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A TOPOLOGICAL APPROACH TO UNDEFINABILITY
IN ALGEBRAIC EXTENSIONS OF Q

KIRSTEN EISENTRAGER"®, RUSSELL MILLER""), CALEB SPRINGER""', AND LINDA WESTRICK

Abstract. For any subset Z C Q, consider the set S of subfields L C Q which contain a
co-infinite subset C C L that is universally definable in L such that C N Q = Z. Placing a
natural topology on the set Sub(Q) of subfields of @, we show that if Z is not thin in Q. then
Sy is meager in Sub(Q). Here, thin and meager both mean “small”, in terms of arithmetic
geometry and topology, respectively. For example, this implies that only a meager set of fields
L have the property that the ring of algebraic integers Oy is universally definable in L. The
main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential
definitions. The normal form theorem, which may be of independent interest, says roughly
that every 3-definable subset of an algebraic extension of Q is a finite union of single points
and projections of hypersurfaces defined by absolutely irreducible polynomials.

§1. Introduction. Let Sub(Q) denote the set of subfields of Q. Given a field

L € Sub(Q) and a set C C L, it is a question of general interest whether
C is first-order definable in L using the language of rings. If so, one also
wants to know how simple a defining formula can be. For example, results of
Koenigsmann [11], extended by Park [16], have shown that in every number
field K, the ring Ok of algebraic integers is defined by a universal formula.
Here we show that the usual situation is the opposite, not only for rings
of integers but for any subset 4 C Q satisfying a rather general condition
on ANQ. Just as O = (’)@ﬁ L, we write A = AN L. Placing a natural

topology on Sub(Q), we will show that in most cases there is a comeager set

of fields L € Sub(Q) such that A; cannot be defined in L by any universal
formula.

TueoreM 1.1. If A C Q is a subset for which Aq is coinfinite and not thin
(as a subset of the Hilbertian field Q). then the following class is meager in
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Sub(Q):

Uy = {L € Sub(Q) : Ay is universally definable in L}.

Indeed, a stronger statement holds, and depends only on the subset of Q
in question.

THEOREM 1.2 (Theorem 5.6). If Z C Q is not thin, then the following is

meager in Sub(Q):
Sy = U {L € Sub(Q) : 4y is coinfinite and universally definable in L}.
ACQ: ANQ=Z

The second theorem implies the first by setting Z = Ag. Thus the
irrational portion of A isirrelevant: in all subfields L outside the meager class
S 4, neither A7 nor any other set that intersects Q in Ag can be universally
defined. Clearly this is much stronger than the first statement.

Dually (with B = Q\ A), if By is infinite and not co-thin in Q, then the
class

Ep = {L € Sub(Q) : B, is existentially definable in L}

equals U4, hence is meager. The second statement can also be applied in a
dual form to existentially definable sets.

The notion of thinness which appears in the theorem is due to Serre.
Intuitively, a set is thin if it is “small” in the sense of arithmetic geometry (see
Section 2.3). Initially we did not expect definability of a set to be intertwined
with any notion of its size apart from finiteness, but this condition arose
naturally in our investigations.

The topology on Sub(Q) is defined by considering it as a subset of the
power set 22, from which it inherits the product topology. In this topology,
every nonempty open set is non-meager. The topology also coincides (via
the Galois correspondence) with the Vietoris topology on the space of
closed subgroups of Gal(Q/Q). We thank Florian Pop for pointing out
this connection to us, and for alerting us that the same topology appears in
[18], where it is called the strict topology. The topology has also been used
by other authors (see. e.g.. [4. 5. 9, 10]).

The theorem also remains true when replacing Sub(Q) with the quotient
space Sub(Q)/= considered in [15]. which only considers fields up to
isomorphism (see Corollary 5.18).

Using the fact that neither Z nor Q \ Z is thin in Q, we obtain the following
theorem.

THEOREM 1.3 (Theorem 5.7). The set of algebraic extensions K of Q for

which Ok is existentially or universally definable is a meager subset of Sub(Q).

After seeing one of the authors speak on these results, Philip Dittmann
and Arno Fehm extended Theorem 1.3 in a different way, in [2], improving
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“existentially or universally definable” to “definable” by explicitly using the
fact that Ok forms a ring. Their proof uses techniques from model theory,
entirely different from those employed here.

1.1. Outline of the paper. To prove Theorem 1.2, we study the existential
definability of sets ¥ C Q whose complement is not thin, in the sense
of Serre. These are the complements of the sets Z described above. The
necessary background of algebraic number theory, arithmetic geometry and
thin sets is recalled in Section 2. In order to prove the main theorem, we
introduce a new notion of rank in Section 3 that applies to existential
formulas. This notion generalizes the multidegree of a polynomial in a
way that we found to be both natural and quite useful, providing a pre-
well-ordering of existential formulas. Thus, if Y is existentially definable
within Q over some field L C Q, then there is a formula of least rank which
does the job. By studying such minimal-rank formulas in Section 4, we
obtain the following normal form for existential definitions, which may be
of independent interest.

THEOREM 1.4 (Theorem 4.8). For any field L C Q, if A C L is existentially
definable in L, then A is definable in L by a formula of the form

a(X) = Vi_ fi(X),
where each B;(X) has one of the following forms:

(i) The quantifier-free formula X = z for a fixed zo € L.
(i1) A formula of the form

Y, .. 3Y [f(X.Y.....Y.) =0 £ g(X. Y1..... Yo)]

for polynomials f,.g € LIX., Y, ..., Y], where [ is absolutely irre-
ducible and does not divide g.

Finally, we introduce the topological spaces of Sub(Q) and Sub(Q)/= in
Section 5, and use the normal form to deduce the main result via Hilbert’s
Irreducibility Theorem. In fact, the proof also leads to an algorithm which,
given a basic open subset U C Sub(Q), produces a computable field L €
U in which the ring of integers Oy is neither existentially or universally
definable (see Theorem 5.12).

1.2. Previous work on definability of rings of integers. Much of the
previous work on the definability of subsets 4 C K € Sub(Q) has focused
on the case where A = Og. We conclude the introduction with a overview
of the literature on this case.

The existential definability of Ok in K is an ingredient that would
assist a standard reduction argument for proving undecidability results
for generalizations of Hilbert’s Tenth Problem. In its original form, this

problem asked for an algorithm that decides, given a polynomial equation

https://doi.org/10.1017/bs|.2023.37 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2023.37

A TOPOLOGICAL APPROACH TO UNDEFINABILITY IN ALGEBRAIC EXTENSIONS OF Q 629

f(x1.....x,) = 0with coefficients in the ring Z of integers, whether there is
a solution with x1, ..., x, € Z. Matiyasevich [14], building on earlier work
by Davis, Putnam, and Robinson [1], proved that no such algorithm exists,
i.e., Hilbert’s Tenth Problem is undecidable. Since then, analogues of this
problem have been studied by asking the same question for polynomial
equations with coefficients and solutions in other recursive commutative
rings. One of the most important unsolved questions in this area is Hilbert’s
Tenth Problem over the field of rational numbers @, and more generally over
number fields. If Z is existentially definable in QQ, then a reduction argument
shows that Hilbert’s Tenth Problem for @Q must be undecidable.

However, if Mazur’s Conjecture holds, then Z is not existentially definable
in Q. Proving this unconditionally currently appears to be out of reach.
In fact, it seems generally very difficult to prove undefinability results for
individual fields. One example of success is the field of all totally real
algebraic numbers Q. Fried, Haran, and Volklein showed that its first-order
theory is decidable [6], while Robinson showed that the first-order theory of
the ring of all totally real integers Z" is undecidable [23]. This difference in
decidability implies that Z' cannot be first-order definable in the field Q.
Another example is the ring Z of all algebraic integers inside Q. which is
undefinable by the strong minimality of Q. In both examples. the facts used
for proving undefinability are not remotely close to necessary conditions
for undefinability. Instead, they simply reflect the available pathways for
unconditionally proving undefinability in a limited number of cases.

While it is still an open question whether Z is existentially definable in Q, it
is possible to give a first-order definition of Z in Q, i.e., a definition that uses
both existential and universal quantifiers. This was first done by Robinson
[21], who generalized this result to define the ring of integers Ok inside any
number field K [22]. Later, Rumely [24] was able to make the definition of
the ring of integers uniform across number fields. Robinson’s definition was
improved by Poonen [17] who gave a V3-definition that in every number
field K defines its ring of integers. Following this, Koenigsmann [11] proved
that it is possible to give a universal definition of Z in @Q, i.e., a definition
that only involves universal (V) quantifiers, and Park extended his result to
show that Ok is universally definable in K for every number field K [16].
This raises the question of whether we can expect universal and first-order
definability to continue to hold for many infinite algebraic extensions of Q.

Currently, first-order definability results are only known for certain classes
of infinite extensions of the rationals. These are usually proved in order
to establish the first-order undecidability of certain infinite extensions via
reductions. For example, Videla proved the definability of the ring of integers
over certain infinite algebraic pro-p extensions of Q [27], while Fukuzaki was
able to define the ring of integers in infinite extensions in which every finite
subextension has odd degree and that satisfy certain ramification conditions
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[8]. These results were further generalized by Shlapentokh in [26], to which
we refer readers for more extensive background on known results for the
first-order definability and decidability of infinite algebraic extensions of Q.
In Shlapentokh’s framework, all known examples of algebraic extensions
of Q with first-order definable rings of integers can be viewed as relatively
small extensions which are somehow “close” to Q. On the other hand,
although first-order definability seems less likely for extensions which are
similarly “far from” Q, very few negative examples are known, as mentioned
above.

§2. Background from number theory and algebraic geometry. In this
section, we will recall some of the basic facts that we will require for fields,
thin sets, and affine varieties. Readers can find additional background in the
books of Fried and Jarden [7], Lang [12], Serre [25], and Liu [13].

2.1. Field extensions and the irreducibility of polynomials. In the material
that follows, we will be presented with the following question: Given
number fields F C K, which field extensions of F contain elements of the
complement K \ F? This question is intimately related to the irreducibility
of polynomials. First, we recall a basic result on the irreducibility of
multivariable polynomials.

LemMA 2.1. If K/F is an extension of fields within a larger field L, and
z € L is algebraic over F with F(z) N K # F, then the minimal polynomial
h(Z) of f over F must be reducible over K.

PrOOF. By hypothesis 1 < [F(z) N K : F]. so
[F(z): F(z)NK]<[F(z): F(z) N K]-[F(z) K : F] = [F(z) : F].

From this it follows that #(Z) must factor over F(z) N K. so it certainly
also factors over the larger field K. a

The next proposition forms a kind of converse to Lemma 2.1 when
K/F is a finite Galois extension. Given an algebraic function field E =
Frac(F[Yo. Y1..... Y]/(f)) where f € F[Yy. Y1..... Y] is an irreducible
polynomial, the constant field of E is the set of elements which are algebraic
over F.

PROPOSITION 2.2. Let F be a number field, and K a finite Galois extension
of F.If m >0 and f € F[Yy, Y1,..., Y] is an irreducible polynomial that
becomes reducible in K[Yy,Y.....Y,). then the constant field of E =
Frac(F[Yo. Y1..... Y1/ (f)) is larger than F. In particular, there is an element
z € E \ F such that there is an F-linear field embedding of F (z) into K with
the image of z lying in K \ F.
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Proor. Assume without loss of generality that Y,, appears nontrivially in
f.and write L = F(Yy, Y1...., Y,,_1). We will view E = L(6) for an element
0 in the algebraic closure L with minimal polynomial f. Similarly consider
K to be an extension of F inside L.

Suppose that E contains no elements of K \ F. Then ENK = LNK =
F., and a basic theorem of Galois theory [12, Theorem 1.12] implies the
following because K is a Galois extension of F

[EK :E]=[K:ENK]=[K:F]=[K:LNK]=[LK:L]

Using the diamond written below, we deduce that [E : L] = [EK : LK].
Importantly, these field extension degrees are also the degrees of the minimal
polynomial of 6 over L and LK, respectively.

LK/EK\E
N

This shows that / remains irreducible over the field L = K (Yy, Yi..... Y1)
as a polynomial in Y,,. We claim that f is actually irreducible as an element
of the ring K[Y), Y1, ..., Y,,], which contradicts the hypothesis. To prove
this, it only remains to show that the coefficients of f lying in K[ Yy, ..., ¥, 1]
have no common factor (see [12, IV.2.3]). Clearly, as a polynomial in Y,,,
the coefficients of f lying in F[Y,..., Y,;] have no common factor over F
because f is irreducible over F. In fact, this implies that the coefficients also
have no common factor over any algebraic extension of F by the following
lemma, which completes the proof. -

LEMMA 2.3. Let F be a field and let F' be a separable extension. If
fo. f1,..., frareacollection of polynomials in F[ Yy, ..., Y,,] with no common
factor, then fy. ..., [ also have no common factor over the extension F'.

PrOOF. By writing fY, ..., f in terms of their irreducible factors, we can
reduce without loss of generality to the case of two irreducible polynomials
fo. f1 € F[Yy. ..., Y] Indeed, for every irreducible factor p of f, there is
a polynomial f; for I < j < m which is not divisible by p. and it suffices to
show that the irreducible factors of f'; remain relatively prime to p over the
larger field F'.

Notice that irreducible polynomials fy and f| are relatively prime over F
ifand onlyif f /| generates a radical idealin F[ Yy, ..., Y, ], 1.e., ifand only if
F[Yy..... Ynu]/(fof1) is a reduced ring. The latter condition is stable under
separable field extensions, i.e., F/[Yy. ..., Y,u]/(fof1) is also reduced (see
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[13. Proposition 3.2.7(b)]). Therefore f¢ and f| have no common factors
over F’. =

2.2. Dimensions of rings and affine varieties. We will require a usable
notion of dimension, which can equivalently be viewed as a geometric
or algebraic phenomenon. In particular, there are related notions of the
dimension of a commutative ring 4, and the dimension of the associated
topological space Spec 4 consisting of all prime ideals of 4 with the Zariski
topology. In this section, we will review some basic facts of commutative
algebra and algebraic geometry, limiting the discussion to only what is
necessary for our purposes.

First, let us recall this topology and some basic notation. Given a
commutative ring A, the set Spec A4 is endowed with the Zariski topology by
defining the following as basic closed and open sets, respectively. For any
ideal I C A, we define V' (1) to be the subset of Spec 4 consisting of all prime
ideals that contain 1, and D(f) = Spec 4 \ V (/). Notice that it is natural
via the isomorphism theorems for rings to identify V(1) with Spec 4/1.
With this notation, the closed subsets of Spec 4 in the Zariski topology are
precisely the sets of the form V(1) where I C A is an ideal, and sets of the
form D(f) for f € A form a base for the open subsets of Spec 4. In fact,
Spec 4 is an affine scheme, meaning that it has even more structure than just
a topology. although we will not require this full structure (see [13, Chapter
2] for more background).

In this paper, we consider the ring A = F[Yy. ..., Y,,] and its quotients,
where F is a subfield of Q. An affine variety over F is an object of
the form V(I) = Spec F[Yo, ..., Y,,]/1 for some m >0 and some ideal
I C F[Yy, Y),.... Y,]. Furthermore, if the quotient F[Yj,..., Y,,]/I is an
integral domain, then the corresponding affine variety is called integral.
We will write V' (I) = V(f1..... fx) when theideal I C F[X, Y;...., Y,,]is
generated by { f1..... fx}. If there is ambiguity about the base field, then we
will write V' instead of V for clarity.

Given an affine variety V' = Spec F[ Yy, ..., Y,,1/1. the rational points of
V (over F) are the tuples (yo. ..., yn) € F™ such that f(yo.....ym) = 0 for
all f € I. The set of rational points can be identified with the set of all
F-algebra homomorphisms ¢ : F[Yy,..., Y,,]/I — F. We refer the reader
to [13, Section 2.3.2] for more details. As we are frequently working over
non-algebraically closed fields, it is possible for nontrivial affine varieties to
have no rational points, such as the affine variety Spec Q[ Y. ... Y,,]/ (Y3 +
-4 Y2 +1) for any m > 0. We can view the varieties as geometric objects
which help us find and describe the rational points.

The Krull dimension of aring A, written dim(A), is the supremal length r of
achain of prime ideals py C --- C p, in 4. Similarly, given a topological space
X, we define dim(X) to be the supremal length r of a chain of irreducible
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closed subsets Zy C --- C Z, in X. The following proposition equates these
two notions of dimension. Recall that the nilradical of a commutative ring is
the set of all nilpotent elements, or equivalently the intersection of all prime
ideals.

PROPOSITION 2.4 (Proposition 2.5.8, [13]). Let A be a (commutative) ring
and let N be the nilradical of A. Then dim(Spec A) = dim(A) = dim(A/N).

In our applications, we need to understand the dimension of subsets
of affine varieties. Recall that if X is any topological space and Y is any
subset of X endowed with the subset topology, then dim(Y) < dim(X)
[13, Proposition 2.5.5]. In the context of affine varieties and open subsets,
this inequality is often an equality due to the fact that open subsets in
the Zariski topology are “large”. This idea is formulated precisely in the
following proposition. Given a field extension L/F, we write trdeg, L for
the transcendence degree of L over F. If X = Spec 4 is an integral affine
variety, we call Frac(A) the function field of X.

PRrOPOSITION 2.5 (Proposition 2.5.19, [13]). If X = Spec A is an integral
affine variety over a field F, then

dim(U) = dim(X) = trdeg. Frac(A4)
for each nonempty open subset U C X .

Similarly, it is helpful to know when a subset of a topological space X
has strictly smaller dimension than X. In contrast to the result immediately
above, this often happens for proper closed subsets of an affine variety.

PRroPOSITION 2.6 (Corollary 2.5.26. [13]). Let X = Spec A be an integral
affine variety. If f € A is nonzero, then every irreducible component of V (")
has dimension dim(X') — 1. In particular, every proper closed subset of X has
strictly smaller dimension than X.

So far in this section, the definition of dimension depends on the base field
F C Q. a priori. However, the result below clarifies that dimension stays the
same under base extension. This allows us to ignore the field of definition to
some extent, especially when defining the rank of a formula below, although
the notion of integrality truly does depend on the base field, so care is still
required when applying the previous two propositions.

PROPOSITION 2.7 (Proposition 3.2.7. [13]). Let F C L C Q be fields. Given

anaffine variety Ve (f1, ..., fix) = Spec F[ Yo, .... Yul/(f1. ..., f«). the affine
variety

Vi(fi..... fi) = Spec L[ Yy. ... Yl /(f1. ... fi)

is the base extension of the variety Vi(f1..... fr) to L. and these affine
varieties have the same dimension.
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To apply this proposition to open sets, we remark that open sets can
be equivalently viewed as affine varieties themselves, albeit in a different
ambient space with an extra variable.

COROLLARY 2.8. Let F C Q be a field. For polynomials g, f1..... fx €
F[Y.....Yy). define A= F[Yq.....Yn]/(f1..... fx) and let A, be the
localization of A be the element g. Then there are isomorphisms of ringed
topological spaces

Ve(f1..... fr) N D(g) = Spec(dy) = Vi(f1.ooo. fi. Vg — 1).

In particular, dim(Ve(f1,.... fr)ND(g)) =dim(Vi(f1..... fr)ND(g))
for any algebraic extension of fields L O K.

ProoF. The first isomorphism is [13, Lemma 2.3.7]. The second isomor-
phism actually follows from a well-known isomorphism of underlying rings

Ag = F[Yo. ... Yortl/(f1oooos [l Ymg = 1)

(see [20, Lemma 6.2]). Therefore, the statement on dimension follows
immediately from Proposition 2.7. o

2.3. Thin sets. Hilbert’s Irreducibility Theorem can take many different
forms, but we put a simple version here that suffices for the purposes of this
article. For brevity, we present thin sets as a black box, and refer the reader
to [25, Proposition 3.3.5] for more details. Essentially, a thin subset 7' C K
of a number field is small, in the view of arithmetic geometry. For example,
any set of points that is contained in a closed subvariety of affine n-space
K", and which is different from the entire space, is thin with respect to K.
All necessary details can be deduced from the results we recall below.

THEOREM 2.9 (Hilbert’s Irreducibility Theorem). Let f (Yo, Y1.....Y,)
be a polynomial with coefficients in a number field K which is irreducible as
an (m + 1)-variable polynomial. There exists a thin set T C K™ such that if
D1s s ym) € K™\ T, then f (Yo, y1, ..., ym) is an irreducible single-variable
polynomial of degree degy, (f).

In order for the theorem above to be non-trivial, we need to know that
K™ is not a thin subset of itself, and this is indeed true for all number fields
[25, Proposition 3.4.1]. Moreover, the propositions below show that thin
sets cannot contain arithmetically important subsets, which will allow us to
use Hilbert’s Irreducibility Theorem in the cases we care about.

PrOPOSITION 2.10 (Proposition 3.2.1, [25]). If L/K is a finite extension of
fields and T C L™ is thin with respect to L, then T N K™ is thin with respect
to K.

ProposiTiON 2.11. If K is a number field, then no thin subset of K contains
either 7 or Q \ Z.
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Proor. Thin sets of Q cannot contain Z or Q\ Z by [25, Theorem
3.4.4] and [25, Proposition 3.4.2], respectively. Thus, the result for arbitrary
number fields follows from Proposition 2.10. =

Moreover, we can understand thin sets in products. This lemma will be
used to show thatif a set Z C Q is not thin, then the product Z x Q" cannot
be thin, either.

LEMMA 2.12. Ifn > 0and S C Q is a set such that S x Q" C Q"+ is thin,
then S C Q is thin.

Proor. There is a line £ C Q"*! such that £N (S x Q") is thin in £ and
the projection of L to the first coordinate is all of QQ [25, Proposition 3.2.3].
As L is a line, this projection is an isomorphism and £ N (S x Q") maps
onto to the set S. Therefore, S is thin in Q. =

Finally, we prove a proposition that lets us stitch this material together.
This is ultimately the result that is required in the proof of our main theorem.

PRrROPOSITION 2.13. Let K be a number field and let f(X.Y).....Y,).

g(X, Y1.....Y,) € K[X, Y,..., Y,] be relatively prime irreducible polyno-
mials. Then there is a thin set T C K™ such that f(x.y1.....ym-1.Y) and

g(x. ¥1..... ym1. Y) are relatively prime irreducible single-variable polynomi-
als for every (x.y1.....ym1) € K" \ T, of degrees degy (f) and degy (g).
respectively.

Proor. Take Tj to be the union of the two thin sets given by applying
Hilbert’s Irreducibility Theorem to f and g separately. By construction,
f(x.y1.cc.yma. Y) and g(x. p1..... vt Y) are irreducible polynomials
in Y for every (x, y1,.... ym 1) € K™\ Ty, and it only remains to check the
claim of relative primality.

If degy (f) # degy (g). then this claim is trivial. Therefore, write
d =degy (f) = degy (g).and consider (x.....y,1) € K\ T. Since the
polynomials f(x, y1,....Vm1.Y) and g(x. y1..... ym1. Y) are irreducible,
the failure of relative primality implies that they are unit multiples of each
other, i.e., f(x.¥1. ... Vm1. Y) = zg(x, y1..... ym_1, Y) for some nonzero
z € K. In particular, if we write

d

XY Y) =) fi(X Y Y)Y,
i=0
d

gX. Y1 Yy =) g(X. V1. Y)Y,
i=0

where f;.g; € K[X, Y1...., Y, 1] are polynomials, then this condition is the
same as

filxy1e s Ym1) = 2 (X, y1s e Yimt)
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forall0 < i < d.Multiplying these conditions together, we get the equations
figi =288 =8&fj

for0 < i, j < d.Wewill show that this system of equations holds only inside

a thin set, which completes the proof.
We claim that the polynomial

FilXoYy Yy g (XY Y ) — & (X Y Y ) f (X Y Y )

is nonzero for some choice of i/ and j. Indeed, if this were not the case, then
we would find that

d
fi(X» ... Ym—l)g(X~ Yi..... Yi) = th(X Yy, ... Ym—l)gj(X7 Yy, ... Ym—l)Yljz
j=0
d .
=D gi(X Y Yo ) (X Y Y ) Yy
Jj=0

=g (X, Y. V) f(X, Y], ..., Yi)

for all i. As g and f are irreducible and the only polynomials on the left- and
right-hand sides of the equation containing the variable Y,,, we conclude
that they are unit multiples of each other, which contradicts the hypothesis
of relative primality.

Therefore, let 77 be the set of all K-rational points on the affine variety

Vi({figi—gif;:0<i<j<degy (f)}).

Since one of the polynomials in the defining set is nonzero, the affine variety
is a proper closed variety, which implies that 77 is a thin set by definition.
By construction, the set T = Ty U T is the desired thin set. =

§3. Rank of a formula. The goal of this section is to define a notion
of rank for existential formulas in the language of fields, using degrees
of polynomials and dimensions of varieties, as well as the number of 3-
quantifiers used. Certain formulas will have the same rank, just as certain
polynomials have the same degree. Crucially, the ranks are well-ordered.

3.1. A useful well-ordering.

DerINITION 3.1, Let (£.<) be a linear order. For a finite tuple
(ag.....a,) € L<®, write a* for the tuple of the same (n+1) ele-
ments (including repetitions) arranged in <-descending order: a* =
(@ (0): --- - Au(n)) Where  is a permutation and a,( 1) < a,(;) for all i < n.
Write @ =* b justif @* = b*.

Then the *-order (£*, <*) is the lexicographic order <* (defined using <
on individual coordinates) on the set £L* of =*-equivalence classes in £<¢.

To be clear: if @* is a proper initial segment of 5*, then a* <* b*.
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Equivalently, one can view the elements of £* as finite multisets of elements
of £, with the elements of each multiset listed in <-nonincreasing order.

LemMA 3.2. If (L. <) is a well order. then so is (L*, <*).

Proor. Clearly <*is a linear order. If it were not a well order, there would
be a least @ € L such that some infinite <*-descending sequence begins with
an a* whose greatest element is . Choose such an a* = (a*, ay. ..., a,). in
nonincreasing order with a; < a after a appears k times, with k as small
as possible (and allowing n = 0). Then the infinite descending sequence
beginning with this ¢* can only have finitely many terms that begin with
a®. for if there were infinitely many, then by “chopping off” the a* from
each term, we would get an infinite sequence contradicting the choice of a.
But then, immediately after the last term beginning with a comes a term
beginning with a/ for j < k., and this term also begins an infinite descending
sequence in £*, contradicting either the minimality of & (if j > 0) or the
minimality of @ (if j = 0). -

3.2. Definition of rank. We present an explicit way to put a well-ordering
on the set of existential formulas with parameters in any given field. This is
done by associating a rank to every existential formula.

Every existential formula o (X) can be written in disjunctive normal form

a(X) = Ell?(al VayV-Vay,),

where each o; (X, )7) is a conjunction of equations and inequations. Bringing
the existential quantifiers inside the disjunctions and discarding any unused
quantifiers, every existential formula can be rewritten as

((HYl EIle)al) VoV ((HYI ElYm”)Oén),

where all variables Y, ..., Y, appear in «;. One can also easily rearrange
any o; (X, Y) into a conjunction of the form
FIXY)==f(X.Y)=0&g(X.,Y) #0.

Only one inequation g # 0is needed, as several g; (X, f’) could be multiplied
together. It is allowed for g to be the constant 1. We call an existential formula
rankable if it is given in the above format. It is trivial to rearrange any
existential formula into rankable format, so in this paper every existential
formula which appears is assumed to be rankable.

Before defining rank, we present a way to order tuples of polynomials.
Notice that this notion depends on a specific order for the variables.

DeriNITION 3.3. For the variables X, Y1,..., Y,,, the multidegree of a
monomial X¢ Yldl LY is (e.d,y.....dy,). and these (m + 1)-tuples are
ordered by the reverse lexicographic order. The multidegree mdeg(f) of
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a polynomial f is the maximum of the multidegrees of each monomial
appearing (with nonzero coefficient) in it.

Observe that the linear order defined above on multidegrees is a well-

ordering.

DEFINITION 3.4. A basic rankable formula is an existential formula of the
form

Y3V 11X YY) == [ (X, Y. .. Ym) =0& g(X. Y) £ 0],

and the rank of such a formula is the triple

rk(p) = (m.e. (mdeg(f1). ... mdeg(f%))").

N

where the second component is the dimension e of V@( )N D(g).asdefined
in Section 2.2, and the third component uses the =*-classes of tuples of
multidegrees, as in Definition 3.1.

N

In this definition, we see that V5(f) N D(g) is a subset of an ambient
space of dimension m + 1. Therefore, the first coordinate of the definition
of rank can be equivalently viewed as a measure of the dimension of this
ambient space. Additionally, by Corollary 2.8, the base field does not matter
in the definition of the dimension e, so we will usually drop the @ from this
notation.

We define an order < on ranks of basic rankable formulas in forwards
lexicographic order, meaning that

(m.e,(dy,....dy)*) = (m', e, (d].....d}.)")
if and only if one of the following holds:

e m < m’, i.e., the first formula uses fewer 3-quantifiers; or

e m =m'and e < ¢, so the first formula defines an open variety of lesser
dimension than the second; or

em=m' and e=¢' and (di.....d;)* <* (d]..... dlé,)*, so the first
formula uses polynomials of lower multidegree.

The least possible rank of a (satisfiable) basic rankable formula is
(0,0, (1)*), which is the rank of the quantifier-free formula X = x for any
specific value x: here m =0, k =1 and the variety, which has a single
component whose dimension is 0, is defined by f; = X — x =0 whose
multidegree (in the single variable X, since m = 0) is simply 1. (The variety
defined by 0 = 0 has dimension 1, so the formula 0 = 0 has higher rank.)

Let R denote the set of all possible ranks of basic rankable formulas.
Then (R. <) is a well-ordering. (The third component of < is well-ordered
by Lemma 3.2.) Let (R*, <*) be the result of applying Definition 3.1 to
(R.=<).
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Observe that an existential formula is rankable if and only if it is the finite
disjunction of basic rankable formulas.

DErFINITION 3.5. If @ = V/_, B is a rankable formula, the rank of « is
defined to be

rk(a) = (rk(By).....tk(B,))* € R .

The rankable formulas can then be compared using the ordering <*. By
Lemma 3.2, (R*, <*) is a well-order.

§4. Minimal formulas and hypersurfaces. The well-ordering of ranks
means that every nonempty set of existential formulas has an element of
least rank. For example, if there exists an existential formula that defines
Oy in L, then there is an existential formula « that accomplishes this which
has least rank among all such formulas. Such a formula can be considered a
minimal successful formula. This motivates the following general definition.

DEFINITION 4.1. For a field L C @ and an existential formula o(X) with
coefficients from L, we say « is L-minimal if o has least rank among all
existential formulas o’ for which

Vx(a(x) <= o'(x))
holdsin L.

In order for the above to make sense, o’ ranges only over those existential
formulas which have parameters from L. We will show that every L-minimal
formula must take the form of a disjunction of formulas with two very simple
formats: quantifier-free formulas, and formulas with only one equation and
one inequation.

We will start by considering a general rankable formula, then minimize it
as much as possible. First, we want to minimize the number of quantifiers,
which is the first component of rank. Clearly, we can eliminate the quantifier
for any variable that does not appear in any polynomial of the formula. The
following simple lemma allows us also to remove any variables that appear
in the inequation, but none of the equations.

LeEMMA 4.2. Let 1 < e < m and let 6(X) be the basic rankable existential
formula

Y3V [N Y. Ye) = = fr (X Y. Ye) =0 # g(X. Y. ... Y]

where f; € F[X, Y1,...,Y.]and g € F[X, Y1...., Y,,,] for some field F.
Then there are polynomials gi. ....g. € F[X. Y. ..., Y,] such that 5(X) is
equivalent over F to the disjunction of formulas

Vi 3Y L 3Y [f1(XY) = = fi(X.Y) = 0 £ g(X. )],
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PrOOF. Writeoutg = Z?go gi(X. Yy,..., Y, 1) Y] asapolynomialin Y,,.
Notice that if (x, y1.....ym1) € Q" is any tuple, then there is a y,, € Q
such that g(x, y1..... y) # 0if and only if g; (x, y1. ..., ym_1) # 0 for some
0 <i < d,,. Therefore, we can remove the quantifier for Y,, and instead use
a disjunction where g is replaced by g; for 0 < j < d,, in each formula. By
induction, this completes the proof. -

To continue minimizing the number of quantifiers, we can take a more
geometric perspective. A basic rankable formula f(X) with m quantifiers

3Y1.. 3V [[1(X.Y) = = f1(X.¥) =0 # g(X. Y)]

corresponds to the projection to the X-coordinate of the points on the
variety D(g) NV (f1..... fx). Minimizing the number of quantifiers m is
equivalent to minimizing the dimension m + 1 of the ambient space where
the variety lives. If k is large, then we expect the dimension e of the variety to
be much smaller than m + 1, and we can consider this “wasteful,” as it uses
more variables than necessary. The following proposition uses a basic result
of algebraic geometry to show that, in a special case with integral affine
varieties, we only need m = e quantifiers and a single equation to describe
all but a lower-dimensional closed subset. To complete the section, we will
the show that this is enough to deduce the result in general.

ProPOSITION 4.3. Let F CQ be a field and p=(f1.....fr) C
F[X.Y..... Y,] aprime ideal. Define B(X) to be the formula

ﬁ(X) = EIYI:---a Ym[fl(Xa Y],---, Ym) == fk(Xa Yl:"'a Ym) = 0]

and set e = dim(V(p)). If B(X) is satisfied by infinitely many values of X in
Q and e < m — 1, then after possibly reordering indices, there are polynomials
heF[X Y,..,Y.Jand s € F[X, Y1,..., Y. 1] with h irreducible and s & p
such that B(X) is equivalent to y1(X) V 7,(X) over F, using the formulas

n(X):  3Y; .. 3Ye[h(X.....Ye) =04 s(X. V)]
n(X): 3V 3V (X Yo) = F1(Xe oY) = = fr(Xo . Yi) = 0].

Proor. Write L = Frac(F[X, Yi,.... Y,]/p). By Proposition 2.5, we
know that e is equal to the transcendence degree of L over F. Since the
images of {X, Y1...., Y,,,} generate L over F, there is a transcendence basis
consisting of a subset of these elements, and we can force X to be in this basis
because X is not algebraic over F [12, Theorem VIIIL.1.1]. Indeed, if X were
algebraic over F, then it would be the root of a single-variable polynomial
over F, and therefore f(X) would only be solvable over Q by finitely many
X, which is not the case by hypothesis.

Reorder the variables so that {A_’ Yy )_’e,l} is a transcendence basis
of L over F. Write Ly = F (X, Y1..... Y, 1). Although a particular ordering
of the variables is used when defining the multidegree component of rank
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in Definition 3.4, we will produce lower-rank formulas purely in terms of
quantifiers and dimension, and therefore the multidegree will not matter
here. As L is a finite separable extension of Ly, the primitive element theorem
states that L = Ly(#) for a single element 6. Write 4 € Lo[ Y] for the minimal
polynomial of #. By clearing denominators if necessary, we can assume
without loss of generality that # € F[X, Y1,..., Y. |, Y] is an irreducible
multivariable polynomial. Therefore, writing p = (f1, ..., f), we have an
isomorphism of fields:

Lo[Yg, cees Yl’ﬂ]/(fla ,fk) = L()[Y]/(h) =~ Frac(F[X, Yl, cees Ye,l, Y]/(h))

Geometrically, this says that the integral affine variety Vr(p) is birational
to the hypersurface V' (%). In fact, we can see that the two varieties contain
isomorphic open sets, as follows.

Using the isomorphism of fields we can write Y¥; = Z?{;O cje Y* for each
j=e ...m and Y =) -d; Y .. Y, ., where c;j; and d; are elements
of Ly, and in particular not contained in p because L is a subfield of the
function field of V' (p). Let s be the products of all denominators appearing
in these terms. Then these equations give an isomorphism of the open sets
Vre(p) N D(s) and Vi (h) N D(s) (see [13, Lemma 3.7]). Moreover, the X-
coordinate of rational points is unchanged by the isomorphism because
we included X in the transcendence basis. As Vi (p) = (Vr(p) N D(s)) U
Vi (p + (s)), this proves the claim that the formula f is equivalent over F to
the disjunction stated above. -

Next we show that minimal formulas all have a very convenient structure.

PROPOSITION 4.4. If a(X) = V!_, p;(X) is a disjunction of basic rankable
formulas and is L-minimal for some field L C Q, then each B;(X) has one of
the following forms:

(i) The quantifier-free formula X = z for a fixed zy € L.

(ii) The “hypersurface formula” 3Y;...3Y, [f(X.Y].....Y,) =0 #
g(X. Y.....Y.)] for an irreducible f € L[X.Yi.....Y,] and a
polynomial g € L[X, Y. ..., Ye].

PrOOF. Let B(X) be a fixed B;(X) which does not have the desired form.
Write £ in the form

Y1 AV [[1(X oY) = o = fi( X, Y) =0 £ g(X, V)]

and consider the ideal I = (f1..... fx). Define e = dim(V (1) N D(g)).
Without loss of generality, we can assume that each f; is irreducible.
Otherwise, if | = hih, is a nontrivial factorization, then we could write f as
the disjunction of two formulas with f| replaced by /; and /,, respectively,
which have smaller multidegree.
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Since [ isirreducible, V7 (1) is a closed subset of the integral affine variety
V1 (f1) which has dimension dim (¥ (f)) = m by Proposition 2.6. In fact,
we see that either V() = V (1), in which case we are done, or we have

e = dim(V(I) N D(g)) < dim(V (1)) < dim(V (f1)) = m.

By assumption, we are in the latter case, and we will produce a set of formulas
with parameters in L which explicitly contradicts the minimality of «.

The ideal I has a primary decomposition I = q; N --- N q, where each q; is
a primary ideal associated with a prime ideal p;. Indeed, the rational points
on V' (I)N D(g) are the same as the rational points on U/_, ¥ (p;) N D(g).
Notice that the open set V(p;) N D(g) might be empty for some i, but
whenever it is nonempty, V (p;) N D(g) has the same dimension as V (p;) by
Proposition 2.5.

To summarize, we have shown that the formula f(X) is equivalent to the
disjunction V/_,d,, (X ) where each d,,(X) is defined as a formula

Op, (X) = 3V1. . Y[ pi(X. V) = = pl (X, V) = 0 #£ g(X. Y)].

where p; = (pi. ... p;(l.)). For each i, we will replace d,, (X) itself with an
equivalent disjunction of basic rankable formulas, each of which has rank
strictly smaller than . By definition, this contradicts the minimality of «,
and the proof will be done.

To this end, we analyze the primes S = {p;,....p,} and divide them
accordingly. Let Shnie be the set of primes p € S such that only finitely
many elements of L satisfy d,(X) in F, and let S, be all other primes of S.
Partition Soc = Shig U Ssmant Where

Stig = {p € Soo | dim(V (p)) = e},
Ssmall = {p € Soo | dlm(V(p)) < e}'

For any prime p € Sgnite. let {z1,...,z,} be the finite set of elements
of L which satisfy d,(X) in L. We may therefore replace J,(X) with
the disjunction of quantifier-free formulas V(X — z;). Each of these
quantifier-free formulas consisting of a single-variable polynomial of degree
1 has the smallest rank possible for a nontrivial basic rankable formula and
B(X) has strictly larger rank.

For any p € Sgman. the formula d,(X) is already of smaller rank than .
Indeed, the ambient space is the same, and the dimension is strictly smaller

by definition.
For any p € Sy,. letting p = (pi. ... p,). we apply Proposition 4.3 to see
that 3Y[p1(X,Y) = --- = p,(X, Y) = 0] is equivalent to the disjunction of

two formulas

Y, .3V, [f(X. ... Y,) =0+ s(X, V)],
Y, .. 3V [s(X o, Y) = pi(X, . Y) = - = pu(X. ..., Y,) = 0],
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where f € L[X, Y1,..., Y.] is irreducible and s € L[X, Y1,..., Y, 1] is not
contained in p. Thus, d,(X) is equivalent to the disjunction of the following
two formulas:

Y3 [f(X oY) =04 g(X. V1., Y)s(X. Vi, Yo )] (1)

3.3V (X Yo ) = p1(Xe oY) = o = pp(X. ... Yin) = 0 # g(X, Y)].
(2)

By Lemma 4.2, we can replace the formula (1) with a disjunction of basic
rankable formulas, each of which uses only e quantifiers. Since e < m, all
these formulas have strictly smaller rank than /.

On the other hand, formula (2) has m quantifiers just like 8, but we claim
the associated variety has smaller dimension. Indeed, we see that

dim(V (p + (5)) N D(g)) < dim(V(p + (s))) < dim(V (p)) = dim(V(p) N D(g)) = e.

where the strict inequality follows by Proposition 2.6. Therefore this formula
also has strictly smaller rank than . This completes the proof. -

We can say more about the hypersurface formula appearing in the previous
result. First, we present a simple result on elements of the function field of
an irreducible hypersurface.

LEMMA 4.5. Let F CQ be a field and f € F[X.Y.....,Y,] an
irreducible  polynomial whose degree in Y, is positive. If p/q €
Frac(F[X. Y1, ..., Y1/ (f)). then there are lifts of p and q to F[X, Y1, ..., Y]
such that degy (q) < degy (f).

Proor. Write f = Z?:o b;Y! where b; € F[X,Y,.... Y, 1]. Choose
arbitrary lifts po.qo € F[Y)..... Y] of p and g. If degy qo < degy,_f. then
we are already done. Otherwise, define p; = by py and ¢, = b;yqo, which
define the same fraction in the function field because by.qo ¢ (f). Then
the leading coefficient of ¢; is divisible by b;, so we write it as /by
for hy € F[Yy..... Y,,1]. Define ¢ = ¢, — Iy Y,;degy'”ql)fdfl, and notice that
degy ¢» < degy ¢qi. Continuing in this way, the claim follows. -

PROPOSITION 4.6. Suppose L C Q is a field and B(X) is a formula with
parameters from L of the following form:

B(X)=3Y,..3Y[f(X.Y1.....Y,) =0 # g(X. Y1..... Y.)].
Suppose B(X) is L-minimal. Then f'is absolutely irreducible.

Proor. First, it is clear that /" is irreducible in L; if it were reducible then
p could be equivalently expressed as the disjunction of two hypersurface
formulas of strictly smaller rank.
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Suppose for contradiction that f is not absolutely irreducible. We will use
this fact to define {x € L : f(x) holds in L} by a smaller rank formula using
coefficients from L.

Let F C L be a number field containing all the coefficients which appear
anywhere in . Let K be a finite Galois extension of F' containing the
coefficients of the absolutely irreducible factors of / over Q. and let F’ =
KNL. Then F C F' C K, and K is Galois over F’ because it was Galois
over F. We remark that F’ is a subfield of L, and therefore " is irreducible
over F’.

For each of the finitely many number fields £ with F/ C E C K, let pg €
F’'[Z] be a minimal polynomial for a primitive generator of E over F’. Since
K is Galois over F’, none of these finitely many pg have a root in L. Let
h=1lgrceck PE

We claim that L has a lower-ranked formula ¢ with coefficients from F’
and with the property that for all x € L. ¢(x) holds over L if and only if
B(x) does.

Let M be the function field of f over F’. By Proposition 2.2, M therefore
contains some element zyp € K \ F’. Moreover, F'(z) is a subfield of K
which strictly contains F’. So F’(zy) contains a root z of h.

As an element of M, the root z will be of the form pXY)+()

. q(X.Y)+(f)
F'[X,Y]. We may view p and ¢ as polynomials p,q € F'[X, Y1,.... Y.].
modulo the ideal (/). These polynomials will satisfy

I (p(x, f)) _0
q(x.y)
whenever (x, ¥) is a solution to f = 0 and ¢(x, J) # 0. Therefore, every
solution (x, y) € L" ! to f = 0 has ¢(x. ¥) = 0. )

By Lemma 4.5, we may choose our specific ¢ € F'[X, Y] so that
degy (¢) < degy (f). Notice that ¢ ¢ (f) because ¢ + (f) is the denom-
inator of an element of the function field, hence nonzero. Below we will
consider ¢ as a polynomial of degree d in Y,. writing ¢ = Y., ¢; Y with
all ¢; € F[X. Y1. ..., Y._1]. Without loss of generality, the leading nonzero
coefficient ¢, does not lie in (/). If it happens that Y, does not appear in ¢,
thend = 0and ¢y = ¢.

But now we can use these facts to give a lower-ranked disjunction ¢(X) =
70(X) V y1(X) which is equivalent to (X ) in L. Since Y, has lower degree
in ¢ than in f; the trick is to use the Euclidean algorithm here, using the
leading term in the expansion f = Z?l:o T.bi(X, Y1, ..., Yo 1) and writing

, with p,q €

N

FX.Y)=cg(X. Yo ) f(X.Y) by (X, Y1..... Yeu) YO 4 q(X.Y)
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as a remainder with degy (r) < degy, (¢). Recall that the polynomial ¢, is
the coefficient of Y¢ in ¢, hence does not involve Y,. Observe also that all
coefficients of r are in F’.

We claim that in this situation, a tuple (x, y) € L™+ isa pointon V() N
D(g) if and only if one of the following conditions holds:

q(x.3) =r(x.7) =0# g(x.3) - ca(x. y1. ... yerr) (3)

or

f(x.¥) =calx.p1. ... pe1) =0 # g(x, §). (4)

To see the claim, first let (x, ) be a point on V' (f) N D(g). As shown
above, we must have ¢(x. y) = 0. But the Euclidean equation shows that
r(x,¥y) =0 as well, so the tuple satisfies one of the conditions, according
to whether ¢4 (x, y1, ..., ym_1) = 0 or not. The converse of the claim follows
by applying the Euclidean equation to the first condition, and the latter
condition directly defines a subset of V() N D(g).

The formulas yy(X) and y;(X) that we promised above are simply the
conditionsin (3) and (4), each prefixed by 3Y; ... 3Y,. Clearly these formulas
have the same number of quantifiers as . The first formula corresponds to
a subset V (r,q) N D(gcq) of V(f) N D(g) because r + by Y g =cyf.
Hence the dimension of the subset cannot exceed the dimension of V' (f) N
D(g). However, r and g were constructed to have lower multidegree than f.
so o has strictly smaller rank than £.

On the other hand, the affine variety over F’ defined by the latter formula
is a proper closed subset of V' ( /), hence

dim(V(f.¢s)) N D(g)) < dim(V (/. ¢4))) < dim(V(f)) = dim(V' (1)) N D(g))
showing that y; has strictly smaller rank than f. -

Putting these results together yields the following normal form theorem
for existential formulas in algebraic extensions of Q.

DEerFINITION 4.7. An absolutely irreducible hypersurface formula is a
formula of the form

37,3V (X Y. Y) =0#£g(X. V1. ... Y.)]

for polynomials f,g € Q[X. Yy, ..., Y.], where f is absolutely irreducible
and does not divide g.

_ TuEOREM 4.8 (Normal form for existential definitions). For any field L C
Q. if A C L is existentially definable in L, then A is definable in L by a formula
of the form

a(X) = Vi Bi(X).
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where each B;(X) has one of the following forms:

(i) The quantifier-free formula X = z for a fixed zy € L.
(i) An absolutely irreducible hypersurface formula with coefficients from L
which is satisfied by infinitely many x € L.

Proor. Apply Propositions 4.4 and 4.6, plus the following two observa-
tions. If f divides g in any of the hypersurface formulas, then that formula is
unsatisfiable. If a hypersurface formula is satisfied by at most finitely many
x € L (including if it is unsatisfiable), then it could be replaced by a (possibly
empty) disjunction of formulas of the form X = z,, lowering the rank.

§5. The meagerness of definability. Recall that by identifying a subset of Q
with its characteristic function, we can consider the set Sub(Q) = {L C Q:
L is a field} as a subset of 29, from which it inherits the product topology.
A basis for the topology is given by the sets

Uﬁ.[; = {L S Sub(@) 1day,...a, € L and b], ...,bk Q L}

for any finite sequences of elements a.b from Q. If b is empty, we write
simply Uj;.

Recall that Cantor space, denoted 2, is the set of infinite binary sequences
with the product topology.

PROPOSITION 5.1. The space Sub(Q) is homeomorphic to Cantor space.

Proor. Since Sub(Q) is a closed subset of the Cantor-homeomorphic
space 2@, it suffices to show that Sub(Q) has no isolated points. But it is
clear that whenever U, ; is non-empty, there is ¢ € Q such that both Uaok
and U; (5.0) are nonempty. -

The upshot of Proposition 5.1 is a structure on the set Sub(Q) which
allows us to describe when a set is “large” or “small” in terms of topology.
In particular, we enlist the notions of meager sets and the property of Baire.

DErFINITION 5.2. A subset of a topological space is called nowhere dense
if its closure has empty interior, and meager if it is the countable union of
nowhere dense sets. A topological space is Baire' if every non-empty open
subset is non-meager.

Cantor space 2% is Baire, and by Proposition 5.1 the same is true for

Sub(Q), which allows us to consider meager sets to be small.

DEFINITION 5.3. For any Z C Q. and formula f(X) with coefficients a
from Q. we define Sg(Z) to be the set of algebraic fields in which f defines

'Some authors use the terminology Baire space to refer to topological spaces with this
property. However, we reserve the name Baire space for the particular topological space »®,
which is discussed in related papers, such as [15], although we will not use it in this paper.
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a set disjoint from Z:
Sp(Z) ={L € Uz : {x € L: p(x) holds over L} N Z = (}.
DEFINITION 5.4. For any Z C Q. let S(Z) denote the set

S(Z)=Jsp(2).
B

where f ranges over absolutely irreducible hypersurface formulas with
coeflicients from Q.

PROPOSITION 5.5. Let Z be a subset of Q that is not thin in Q. Then S(Z)
is meager. In particular, for every absolutely irreducible hypersurface formula

BX): V(X ¥)=0+#g(X. V)]
with coefficients d from Q, the set Sg(Z) is nowhere dense.

ProOF. Since Sy(Z) C Uj. it suffices to show that Sz(Z) is nowhere dense
in U;. Let b and ¢ be any sequences of elements of Q such that Uaak #*

-

0. Let F =Q(a.c) and let K = F(b). By the application of Hilbert’s
Irreducibility Theorem in Proposition 2.13, there is a thin set 77 C K* such
that for any (x, y1....,y.1) € K¢\ T, the polynomial f(x, y1...., e 1. Ye)
is irreducible of degree degy (f). and g(x. y1..... ye1. Ye) is not divisible
by f. Because K is a number field, Tp = 7" N Q¢ is also a thin set in Q° by
Proposition 2.10. Further, since Z is not thin in Q, the thin set 7y does not
contain all of Z x Q¢! by Lemma 2.12. For any such tuple (x, y1. ..., ye_1) €
Z x Q¢! outside this thin set, the irreducibility of f (x, y1. ..., ye_1. Y) over
K implies that adjoining to F any root y of f(x,y1..... V1. Y) will not
generate any element of K: we will have F(y)N K = F, by Lemma 2.1.
Thus Uazni is nonempty. Additionally, the divisibility condition implies
that g(x. y1..... ym1.¥) #0. So for any L € Ugz,),. f(x) holds in L.
Therefore, U; ;) N Sp(Z) = 0.

There are only countably many . so S(Z) is a countable union of meager
sets, and is thus meager. -

THEOREM 5.6. If Z C Q is not thin, then the following is meager in Sub(Q):

Sz = {L € Sub(Q) : some coinfinite C C L, universally definable in L, has C NQ = Z}
= U {L € Sub(Q) : Ay, is coinfinite and universally definable in L}.
ACQ: ANQ=Z
PrOOF. Let S = S(Z). By Proposition 5.5, S is meager. Let 4 C L be
coinfinite with 4 N Q = Z. Suppose that 4 is universally definable in L.

Then L\ A is existentially definable in L. So by Theorem 4.8, L\ A4 is
definable in L by a formula a = V., ff; in normal form. Because L \ A4 is
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infinite and r is finite, some f; must be an absolutely irreducible hypersurface
formula, and

{x € L: Bi(x)holdsover L} N A = 0.

So {x € L: f;(x)holdsover L} N Z = (). By definition, L € S;(Z). as
needed. -

As a corollaries we have the following.

THEOREM 5.7. The set of all fields L € Sub(Q) such that Oy is either
existentially or universally definable in L is meager.

Proor. Recall that Z = Q N O for all subfields L. By Proposition 2.11,
neither Z nor Q\ Z is thin in Q. Applying Theorem 5.6 to Z = Z and
Z =Q\ Z, we see that there is a meager set S such that if either Oy or
L\ Oy is universally definable in L, then L € S. !

COROLLARY 5.8. The set of fields L € Sub(Q) such that 7 itself is either
existentially or universally definable in L is meager.

We can also use the same approach when considering the definability of
number fields. Of course ) is a thin subset of Q, so Theorem 5.6 does not
directly rule out an existential definition of QQ in a generic algebraic extension
L. Nevertheless, we have the following.

COROLLARY 5.9. If F is a number field, then the set of fields L € Sub(Q)
containing F such that F has an existential definition in L is a meager set.

ProoF. Let S be the meager set guaranteed by Theorem 5.6 for Z = Z.
By Park’s generalization [16] of a theorem of Koenigsmann [11], there is
a quantifier-free formula ¢(X. Y1..... Y,). in the language of fields. such
that 3Y ¢ (X, Y) defines the algebraic non-integers F \ O in the field F. In
particular, it defines Q \ Z in Q over F. Now if y (Y) is existential and defines
F in L, then the following formula with free variable X,

p(X)&3Y[p(Y1)& - &y(Y,)&p(X. ¥) 1,

is an existential definition of F \ Or in L. So (L \ F)U O is universally
definable in L. Since (L\ F)UOr) NQ =Z,wehave L € S. 4

5.1. Computable fields whose algebraic integers are not one-quantifier
definable. Next we effectivize Theorem 5.7 to obtain many computable
algebraic extensions of (Q whose algebraic integers are not existentially or
universally definable.

Our arguments below will require the decidability of absolute irreducibil-
ity. Recall some standard terminology: a computable field E has a splitting
algorithm if the splitting set Sgp = {f € E[T]: f isreducible in E[T]} is
decidable, and has a root algorithm if the root set Rg = {f € E[T]:
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f hasarootin E} is decidable. Notice that these are both stated for single-
variable polynomials. The next lemma is a specific case of the fact that
splitting algorithms can be extended to more variables.

LemMA 5.10. Fix any computable presentation of Q. Then it is decidable
which polynomials in Q[ X1, X>, ...] are absolutely irreducible.

Proor. @ has a splitting algorithm, of course: all polynomials in Q[7’] of
degree > 1 are reducible. The lemma now follows from another theorem of
Kronecker (found in [3, pages 58, 59]). stating that whenever a computable
field F has a splitting algorithm and ¢ is transcendental over F (within
a larger computable field), the field F(z) also has a splitting algorithm.
The irreducible polynomials of Q[X,X,] are precisely the irreducible
polynomials of Q[X,] along with the polynomials which are irreducible
in Q(X7)[X>] and have no common factor among the coefficients lying in
Q[X1] (see [12. Theorem 1V.2.3]). Therefore, reducibility is clearly decidable
using Kronecker’s result. Thus we can decide reducibility in Q[ X7, X>]. and
one continues by induction on the number n of variables, noting that the
resulting decision procedures are uniform in 7. -

Therefore, there is a computable listing fi, f>.... of all absolutely
irreducible hypersurface formulas. Furthermore, we have the following
effective version of Proposition 5.5.

PrROPOSITION 5.11. Let Z be a computable subset of Q that is not thin in Q.
Then there is an algorithm which, given any absolutely irreducible hypersurface
formula 8 with coefficients d, and any ¢, b such that Uaz ; 7 0. returns y

such that Uaz ) 18 non-empty and has empty mtersectzon wzth Ss(Z).

Proor. The proof of Proposition 5.5 shows that there is a tuple
(X V1seve s Ver.y) € Z x Q¢! x Q which witnesses that £(x) holds in each
field extending Q(y) while keeping Uaz ;)5 hon-empty. So an algorithm
can search all such x, yy,..., y. 1, y until it ﬁnds one. This works because Z
is computable, and it is computable to check whether a given tuple from Q
satisfies the polynomials appearing in f, and computable to check whether

U(&._ay)’l; is empty. =

THEOREM 5.12. Let Z C Qbea comp_gttable subset which is neither thin nor
co-thin. For every pair of Q-tuples (a.b), if U, ; is nonempty. then there is
a computable L € U ; which enjoys the following property: If A C L is any
subset such that AN Q Z, then A is neither existentially nor universally
definable in L. Moreover, every computable presentation of L has a splitting
algorithm.

Proor. We recursively define sequences a = dy. d;, ... and b =bo.bi. ...
in stages as follows. Recall that f, f,... is a computable listing of all
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absolutely irreducible hypersurface formulas. Let ¢y, ¢3, ... be a computable
listing of all elements of Q.
Atstages of theform s = 37 + 1. given U;  ; nonempty, use Proposition

5.11to find a y such that U (@100 is non-empty and disjoint from Sg, (Z).

Let a; = (@, y) and by = by 1.
At stages of the form s = 37 + 2, use an analogous process to avoid

S5 (Q\ 2).
Atstages of the form s = 37 + 3, consider U;  .,;  andifitisnonempty.

set dy, = (d,_1.¢;), b, = b, . Otherwise, set 4, — @,  and b, — (I;H,ct).
Because Sub(Q) is a compact topological space by Proposition 5.1 and the
family of closed subsets { U. ; :s > 0} has the finite intersection property, it
follows that the intersection ﬂy U, ; isnonempty. Moreover, the intersection
is a singleton because after stage 3t + 3, the element ¢, is included in either
all or none of the fields in U s by construction. In particular, this unique

field is L = {a € Q : a appears in some a }.

The field L is computable because by stage 37 4+ 3 it has been decided
whether ¢, isincluded. If 4 C Lisany subset with 4 N Q = Z, then Theorem
5.6 implies that A is neither existentially nor universally definable in L
because the construction of L explicitly avoids the sets S(Z) and S(Q \ Z)
by definition.

The splitting algorithm for L follows from Rabin’s Theorem (see [19]).
since L is given as a decidable subfield of (our computable presentation of ) Q.
Finally, whenever L & L are computable algebraic fields, their splitting sets
are Turing-equivalent, so all computable presentations of L have splitting
algorithms. o

As an application, because Z is neither thin nor co-thin in Q, the following
is immediate.

COROLLARY 5.13. For every pair of Q-tuples (@, b). if U, is nonempty,
then there is a computable L € U,y such that Oy is neither existentially nor
universally definable in L. Moreover, every computable presentation of L has
a splitting algorithm.

5.2. The topological space of algebraic extensions of QQ up to isomorphism.
The questions of definability we have considered have the same answer over
isomorphic fields. Although Sub(Q) contains at least one isomorphic copy
of every possible algebraic extension of Q, it contains exactly one copy of an
algebraic extension L of Q if and only if L is Galois over Q. A number field
F of degree n is isomorphic to at most # fields in Sub(Q), but there are some
infinite non-Galois extensions of Q which are isomorphic to uncountably
many elements in Sub(Q). Therefore, given the isomorphism invariance
of the property under consideration, one might wonder if the results of the
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previous section have been skewed by the fact that some isomorphism classes
are more represented in Sub(Q) than others.

Thus it is also of interest to consider the collection of algebraic extensions
of Q up to isomorphism as a topological space, as was done in [15]. We
denote this set by Sub(Q)/=. From the perspective of number theory, the set
Sub(Q)/ = can be identified as a quotient of Sub(Q) by the absolute Galois
group G = Gal(Q/Q). which equates isomorphic fields. The topology on
Sub(Q)/ = is the quotient topology which it inherits from Sub(Q).

Alternatively, from the perspective of computability theory, one could
begin with the space ALG; of all possible presentations of algebraic
extensions of @ in a certain language. This is done in [15] and the relevant
language in this case is the language of rings enlarged to include additional
predicates for the existence of roots of monic one-variable polynomials.
Equating isomorphic fields and taking the quotient topology leads to the
space ALG; /=, which coincides with Sub(Q) /= despite various differences
between ALG; and Sub(Q). For example, in ALG}, every isomorphism class
is represented with uncountably many copies. For details about ALG;. we
refer the reader to [15].

Returning now to Sub(Q)/=, observe that for any U. ;. the following

set is the smallest G-invariant subset of Sub(Q) contalmng U.;. Itis also
clopen, as there are only finitely many images ¢(a), ().

GU;={6(L):Le U0 € Gy = | Uy )

9eG

It follows that the quotient map ¢ : Sub(Q) — Sub(@ /= is open and the
images of the sets GU ; form a clopen basis for Sub(Q)/=.

PROPOSITION 5.14 (Theorem 3.3, [15]). Sub(Q)/=2 is homeomorphic to
Cantor space.

Proor. The follows because Sub(Q) Q)/= is compact, has a countable
clopen basis, and has no isolated points. The last condition follows because
every non-empty GUj ; contains at least two non-isomorphic fields. -

Therefore, notions of meager and co-meager make sense in Sub(Q) /=
We can easily transfer the all our results about Sub(Q) to results about
Sub(Q)/= by replacing the sets Sg(Z) with the following G-invariant sets.

DEFINITION 5.15. For any Z C Q, and any absolutely irreducible hyper-
surface formula f with coefficients from Q, let

GSp(Z) = | Ssp)
peCG
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where ¢(f) denotes the result of applying ¢ to all coefficients appearing
in f5.
Since every ¢ € G fixes every element of Q, each GS;(Z) is G-invariant.

PROPOSITION 5.16. Let  be an absolutely irreducible hypersurface formula
with coefficients from Q. If Z C Q is not thin in Q. then q(GSg(Z)) is nowhere
dense in Sub(Q) /=2, where q : Sub(Q) — Sub(Q)/ = is the quotient map.

Proor. There are only finitely many coefficients in £, so only finitely many
possible outcomes for ¢(f). So GSz(Z) is a finite union of nowhere dense
sets, and thus is nowhere dense. Additionally, since each Sy 4 (Z) is closed,

so is GS4(Z). Since Sub(Q) \ GSg(Z) is dense open and ¢ is an open map,

its image ¢(Sub(Q) \ GS/;( )) is dense open. Therefore, by G-invariance of
GSyp(Z). q(GSp(Z)) is nowhere dense. -

THEOREM 5.17. If any set Z C Q is not thin, then the following is meager in
Sub(Q)/ =

Sz = {[L]~ € Sub(Q)/ = : some coinfinite C C L, universally definable in L, has C NQ = Z}.

Proor. Let S =J;q(GS4(Z)), where B ranges over all absolutely
irreducible hypersurface formulas. By Proposition 5.16, S is meager. Let
A C L be coinfinite with 4 N Q = Z. Suppose that 4 is universally definable
in L. Then by the same argument as in Theorem 5.6, L € S3(Z) for some
p.So L € GSy(Z), as needed. 4

Therefore, we have the following analogues of the results of the previous
section.

COROLLARY 5.18. The following sets are meager in Sub(Q) /=

(1) The set of isomorphism types of fields L in which Oy is existentially or
universally definable.

(2) The set of isomorphism types of fields in which Z is existentially or
universally definable.

(3) The set of isomorphism types of fields L in which some number field
F C L is existentially definable.

Proor. These sets are all contained in the set S guaranteed by Theorem
5.17 when Z = Z. n

It may seem equally natural to consider the Lebesgue measure on Cantor
space and transfer it to Sub(Q) / 22, using some computable homeomorphism
such as that obtained in [15, Theorem 3.3]. This is attempted to some extent
in [15], but the resulting measure is not canonical: it depends to a great
extent on arbitrary choices that are made during the construction of the
homeomorphism. Indeed, the notion of Haar-compatible measure, put forth
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in [15], has had to be abandoned, as the reality is more complicated than the
analysis in that article recognized. We hope to investigate this situation, and
measure-theoretic perspectives in general, more fully in the near future.
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