might install hidden cameras inside their rooms,
and meanwhile as high as 11% said that they had discovered
a hidden camera in their Airbnb [8]. As thus, the detection of
wireless cameras is drawing increasing attention for privacy
protection [9], [10], [11], [12], [13], [14].

• Y. He, Q. He, and S. Fang are with the School of Computer Science,
University of Oklahoma, Norman, OK, 73019.
E-mail: {heyan, qiuye.he, songf}@ou.edu

• Y. Liu is with the Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, 33620. E-mail: yliu@cse.usf.edu.

• Corresponding author: Song Fang.

An earlier version of the work [1] was presented in ACM MobiSys’21.

Traditional ways to detect a wireless camera mainly
include Radio Frequency (RF) scanning, lens detection, and
physical search. The latter two methods are cumbersome as
they require inspecting every corner of the target area. RF
scanning works when the camera is actively transmitting,
but existing work (e.g., [15]) can only detect the existence of
wireless cameras but cannot tell their exact locations.

Personal privacy is improved by identifying if a wireless
camera exists in various locations, such as hotel rooms,
Airbnb rentals, and office buildings. However, detection is
not sufficient on its own, as the camera owner may claim it
is somewhere outside of the room or installed by another.
We argue that it is significantly important to pinpoint the
locations of hidden wireless cameras. For example, a vic-
tim whose privacy is violated can obtain direct and solid
evidence by finding the physical camera that records. We
also realize that this localization technique is a two-edged
sword in that it can also be utilized by malicious users such
as a burglar localizing a home’s security camera in order to
avoid its field of view or otherwise physically disarming it.

Many wireless cameras are equipped with built-in mo-
tion sensors, such as best-selling ones – Amazon Blink
XT2 [16] and Arlo Pro 2 [17]. Because of the volume of col-
lected data, wireless cameras remain in standby mode until
movement is detected, at which point the camera turns on
and starts recording, uploading captured video to the cloud
backend server, and sending a notification to the property
owner. The network correspondingly exhibits sudden high
wireless traffic. The camera will then continue to record
until the motion stops. After that, it reverts to standby mode.
As wireless security cameras installed at different locations
have different coverage areas, we can then determine the
camera’s coverage area to find the location of the camera.
Specifically, we artificially induce motion at a spot (e.g.,
asking a helper to walk or utilizing a moving robot/drone);
if we observe a correspondingly high wireless traffic, we
know that this spot may be monitored by a camera, and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

2

may determine the camera’s possible area accordingly. With
customized motion trajectories, we can then narrow down
until pinpoint the location of the camera.

In practice, there exist other types of wireless traffic
flows generated by non-camera devices, such as laptops,
smartphones, or tablets. The wireless local area networks
(WLANs) employ encryption techniques such as WEP,
WPA, and WPA2 to encrypt transmitted data packets [18].
However, the header information is not, which exposes link-
layer Media Access Control (MAC) addresses to eavesdrop-
pers [19]. Each MAC address, which is a persistent and
globally unique identifier, discloses the device manufacturer
information via the first three most significant MAC bytes,
i.e., the Organizationally Unique Identifier (OUI). We thus
utilize the OUI of MAC addresses to detect the existence
of wireless camera traffic. Specifically, as OUI relies on the
camera manufacturers and the mainstream manufacturers
of wireless cameras are limited [11], we can first pre-build a
table of OUIs associated with wireless cameras. Next, with
a captured MAC, we compare its OUI with each entry in the
table. If a match is found, we assume that the wireless traffic
with this specific MAC is generated by a wireless camera.
MAC address eavesdropping and analysis can reveal the
existence of wireless cameras while it is unable to reveal
their exact locations. Thus, to pinpoint the camera, we
design the motion stimulation and correlate its range with
the camera location. In particular, we design novel strategies
to first set up a coordinate system and then compute the
camera’s coordinates for determining its location.

Our major contributions are summarized as follows:

• Unlike previous extensive research in hidden wire-
less camera detection, this paper is the first to pro-
vide a practical approach to pinpoint a motion-
activated wireless camera. The proposed technique
can be carried out with a single smartphone, and it
needs neither professional equipment nor connecting
to the same network with the target camera.

• We exploit how a motion sensor can act as a compass
to guide us to pinpoint the wireless camera by cor-
relating the manipulated motion with the resultant
wireless traffic generated by the camera.

• We explore the cases when the camera is in always-
active mode, and craft corresponding methods to
achieve the camera localization under such cases.

• We implement MotionCompass and develop an An-
droid application for validating effectiveness and ef-
ficiency. We also discuss defense mechanisms against
the proposed camera localization technique.

2 PRELIMINARIES

Motion Sensing of Wireless Cameras: We usually cannot
keep our eyes glued to our camera’s feed on a phone or
computer. To get rid of this limitation, a wireless camera,
incorporating a motion sensor, provides a practical solution.
There are various types of motion sensors, such as passive
infrared (PIR), ultrasonic, microwave, and tomographic. A
PIR sensor includes a pyroelectric film material, which is
sensitive to radiated heat power fluctuation [20] and con-
verts infrared radiation into electrical signals. It can thus
detect the presence of humans or other warm-blooded living

beings from the radiation of their body heat [21]. Due to
its properties of small size, low cost, power efficiency, and
being able to work in dark environments, PIR sensors are
widely used in wireless cameras. Without loss of generality,
in this paper, we explore the localization of wireless cameras
equipped with this type of motion sensor.

Video Encoding: Video compression (i.e., coding) algo-
rithms attempt to reduce redundancy and store information
more compactly. There are two common types of video
encoding schemes, Constant Bit Rate (CBR) and Variable
Bit Rate (VBR). Bit rate stands for the amount of data
that is transferred in a file over a period of time. CBR
means that the rate at which the codec’s output data is
constant. As opposed to CBR, VBR varies the bitrate of
an encoded video with its content. Considering streaming
efficiency, VBR has been adopted by all popular streaming
services [22], [23], [24]. Accordingly, VBR-encoded videos
may leak information about the content [22], [23], [24].
When an activated wireless camera (e.g., in always-activate
mode) is monitoring a static scene, the generated traffic
is fairly constant due to the constant content, while if we
create motion disturbance in the monitored area, the traffic
varies accordingly. In this paper, such correlation between
the change of the wireless traffic and the location of the
artificial motion will be utilized to determine the monitored
area of the camera and further localize the camera.

3 ATTACK MODEL AND ASSUMPTIONS

We consider a general scenario, where a user deploys a
motion-activated wireless security camera to monitor a
target area. The user aims to keep the camera hidden to
avoid being noticed. An adversary aims to pinpoint the
location of the camera with the MotionCompass technique.
MotionCompass can also be utilized to find hidden cameras
in untrustworthy hotels or Airbnb rooms, in which cases the
roles of “attacker” and “legitimate user” are reversed, but
for consistency and to prevent confusion, we will use these
roles as just introduced.

We assume the adversary has the capability to sniff the
wireless traffic, and can also safely perform some motion
around the camera without being caught. For example,
the adversary can ask a helper to walk or use a moving
robot/drone to introduce manipulated movement. We also
assume that the adversary can move at a known speed
and record the time elapsed so that she can measure the
movement distance. This can be achieved for example by
using an Android app to log all the accelerometer readings
for calculating the speed.

4 CAMERA LOCALIZATION

4.1 Overview
MotionCompass includes three important phases, i.e., camera
traffic finder, camera MAC extraction, and camera traffic
manipulation. The first one determines wireless traffic as-
sociated with wireless cameras. When the user introduces
motion activity within an interested area, if there is a camera
monitoring this area, the user would observe a wireless
traffic pattern that is highly correlated with the movement
trajectory. To eliminate the interference of motion-activated

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

3

non-camera devices (e.g., smart WiFi motion sensor [25]),
we utilize the second phase, which first collects all MACs
embedded in each traffic flow and then searches the OUI
of each MAC in a table consisting of all OUIs assigned to
cameras. If a match is found, the MAC would be regarded
as belonging to a camera. The extracted MACs would be
the input of the final phase, and all traffic flows with them
would be monitored. The user then performs motion along
specifically designed paths, and pinpoints the camera’s lo-
cation by correlating the manipulated motion paths with the
wireless traffic that the monitored camera generates.

4.2 Camera Traffic Finder

As there are numerous wireless traffic flows in the air, we
need to shrink the candidates for wireless camera traffic.

4.2.1 Coarse-grained Activation
Wireless cameras are usually battery-powered and sit in
standby mode to conserve battery. In standby mode, only
a “heartbeat” signal of small size is sent out at a regular
interval in the order of seconds, indicating normal opera-
tion or synchronization with the other party. They begin
to record and send the owner push notifications when
detecting motion (i.e., activation signals). These videos are
then sent to the cloud backend server for secure storage in
the owners’ library. Thus, an attacker can manually generate
the activation signals in a target area. If the motion happens
to be performed in the motion activity zone, the camera
recording will be then triggered [26], and abnormally high
wireless traffic would be generated accordingly.

4.2.2 Traffic Candidates Determination
When the camera is in standby mode, the microcontroller
unit (MCU) consumes less power and only processes data
monitored by the built-in microphone or motion sensor.
Once the activation signal is detected, the MCU awakens
the Complementary Metal Oxide Semiconductor (CMOS)
sensor to start recording until motion stops, and mean-
while enables wireless networking module to send out
the recorded video. The generated traffic thus exhibits a
distinguishable pattern, i.e., the volume of camera traffic
depends on whether the camera is activated or not.

The specific pattern of camera traffic provides an ad-
versary an opportunity to correlate the intentional activa-
tion with the existence of a wireless camera. If monitored
wireless traffic suddenly becomes faster when a motion is
performed and slower when the motion stops, this traffic
flow can be determined as a candidate for the camera traffic.

4.3 Camera MAC Extraction

For any six-byte MAC address, the first half is the Or-
ganizationally Unique Identifier (OUI) [27], indicating the
device manufacturer; and the second half represents the
unique device ID. MAC address intends to be permanent
and unique. Thus, the prefix (i.e., OUI) of a wireless cam-
era’s MAC address is fixed. The phase of camera MAC
extraction aims to extract the MAC address of the target
camera. To achieve this goal, we can compare the prefix
of each MAC extracted from candidate camera traffic flows

Camera traffic

Non-camera traffic

Fig. 1. SVM training result for wireless traffic flows.

with those publicly available prefixes (e.g., [27]) defined by
SoC suppliers to determine whether the monitored traffic
belongs to a wireless camera.

4.3.1 Collection of MAC Identifiers
IEEE 802.11 wireless protocols are utilized in almost all com-
modity network devices [28]. The use of 802.11, however,
may cause exposure of MAC addresses [19], and an eaves-
dropper within the radio range of a wireless transmitter can
capture the corresponding MAC address. Though the data
packets generated by the wireless camera are encrypted [29],
the raw wireless frames are broadcasted over the air and
the camera transmits its unencrypted MAC (i.e., Source
Address) in the header of the 802.11 MAC frame.

To capture the raw wireless frames of the camera, we
should first know the channels that the camera operates on.
Wireless sniffing tools (e.g., Airmon-ng toolkit [30] which
is open source) can capture raw 802.11 MAC frames and
thus help determine all active channels nearby. The problem
then becomes how to sort out the data frames generated by
the camera from packets generated by various other devices
that pass the first phase.

4.3.2 Camera MAC Match
We build a table containing OUIs of all cameras on the
market, called camera-labeled OUI table, and utilize it to de-
termine whether the monitored traffic belongs to a wireless
camera. If the OUI of a MAC extracted from a monitored
packet can be found in the OUI table, this corresponding
traffic is regarded as being generated by a camera.

MAC Spoofing: Some devices may enable the user to
change the MAC arbitrarily in software [31], [32]. Thus, the
user may use a non-camera-manufacturer-based OUI for
the camera to bypass the camera traffic detection, or use
a camera-manufacturer-based OUI for a non-camera device
to slow down the localization process.

Since the packets generated by wireless cameras are
encrypted and the network of the hidden devices is inac-
cessible, traditional traffic flow classification methods (e.g.,
IP address, protocol) using 5-tuple (source IP and port,
destination IP and port, and IP protocol) or a 3-tuple (source
IP, destination IP, and IP protocol) [33] do not apply. Recent
studies have proposed techniques using a unique identifier
called the Universally Unique IDentifier-Enrollee (UUID-E),
which is derived from a device’s original MAC and can
thus help recover the device’s true MAC from the spoofed

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

4

one [19], [32], [34]. However, the UUID-E based method only
works for devices that support Wi-Fi Protected Setup (WPS)
transmit a UUID-E in probe requests, and it requires signif-
icant processing time to pre-compute a lookup table of the
device’s UUID-E [34]. Also, a recent study [35] reveals that
many latest devices do not send WPS elements, including
UUID-E, leading to the failure of the UUID-E based method.

Alternatively, we can utilize another general and robust
solution to handle MAC spoofing. Systems-on-a-chip (SoCs)
provide video encoding and data transfer functionality for
wireless cameras. Thus, the traffic patterns of wireless cam-
eras highly depend on the corresponding SoCs. As most
SoCs take similar encoding methods (e.g., H.264, H.265, and
MJPEG), which may affect data packet size and processing
overhead over a period of time, the resultant traffic patterns
are similar as well [11]. This observation motivates us to
train a Support Vector Machine (SVM) model to classify
traffic patterns and utilize it to determine whether each
captured traffic belongs to a wireless camera.

The SVM classifier model is formed using the Scikit-
learn libraries with Python 3.8.1. We set a threshold based
on the average value of data transmission rates of various
wireless devices in the environment. For each traffic flow,
we extract its data transmission rate along with the differ-
ence between this rate and the threshold. Figure 1 shows the
result of running SVM on 400 traffic flows coming from both
wireless cameras and non-camera devices, demonstrating
the success of distinguishing traffic flows generated by
wireless cameras.

4.4 Camera Traffic Manipulation

4.4.1 Correlation Between Traffic and Motion
We first set up a listener with existing tools to monitor
the traffic transmitted from all candidate cameras and then
observe the traffic change of each channel when we provoke
the system with manipulated motion. If a camera generates
traffic volume corresponding to the time that the manipu-
lated activity lasts, we know that the camera is monitoring
the area where the activity is performed. Otherwise, if the
monitored traffic has no change, we can determine that
the candidate camera is not monitoring the area. Motivated
by this observation, we develop a customized algorithm to
shrink the possible camera candidates and localize the target
camera by feeding manipulated stimuli to the motion sensor
and observing resultant traffic volume variation.

Empirically, we find the longer the motion duration is,
the more (cumulative) packets the camera generates. We
install an Amazon Blink XT2 camera and Arlo Pro 2 camera
on the wall with a downward angle and monitor the activity
in the detection area, respectively. For each scenario, we
monitor the traffic generated by the camera and record the
corresponding amount of the transmitted packets when a
user passes nearby within different durations (i.e., manually
producing activity within the coverage range of the motion
sensor). Figure 2 presents the variation of total packet count
with the motion duration for the two different cameras. The
obtained packet count shows a nearly linear correlation with
the motion duration.

Camera Activation Detection: The discovered correla-
tion between exposure time (the duration when the camera

0 5 10 15 20 25

Motion Duration (sec)

0

500

1000

1500

2000

2500

T
o

ta
l
P

a
c
k
e

t
C

o
u

n
t

(p
k
ts

)

Blink XT2

Arlo Pro 2

Fig. 2. Total packet count vs. motion duration.

is activated) and total packet count can be then explored to
determine whether the camera is activated by a user when
she is able to sniff wireless traffic and obtain the total packet
count. Specifically, in this work, we consider a linear function
approximation architecture where the count N of network
packets generated by a wireless camera is approximated as

N = a+R ·∆t, (1)

where a is a constant, R is the throughput (i.e., the rate
at which the activated camera generates packets), and ∆t
denotes exposure time. We can then determine whether
the performed motion is still in the detection range of the
motion sensor: if the observed total packet count does not
fit the linear model with a significant deviation, the current
motion will be determined as out of the detection range.

Typically, the field of view of a PIR sensor is at 105◦ or
110◦ horizontally and 80◦ vertically. If more PIR sensors are
utilized simultaneously, the corresponding detection range
can be wider. For example, the Arlo Ultra camera has dual
PIR sensors and has a horizontal angle of view of 150◦ [36].
We consider a camera deployed on a vertical wall (which
aligns with most practical scenarios). Note for other cases,
we can regard that the camera is deployed on a virtual wall
(i.e., a plane perpendicular to the floor). Thus, the camera
localization problem can be converted to computing the
coordinates of the camera, when the bottom left corner of
the wall is regarded as the Origin.

4.4.2 Coordinates Calculation: Special Case
To obtain the maximum horizontal breadth, the camera
body is often mounted perpendicular to the wall. Also, in
the general case, the camera can be swiveled in any direction
and mounted at any angle to the wall as long as its view is
not obstructed by the wall. We first address the special case
when the camera is mounted perpendicular to the wall.

We propose a two-step procedure to pinpoint the cam-
era. As shown in Figure 3, a user can perform motion along
two paths with an average speed of v and simultaneously
monitor the wireless traffic, including,

1. Moving parallel to the wall from left to right (or in
the opposite way), as shown in Figure 3 (a): when the
traffic indicates that the user enters and leaves the
detection range, the respective locations are marked
as A and B; the user also tracks the corresponding

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

5

𝑀
Motion path 1

time Motion path 2

𝑂 𝑥

𝑦

𝑧

(𝑐(, 𝑐*, 0)

𝑡.

𝑡/
time

(b) Step 2

Detection
range

𝐴 𝐵

𝑀

𝐶

𝐷

𝑂 𝑥

𝑦

𝑧

(𝑐(, 𝑐*, 0)

(a) Step 1

Detection
range

𝐶

𝑡4 𝑡5

Fig. 3. Two-step procedure for the special case.

𝑥𝑂

𝐴: (𝑎! , 𝑎") 𝐵

𝐴𝑀 = 𝐵𝑀 = 𝑠/2

𝑀

𝐶#

𝑧
𝑎!

𝑐!

𝑎"

𝑠#

𝛿

𝑚"

𝑀 𝐷

𝐶

𝐶# 𝑧

𝑦

𝑐$

𝛼

𝛾

(a) Calculation of 𝑐! (b) Calculation of 𝑐$

Fig. 4. Coordinates calculation for the special case.

time t1 and t2 for calculating the walking distance s
within the detection range, i.e., s= |AB|=v ·(t2−t1).

2. Vertically getting out of the detection range at time
t3 with the start location at the midpoint M of the
line segment AB, as shown in Figure 3 (b): when
it is determined that the user leaves the detection
range at time t4, the location is marked as D; the
new walking distance s′ within the detection range
can be computed as s′= |MD|=v · (t4 − t3).

With step 1, we can obtain the x-axis coordinate cx of
the camera location (i.e., point C). For better understanding
the calculation process, we plot the motion path 1 in the
xz-plane, as shown in Figure 4(a), where C ′ denotes the
projection of the camera location onto the x-axis. Assume
that the horizontal distance between location A and the z-
axis is ax, and the distance between location A and the wall
is az . Both ax and az can be easily measured by the user.
Thus, we can calculate the camera’s x-coordinate as

cx = ax + s/2. (2)

With only motion path 1, we cannot determine the height
cy of the camera location. Thus, we perform motion path 2
beginning with M towards the outer edge of the detection
range (i.e., the line MD is perpendicular to the x-axis). To
demonstrate how to calculate cy , similarly, we plot the plane
through the points C , M , and D, as shown in Figure 4(b).

A general rule of thumb is to install the camera at a
downward angle for better monitoring the target area. Let
α denote the camera installation angle, which is the angle
between the camera optical axis (i.e., the direction that the
camera faces) and the ground. Also, we use δ to represent
the vertical field of view of the camera’s motion sensor. The
camera optical axis divides δ into two equal angles. With
step 1, we can obtain the z-coordinate mz of point M , which

Fig. 5. A scenario with a time delay for traffic state transition.

equals az . Let γ denote angle ̸ DCC ′. We thus have{
γ = (π2 − α) + δ

2

tan γ= mz+s′

cy

. (3)

We can then compute the camera’s y-coordinate as

cy =
az + s′

tan[(π − 2α+ δ)/2]
. (4)

Impact of a Time Delay for Traffic State Transition: Let
τ denote the time delay for the user (receiver) to realize the
transition of the camera’s traffic state.

Due to the existence of the time delay, the real locations
where the user enters and leaves the detection range should
be A′ and B′, as shown in Figure 5, and the corresponding
time points for traffic to reach the activated and standby
states are t′1 = t1 − τ and t′2 = t2 − τ , respectively.
Accordingly, the distance when the user moves during
the time delay is vτ , and thus the x−coordinate of A′ is
a′x = ax − vτ . The walking distance s is unchanged since
s = v · (t′2 − t′1) = v · (t2 − t1). In this way, we can calculate
the camera’s x-coordinate as

c′x = a′x + s/2 = cx − vτ. (5)

The “motion path 2” starts from the location M , where
the traffic has already reached the activated state and there
is thus no time delay for traffic state transition. However,
when the user leaves the detection range, the time delay ex-
ists since the traffic may not immediately reach the standby
state. The distance of path |MD′| = v(t4−τ − t3) = s′−vτ .
Similarly, M ′ is the midpoint of |A′B′|. As the line M ′D′

1

is parallel to the line MD′ (i.e., M ′D′
1 //MD′), we have

|M ′D′
1| = |MD′| = s′. Note that the boundary of the

real motion detection range along the x-axis may not be
a straight line segment, and this approximation could intro-
duce localization errors.

With ̸ D′
1C1C

′
1 = (π − 2α + δ)/2 and tan̸ D′

1C1C
′
1 =

|D′
1C

′
1|

|C′
1C1| , we further obtain tan[(π/2−α)+ δ/2] = (m′

z + s
′−

vτ)/cy , we can then compute the camera’s y-coordinate as

c′y =
az + s′ − vτ

tan[(π − 2α+ δ)/2]
= cy−

vτ

tan[(π − 2α+ δ)/2]
. (6)

Usually, when the delay is small, the resultant localiza-
tion error would be small. For example, suppose the time
delay is τ = 10 ms and the user moving speed is v = 1 m/s.
We consider α = 50◦ and δ = 80◦. Under such settings, the
localization errors in x-coordinate, y-coordinate, and abso-
lute location equal 0.01, 0.0018, and 0.0102 m, respectively.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

6

Motion path 3
𝐷

𝑀′ Motion path 1

𝐴
𝐵𝑀

𝑂 𝑥

𝑦

𝑧

(𝑐,, 𝑐., 0)

(a) Step 1

Detection
range

𝐶

𝐴′ 𝐵′
𝑀′′

𝑂 𝑥

𝑦

𝑧

(𝑐,, 𝑐., 0)

(b) Step 2

Detection
range

𝐶

Motion path 2
Diagonal of

triangle ∆AC’B
𝑀′′

Fig. 6. Improved two-step procedure for the general case.

Delay Removal: The corresponding localization error
increases with the time delay τ . When τ is large, its impact
on the localization error is non-negligible. Fortunately, such
a delay can be easily verified and compensated. Specifically,
after performing “motion path 1” that goes through loca-
tions A and B in sequence, the user can go through the
same path in the opposite direction, which goes through
location B first and then location A. Similarly, the locations
where the monitored traffic indicates that the user enters
and leaves the detection range should be B0 and A0. If B0

andB (orA0 andA) share the same location, there is no time
delay (i.e., τ = 0); otherwise, we have τ = |B0B|

2v = |A0A|
2v .

By considering τ , we can then update the real coordinates
of points A and B and continue the procedure; for “motion
path 2”, we can then find the real coordinate of point D.
Consequently, we can still apply Equations 2 and 4 to reveal
the camera’s location.

4.4.3 Coordinates Calculation: General Case
As aforementioned, the camera may not be necessarily
mounted perpendicular to the wall, and can be pivoted to
the left or right. As a result, with the above two-step proce-
dure, the camera may not have the same x-axis coordinate
with the midpoint M of motion path 1. This is because the
line MC ′ (C ′ is the projection of the camera location C onto
the x-axis) is not necessarily perpendicular to the x-axis.

We then propose an improved two-step procedure for
determining the coordinates of the camera. Specifically,

1. As shown in Figure 6(a), the user moves from left to
right (or vice versa) twice and generates two parallel
motion paths. Similarly, the user records the locations
when she enters and leaves the detection range for
each motion path i.e.,A,B,A′ andB′. The midpoints
of the line segments AB and A′B′ are denoted with
M and M ′. The walking distance |AB| is denoted
as s. The user then draws a line through M and
M ′, and it intersects the x-axis at the point C ′ (i.e.,
the projection of point C onto the x-axis). The user
can then measure angle ̸ AC ′B and find its angle
bisector. The user draws another line parallel to the
x-axis and through the point M , and it will intersect
the above angle bisector at a point, denoted withM ′′.

2. As shown in Figure 6(b), the user then gets out of the
detection range at time t5 with the start location at
point M ′′ along the angle bisector (i.e., line C ′M ′′)
of angle ̸ AC ′B. When it is determined that the user
leaves the detection range at time t6, the location is
marked asD. The walking distance s′ in this step can
be measured as s′ = |M ′′D| = v · (t6 − t5).

𝐴 : (𝑎#, 𝑎%)

𝑂

𝜃

𝑥

𝐵*
𝑀*

𝐶 * 	(Projection	of	𝐶)

𝑧

𝑎#

𝑐#

𝑎%

𝑀
𝐵𝐴*

𝜖
𝑀** 𝐴𝑀 = 𝐵𝑀 = 𝑠/2

𝐴*𝑀* = 𝐵*𝑀*

𝑀𝑀** ∥ 𝑥-axis
∠𝐴𝐶*𝑀** = ∠𝑀**𝐶 *𝐵 = 𝛽

Fig. 7. Calculation of cx for the general case.

10 20 30 40

Time (Sec)

100

150

200

250

300

(1) Ring Stickup

10 20 30 40

Time (sec)

100

150

200

250

300

350
(2) Arlo Pro 2

10 20 30 40

Time (Sec)

100

150

200

250

300

350
(3) Eufy 2C

Always-active

traffic

Motion

detected

Motion

detected

Motion

detected

Fig. 8. Identifying action scenes via VBR video traffic for three different
wireless cameras (Ring Stickup, Arlo Pro 2, and EufyCam 2C).

With the first step, we can calculate the x-axis coordinate cx
of the camera. As shown in Figure 7, the user can measure
the angle θ between the first or second motion path and the
x-axis, and the angle ϵ between C ′A and AB. Thus, we have
tan(ϵ+ θ) = az

cx−ax
, and obtain

cx = ax +
az

tan(ϵ+ θ)
. (7)

Meanwhile, we can calculate the z-coordinate mz of point
M as az− s

2 ·sin θ. As the line MM ′′ is parallel to the x-axis,
the z-coordinate m′′

z of point M ′′ equals mz . Let β= ̸ AC′B
2 ,

and we then have ̸ OC ′M ′′= ̸ OC ′A+ ̸ AC ′M ′′ = ϵ+θ+
β. As a result, we obtain |C ′M ′′| = mz

sin(ϵ+θ+β) .
The calculation process of the camera’s y-coordinate cy

is similar to that in the special case. △CC ′D is a right tri-
angle where angle ̸ CC ′D is the right angle, and the angle
̸ DCC ′ (i.e., γ) is the same for both cases, i.e., γ=(π2−α)+

δ
2 .

We then have tan γ= |C′M ′′|+|M ′′D|
|C′C| , and thus obtain

cy =
(2az − s · sin θ)/(2 · sin(ϵ+ θ + β)) + s′

tan[(π − 2α+ δ)/2]
. (8)

Similarly, with the method described in Section 4.4.2, we
can easily determine whether there is a time delay for traffic
state transition and further remove its impact if yes.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

7

4.4.4 Dealing With Always-Active Mode
When the hidden camera is switched to always-active mode,
the traffic volume is no longer able to indicate whether the
camera is activated or on standby. Thus, except for using
the camera status, a new method is needed to determine
whether the motion is in the detection zone of the camera.

Most wireless cameras utilize VBR encoding (as de-
scribed in Section 2), where slow scenes use fewer bits than
fast-moving, action-packed scenes [37]. We then create arti-
ficial motion and compare the bitrate streams at moments
with and without motion. Action scenes (e.g., when the
camera captures the crafted motion) are encoded with a
higher bitrate than slower scenes (e.g., when the camera
does not record the crafted motion). Thus, if the motion
does happen within the field of view of the camera, the user
would obtain a higher burst than normal. This observation
enables the user to successfully infer whether the motion
is within the detection zone of the camera. The motion
trajectory and VBR leakage are then correlated to determine
the location of the wireless camera based on the built model.

To demonstrate the impact of VBR encoding, we monitor
the traffic generated by three different wireless cameras,
which support VBR encoding. Specifically, we install a Ring
Stickup camera, an Arlo Pro 2 camera, and a Eufy 2C camera
to monitor the same area. The motion sensors of the three
cameras are all turned off. Instead, we turn on the live
monitoring view to see real-time camera footage over the
Internet, and thus all cameras are in always-active mode. In
the beginning, the monitored area is static, i.e.., without mo-
tion. Then, we let the user walk within the cameras’ field of
view for 15 seconds. The user then leaves, Figure 8 presents
the variation of the count (p) of captured new packets over
time for the three selected cameras. We observe that even
when no motion is captured by the wireless cameras, the
measured amount of traffic for each camera maintains at
a high level (i.e., a normal state). However, when a user
continuously walks in the field of view of the cameras
(from the 16th to 30th second), an obvious traffic burst can
be observed. When the motion stops, each camera’s traffic
throughput returns to its normal state.

To localize the camera, we manipulate motion (i.e.,
simulate action scenes) to trigger variable bitrate streams
along specified routes, and reuse the proposed two-step
procedure for the special case (i.e., when the camera is
mounted perpendicular to the wall) in Section 4.4.2 together
with the improved two-step procedure for the general case
(i.e., when the camera body may be pivoted to the left or
right) in Section 4.4.3. As the field of view of a camera
is often larger than that of a PIR sensor (e.g., [38]), we
thus need to change the field of view of the motion sensor
into that of the camera within both algorithms for accurate
localization results. Meanwhile, to avoid inference to the
correlation between the generated motion and the observed
traffic, we also need to make sure that when performing
specified activities, there is no other motion that cannot be
controlled in the monitored area.

5 EXPERIMENTAL EVALUATION

We develop a phone (Android) app to implement Motion-
Compass, and run the app on rooted Android platforms. The

TABLE 1
The list of wireless security cameras we test.

ID Model

1-15

AIVIO Cam, Arlo Essential, Arlo Pro 2,
Arlo Pro 3, Blink Indoor, Blink XT2,
Blue by ADT, Canary Flex, Conico Cam,
EufyCam 2C, Reolink Argus 2, Reolink Argus Pro,
Ring Door View, Simplisafe Cam, Swann Wireless

16-18 Arlo Ultra, Ring Spotlight, Ring Stickup Cam

4

1
2

3

1

2
3

4

(b) Bedroom(a) Outside a house

5
5

Fig. 9. Layout of the experimental environments.

default mode for a smartphone’s NIC is managed mode,
in which it only listens to the traffic that comes for it and
discards other packets. MotionCompass needs the NIC to
be in monitor mode. We thus achieve the monitor mode
function based on Airmon-ng tools and the Android device
running the Kali NetHunter, which is a popular open-source
Android ROM penetration testing platform [39].

5.1 Evaluation Setup
The adversary first scans the possible MACs for wireless
cameras and then performs motion to stimulate the camera.
By measuring the distances of performed motion paths,
as well as the initial parameters, such as the coordinates
(ax, az) of the start point within the camera detection range
when the attacker introduces motion along the first motion
path, and the angle θ between the first motion path and the
wall, the adversary can then calculate the camera’s location.

Testing Cameras and Scenarios: We test 18 most popular
wireless cameras, as shown in Table 1. Those cameras can be
divided into two groups: G1 consisting of cameras (ID 1-15)
with one motion sensor, and G2 including cameras (ID 16-
18) with two motion sensors. Two scenarios are tested:

• Outdoor: we conduct the experiment outside a typical
American single-family house. The camera is in-
stalled at five different locations on the front outside
wall (with a width of 10 m and a height of 5.5 m).

• Indoor: we select a bedroom and place the camera at
five different locations: two in the top-left and top-
right corners of an inside wall (with a width of 5.5 m
and a height of 2 m), one on top of the headboard,
and two sitting on the nightstands beside the bed.

Figure 9 shows the selected positions for the camera in
the respective environment. The camera can be mounted
at different angles along the wall. We do not consider the
cases when most areas in the camera’s field of view are
obstructed by the wall, as the recording capability of the
camera is highly restricted under these circumstances.

Metrics: We use the following two metrics.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

8

𝑥Pitch angle

𝐶

Optical axis

𝑦

𝑧
(a) Pitch angle

𝑂

Yaw angle

Optical axis

(b) Yaw angle

𝑧

𝐶!(projection of C)

𝑦𝑧-plane: perpendicular
to the wall 𝑥𝑧-plane: ground

Fig. 10. Pitch and yaw angles (ϕ and ψ).

50
°
45
°
40
°
35
°
30
°
25
°
20
°
15
°
10
° 5° 0°

0

5

10

15

50
°
45
°
40
°
35
°
30
°
25
°
20
°
15
°
10
° 5° 0°

0

5

10

15

50
°
45
°
40
°
35
°
30
°
25
°
20
°
15
°
10
° 5° 0°

0

5

10

15

(a) 𝑥-coordinate (b) 𝑦-coordinate (c) location

Fig. 11. Location errors vs. pitch angle (ϕ).

• Localization error: This is measured as the Euclidean
distance between the camera’s estimated position
and its corresponding true location.

• Localization time: This is the amount of time spent on
obtaining the exact location of the camera.

5.2 Influential Factors

A Blink XT2 camera is installed at Location 2 of the house, as
shown in Figure 9 (a). In this section, we discuss the impact
of each influential factor.

Impact of the Camera’s Pitch and Yaw Angles: The
camera may have a non-right angle along the wall in the
xz-plane (i.e., ground), and it may be pointed in different
directions to adjust its monitoring area. We refer to the
camera installation angle (discussed in Section 4.4), i.e., the
angle between the ground and the camera as the pitch angle,
denoted with ϕ, and the angles between the wall and the
camera as the yaw angle, denoted with ψ, as shown in
Figure 10. The motion sensor usually has about 80◦ vertical
field of view. The pitch angle can be thus adjusted from 0◦ to
50◦; otherwise, the field of view would be obstructed by the
wall. We vary ϕ from 0◦ to 50◦, with increments of 5◦. We
maintain the yaw angle ψ fixed and perform 80 attempts
to localize the camera for each ϕ. Similarly, considering
that the motion sensor of the Blink XT2 camera has about
105◦ horizontal angle of view, we can adjust the yaw angle
from 52.5◦ to 90◦. We then vary ψ from 90◦ to 55◦, with
decrements of 5◦. With a fixed ϕ, we perform 10 attempts to
localize the camera for each ψ.

Figures 11 and 12 present the corresponding estimation
errors in x-coordinate, y-coordinate, and absolute location.
We see that for a fixed yaw angle, these three errors have
average values of 5.0, 5.7, and 7.8 cm, respectively; the
location error remains below 12.8 cm regardless of the pitch
angle. Meanwhile, for a fixed pitch angle, those three errors
then become 4.4, 4.8, and 6.8 cm, and the location error is
always less than 12.9 cm for all chosen yaw angles. Fig-
ure 13 illustrates the resultant localization time. We observe
that the median localization time ranges from 128.5 to 136
seconds for varying pitch angles, as shown in Figure 13

90
°
85
°
80
°
75
°
70
°
65
°
60
°
55
°

0

5

10

15

90
°
85
°
80
°
75
°
70
°
65
°
60
°
55
°

0

5

10

15

90
°
85
°
80
°
75
°
70
°
65
°
60
°
55
°

0

5

10

15

(a) 𝑥-coordinate (b) 𝑦-coordinate (c) location

Fig. 12. Location errors vs. yaw angle (ψ).

(a) Pitch angle (b) Yaw angle

50
°
45
°
40
°
35
°
30
°
25
°
20
°
15
°
10
° 5° 0°

110

120

130

140

150

160

90° 85° 80° 75° 70° 65° 60° 55°
110

120

130

140

150

160

Fig. 13. Localization time vs. pitch/yaw angle (ϕ/ψ).

(a), while it ranges from 130 to 137 seconds for different
yaw angles, as indicated in Figure 13 (b). These results
demonstrate that MotionCompass is robust to variations in
pitch and yaw angles.

Impact of Movement Speed: We change the user’s
movement speed v from 0.2 m/s to 1.0 m/s, with increments
of 0.2. For each v, we perform 10 attempts of MotionCom-
passs. Figure 14 illustrates the localization errors when the
movement speed varies. We observe the localization error
slightly increases with the value of v, demonstrating the
robustness of MotionCompass to the speed variation. When
v = 0.2 m/s, the mean localization error is 3.6 cm, while
it increases to 10.7 cm for v = 1.0 m/s. This is because
a higher speed would naturally result in a larger error in
distance measurement. On the other hand, with a higher
speed, the localization can be finished in a shorter time.
Figure 15 shows the relationship between the localization
time and the movement speed. We observe that the median
localization time equals 150 seconds when v is 0.2 m/s, and
it drops to 117 seconds when v is increased to 1.0 m/s.

5.3 Varying Power Management Settings
Many battery-powered wireless cameras allow users to
manually adjust the power management settings according
to personal preference in terms of video quality or battery
life, such as Blink [40], Blue by ADT [41], and Reolink [42].
Usually, three options are provided, including (i) Best Video
for seeking the best video quality, (ii) Best Battery Life or Saver
for extending the battery life, and (iii) Optimized or Standard
for balance both video quality and battery balance. Take
Blink cameras as an example. The above three options imply
video resolutions of 1080p, 720p, and 480p, respectively [43].

Figure 16 plots the captured 30-second traffic for three
different cameras, i.e., C6 (Blink XT2), C7 (Blue by ADT),
and C11 (Reolink Argus Pro) with varying video resolu-
tions, where each camera maintains in standby mode until
being triggered by continuous motion starting at the 16th

second. We can see that in standby mode, the total count
of packets generated by each camera increases slowly, as
they only transmit heartbeat packets; in working mode (i.e.,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

9

0.2 0.4 0.6 0.8 1.0

 (m/s)

0

5

10

15
L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(c
m

)

Fig. 14. Localization error vs. v.

0.2 0.4 0.6 0.8 1.0

 (m/s)

80

100

120

140

160

L
o
c
a
liz

a
ti
o
n
 T

im
e
 (

s
e
c
)

Fig. 15. Localization time vs. v.

5 10 15 20 25 30
Time (sec)

0

200

400

600

800

1000

1200

1400

1600

1800

To
ta

l P
ac

ke
t C

ou
nt

 (p
kt

s)

C6 - 1080p
C6 - 720p
C6 - 480p
C7 - 1080p
C7 - 720p
C7 - 480p
C11 - 1080p
C11 - 720p
C11 - 480p

Standby Mode

Working Mode

Fig. 16. Total packet count for cameras with different video resolutions.

when motion is detected), the amount of packets generated
by each camera jumps regardless of its video resolution.
Also, we observe that the throughput (i.e., the rate of
transmitted packets) increases with the video resolution
for cameras. These results demonstrate that under varying
video resolutions, the traffic patterns when the cameras
are activated are consistently distinguishable from when
they are in standby mode. For each video resolution of C6,
C7, or C11, we further perform 25 trials of MotionCompass.
Figures 17 and 18 presents the mean localization error and
time. We see that different video resolutions for each camera
achieve quite similar mean localization errors and time,
indicating the robustness of MotionCompass against power
management settings.

5.4 Overall Localization Performance
We test all cameras in both environments. We perform 25
trials for each camera at every selected location, and thus
have 18×2×5×25=4, 500 attempts in total.

We compute the mean localization error and time for a
camera in G1 (with one motion sensor) or G2 (with two
motion sensors), as shown in Figures 19 and 20. We see
three tendencies. First, the performance is consistent across
different locations in each environment. The mean localiza-
tion error is always below 9.2 cm and the mean localization
time stays less than 178 seconds. Second, in both indoor and
outdoor environments, on average, a camera in G2 causes
a larger localization error and requires a longer localization
time than a camera in G1. This is because a camera in G2 has
a larger motion detection zone. The attacker thus has to walk
longer to create the simulating motion, and also a larger
localization error may be introduced. Finally, for each group
of cameras, the mean localization error is larger and the
mean localization time is longer in the outdoor environment
compared with indoor. This appears due to the fact that the
outdoor environment provides a wider space and the user
may spend a longer time generating the simulating motion.

0

2

4

6

8

10

C6 C7 C11

Lo
ca

liz
at

io
n

Er
ro

r (
cm

)

Camera

1080p 720p 480p

Fig. 17. Average localization error
vs. video resolution.

0

50

100

150

200

C6 C7 C11

Lo
ca

liz
at

io
n

Ti
m

e
(s

ec
)

Camera

1080p 720p 480p

Fig. 18. Average localization time
vs. video resolution.

0

5

10

L1 L2 L3 L4 L5

Lo
ca

liz
at

io
n

Er
ro

r
(c

m
)

Location

G1- Indoor G2- Indoor
G1- Outdoor G2- Outdoor

Fig. 19. Mean localization error.

0

50

100

150

200

L1 L2 L3 L4 L5

Lo
ca

liz
at

io
n

Ti
m

e
 (s

ec
)

Location

G1- Indoor G2- Indoor
G1- Outdoor G2- Outdoor

Fig. 20. Mean localization time.

Figures 21 and 22 show the localization errors for differ-
ent cameras in the indoor and outdoor environments. We
can see that for all cameras under both scenarios, a high
localization accuracy can be always achieved. MotionCom-
pass is able to achieve a minimum localization error ranging
from 1.0 to 2.3 cm for cameras 1-15, while for cameras 16-
18, the achieved minimum localization error varies from 3.1
to 4.5 cm. In the indoor environment, the localization error
is slightly smaller than that in the outdoor environment
overall. In both environments, cameras with two motion
sensors cause slightly higher mean localization errors than
cameras with one motion sensor.

Pinpointing Multiple Cameras: Note that MotionCom-
pass monitors the wireless traffic based on MAC. We can
thus simultaneously monitor multiple traffic flows, each of
which belongs to a wireless camera, and different cameras
will not interfere with each other’s localization.

5.5 User Study

We recruited 5 volunteers and asked each of them to per-
form MotionCompass to pinpoint a hidden wireless camera
randomly selected and deployed in the aforementioned out-
door or indoor environment. Every participant performed
25 attempts for each environment. We make sure that the
camera’s field of view is not obstructed by the wall and it
monitors an area that the participant can arrive at.

Figure 23 shows the obtained localization errors. We can
observe that the maximum localization error for each user
is always below 10.0 cm, while for some users (e.g., user 2
in the indoor environment), they can achieve a localization
error of as small as 1.0 cm. Meanwhile, in the outdoor
environment, the mean localization error ranges from 3.8
to 7.0 cm for all users; and such a range becomes 4.5 to 6.9
cm in the indoor environment. These results demonstrate
that the localization accuracy is quite consistent among
different users. Table 2 presents the mean, minimum, and
maximum localization time for different users. We also see
a consistent average localization time for all users varying
between 135 and 143 seconds. This verifies the practicality
of the proposed camera localization strategy.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

10

1 2 3 4 5 6 7 8 9 101112131415161718

Camera ID

0

5

10

15

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
(c

m
)

Fig. 21. Outdoor localization error.

1 2 3 4 5 6 7 8 9 101112131415161718

Camera ID

0

5

10

15

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r
(c

m
)

Fig. 22. Indoor localization error.

(a) Outdoor (b) Indoor

U1 U2 U3 U4 U5
User ID

0

2

4

6

8

10

Lo
ca

liz
at

io
n

Er
ro

r (
cm

)

U1 U2 U3 U4 U5
User ID

0

2

4

6

8

10
Lo

ca
liz

at
io

n
Er

ro
r (

cm
)

Fig. 23. Localization errors for different users.

5.6 Localizing a Camera in Always-Active Mode

As discussed in Section 4.4.4, occasionally, the motion sensor
may be turned off and the camera is in the always-active
mode, continuously monitoring the target area. When the
camera supports VBR encoding, its generated traffic still has
a correlation with the motion occurring in different areas of
the camera’s field of view. We can thus achieve pinpointing
such cameras in always-active mode by leveraging the cap-
tured VBR video traffic. We select three different popular
cameras for testing, including a Ring Stickup camera (with
a 115-degree field of view), an Arlo Pro 2 camera (with a
130-degree field of view), and a Eufy 2C camera (with a
135-degree field of view). For each camera, we perform 25
trials of the localization.

Figure 24 presents the localization errors for three differ-
ent cameras. We observe that the localization error is always
less than 8.8 cm regardless of the camera type. Specifically,
the mean localization errors for the three cameras are 4.6,
6.5, and 7.5 cm, respectively, demonstrating that the mean
localization error slightly increases with the camera’s field of
view. Figure 25 shows the corresponding localization time,
which ranges from 159 to 212 seconds. With the camera’s
field of view increasing, the mean localization time slightly
increases accordingly. The values of the mean location time
for Ring Stickup, Arlo Pro 2, and Eufy 2C are 164, 187, 202
seconds, respectively. These results convincingly demon-
strate that MotionCompass is able to pinpoint an always-
active wireless camera supporting VBR encoding with a
high localization accuracy and a short localization duration.

6 DISCUSSIONS

6.1 Limitations

The Requirements of WiFi and Motion Stimuli. Motion-
Compass sniffs in 802.11 (WiFi) networks and does not work
for cameras using cellular connections. Also, it requires
generating motion in the target area to activate the wireless
camera. The attacker can walk in disguise or ask a helper
to perform motion. Alternatively, she can utilize a moving

Ring Arlo Eufy

Camera

0

5

10

15

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r

(c
m

)

Fig. 24. Localization errors for
cameras in always-active mode.

Ring Arlo Eufy

Camera

100

150

200

L
o
c
a
liz

a
ti
o
n
 T

im
e
 (

s
e
c
)

Fig. 25. Localization time for cam-
eras in always-active mode.

TABLE 2
Localization time for different users.

User ID Localization time (seconds)
Average Minimum Maximum

U1 135 129 146
U2 141 130 147
U3 143 133 152
U4 137 128 145
U5 140 127 151

robot/drone to introduce motion. Such methods, however,
inevitably bring extra hardware costs.

Customized Activity Zone or Occlusion Effects. Our ex-
periment is performed with cameras in default and recom-
mended settings (i.e., with the maximum activity zone). In
practice, some wireless cameras do not support activity zone
customization (e.g., Canary Flex, Conico Cam, and AIVIO
Cam), and some (e.g., Arlo Pro 2) allow users to create
one or multiple activity zones under certain circumstances.
For example, Arlo cameras allow users who subscribe to
Arlo Smart plans or who connect the camera to continuous
power to create up to 3 zones [44]. Additionally, there may
be obstacles occluding the camera’s vision; this is actually
quite similar conceptually to activity zone customization as
it involves reducing the space surveyed by the camera.

We discuss two scenarios. First, the owner only creates
one activity zone: if it is slightly smaller compared with the
default one (or if there is a small obstacle), MotionCompass
still works with a small sacrifice in localization accuracy,
as the attacker can estimate the default activity zone with
the measured one; when the customized activity zone is too
small (or there is a large obstacle blocking most of the zone),
MotionCompass may fail, however, such a setting leaves a
significant security risk as the camera can only alert motion
within a small area. Second, the owner creates multiple ac-
tivity zones: the attacker can determine all separated activity
zones through stimulating motion and resultant wireless
traffic, and then utilize such information to estimate the
default activity zone and further pinpoint the camera.

Cameras without Uploading Video. Some cameras, but
not all, support local storage, enabling storing recordings
in cameras or their base stations. MotionCompass still works
in the latter case as there is still real-time traffic between the
camera and the base station when the camera is activated. In
the first case, cameras may not upload any videos, generat-
ing no real-time wireless traffic and thus leading to the fail-
ure of MotionCompass. However, such cameras may prevent
their owners from receiving the recording notifications in
time. Meanwhile, local storage (microSD card or USB drive)
incurs extra costs and is vulnerable to theft/damage.

Wide-angle Cameras. If a wide-angle camera covers the
whole room, the relationship between the wireless traffic

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

11

0 20 40 60
Time (sec)

0

50

100

Pa
ck

et
 C

ou
nt

 (p
kt

s)

0 20 40 60
Time (sec)

70

80

90

100

Pa
ck

et
 C

ou
nt

 (p
kt

s)

0 20 40 60
Time (sec)

0

50

100

Pa
ck

et
 C

ou
nt

 (p
kt

s)

(a) Normal scenario (b) Obfuscation scheme (c) Deception scheme

Fig. 26. Impact of traffic padding.

and the motion path cannot be obtained. Thus, Motion-
Compass fails. However, such a camera would be triggered
frequently, and the battery may be depleted quite quickly.

6.2 Defense Strategies
MotionCompass explores the relationship between motion
and wireless traffic to localize the camera. An intuitive
solution is thus to disrupt the attacker from obtaining this
relationship. The camera owner may manually turn off
the motion sensor (e.g., [45]) so that the camera goes into
standby mode and will not respond to any motion. How-
ever, this solution is impractical as it will make the camera
lose the capability of timely sensing intrusion and sending
an alert. Also, if the camera always maintains active, the
battery will be drained quickly, and MotionCompass can still
achieve the camera localization by leveraging the capture
VBR video traffic, as demonstrated in Section 4.4.4.

Recording Time Randomization: A practical defense is
to randomize the recording length. As we cannot predict
when the motion occurs, and need to make sure that the
owner receives the alert in time, we cannot add extra record-
ing or delay the recording at the beginning of the motion.
Instead, we can continue to record for an extra random
period once the motion stops, causing the attacker to obtain
inaccurate localization results. This technique, however, will
speed up the power consumption.

Uploading Time Randomization: Alternatively, we can
postpone uploading motion-induced video. With this de-
fense, the camera is still activated by any motion in the
activation zone, while it only sends the alert and stores the
recording locally. The motion detection capability is thus
not affected. Meanwhile, the attacker only observes short
wireless traffic for the introduced motion in the activa-
tion zone. As there is no longer a determined relationship
between the motion trajectory and the resultant wireless
traffic, MotionCompass fails. However, this defense requires
the camera to be equipped with a large local memory.

Traffic Padding: Also, we can leverage traffic padding
(i.e., increasing traffic volume) to defend against the pro-
posed camera localization scheme. Previous research has
shown that traffic padding can re-shape traffic patterns of
IoT devices to prevent eavesdroppers from inferring user
activity via traffic analysis [46], [47]. Specifically, we develop
two strategies, obfuscation and deception. The idea behind the
obfuscation is to make the disclosed traffic bursts featureless
so that the traffic shows a consistent pattern over time
regardless of whether stimuli are fed or not. Different from
obfuscation, which makes the eavesdropper unable to per-
form device localization, the strategy of deception intention-
ally generates bogus traffic bursts (i.e., patterns) and thus
may make the eavesdropper obtain inaccurate localization
results. Figure 26 presents the impact of padding the traffic

of a motion-activated wireless camera (EufyCam 2C). We
see that in Figure 26(a), the traffic burst happens with the
motion appearing in the detection range of the camera with
no traffic padding; in Figure 26(b), packet counts at different
time are similar, making it difficult for the eavesdropper to
associate them with the fact of whether the camera detects
motion. Also, in Figure 26(c), the camera crafts extra traffic
bursts that may mislead the eavesdropper to obtain a fake
and incorrect camera’s location. Traffic padding, however,
will introduce extra bandwidth overhead.

7 RELATED WORK

7.1 Traffic Analysis

Traffic analysis can achieve various applications, including
detecting drones [48], [49], inferring apps [50], [51], mon-
itoring misbehaving apps [52], enforcing network access
restrictions [53], identifying actions on apps [54], and de-
tecting hidden wireless cameras [11]. Our work also uses
traffic analysis to determine whether the wireless camera is
activated. Unlike existing traffic analysis based approaches
(e.g., [11], [50], [51], [52]), which utilize the inherent traffic
patterns to detect devices or apps which generate them, our
work correlates the traffic pattern with human activities.
Specifically, we exploit the association between the traffic
variation and the location where the motion is introduced,
and compute the camera’s location by obtaining the edge
information of the camera’s motion detection range.

7.2 Hidden Wireless Camera Detection

There are emerging research efforts performing hidden
wireless camera detection due to their popularity and the
privacy concerns associated with unauthorized videotap-
ing [9], [10], [11], [12], [58]. For example, [11] proposes a
hidden wireless camera detection approach by utilizing the
intrinsic traffic patterns of flows from wireless cameras; [10]
investigates the responsive traffic variation corresponding
to the light condition change to determine whether the
traffic is produced by a wireless camera; [58] proposes to
detect wireless cameras by monitoring network traffic that
indicates the characteristics of corresponding audio trans-
mission. All those traffic pattern based techniques, however,
can only detect the existence of traffic flows belonging to
wireless cameras, and they cannot tell the exact location of
the camera. In contrast, our work not only detects wireless
camera traffic but also pinpoints the location of the camera.

There are some other recent studies (e.g., [14], [56],
[57]) that propose approaches to localize wireless cameras.
Particularly, like how MotionCompass works in localizing
cameras in always-active mode, [14] leverages the cause-
effect relationship between dynamic scenes and the traffic
of cameras supporting VBR. It further proposes a trial-
based localization algorithm to pinpoint cameras, while
MotionCompass achieves localization using spatial analysis.
Meanwhile, the localization performance for [14] depends
on the number of trials, and more trials would increase
the time to finish the localization. The work [56] leverages
the laser time-of-flight (ToF) depth sensors on commodity
smartphones to localize hidden cameras. However, many
current smartphones do not equip ToF sensors. Also, it

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

12

TABLE 3
Comparison of MotionCompass and existing techniques.

Method Equipment Human Efforts Localization Time
LM-8 Bug Detector [55] special device High: turn off all environmental

wireless devices; check every corner
depending on the area size

SNOOPDOG [14] a smartphone and a laptop High: perform specific motion; walk
around the perimeter of the room;
stand, point a laptop in particular
directions, and play videos

40 sec for detection and 30 sec per
trial for localization

LAPD [56] a smartphone equipped with
a time-of-flight (ToF) sensor

High: stand at a short and ideal
distance to the camera, with specific
scan speeds; scan every corner

requiring to pre-select suspicious
objects; depending on the area size

Lumos [57] a smartphone or a tablet Moderate: walk around the perime-
ter of the space

depending on the space size (under
30 minutes for a 1000 sq. ft. space)

MotionCompass a smartphone Low: walk along two or three paths varying between 135 and 143 sec

requires the user first to determine a suspicious object which
must be near (less than 1 meter) to the user and scan every
suspicious item within a room, which is time-consuming.
As a result, it may not work if the camera is installed
somewhere several meters away from the user (e.g., in the
corner of walls). Nevertheless, such a laser-based method
and the traffic analysis-based camera detection/localization
approaches can be complementary from two perspectives.
Firstly, traffic analysis-based methods exclusively work for
wireless cameras while the laser-based method [56] can
function for cameras that do not emit wireless signals.
Secondly, as the traffic analysis-based methods can either
only detect the existence of cameras or suffer from errors
in localizing cameras, they thus can be initially employed
to narrow down the possible area where the camera may
be located, and subsequently, the laser-based method [56]
can be then applied to confirm the precise camera location.
Table 3 illustrates the comparison between the proposed
technique and other existing camera localization techniques.

8 CONCLUSION

We propose MotionCompass, a lightweight technique for
pinpointing wireless cameras. Its novelty stems from iden-
tifying and proving that the motion activation property
of wireless cameras may disclose the camera’s location.
By generating customized movement which stimulates the
camera to emit wireless traffic, and correlating the motion
trajectory with observed wireless traffic, MotionCompass can
achieve robust camera localization. We also extend Motion-
Compass to handle the cases when the hidden camera is
in always-active mode by analyzing the sniffed VBR video
traffic. Extensive real-world experiments demonstrate that
MotionCompass can achieve an average localization error of
about 5 cm in both indoor and outdoor environments.

REFERENCES

[1] Y. He, Q. He, S. Fang, and Y. Liu, “MotionCompass: Pinpointing
wireless camera via motion-activated traffic,” in Proc. of ACM
MobiSys, pp. 215–227, ACM, 2021.

[2] Market Research Future, “Global wireless monitoring and surveil-
lance market.” https://www.marketresearchfuture.com/reports/
wireless-monitoring-surveillance-market-975, 2020.

[3] G. Fleishman, Take Control of Home Security Cameras. San Diego,
CA, USA: Take Control Books, 2020.

[4] K. Iboshi, “We asked 86 burglars how they broke
into homes.” https://www.ktvb.com/article/news/
crime/we-asked-86-burglars-how-they-broke-into-homes/
277-344333696, 2017.

[5] A. Li, “Security camera blind spots: How to
find and avoid them.” https://reolink.com/
find-and-avoid-security-camera-blind-spots/, November 2018.

[6] Y. Ye, S. Ci, A. K. Katsaggelos, Y. Liu, and Y. Qian, “Wireless video
surveillance: A survey,” IEEE Access, vol. 1, pp. 646–660, 2013.

[7] S. Mare, F. Roesner, and T. Kohno, “Smart devices in Airbnbs:
Considering privacy and security for both guests and hosts,” Proc.
on Privacy Enhancing Technologies, vol. 2020, no. 2, pp. 436–458,
2020.

[8] IPX1031, “Survey: Do Airbnb guests trust their hosts?.” https://
www.ipx1031.com/airbnb-guests-trust-hosts/, April 2019.

[9] Y. Cheng, X. Ji, T. Lu, and W. Xu, “DeWiCam: Detecting hidden
wireless cameras via smartphones,” in Proc. of ACM ASIACCS,
pp. 1–13, 2018.

[10] T. Liu, Z. Liu, J. Huang, R. Tan, and Z. Tan, “Detecting wireless spy
cameras via stimulating and probing,” in Proc. of ACM MobiSys,
pp. 243–255, 2018.

[11] Y. Cheng, X. Ji, T. Lu, and W. Xu, “On detecting hidden wireless
cameras: A traffic pattern-based approach,” IEEE Trans. on Mobile
Computing, vol. 19, no. 4, pp. 907–921, 2020.

[12] K. Wu and B. Lagesse, “Do you see what I see? Detecting hidden
streaming cameras through similarity of simultaneous observa-
tion,” in Proc. of IEEE PerCom), pp. 1–10, 2019.

[13] N. Lakshmanan, I. Bang, M. S. Kang, J. Han, and J. T. Lee, “Surfi:
Detecting surveillance camera looping attacks with Wi-Fi channel
state information,” in Proc. of ACM WiSec, pp. 239–244, 2019.

[14] A. D. Singh, L. Garcia, J. Noor, and M. Srivastava, “I always feel
like somebody’s sensing me! a framework to detect, identify, and
localize clandestine wireless sensors,” in Proc. of USENIX Security
Symp., pp. 1829–1846, 2021.

[15] X. Ji, Y. Cheng, W. Xu, and X. Zhou, “User presence inference via
encrypted traffic of wireless camera in smart homes,” Security and
Communication Networks, vol. 2018, pp. 1–10, 09 2018.

[16] “Blink XT2 system bundles.” https://blinkforhome.com/
collections/blink-xt2-outdoor-cameras, 2020.

[17] “Arlo Pro 2.” https://www.arlo.com/en-us/products/
arlo-pro-2/default.aspx, 2020.

[18] K. Scarfone, D. Dicoi, M. Sexton, and C. Tibbs, “Guide to securing
legacy IEEE 802.11 wireless networks,” National Institute of Stan-
dards and Technology (NIST) Special Publication, vol. 800, p. 48, 2008.

[19] J. Martin, E. Rye, and R. Beverly, “Decomposition of MAC address
structure for granular device inference,” in Proc. of ACSAC, pp. 78–
88, 2016.

[20] H. Liu, Y. Wang, K. Wang, and H. Lin, “Turning a pyroelectric
infrared motion sensor into a high-accuracy presence detector by
using a narrow semi-transparent chopper,” Applied Physics Letters,
vol. 111, no. 24, p. 243901, 2017.

[21] S. Narayana, R. V. Prasad, V. S. Rao, T. V. Prabhakar, S. S. Kowshik,
and M. S. Iyer, “PIR sensors: Characterization and novel localiza-
tion technique,” in Proc. of ACM/IEEE IPSN, pp. 142–153, 2015.

[22] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, T. Kohno, et al.,
“Devices that tell on you: Privacy trends in consumer ubiquitous
computing.,” in Proc. of USENIX Security Symp., pp. 55–70, 2007.

[23] Y. Liu, A.-R. Sadeghi, D. Ghosal, and B. Mukherjee, “Video
streaming forensic–content identification with traffic snooping,”
in International Conf. on Information Security, pp. 129–135, 2010.

[24] J. Gu, J. Wang, Z. Yu, and K. Shen, “Walls have ears: Traffic-based
side-channel attack in video streaming,” in IEEE INFOCOM 2018
- IEEE Conf. on Computer Communications, pp. 1538–1546, 2018.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

13

[25] “Smart WiFi motion sensor.” https://www.bazzsmarthome.com/
products/smart-wifi-motion-sensor, 2022.

[26] Arlo Technologies, Inc., “Arlo Pro 2 HD security camera
system user manual.” https://www.arlo.com/en-us/images/
Documents/ArloPro2/arlo pro 2 um.pdf, February 2019.

[27] IEEE, “OUI public listing.” http://standards-oui.ieee.org/oui/
oui.txt, 2020.

[28] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and
B. Walke, “The IEEE 802.11 universe,” IEEE Communications Mag-
azine, vol. 48, pp. 62–70, January 2010.

[29] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11
wireless local area networks,” IEEE Communications Magazine,
vol. 35, pp. 116–126, Sep. 1997.

[30] Aircrack-ng, “Main documentation – aircrack-ng suite.” https://
www.aircrack-ng.org/documentation.html, 2022.

[31] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security
techniques based on machine learning: How do IoT devices use
AI to enhance security?,” IEEE Signal Processing Magazine, vol. 35,
no. 5, pp. 41–49, 2018.

[32] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,
“Why MAC address randomization is not enough: An analysis of
Wi-Fi network discovery mechanisms,” in Proc. of ACM ASIACCS,
pp. 413–424, 2016.

[33] M. Bagnulo, P. Matthews, I. van Beijnum, et al., “Stateful NAT64:
Network address and protocol translation from ipv6 clients to ipv4
servers,” IETF, April, pp. 2070–1721, 2011.

[34] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Rig-
gins, E. C. Rye, and D. Brown, “A study of mac address ran-
domization in mobile devices and when it fails,” Proc. on Privacy
Enhancing Technologies, vol. 2017, no. 4, pp. 365–383, 2017.

[35] E. Fenske, D. Brown, J. Martin, T. Mayberry, P. Ryan, and E. C.
Rye, “Three years later: A study of mac address randomization
in mobile devices and when it succeeds,” Proc. Priv. Enhancing
Technol., vol. 2021, no. 3, pp. 164–181, 2021.

[36] “Arlo Ultra: 4K security camera: 4K wireless camera system.”
https://www.arlo.com/en-us/products/arlo-ultra/default.aspx,
2020.

[37] “What is variable bit rate?.” https://www.adobe.com/
creativecloud/video/hub/guides/what-is-variable-bit-rate.html,
2022.

[38] “Motion Detection.” https://support.simplisafe.com/hc/en-
us/articles/360035333332-Motion-Detection, 2022.

[39] Offensive Security, “Kali Linux NetHunter.” https://www.kali.
org/kali-linux-nethunter/, 2022.

[40] “Camera video quality.” https://support.blinkforhome.com/en
US/issues-with-your-camera/camera-video-quality, 2023.

[41] “Blue by adt wireless outdoor camera.” https://support.
bluebyadt.com/s/article/Blue-by-ADT-Outdoor-Cameras, 2023.

[42] “How to set up the quality settings via reolink app.” https://
support.reolink.com/hc/en-us/articles/360006937654/, 2023.

[43] “Best settings for blink outdoor camera.” https://
smarthomeways.com/best-settings-for-blink-outdoor-camera/,
2023.

[44] “What are activity zones and how do I
create them?.” https://kb.arlo.com/1001908/
What-are-activity-zones-and-how-do-I-create-them, 2020.

[45] Reolink, “How to turn on/off the PIR sen-
sor.” https://support.reolink.com/hc/en-us/articles/
360004379493-Turn-on-off-the-PIR-sensor, 2020.

[46] T. Datta, N. Apthorpe, and N. Feamster, “A developer-friendly
library for smart home iot privacy-preserving traffic obfuscation,”
in Proceedings of the 2018 Workshop on IoT Security and Privacy, IoT
S&P ’18, pp. 43–48, ACM, 2018.

[47] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and
N. Feamster, “Keeping the smart home private with smart (er)
iot traffic shaping,” Proceedings on Privacy Enhancing Technologies,
vol. 3, pp. 128–148, 2019.

[48] P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han,
and T. Vu, “Matthan: Drone presence detection by identifying
physical signatures in the drone’s RF communication,” in Proc.
of ACM MobiSys, pp. 211–224, 2017.

[49] S. Sciancalepore, O. A. Ibrahim, G. Oligeri, and R. Di Pietro,
“Pinch: An effective, efficient, and robust solution to drone de-
tection via network traffic analysis,” Computer Networks, vol. 168,
p. 107044, 2020.

[50] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you
did on your smartphone: Inferring app usage over encrypted

data traffic,” in IEEE Conf. on Communications and Network Security
(CNS), pp. 433–441, 2015.

[51] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,”
IEEE Trans. on Information Forensics and Security, vol. 13, no. 1,
pp. 63–78, 2018.

[52] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“Homonit: Monitoring smart home apps from encrypted traffic,”
in Proc. of ACM CCS, pp. 1074–1088, 2018.

[53] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “IoT-
keeper: Detecting malicious IoT network activity using online
traffic analysis at the edge,” IEEE Trans. on Network and Service
Management, vol. 17, no. 1, pp. 45–59, 2020.

[54] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you
hear me knocking: Identification of user actions on android apps
via traffic analysis,” in Proc. of the 5th ACM Conf. on Data and
Application Security and Privacy, pp. 297–304, 2015.

[55] “Lm-8 hidden camera & bug detector.” https://www.spyguy.
com/products/lm-8-hidden-camera-bug-detector, 2023.

[56] S. Sami, S. R. X. Tan, B. Sun, and J. Han, “LAPD: Hidden spy
camera detection using smartphone time-of-flight sensors,” in
Proc. of the 19th ACM Conf. on Embedded Networked Sensor Systems
(SenSys), pp. 288–301, 2021.

[57] R. A. Sharma, E. Soltanaghaei, A. Rowe, and V. Sekar, “Lumos:
Identifying and localizing diverse hidden IoT devices in an unfa-
miliar environment,” in 31st USENIX Security Symposium (USENIX
Security 22), pp. 1095–1112, USENIX Association, Aug. 2022.

[58] R. Mitev, A. Pazii, M. Miettinen, W. Enck, and A.-R. Sadeghi,
“Leakypick: Iot audio spy detector,” in Annual Computer Security
Applications Conf. (ACSAC), pp. 694–705, 2020.

Yan He received his B.S. and MS degrees, both
from the University of Oklahoma, in 2019 and
2022, respectively. He is working toward a Ph.D.
degree in Computer Science at the University of
Oklahoma. His research interests include mobile
computing and Internet-of-things (IoT) security.

Qiuye He received her M.S. degree from Xidian
University, Xi’an, China, in 2019. She is working
toward a Ph. D. degree in Computer Science
at the University of Oklahoma. Her research in-
terests are in the area of wireless security and
mobile computing.

Song Fang received his Ph.D. in computer sci-
ence from the University of South Florida in
2018. He is now an assistant professor in the
School of Computer Science, University of Ok-
lahoma. His research interests include wireless
and mobile system security, cyber-physical sys-
tems and IoT security, and mobile computing. He
is also interested in applying machine learning in
cybersecurity. He received the NSF CISE CRII
award in 2020.

Yao Liu received her Ph.D. in computer science
from the North Carolina State University in 2012.
She is now an associate professor in the De-
partment of Computer Science and Engineering,
University of South Florida. Dr. Liu’s research is
related to computer and network security, with
an emphasis on designing and implementing de-
fense approaches that protect mobile, network
and computer technologies from being under-
mined by adversaries. Her research interests
also lie in the security applications for cyber-

physical systems, Internet of Things, and machine learning. Dr. Liu was
an NSF CAREER Award recipient in 2016. She also received the ACM
CCS Test-of-Time Award by ACM SIGSAC in 2019.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3333272

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on January 30,2024 at 21:10:38 UTC from IEEE Xplore. Restrictions apply.

