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Abstract

Low-frequency molecular vibrations at far-infrared frequencies are thermally excited

at room temperature. As a consequence, thermal fluctuations are not limited to the

immediate vicinity of local minima of the potential energy surface and anharmonic

properties cannot be ignored. The latter is particularly relevant in molecules with

multiple conformations such as proteins and other biomolecules. However, existing

theoretical and computational frameworks for the analysis of molecular vibrations have

so far been limited by harmonic or quasi-harmonic approximations, which are ill-suited

for the description of anharmonic low-frequency vibrations.

Here, we developed a fully anharmonic analysis of molecular vibrations based on

a time correlation formalism that eliminates the need for harmonic or quasi-harmonic

approximations. We use molecular dynamics simulations of a small protein to demon-

strate that this new approach, in contrast to harmonic and quasi-harmonic normal

modes, correctly identifies the collective degrees of freedom associated with molecular

vibrations at any given frequency. This allows us to unambiguously characterize the

anharmonic character of low-frequency vibrations in the far-infrared spectrum.
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Introduction

The 3N � 6 vibrations of a molecule with N atoms provide collective coordinates that can

describe large and small changes in conformation. Computational procedures that identify

collective degrees of freedom associated with internal vibrations of a molecular system are

commonly based on harmonic1,2 or quasi-harmonic3,4 normal modes. Here, an Eigenvalue

problem based on either a Hessian matrix of the potential energy or a co-variance matrix of

coordinate displacements is solved. The Eigenvectors correspond to vibrational modes and

their Eigenvalues are associated with force constants or vibrational frequencies, which can

be used to estimate amplitudes of classical oscillations at a given temperature.1

Principal component analysis (PCA) and time-lagged independent component analysis

(TICA) are related methods, which extract collective degrees of freedom associated with

large-amplitude motion or slow dynamics from molecular dynamics (MD) trajectories.5–8

PCA and TICA are powerful tools if extensive simulation trajectories are available for the

system of interest that sample rare events such as protein conformational transitions. How-

ever, this is typically not the case in high throughput applications, which require predictions

based on either structures or short simulations.

To predict conformational fluctuations in complex molecules, the vibrational modes as-

sociated with small force constants, low frequencies, and large amplitude fluctuations are

of particular interest. For example, low-frequency harmonic normal modes have been used

as collective degrees of freedom to predict potential conformational transitions in complex

biomolecular systems.9–11 The latter can then be used as collective variables in biased sim-

ulations to e�ciently explore distinct conformational states.1,11,12

However, the approximations associated with harmonic and quasi-harmonic normal modes

are primarily applicable to high-frequency oscillations with large force constants and small

fluctuations. Quantum harmonic oscillators (HO) with frequencies ⌫ > 6THz (⇡ 200 cm�1)

primarily populate the vibrational ground state at room temperature (h⌫ > kBT ). This can

be rationalized using the ratio of the quantum HO partition function in the canonical en-
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This ratio describes the average number of populated states in the quantum HO at equilib-

rium, which evaluates approximately to 1.58 for h⌫ = kBT and asymptotically decreases to

1 for higher frequencies.

Thus, harmonic vibrations at frequencies in the mid-infrared, including the fingerprint

region (700-1200 cm�1) and the spectrum of vibrations characteristic for functional groups

up to ⇠4000 cm�1,13 are e↵ectively restricted to their vibrational ground state. In molecular

simulations with classical force fields and a fixed topology, such vibrations are restricted to

small oscillations around the potential energy minimum, which justifies the use of harmonic

approximations or even constraints to eliminate them from the equations of motion.14

In contrast, vibrations in the far-infrared spectrum with frequencies ⌫  6THz are ther-

mally excited at room temperature and populate increasing numbers of vibrational states

with decreasing frequency. This includes, for example, vibrations of non-covalent hydrogen

bonds in proteins.15–18 The significant population of excited vibrational states allows for

classical approximations, e.g., in classical molecular dynamics simulations, and for the ex-

ploration of large portions of the potential energy surface. As a consequence, low-frequency

vibrations are strongly a↵ected by anharmonic properties of the potential energy surface.

For example, vibrational modes that connect distinct potential energy minima and describe

barrier crossings are anharmonic by definition. Thus low-frequency vibrations in complex

molecules with multiple conformations are likely ill-described by theoretical frameworks

based on harmonic or quasi-harmonic approximations. In this manuscript, we present a

theoretical framework for the analysis of vibrational modes that eliminates the need for har-

monic approximations and allows us to unambiguously identify and characterize anharmonic
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vibrational modes in molecular systems.

Harmonic and quasi-harmonic normal modes aim to map 3N degrees of freedom on 3N

orthogonal normal modes (translations, rotations and vibrations).18–21 In addition to the

implied assumptions regarding the curvature of the potential energy, such a 1-to-1 mapping

is only feasible if the system explores a single potential energy minimum, which is not appli-

cable for any evolving system with thermally activated anharmonic dynamics and transitions

between potential energy minima. In proteins, for example, the thermal activation of an-

harmonic dynamics can be observed as the protein dynamical transition using quasi-elastic

neutron scattering (QENS),22 THz absorption spectroscopy,16 or MD simulations.23,24 In the

analysis of molecular simulations, this can be addressed using instantaneous normal modes

(INM)12,25 or normal mode ensemble analysis (NMEA)18 to generate multiple distinct sets

of 3N normal modes for distinct conformations. However, both methods remain reliant on

harmonic approximations to describe the local shape of the potential energy surface, which

can limit the ability to compare to and interpret experimental observations.17,18

In the approach presented here, the anharmonic features of the potential energy surface

and the time-evolution of vibrational modes are fully acknowledged using a dedicated time-

correlation formalism.26 Instead of assigning a fixed number of vibrational modes to the

system, the method uses input from MD simulations and assigns vibrational modes and

their respective contributions to the ensemble-averaged vibrational density of states for any

frequency sampled by the analyzed trajectories.

Theory

To derive a time-correlation formalism for a fully anharmonic analysis of vibrational modes

from MD trajectories, we start with atomic velocities, v, scaled by the square root of the

atom mass.27

ṽi(t) =
p
mivi(t) (2)
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Here, the index i describes the 3N degrees of freedom of an unconstrained N -atom system.

The scaled velocities, ṽ, provide a simple expression for the kinetic energy of the system,

which is constant in the canonical ensemble.

Ekin(t) = 1/2
3NX

i

ṽi(t)
2 (3)

We then define time cross-correlations between the velocities of all pairs of degrees of freedom

i and j, which include the velocity auto-correlations for i = j.

Cṽ,ij(⌧) = hṽi(t)ṽj(t+ ⌧)it (4)

Here, the brackets h. . .it indicate ensemble-averaging over the simulation time. All time

auto- and cross-correlations can be considered to be elements of a velocity cross-correlation

matrix, Cṽ(⌧), that depends on the correlation time ⌧ . Each of the velocity auto- and

cross-correlations are then Fourier-transformed into the frequency domain (! = 2⇡⌫), which

provides the elements of a frequency-dependent velocity correlation matrix, Cṽ(!) .20

Cṽ,ij(!) =
1

2⇡

Z +1

�1
exp (i!⌧)Cṽ,ij(⌧)d⌧ (5)

The trace of the matrix, tr [Cṽ(!)] =
P3N

i Cṽ,ii(!), now contains the mass-weighted sum

of Fourier-transformed velocity auto-correlation functions, which is equivalent to standard

expressions for the vibrational density of states (VDoS).15,27–30

IVDoS(!) =
2

kBT
tr [Cṽ(!)] (6)

The VDoS defined in Eq. 6 describes how the kinetic energy in the 3N degrees of freedom

is distributed over all frequencies. Due to the normalization by the average kinetic energy

per degree of freedom, kBT/2, the integral of the VDoS over positive frequencies yields the
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total number of degrees of freedom in the system:
R1
0 IVDoS(!)d! = 3N

It is often desirable to map the 3N degrees of freedom of a given system onto a set

of 3N normal modes.20 Previously, Mathias and Baer used the same frequency-dependent

matrix Cṽ,ij(!) to define so-called generalized normal modes. The latter are obtained as a

solution of an optimization problem that searches for a unitary coordinate transformation

that minimizes the o↵-diagonal elements of Cṽ,ij(!) at all sampled frequencies simultaneously.

However, the use of a single set of normal modes is only applicable if the system only explores

the immediate vicinity of a single potential energy minimum. A detailed example of a simple

anharmonic system for which normal modes fail to describe the vibrations is provided in the

Supporting Information (SI).

In the approach described here, we let the dynamics of the system itself determine the

number of modes needed to describe the vibrations at each frequency. Further, we do not

require that an integer number of vibrational degrees of freedom contributes to the vibrations

at each frequency, which is an implied assumption in harmonic approximations.

Instead, we compute Eigenvalues and Eigenvectors of Cṽ(!) at selected frequencies sam-

pled by the Fourier transform in Eq. 5 (e.g., for specific features observed in the VDoS

or absorption spectrum, at regular frequency intervals, etc.). At first glance, this seems

to generate a near-infinite number of modes, which would impede a meaningful analysis

or assignments of spectral features. However, we show in the following that the Eigenval-

ues, obtained by this FREquency-SElective ANharmonic (FRESEAN) mode analysis report

directly on the contributions of each vibrational mode to the VDoS at frequency !sel. No-

tably, the majority of these Eigenvalues are zero and thus indicate Eigenvectors that can be

safely ignored. Only a small fraction of the Eigenvalues are non-zero and their associated

Eigenvectors thus describe vibrational modes that contribute to the VDoS at frequency !sel.

The diagonal form of Cṽ(!sel) is defined by a unitary coordinate transformation with the

matrices Q(!sel) and QT (!sel), which contain the normalized orthogonal Eigenvectors of Cṽ
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for frequency !sel as columns and rows, respectively.

0

BBBB@

�1(!sel) · · · 0

...
. . .

...

0 · · · �3N(!sel)

1

CCCCA
= QT (!sel)Cṽ(!sel)Q(!sel) (7)

The trace of the matrix Cṽ(!sel) is invariant under unitary transformations, which means

that the Eigenvalue sum describes the VDoS at frequency !sel in analogy to Eq. 6.

IVDoS(!sel) =
2

kBT

3NX

i

�i(!sel) (8)

In other words, each Eigenvalue �i(!sel) provides a direct measure of the contribution to the

VDoS at frequency !sel for vibrations along the corresponding Eigenvector Qi(!sel).

Vibrational Dynamics for Individual Modes

In the following, we define an analysis of the fluctuations of a 3N -dimensional system along a

single vibrational mode q, which describes a normalized vector of displacements in Cartesian

coordinates with 3N components qi. This procedure is independent from the method used

to define the vibrational mode q, which can thus describe a harmonic or quasi-harmonic

normal mode or a FRESEAN mode obtain for a given frequency !sel as introduced in the

previous section. As a first step, we project the dynamics sampled in a MD trajectory

onto the vibrational mode q. Specifically, we project mass-weighted velocities in Cartesian

coordinates on q to obtain the one-dimensional mass-weighted velocity along the vibrational

mode q̇(t).

q̇(t) =
3NX

i

qi ṽi(t) (9)
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The projected mass-weighted velocity, q̇(t), describes the dynamics of the system along the

one-dimensional collective coordinate q. We use this to define a corresponding time auto-

correlation function and its Fourier transform that describes the contribution of q to the

VDoS at all frequencies !, i.e., the one-dimensional (1D) VDoS along vibrational mode q.

Cq(⌧) = hq̇(t) q̇(t+ ⌧)it (10)

Cq(!) =
1

2⇡

Z +1

�1
exp (i!⌧)Cq(⌧) d⌧ (11)

I
q
VDoS(!) =

2

kBT
Cq(!) (12)

If q is an Eigenvector Qi(!sel) obtained from Eq. 7 for a specific frequency !sel, I
q
VDoS(!sel)

for that frequency is equal to its Eigenvalue �i(!sel). Further, the integral of I
q
VDoS(!) over all

frequencies ! is equal to 1 because it describes the VDoS contribution of a single collective

degree of freedom.

Simulation & Analysis Protocol

To demonstrate the applicability of the FRESEAN mode analysis to biomolecular systems,

we describe in the following its application to a small model protein. In this example, we

include all atomistic details but note that a similar analysis can be performed using velocities

of only a subset of the atoms, e.g., protein backbone C↵-atoms, to focus on the dynamics of

secondary structure elements. Likewise, the approach described here can be adapted for the

analysis of time derivatives of internal coordinates instead of atomic velocities in Cartesian

coordinates.

We selected the small 20 amino acid protein Trp-cage (PDBID: 2job) for our fully an-

harmonic analysis of vibrational modes. The choice of a small system facilitates the inter-

pretation of individual vibrational modes, even if all 3N degrees of freedom are taken into

account and all sampled frequencies are analyzed. However, we note that our anharmonic
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approach can be easily applied to significantly larger proteins, especially if the analysis is

focused on low-frequencies and backbone vibrations.

The GROMACS 2018.1 software package was used for our simulations.31 The protein

was placed in the center of a 40 Å by 40 Å by 40 Å simulation box and was subsequently

solvated with 2073 water molecules. We used the AMBER99SB-ILDN force field32 and the

TIP3P water model33 to describe the potential energy of the system. No constraints were

used for intramolecular bonds of the protein to sample the corresponding vibrations, but

the SETTLE algorithm34 was used to constrain the geometry of water molecules. To ensure

proper sampling of any resulting mid-infrared vibrations, the simulation time step was set to

0.5 femtoseconds (fs) in all MD simulations. Short-ranged electrostatic and Lennard-Jones

interactions were treated with a 10 Å real-space cuto↵ with energy and pressure corrections

for dispersion interactions. Long-ranged electrostatic interactions were treated with the

Particle Mesh Ewald algorithm35 using a 1.2 Å grid and fourth order interpolation.

The potential energy of the system was initially minimized with a steepest descent al-

gorithm until the maximum atomic force was  100 kJ/(mol Å). This was followed by an

equilibration in the isobaric-isothermal (NPT) ensemble at 300 K and 1 bar for 100 picosec-

onds (ps). Berendsen thermostats36 were applied separately to the protein and solvent with

a time constant of 1.0 ps to control the temperature and a Berendsen barostat with a time

constant of 2.0 ps and bulk water compressibility of 4.5⇥10�5 bar�1 was used to control

the pressure. This was followed by a production simulation of 1 nanosecond (ns) length in

the NPT ensemble. For this simulation, Nosé-Hoover thermostats37,38 and the Parrinello-

Rahman barostat39 were applied with otherwise unchanged parameters. Coordinates and

velocities from this simulation were stored every 4 fs and used for the subsequent analysis.

FRESEAN Mode Analysis

The vibrational analysis was performed in a reference frame aligned with the initial ori-

entation of the protein in our simulation. Therefore, we pre-processed the coordinates and
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velocities of all protein atoms in the simulation trajectory with a rotational matrix that com-

pensates for the rotation of the protein during the simulation. The latter was determined by

a minimization of the root mean squared deviations (RMSD) of protein atom coordinates rel-

ative to the initial structure. Time auto- and cross-correlation functions of weighted atomic

velocities as defined in Eq. 4 were computed using a variant of the convolution theorem20,27

and transformed between the time and frequency domains as needed for processing. The

maximum correlation time was set to 2.0 ps and both auto- and cross-correlation functions

were symmetrized in time to enforce equilibrium ensemble properties. This allowed for a

frequency resolution of 0.25 THz for the Fourier analysis in Eq. 5. For the Fourier transform

in Eq. 5, we further employed a Gaussian window function with a 0.3 THz bandwidth.

Harmonic Normal Mode Analysis

To allow for comparisons with the FRESEAN mode analysis, we also performed harmonic

normal mode analysis on the Trp-cage protein. For this purpose, 10 snapshots of the protein

were extracted from the production simulation at regular intervals of 100 ps. The resulting

protein configurations were then subjected to an energy minimization using the low-memory

BFGS optimizer implemented in GROMACS40,41 (compiled with double precision) until all

forces decreased to less than 0.01 kJ/(mol Å). We then computed the mass-weighted Hessian

matrix, H, of the protein potential energy, Epot, with coordinates xi and masses mi for the

3N degrees of freedom of the protein, with the following matrix elements Hij:

Hij =
1

p
mimj

@
2
Epot

@xi@xj

(13)

We then computed the Eigenvalues and Eigenvectors of H. The Eigenvectors correspond to

the harmonic vibrational modes, while the harmonic oscillator (HO) frequencies (in rad/s)
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are described by the Eigenvalues �H.

!
HO
i =

q
�
H
i (14)

The first 6 Eigenvalues are equivalent to 0 and the corresponding Eigenvectors describe linear

combinations of the 3 translational and 3 rotational degrees of freedom of the protein.

Quasi-Harmonic Normal Mode Analysis

To allow for additional comparisons, we also performed a quasi-harmonic normal mode analy-

sis based on the simulation trajectory of the Trp-cage protein. For this purpose, we performed

translational and rotational fitting of the coordinates in the Trp-cage protein trajectory to

minimize the RMSD relative to the initial structure. We then computed the average coor-

dinates hxii for all degrees of freedom and computed the mass-weighted co-variance matrix,

Ccovar, of displacements from the average structure with the following matrix elements Ccovar
ij :

C
covar
ij =

p
mimj hxi � hxiiihxj � hxjii (15)

We then computed the Eigenvalues and Eigenvectors of Ccovar. Assuming that the simula-

tion trajectory describes thermal fluctuations around a single minimum of a harmonic po-

tential, the Eigenvectors correspond to (quasi-)harmonic vibrational modes while the (quasi-

)harmonic (QH) frequencies (in rad/s) are described by the Eigenvalues �covar.

!
QH
i =

s
kBT

�
covar
i

(16)

Results & Discussion

To illustrate the properties of thermally excited vibrations in proteins, we analyzed our

classical MD simulation of the Trp-cage mini protein42 (see Fig. 1) in aqueous solution using
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the theoretical framework described above. As mentioned earlier, a simpler two-dimensional

model system is described in the SI to demonstrate the working mechanism of the FRESEAN

mode analysis and to compare it to established methods.

Figure 1: Structure of the Trp-cage mini protein. Secondary structure is highlighted as a
red (↵-helix) and green cartoon and chemical bonds are shown as CPK-colored sticks. Col-
ored labels identify visible amino acid side-chains (blue: positively charged; red: negatively
charged; green: polar; black: non-polar).

Vibrational Density of States

With 284 atoms, the Trp-cage protein has 852 Cartesian degrees of freedom and its vibra-

tional density of states as defined in Eq. 6 features a continuous band of vibrational modes

between 0 and 2000 cm
�1 as shown in Fig. 2. Additional C-H, N-H and O-H vibrations are

sampled at higher frequencies but are not shown for clarity. The background color at each

frequency illustrates the logarithm of the number of thermally populated quantum HO states

at 300 K (see Eq. 1), which highlights di↵erences between vibrations at far- and mid-infrared

frequencies.

The broad and continuous band in the VDoS indicates that each sampled frequency is as-

sociated with multiple vibrational modes. In harmonic and quasi-harmonic representations,
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Figure 2: Vibrational density of states (VDoS) of the Trp-cage protein from 0-2000 cm�1

(frequencies >2000 cm�1 not shown for clarity). Color illustrates the logarithm of the number
of thermally populated quantum HO states at 300 K for each frequency.

such a scenario results in degenerate representations of these modes since the Eigenvalues

of the corresponding matrices in Eqs. 13 and 15 are define the vibrational frequencies.21 In

contrast, the FRESEAN mode analysis allows us to identify unique vibrational modes based

on their distinct contributions to the VDoS at any given frequency.

FRESEAN Eigenvalues

In Figure 3, we show sorted Eigenvalues obtained for selected frequencies in panel A and

the resulting number of Eigenvalues required to describe (via summation according to Eq. 8)

25%, 50% and 75% of the total VDoS at each frequency in panel B. Our observations show

that single vibrational modes are insu�cient to describe the vibrations of the protein at any

of the analyzed frequencies. However, only a fraction (<10%) of the 852 orthogonal degrees

of freedom with their corresponding Eigenvalues contribute to the vibrational spectrum at

any frequency.

Projections on FRESEAN Modes

To confirm that the FRESEAN modes indeed describe vibrations/fluctuations at the selected

frequencies, we utilize Eqs. 9 to 12 to project the simulation trajectory onto each mode and

compute the corresponding 1D VDoS. The results are shown in Fig. 4 for the FRESEAN
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Figure 3: Analysis of frequency-dependent Eigenvalues. (A) Relative Eigenvalues (normal-
ized by first Eigenvalue) of the frequency-dependent velocity cross-correlation matrix for
selected frequencies between 0 and 7 THz (234 cm�1). (B) Number of Eigenvalues (out of
852) needed to re-construct 25% (blue), 50% (green) and 75% (red) of the total VDoS (see
Eq. 8).
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modes (Eigenvectors) associated with the 10 largest VDoS contributions (Eigenvalues) at 0,

1 and 2 THz. For clarity, we use THz to identify frequencies selected for the FRESEAN

mode analysis (!sel) and wavenumbers in cm�1 to define the frequency axis of vibrational

spectra (1 THz ⇡ 33 cm�1).

Figure 4: 1D VDoS for projections of the simulation trajectory on FRESEANmodes obtained
at 0, 1 and 2 THz. At each selected frequency, spectra are shown for the modes with the 10
largest Eigenvalues. All spectra are normalized by their integral. For 1 and 2 THz, dashed
vertical lines indicate the frequency for which the modes were selected. For each spectrum,
black bars indicate the full width at half maximum (FWHM) of the peak.

For 0 THz, the FRESEAN mode analysis describes contributions of collective degrees of

freedom to the VDoS at zero frequency, which reports on di↵usive and relaxational dynamics.

The first six modes at 0 THz correspond to translational and rotational di↵usion of the

protein as indicated in Fig. 4 and visualized in Fig. S4 of the SI. For the translations,

the maximum of the VDoS is observed at 0 cm�1, while the VDoS of the rotations peak

at non-zero frequencies indicating librations of the protein in the solvation environment

in addition to rotational di↵usion. The FRESEAN modes #7-10 at 0 THz describe low-

frequency vibrations of the protein with peak frequencies just below 1 THz but significant

zero-frequency intensities. The latter can be attributed to anharmonic potentials and/or
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damping, e.g., e�cient exchange of vibrational energy with the surrounding solvent or other

vibrational modes in the protein.

At 1 and 2 THz, the FRESEAN mode analysis identifies vibrational modes with well-

defined peaks in the 1D VDoS at the frequency for which they were selected. The line

widths characterized by the FWHM shown in Fig. 4 vary between 30 and 50 cm�1. The

1D VDoS along the FRESEAN modes do not contain signals at any other frequencies,

which demonstrates that the FRESEAN modes successfully isolate the collective degrees of

freedom responsible for low-frequency vibrations. The following comparison to vibrational

modes obtained from harmonic and quasi-harmonic normal mode analysis shows that both

methods fail this test.

We computed harmonic and quasi-harmonic normal modes as described in a previous

section. Harmonic normal modes were computed for 10 distinct snapshots of the simulation

trajectory which resulted in 10 distinct sets of 3N harmonic normal modes. We observed

that the qualitative results discussed below are reproducible between all 10 sets of harmonic

normal modes so that we limit our analysis below to one of them. Quasi-harmonic normal

modes were obtained as a single set of 3N Eigenvectors of the co-variance matrix computed

as an average over the simulation trajectory.

The frequencies of harmonic and quasi-harmonic normal modes were determined based

on Eqs. 14 and 16. For both, these frequencies were used to select 10 modes with predicted

frequencies closest to: 1) 0 THz; 2) 1 THz; and 3) 2 THz. We then used Eqs. 9 to 12 to

project the simulation trajectory on each of these modes and calculated the corresponding

1D VDoS. For far-infrared frequencies, the resulting 1D VDoS are shown in Fig. 5A for

harmonic normal modes and in Fig. 5B for quasi-harmonic normal modes.

The harmonic normal modes #1-6 describe linear combinations of translations and ro-

tations and thus result in 1D VDoS comparable to the FRESEAN modes #1-6 obtained at

0 THz in Fig. 4. However, the 1D VDoS of projections on harmonic normal modes #7-10

exhibit broad signals with FWHM’s that exceed 100 cm�1 (e.g., mode #10). In addition,
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the peak frequencies are significantly higher than the harmonic frequencies predicted by the

Eigenvalues of the mass-weighted Hessian matrix (less than 10 cm�1).

For harmonic normal modes with predicted frequencies close to 1 and 2 THz, the VDoS

of the mode projections feature a main peak with a maximum intensity close to the predicted

frequency (Eq. 14). However, the FWHM’s are significantly larger than for the FRESEAN

modes selected for the same frequencies and range from 50 to 75 cm�1.

The broad bands of the 1D VDoS for vibrations along the harmonic normal modes can

be easily misinterpreted as the result of as anharmonic vibrations along a properly identified

vibrational mode of the system. However, this interpretation is misleading because the

FRESEAN modes show that vibrational modes with a significantly narrower spectrum exist

at the corresponding frequency. Hence, the approximations implied by the definition of the

harmonic normal modes amplify their perceived anharmonicity.

Figure 5: 1D VDoS for projections of the simulation trajectory on (A) harmonic (one rep-
resentative set) and (B) quasi-harmonic normal modes. In each case, the spectra are shown
for the first 10 modes (lowest predicted frequencies), and 10 modes with predicted frequen-
cies closest to 1 THz and 2 THz, respectively (dashed vertical lines indicate 1 and 2 THz).
All spectra are normalized by their integral and shown on the same scale as the VDoS for
FRESEAN modes shown in Fig. 4. Green arrows indicate the predicted harmonic and quasi-
harmonic frequencies (also given numerically as an inset). For each spectrum, black bars
indicate the full width at half maximum (FWHM) of the peak.

Due to di↵erences in the formalism, the first 6 quasi-harmonic normal modes do not
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describe protein translations or rotations in contrast to harmonic normal modes. Instead, the

quasi-harmonic normal modes with the 10 lowest predicted frequencies (largest Eigenvalues of

co-variance matrix) describe distortions of the protein structure, which would correspond to

vibrational modes in a harmonic system. However, we observe for all selected quasi-harmonic

normal modes (the first 10 mode and the modes with predicted frequencies close to 1 and

2 THz) that the quasi-harmonic frequencies are consistently lower than the frequency of the

main peak in the corresponding 1D VDoS. Further, the FWHM’s of the main peaks range

from 40 to 100 cm�1 and are thus again significantly larger than the spectra of vibrations

along the FRESEAN modes in Fig. 4.

Similar to the 1D VDoS obtained for harmonic normal modes, it would be incorrect to

use the line shape of vibrational bands to characterize the anharmonicity of low-frequency

vibrations along quasi-harmonic normal modes. Harmonic and quasi-harmonic normal modes

both fail to identify vibrational modes that isolate the low-frequency vibrations of the protein,

which amplifies apparent anharmonicities. One indication is the integral of intensities in the

far-infrared spectrum obtained for the harmonic and quasi-harmonic normal modes in Fig. 5.

The intensity scale used in Figs. 4 and 5 is identical and the integral of each 1D VDoS is by

definition equal to 1. Hence, missing intensities in the 1D VDoS for far-infrared frequencies

indicate that there are additional contributions at higher frequencies that are not observed in

Fig. 5. The latter becomes evident in a comparison of the 1D VDoS computed for FRESEAN,

harmonic, and quasi-harmonic modes at 1 THz over the full range of sampled frequencies

shown in Fig.6.

In the discussion of Fig. 4, we indicated that the 1D VDoS obtained for FRESEAN modes

feature only a single peak at the frequency that they were selected for. This is confirmed

in Fig. 6, where the 1D VDoS of FRESEAN modes selected at 1 THz are shown with a

20-fold amplification for frequencies up to 4000 cm�1. No additional peaks or signals are

observed and even the magnified intensities of the high-frequency tail of the main peak

are indistinguishable from zero for frequencies above 300 cm�1. In contrast, the VDoS for
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harmonic and quasi-harmonic normal modes feature high frequency tails that remain non-

zero up to frequencies of 500 cm�1. In addition, multiple resonance peaks are observed

at mid-infrared frequencies. For the harmonic normal modes, such signals are primarily

found around 1400 and 3000 cm�1, which are associated with characteristic vibrations of

individual functional groups. For the quasi-harmonic normal modes, the additional peaks

are primarily restricted to the fingerprint region below 1200 cm�1. Additional resonances are

inconsistent with the harmonic oscillator model, which demonstrates that the harmonic and

quasi-harmonic normal modes fail to isolate the low-frequency vibrations of the simulated

protein. On the other hand, the absence of additional peaks in the VDoS of FRESEANmodes

demonstrates that the latter successfully isolate collective degrees of freedom associated with

low-frequency vibrations in the protein. We observed analogous results for the 1D VDoS

along vibrational modes selected for di↵usive dynamics (0 THz) and vibrations at 2 THz.

As a consequence of these findings, oscillations along the FRESEAN modes are actually

in significantly better agreement with the harmonic oscillator model than oscillations along

the harmonic and quasi-harmonic modes. Analyzing vibrations based on harmonic and

quasi-harmonic normal modes thus risks to significantly overestimate the anharmonicity of

the actual vibrations in a system, because the anharmonicity of the potential a↵ects both

the definition of vibrational modes and the fluctuations along them.

Anharmonicity of Low-Frequency Vibrations

To obtain more information on the potential energy surface associated with each FRESEAN

mode, we analyze the probability distributions of displacements along each mode relative to

the average structure:

q(t) =
3NX

i

qi
p
mi [xi(t)� hxii] (17)

The results are shown in Fig. 7. At 0 THz, we skipped the translational and rotational

degrees of freedom and analyzed the displacement distributions for modes #7-16 instead.
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Figure 6: Comparison of 1D VDoS for projections of the simulation trajectory on 1 THz
modes obtained with the FRESEAN mode analysis (black, modes #1-10), harmonic normal
mode analysis (red, modes #19-28) and quasi-harmonic normal analysis (blue, modes #67-
76). The 1D VDoS are identical to the 1 THz modes shown in Figs. 4 and 5, but the intensities
are scaled by a factor of 20 and the shown frequency range is increased to 4000 cm�1. The
predicted frequencies used to select harmonic and quasi-harmonic normal modes for this
comparison are given in red and blue, respectively.
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For harmonic oscillators, such distributions would be described by Gaussians with a

standard deviation �0 that is entirely defined by the harmonic oscillator frequency.

�0 =
p

kBT/!0 (18)

In reality, i.e., for coupled anharmonic oscillators, the distributions are related to potentials

of mean force that depend on time-averaged potentials and include entropic information due

to correlations between distinct degrees of freedom.

To illustrate how displacement distributions along the FRESEAN modes deviate from

the expected behavior of harmonic oscillators, we determined for each mode the position of

the peak in the corresponding VDoS (see Fig. 4). Based on the peak frequency, we then

plotted the corresponding Gaussian distribution expected for a harmonic oscillator at that

frequency alongside the actual histogram sampled from the simulation in Fig. 7.

The histograms obtained from the simulations are unimodal with the exception of mode

#15 at 0 THz, which is bimodal and thus describes barrier crossing events between two states

already on the 1 ns time scale of the simulation. In addition, the plotted histograms feature

varying degrees of asymmetry and, most of all, are significantly wider than expected for har-

monic oscillators at the corresponding frequency. The increased width of the distributions

is most pronounced for the FRESEAN modes at 0 THz, thus highlighting the anharmonic-

ity of vibrations along these collective degrees of freedom. With increasing frequencies of

the FRESEAN modes (1 and 2 THz) the sampled histograms become more similar to the

Gaussians predicted for harmonic oscillations. However, at 2 THz the deviations from the

expected behavior of harmonic oscillators are still noticeable.

Cross-Correlations

Another deviation from the harmonic oscillator model is the ability of vibrational modes

to exchange energy with each other. The energy exchange between distinct modes can be
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Figure 7: Histograms of displacement probability distributions along FRESEAN modes for
(A) 0 THz, (B) 1 THz and (C) 2 THz. For 0 THz, translations and rotations were omitted and
distributions are shown for vibrational modes #7-16. For 1 THz and 2 THz, distributions are
shown for FRESEAN modes #1-10 with the largest Eigenvalues at the respective frequency.
Each histogram is compared to the Gaussian distribution (red) of a harmonic oscillator with
the frequency of the main peak in the 1D VDoS of each mode (indicated as ⌫0 = !0/(2⇡) in
THz).

visualized via time cross-correlations of weighted velocities along distinct modes, which we

analyze in Fig. 8.

These time auto- and cross-correlation functions can be obtained from projections of the

simulated trajectory on each mode (see Eq. 9), or directly from the cross-correlation matrix

Cṽ(!). In the latter case, a unitary transformation with the Eigenvectors obtained for a

selected frequency !sel is applied to Cṽ(!) at all frequencies.

C0
ṽ(!) = QT (!sel)Cṽ(!)Q (!sel) (19)

The diagonal terms, C 0
ii(!), of the frequency-dependent matrix C0

ṽ(!) describe the 1D VDoS

along each of the Eigenvectors, while the o↵-diagonal terms , C 0
ij(!), which are zero for

! = !sel, describe the spectra of cross-correlations. An inverse Fourier transform from the

frequency into the time domain results in the corresponding time auto- and cross-correlation
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functions for velocity fluctuations, q̇i(t), along each of the FRESEAN modes, qi, generated

for frequency !sel.

hq̇i(t)q̇j(t+ ⌧)it =
Z 1

�1
exp (�i!⌧)C 0

ij (!) d! = C
0
ii(⌧) (20)

C
0
ii(⌧ = 0) is directly related to the kinetic energy per degree of freedom and independent

of the index i. With increasing delay time ⌧ , the time auto-correlation functions shown in

blue in Fig. 8 visualize the oscillations along each mode in the time domain. For each mode

analyzed here, the resulting oscillations are reminiscent of damped oscillators.

Damping is caused by vibrational energy transfer between vibrational modes, both within

the protein and the surrounding solvent. The vibrational energy transfer between FRESEAN

modes of the protein can be observed in time cross-correlation functions shown in red in

Fig. 8. We only analyzed cross-correlations between FRESEAN modes obtained at the

same frequency !sel. As a consequence, the modes describe orthogonal Eigenvectors, which

implies that cross-correlations are zero at ⌧ = 0 (apart from numerical noise). However, with

increasing delay time ⌧ , we observe the onset of correlated oscillations in pairs of distinct

modes in Fig. 8, which decay back to zero on longer time scales.

The energy transfer between vibrational modes can be direct, i.e., within a single os-

cillation period at the corresponding frequency, or indirect via multiple modes for longer

correlation times. From the cross-correlations in Fig. 8, it is apparent that the energy trans-

fer between some pairs of vibrational modes, whether direct or indirect, is more e�cient

than for others. These results may provide new insights into energy transport pathways in

proteins, which were previously analyzed in terms of harmonic normal modes.43,44

Our analysis currently does not resolve the transfer of vibrational energy to the solvent,

but we expect the latter to contribute significantly on timescales >1 ps. In previous work,

we observed correlations between atomic velocities in proteins and solvating water molecules

over length-scales of up to 25 Å.45
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Figure 8: Time auto- and cross-correlation functions (blue and red, respectively) of mass-
weighted velocities projected along FRESEAN modes at (A) 0 THz, (B) 1 THz and (C)
2 THz. For 0 THz, translations and rotations were omitted and correlations were analyzed
for the vibrational modes #7-16. For 1 THz and 2 THz, correlations are shown for FRESEAN
modes #1-10 with the 10 largest Eigenvalues at the respective frequency.

Conclusions

We developed the FRESEAN mode analysis of molecular vibrations, which allows for an

unambiguous assignment of collective degrees of freedom associated with vibrations at any

given frequency. Apart from the potential energy model used in molecular simulations, e.g.,

an empirical force field, no additional assumptions are required. Our methodology is free

from harmonic and quasi-harmonic approximations and significantly improves our ability

to characterize low-frequency vibrations of complex molecules at far-infrared frequencies.

These vibrations are not restricted to their vibrational ground state at room temperature and

thus tend to exhibit pronounced anharmonic properties. The collective degrees of freedom

associated with these vibrations are critical for our understanding of thermal fluctuations in

proteins and other complex molecules17,18

A key feature of our anharmonic analysis is that it is entirely based on a time corre-

lation formalism that uses information from MD trajectories. Until now, time correlation

formalisms were only capable to evaluate the overall vibrational spectrum of a system, e.g.,

the vibrational density of states or the absorption spectrum.15,26,27 Assignments of collec-

tive degrees of freedom to vibrational frequencies primarily relied on normal modes and

harmonic approximations.1,2,18 However, fluctuations along harmonic and quasi-harmonic
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normal modes are contaminated by oscillations at a multitude of distinct frequencies, which

is inconsistent with the harmonic oscillator model. Characterizing anharmonic properties

of low-frequency vibrations based on such modes can thus be misleading because deviations

from harmonic behavior result from both the definition of the modes and the actual vibra-

tions of the system. Instead, the FRESEAN mode analysis successfully isolates the collective

degrees of freedom associated with low-frequency vibrations. This allows for a detailed anal-

ysis of anharmonic properties, e.g., anharmonic fluctuations and vibrational energy exchange

between vibrational modes.

Vibrational modes and the frequency spectrum of an anharmonic system evolve contin-

uously as a function of time, especially if the system transitions between distinct minima of

the potential energy surface. This presents a challenge for standard methods for the char-

acterization of molecular vibrations, which led to the development of instantaneous normal

modes and normal mode ensemble analysis.12,18 In the FRESEAN mode analysis, the time

evolution of vibrational properties is naturally accounted for by non-integer populations of

each vibrational mode that describe the respective contributions to the ensemble-averaged

vibrational density of states.

Here, we implemented the FRESEAN mode analysis for Cartesian velocities of the sim-

ulated Trp-cage mini protein using an all-atom representation. We note that the approach

is straightforward to adapt for other representations of a simulated protein. For exam-

ple, the analysis can be performed for a subset of atoms, e.g., backbone C↵-atoms, other

coarse-grained representations such as residue center-of-mass velocities, and time-derivatives

of internal coordinates.

At the lowest frequencies, we anticipate FRESEAN mode analysis to be a powerful tool

for the high throughput prediction of collective degrees of freedom associated with large

amplitude motion and conformational transitions in proteins and other complex molecules.

Further, an analysis of molecular vibrations free from harmonic approximations may yield

novel approaches to estimate thermodynamic properties such as conformational entropy.
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In addition, we expect the FRESEAN mode analysis to be a critical tool for the correct

assignment of far-infrared vibrations observed experimentally, e.g., in anisotropic terahertz

microspectroscopy46,47 or optical Kerr e↵ect spectroscopy.17
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