
Isadora: Automated Information Flow Property Generation for
Hardware Designs

Calvin Deutschbein
University of North Carolina at

Chapel Hill

Andres Meza
UC San Diego

Francesco Restuccia
Scuola Superiore Santa-Anna Pisa

Ryan Kastner
UC San Diego

Cynthia Sturton
University of North Carolina at

Chapel Hill

ABSTRACT
Isadora is a methodology for creating information flow specifica-
tions of hardware designs. The methodology combines information
flow tracking and specification mining to produce a set of informa-
tion flow properties that are suitable for use during the security
validation process, and which support a better understanding of
the security posture of the design. Isadora is fully automated; the
user provides only the design under consideration and a testbench
and need not supply a threat model nor security specifications. We
evaluate Isadora on a RISC-V processor plus two designs related
to SoC access control. Isadora generates security properties that
align with those suggested by the Common Weakness Enumera-
tions (CWEs), and in the case of the SoC designs, align with the
properties written manually by security experts.

ACM Reference Format:
Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner,
and Cynthia Sturton. 2021. Isadora: Automated Information Flow Prop-
erty Generation for Hardware Designs. In Proceedings of the 5th Workshop
on Attacks and Solutions in Hardware Security (ASHES ’21), November 19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3474376.3487286

1 INTRODUCTION
Security validation is an important yet challenging part of the hard-
ware design process. A strong validation provides assurance that
the design is secure and trustworthy: it will not be vulnerable to
attack once deployed, and it will reliably provide software and
firmware with the advertised security features. A security valida-
tion engineer is tasked with defining the threat model, specifying
the relevant security properties, detecting any violations of those
properties, and assessing the consequences to system security.

Existing commercial design tools (e.g., Mentor Questa Secure
Check, Cadence JasperGold Security Path Verification, and Tortuga
Logic Radix) can verify security properties of a design, but the tools
are only as strong as the provided properties. Defining these hard-
ware security properties is a crucial part of the security validation
process that currently involves a significant manual undertaking. We
propose an automated methodology that combines information

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
5th Workshop on Attacks and Solutions in Hardware Security (ASHES ’21), November 19,
2021, Virtual Event, Republic of Korea, https://doi.org/10.1145/3474376.3487286.

flow tracking with specification mining to create a human-readable
information flow specification of a hardware design. The specifi-
cation can be used as a set of security properties suitable for use
with existing security validation tools, and it can also be studied
directly by the designers to support their understanding of how
information flows through the design.

Information Flow Tracking (IFT) is a powerful security verifi-
cation technique that monitors how information moves through
a hardware design. Recently, IFT has been demonstrated at the
RTL [6, 29] and gate level [7, 30, 41], and has been used to moni-
tor implicit flows through digital side channels [5, 8, 36]. Existing
verification engines that incorporate IFT capabilities can be used
to confirm whether a given information flow property holds. How-
ever, it is up to the designer to specify the full set of desired flow
behaviors.

The technique of specification mining offers an automatic alter-
native to manually writing properties. Specification mining can be
applied to software [4] and hardware [24] and has recently been
applied to system on a chip (SoC) designs [21, 37]. Security specifi-
cation mining focuses on developing the security goals of a design
and has been developed for processors [17, 18, 45]. However, many
important vulnerabilities violate security goals related to how infor-
mation flows, goals that are not expressible as the trace properties
that specification miners discover.

The insight that led to this research is that mining the traces
produced by an IFT-instrumented design will generate trace prop-
erties that correspond to information flow properties over the orig-
inal, uninstrumented design. The information flow tracking logic
transforms the information-flow properties from the space of hy-
perproperties [12] – where trace-based mining does not apply – to
the space of trace properties, where trace-based mining can apply.

A naive application of trace-basedmining to an IFT-instrumented
design quickly runs into issues of complexity: the instrumented
designs are large and overwhelm the miner. Additionally, the miner
will discover properties over tracking signals and original design
signals that are meaningless and cannot be transformed back to the
space of information flow properties in the original design. To han-
dle these issues we separate the process of identifying source–sink
flow pairs in the design from the process of mining for the condi-
tions that govern those flows. The first can be done by leveraging
existing information flow tracking tools and the second makes use
of existing trace miners. The key to making the approach work is
to synchronize the two parts using clock-cycle time.

https://doi.org/10.1145/3474376.3487286
https://doi.org/10.1145/3474376.3487286

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

The methodology we present here can inform an automated
analysis of a hardware design by identifying flow relations between
all design elements, including flow conditions and multi-source
and multi-sink cases. The methodology requires no input from the
designer beyond the design and testbench.

To evaluate our methodology, we developed Isadora, a fully au-
tomatic security specification miner for information flow prop-
erties. Isadora uses information flow tracking (IFT) technology
from Tortuga Logic’s Radix-S simulation based security verification
engine [3] and is implemented on top of Daikon [20], a popular
invariant miner.

To our knowledge, Isadora represents the first specificationminer
capable of extracting information flow security properties from
hardware designs. Our results demonstrate:

• Isadora characterizes the flow relations between all elements
of a design.

• Isadora identifies important information flow security prop-
erties of a design without guidance from the designer.

• Isadora can be used to find undesirable flows of information
in the design.

• Isadora is applicable to SoCs and CPUs.
To measure our methodology and the usefulness of Isadora’s

mined specification, we evaluated Isadora over an access control
module, a multi-controller and multi-peripheral system with a
known security policy, and a RISC-V design. We evaluated the
output of Isadora versus expected information flow policies of the
design and found information flow specifications that, if followed,
protect designs from known and potential future attack patterns.

2 PROPERTIES
Isadora generates two styles of information flow properties: no-flow
properties, in which there is no flow of information between two
design elements; and conditional-flow properties, in which there
exists some flow of information between two design elements, but
only when the design is in a certain state. Isadora can also generate
unconditional-flow properties, but these tend to be less interesting
for purposes of security validation.

2.1 Tracking Information Flow
IFT can precisely measure all digital information flows in the un-
derlying hardware, including, for example, implicit flows through
hardware-specific timing channels. Isadora uses IFT at the register
transfer level [6] to track data flow between registers rather than
considering individual bits, with ‘registers’ in this context refer-
ring to the Verilog notion of a register. Isadora may additionally be
configured to consider Verilog wires, though doing so provided no
observable improvements to generated specifications and consid-
erably increased trace generation costs. The Isadora methodology
can be applied to individual bits, as the underlying information
flow tracking used within Isadora does consider individual bits.
However, bit level analysis would result in extraordinarily high
trace generation costs for even small designs.

Tracking proceeds as follows: for each signal s in the design, a
new tracking signal s𝑇 is added along with the logic needed to track
how information propagates through a design. Once the tracking
signals and tracking logic are added to the design, one or more

signals may be set as the information source by initializing their
associated tracking signals to a nonzero value. All other tracking
signals are initialized to zero. As the design executes, and informa-
tion from a source signal propagates to a second signal, that second
signal’s tracking signal is updated from zero to nonzero.

2.2 Information Flow Restrictions
Using information flow tracking, we can express the property that
information from register r1 should never flow to register r2 as a
trace property: if r1 is the only signal whose tracking signal r𝑇1 is
initialized to nonzero, then for all possible executions of the design,
r2’s tracking signal r𝑇2 should remain at zero:

(∀r𝑖 , r𝑇𝑖 ≠ 0 ↔ 𝑖 = 1) → G(r𝑇2 = 0)

This style of no-flow property can be useful for ensuring un-
privileged users cannot influence sensitive state or for ensuring
that sensitive information cannot leak through, for example, debug
ports. However, it cannot capture conditional properties, for ex-
ample that register updates are allowed only under certain power
states.

2.3 Information Flow Conditions
Using information flow tracking, we can express the property that
information from a register r1 may flow to another register r2
under some condition 𝑃 : if r1 is the only signal whose tracking
signal r𝑇1 is initialized to nonzero then for all possible executions
of the design, r2’s tracking signal r𝑇2 will only become non-zero if
some predicate 𝑃 holds:

(∀r𝑖 , r𝑇𝑖 ≠ 0 ↔ 𝑖 = 1) → G(¬𝑃 → (r𝑇2 = 0 → X(r𝑇2 = 0)))

This style of a conditional flow property can be used to express,
for example, that register updates are allowable only under certain
power states, or that memory accesses are allowable only when
specific access control checks have succeeded.

2.4 Grammar of Properties
In order to produce properties that use only the signals in the
original design, without including the tracking signals, we need
an operator that expresses some notion of information flow. Both
no-flow and conditional flow properties can be expressed using a
no-flow operator, for which we use the notation =/=>. The grammar
of Isadora properties is as follows.

𝜙 � r1=/=> r2 | 𝑒 → r1 =/=> r2

𝑒 � 𝑏 ∧ 𝑒 | 𝑏
𝑏 � r ∈ {𝑥,𝑦, 𝑧} | r1 = r2 | r1 ≠ r2 | r = prev(r)

The property r1 =/=> r2 states that no information flows from
r1 to r2. The property 𝑒 → r1 =/=> r2 states that information
may flow from r1 to r2 only when ¬𝑒 . The symbol r is a register
in the design, r ∈ {𝑥,𝑦, 𝑧} means that r may take on any one of
the values in a set of cardinality less than or equal to three, and
prev(r) refers to the value of r in the previous clock cycle.

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

Figure 1: An overview of the Isadora workflow

3 METHODOLOGY
Isadora analyzes a design in four phases: generating traces, iden-
tifying flows, mining for flow conditions, and postprocessing. An
overview of the workflow is presented in Figure 1.

First, Isadora instruments the design with IFT logic and runs
the instrumented design in simulation using the user-provided set
of testbenches. The result is a trace set that specifies the value of
every design signal and every tracking signal at each clock cycle
during simulation.

Next, Isadora studies the trace set to find every flow that occurred
during the simulation of the design. This set of flows is complete: if
a flow occurred between any two signals, it will be included in this
set. At the end of this phase, Isadora also produces the complete
set of information flow restrictions: pairs of signals between which
no information flow occurs.

Then, Isadora uses an inference engine (Daikon [20]) to infer, for
every flow that occurred, the predicates that specify the conditions
under which the flow occurred.

The final phase removes redundant and irrelevant predicates
from the set and logically combines the predicates with the infor-
mation flows to produce the conditional flow properties. These,
along with the no-flow properties from the second phase, form the
information flow specification produced by Isadora.

3.1 Generating Traces with Information Flow
Tracking

To generate a trace set, the design is instrumented with IFT logic
and then executed in simulation with a testbench or sequence
of testbenches providing input values to the design. Let 𝜏src =

⟨𝜎0, 𝜎1, . . . , 𝜎𝑛⟩ be the trace of a design instrumented to track how
information flows from one signal, src, during execution of a test-
bench. The state 𝜎𝑖 of the design at time 𝑖 is defined by a list of
triples describing the current value of every design signal and cor-
responding tracking signal in the instrumented design:

𝜎𝑖 =[(s1, 𝑣1, 𝑣𝑡1), (s2, 𝑣2, 𝑣
𝑡
2), . . . , (s𝑚, 𝑣𝑚, 𝑣𝑡𝑚)]𝑖 .

In order to distinguish the source of a tainted sink signal, each
input signal must have a separate taint label. However, tracking
multiple labels is expensive [30]. Therefore, Isadora takes a com-
positional approach. For each source signal, IFT instrumentation
is configured to track the flow of information from only a single
input signal of the design, the src signal. This process is applied to

each signal in a design. The end result is a set of traces for design
D and testbench T: TDT = {𝜏src, 𝜏src′, 𝜏src′′, . . .}. Each trace in this
set describes how information can flow from a single input signal
to the rest of the signals in the design. Taken together, this set of
traces describes how information flows through the design during
execution of the testbench T.

3.2 Identifying All Flows
In the second phase, the set of traces are analyzed to identify:

(1) every pair of signals between which a flow occurs, and
(2) the times within the trace at which each flow occurs.

Each trace 𝜏src is searched to find every state in which a tracking
signal goes from being set to 0 to being set to 1. In other words,
every signal–values triple (s, 𝑣, 𝑣𝑡) that is of the form (s, 𝑣, 0) in
state 𝜎𝑖−1 and (s, 𝑣, 1) in state 𝜎𝑖 is found and the time 𝑖 is noted.
This is stored as the tuple (src, s, {𝑖0, 𝑖1, . . .}), which indicates that
information from src reached signal s at all times 𝑖 ∈ {𝑖0, 𝑖1, . . .}.
We call this the time-of-flow tuple. There can be multiple times-of-
flow within a single trace because the tracking value of signals may
be reset to zero by design events such as resets.

Once all traces have been analyzed, the collected time-of-flow
tuples (src, s, {𝑖0, 𝑖1, . . .}) are organized by time. For any given set
of times {𝑖0, 𝑖1, . . .} there may be multiple discovered flows. For
all traces 𝜏src generated by a single testbench, the timing of flows
from one source src can be compared to the timing of flows from
a second source src′; the value 𝑖 will refer to the same point in the
testbench. At the end of this phase, the tool produces two outputs.
The first is a list of the unique sets of times present within time-of-
flow tuples and all the corresponding register pairs for which flow
is discovered at precisely the times in the set:

𝑆flows = [⟨{𝑖0, 𝑖1, . . .} :{(src1, s1), (src2, s2), . . .}⟩;
⟨{𝑖 ′0, 𝑖

′
1, . . .} :{(src1

′, s1 ′), (src2 ′, s2 ′), . . .}⟩; . . .] .

The same src may flow to many sinks s ∈ {s1, s2, . . .} at the same
times 𝑖 ∈ {𝑖0, 𝑖1, . . .}, and the same sink s may receive information
from multiple sources src ∈ {src1, src2, . . .} at the same times
𝑖 ∈ {𝑖0, 𝑖1, . . .}.

The second output from this phase is a list of source-sink pairs
between which information never flows:

𝑆no−flow = {(src, s), (src′, s′), . . .}.

The pairs in this set comprise the noninterference properties
of the design, and can be specified using the no-flow operator, for
example src =/=> s

3.3 Mining for Flow Conditions
In the third phase, Isadora finds the conditions under which a
particular flow will occur. For example, if every time src flows
to s, the register r has the value 𝑥 , Isadora infers the conditional
information flow property:

¬(r = 𝑥) → src =/=> s

Isadora uses the technique of dynamic invariant detection [20]
on traces to infer design behavior using pre-defined patterns. In
order to isolate the conditions for information flow between two
registers, Isadora uses 𝑆flows to find all the trace times 𝑖 at which

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

information flows from src to s during execution of the testbench.
The corresponding trace(es) are then decomposed to produce a
set of trace slices that are two clock cycles in length, one for
each time 𝑖 . Consider time-of-flow tuple (src, s, [𝑖, 𝑗, 𝑘, . . .]), which
as a notational convenience here uses distinct letters to denote
time points rather than subscripts for clarity in the following ex-
pression. Given this tuple, Isadora will produce the trace slices
⟨𝜎𝑖−1, 𝜎𝑖 ⟩, ⟨𝜎 𝑗−1, 𝜎 𝑗 ⟩, ⟨𝜎𝑘−1, 𝜎𝑘 ⟩. These trace slices include only the
signals of the original design, all tracking logic and shadow sig-
nals are pruned. Using trace slices, or trace windows of length
two, allows dynamic invariant detection to generation predicates
specifying design state both immediately prior to and concurrent
with the occurence of some flow. Predicates match one of the four
patterns for expressions given in the grammar of Isadora properties
in Section 2.

3.4 Postprocessing
Finally, Isadora performs additional analysis to find invariants that
may hold over the entire trace set by running the miner on the
unsliced trace. Isadora eliminates any predicate that is also found
to be a trace-set invariant. One such trivial example is the invariant
clk = {0, 1}.

The final output properties from postprocessing are the con-
ditional flow properties. To ease readability, Isadora can express
the conditional flow properties as multi-source to multi-sink flows,
where all flows within the same property occur at the same time
and under the same conditions. This produces comparatively few
properties, which in practice were approximately as many as the
number of unique source signals, and avoids redundant information.
The conditional flow properties and the no-flow properties discov-
ered in phase 2 (Section 3.2) make up the set of information flow
properties produced by Isadora. Two examples of postprocessed
properties are shown in Appendix A.

4 IMPLEMENTATION
Isadora uses the Tortuga Radix-S simulation-based security verifi-
cation technology [3] to generate IFT logic for a hardware design,
the Questa Advanced Simulator [2] to simulate the instrumented
design and generate traces, and the Daikon [20] invariant miner
to find flow conditions. A Python script manages the complete
workflow and implements flow analysis and postprocessing.

Traces are generated for all signals within a design. An auto-
mated utility identifies every signal within a design and configures
Tortuga Radix-S to build the IFT logic separately for each of these
registers. We run Tortuga in exploration mode, which omits cone
of influence analysis, and track flows to all design state using the
$all_outputs variable. The resulting instrumented designs are
simulated in QuestaSim over a testbench (see Evaluation, Sec. 5) to
produce a trace of execution.

Phase two is implemented as a Python tool that reads in the
traces generated by QuestaSim and produces the set of no-flow
properties and the time-of-flow tuples. This phase combines the
bit-level taint tracking by Radix-S into signal-level tracking. Each
𝑛-bit signal in the original design is then tracked by a 1-bit shadow
signal, which will be set to 1 at the first point in the trace that any
of the component 𝑛 shadow bits where set.

The mining phase is built on top of the Daikon invariant genera-
tion tool [20], which was developed for use with software programs.
Daikon generates invariants over state variables for each point in a
program. We built a Daikon front-end in Python (411 LoC, includ-
ing comments) that converts the trace data to be Daikon readable,
treating the state of the design at each clock cycle as a point in
a program. The front-end also removes any unused or redundant
signals and outputs relevant two-clock-cycle slices as described in
Sec. 3.3.

5 EVALUATION
We assess the following questions to evaluate Isadora:

(1) Can Isadora independently mine security properties manu-
ally developed by hardware designers?

(2) Can Isadora automatically generate properties describing
CommonWeakness Enumerations (CWEs) [1] over a design?

(3) Does Isadora scale well for larger designs, such as CPUs or
SoCs?

5.1 Designs
We assessed Isadora on two designs, the Access Control Wrap-
per (ACW) proposed within the AKER framework [39] and the
PicoRV32 RISC-V CPU. An ACW wraps an AXI controller and
enforces on it a local access control policy, which is setup and main-
tained by a trusted entity (e.g., a Hardware Root of Trust or a trusted
processor). The ACW checks the validity of read and write requests
issued by the wrapped AXI controller and rejects those that violate
the configuration of the local access control policy.

We used the AKER framework in two configurations: first im-
plementing a single-controller AKER-based access control system;
second, implementing a system with two traffic generators, each
wrapped by an ACW, connected to three AXI peripherals though
an AXI interconnect. This setup simulates the use of the ACWs in
an SoC environment. In both cases, the input signals of the ACWs
are dictated by the testbench, which initializes them with the access
control policies and acts as the trusted entity. We refer to these
two designs as the “Single ACW” and “Multi ACW” cases. They are
shown in Figures 2 and 3, respectively.

PicoRV32 is a CPU core that implements the RISC-V RV32IMC
Instruction Set, an open standard instruction set architecture based
on established reduced instruction set computer principles.

The secure operation of the ACW and AKER-based access con-
trol systems has been verified through a property-based security
validation process by the designers. We study the AKER framework
to evaluate how Isadora’s properties compare to a manually devel-
oped security specification. We use the PicoRV32 to evaluate how
well Isadora automatically generates properties describing CWEs
and to evaluate how well Isadora scales on a CPU design.

5.2 Time Cost
Isadora ran on a systemwith an Intel Core i5-6600k (3.5GHz) proces-
sor with 8 GB of RAM. Traces were generated on a Intel Xeon CPU
E5-2640 v3 @ 2.60GHz server. Trace generation dominated time
costs, and scaled slightly worse than linear with number of unique
signals in a design. Trace generation was suitable for parallelization
though parallelization was not considered in the evaluation.

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

Figure 2: Block diagram of the Single ACW design, with la-
beled signal groups.

Figure 3: Block diagram of the Multi ACW design

The design sizes are given in Table 1. For the Single ACW, trace
generation took 9h33m. For the Multi ACW, trace generation ex-
ceeded 24 hours so we consider a reduced trace, which tracks
sources for one of the ACWs, though all signals are included as
sinks or in conditions. The reduced trace was generated in 6h48m.
For PicoRV32, trace generation took 8h35m.

5.2.1 Theoretical Gains to Parallelization. When parallelizing all
trace generation and all case mining, Isadora could theoretically
evaluate the Single ACW case fully in less than five minutes. Paral-
lelizing the first phase requires a Radix-S and QuestaSim instance
for each source register, and each trace is generated in approxi-
mately 100 seconds. Further, the trace generation time is dominated
by write-to-disk, and performance engineering techniques could
likely reduce it significantly, such as by changing trace encoding

or piping directly to later phases. Parallelizing the second phase
requires only a Python instance for each source register, and takes
between 1 and 2 seconds per trace. Parallelizing the third phase
requires a Daikon instance for each flow case, usually roughly the
same number as unique sources, and takes between 10 and 30 sec-
onds per flow case. The final phase, postprocessing, is also suitable
for parallelization. Maximally parallelized, this gives a design-to-
specification time of under four minutes for the single ACW and
for similarly sized designs, including PicoRV32.

5.3 Designer Specified Security Properties
For the Single ACW we compared Isadora’s output against security
assertions developed by the AKER [39] designers using the Com-
mon Weakness Enumerations (CWE) database [1] as a guide. These
assertions, the CWEs described, and the results of Isadora on the
Single ACW are shown in Table 2. For each assertion Isadora mined
either a property containing the assertion or found both a viola-
tion and the violating conditions for each assertion. We reported
the observed violations to the designers who determined that the
design remained secure but a conditional flow had been incorrectly
specified as always illegal. Isadora also found the conditions for
legality.

Only 9 Isadora properties, out of 303 total Isadora properties
generated, were required to cover the designer-provided assertions,
including conditions specifying violations. The Isadora output prop-
erties may contain many source or sink signals that flow concur-
rently and their corresponding conditions, whereas the designers’
assertions each considered a single source and sink. For example, on
the ACW nine distinct read channel registers always flow to a cor-
responding read channel output wire at the same time, so Isadora
outputs a single property for this design state. This state included
the reset signal and a configuration signal both set to non-zero val-
ues, which were captured as flow conditions, demonstrating correct
design implementation. This single Isadora property captured 18
low level assertions related to multiple CWEs.

5.3.1 Case Study: Unintended Proxy. In the Multi ACW case, we
studied CWE 411: Unintended Proxy or Intermediary (‘Confused
Deputy’). The system contained two controllers (C), with two access
control modules (ACW), a trusted entity that configured each ACW
(T), and three peripherals (P). The ACWs each implemented an
access control (AC) policy shown in Figure 3 and given as:

AC1 of ACW1 : 𝑅 = {𝑃1, 𝑃2}, 𝑊 = {𝑃1}
AC2 of ACW2 : 𝑅 = {𝑃3}, 𝑊 = {𝑃2, 𝑃3}

Isadora discovered legal flows from the 𝐴𝐶𝑊2 write data to 𝑃3 read
and write data, and 𝑃2 read data. Isadora also finds an illegal flow
to 𝑃1 write data. The 𝐴𝐶𝑊2-to-𝑃1 illegal flow has a flow condition
specifying a prior flow from the relevant signals within 𝐴𝐶𝑊2
to 𝐴𝐶𝑊1. While not constituting a precise path constraint, this
captures an access control violation and suggests the confused
deputy scenario because the flow profile from 𝐴𝐶𝑊2 is consistent
with this path.

5.4 Automatic Property Generation
For the two designs with full trace sets, the Single ACW and Pi-
coRV32, Isadora generates a specification describing all information

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

Design Unique Unique LoC Trace Trace Daikon Isadora Miner Time
Signals Sources Cycles GBs Traces Properties In Minutes

Single ACW 229 229 1940 598 .7 252 303 29:51
Multi ACW 984 85 4447 848 4.3 378 160 8:31
PicoRV32 181 181 3140 1099 .6 955 153 15:09

Table 1: Various size measures of studied designs

Source Sink Invariant Provided Result Isadora CWEs
Assert’s Properties

M PORT M INT GLOB 19 ✓ 2, 40, 1258, 1266, 1270,
M INT M PORT 19 ✓ 43, 53, 1271, 1272, 1280
M PORT M INT C PORT 19 ✓ 54, 204, 1258, 1270,
M INT M PORT 19 ✓ 214 1272, 1280
S PORT CNFG - 4 ✗ 2, 6 1269, 1272, 1280
Table 2: Isadora performance versus manual specification, on the Single ACW

flows and their conditions with hundreds of properties. To assess
whether these properties are security properties, for each design
we randomly selected 10 of the 303 or 153 total properties (using
Python random.randint) and assessed their relevance to security.

We use CWEs as a metric to evaluate the security relevance
of Isadora output properties. To do so, for each design, we first
determine which CWEs apply to the design. For both the ACW
and PicoRV32, we used the Radix Coverage for Hardware Com-
mon Weakness Enumeration (CWE) Guide [3] to provide a list of
CWEs that specifically apply to hardware. We considered each doc-
umented CWE for both designs. CWEs, while design agnostic, may
refer to design features not present in the Single ACW or PicoRV32
or may not refer to information flows. High level descriptions in
multiple CWEs may correspond to the same low level behavior for
a design and we consider these CWEs together.

Information flow hardware CWEs describe source signals, sink
signals, and possibly conditions. CWEs provide high level descrip-
tions, but Isadora targets an RTL definition. To apply these high
level descriptions to RTL, we first group signals for a design by
inspecting Verilog files and, if available, designer notes. With the
groups established, we label every property by which group-to-
group flows they contain. We also determine which source–sink
flows could be described in CWEs, which often correspond to, or
even match exactly, a signal group. We use these groups to find
CWE-relevant, low-level signals as sources, sinks, and conditions
in an Isadora property. We also use these groups to characterize the
relative frequency of conditional flows between different groups,
which we present as heatmaps in the following subsections.

5.4.1 ACWConditional Information Flow. Over the ACWwe assess
fourteen CWEs which we map to five plain-language descriptions
of the design features, as shown in Table 3.

For the ACW signal groups, all registers were helpfully placed
into groups by the designer and labeled within the design. The
design contained seven distinct labeled groups:

• ‘GLOB’ - Global ports
• ‘S PORT’ - AXI secondary (S) interface ports of the ACW

CWE(s) Description

1220 Read/write channel separation
1221-1259-1271 Correct initialization, reset, defaults
1258-1266-1270-1272 Access controls use operating modes
1274-1283 Anomaly registers log transactions
1280 Control checks precede access
1267-1269-1282 Configuration/user port separation

Table 3: The 14 CWEs considered for ACW

• ‘C PORT’ - Connections to non-AXI ports of the controller
• ‘M PORT’ - AXI main (M) interface ports of the ACW
• ‘CNFG’ - Configuration signals
• ‘M INT’ - AXI M interface ports of the controller
• ‘CTRL’ - Control logic signals

GLOB signals are clock, reset, and interrupt lines. S PORT rep-
resents the signals that the trusted entity T uses to configure the
ACW. C PORT represents the signals which are used to configure
the controller C to generate traffic for testing. M PORT carries
traffic between the peripheral P and the ACW’s control mechanism.
CNFG represents the design elements which manage and store the
configuration of the ACW. M INT carries the traffic between the
ACW’s control mechanism and the controller. If it is legal according
to the ACW’s configuration, the control mechanism will send M
INT traffic to M PORT and vice versa. CTRL represents the design
elements of the aforementioned control mechanism.

First consider the heatmap view of the Single ACW in Figure 4.
In this view, all of the designer-provided assertions fall into just
3 of the 49 categories; these are outlined in red. Further, all of the
violations were found with S PORT to CNFG flows, while all satis-
fied assertions were flows between M INT and M PORT. Another
interesting result visible in the heatmap is the infrequent flows
into S PORT, which is used by the trusted entity to program the
ACW. Most of the design features should not be able to reprogram

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

Figure 4: Group-to-group conditional flow heatmap for the
Single ACW.

the access control policy, so finding no flows along these cases
provides a visual representation of secure design implementation
with respect to these features.

For the ACW, all ten sampled properties encode CWE-defined
behavior to prevent common weaknesses, as shown in Table 4. In
this table, the columns labeled by a CWE number and a ‘+’ refer
to all the CWEs given in a row of Table 3. Eight out of the ten
properties provide separation between read and write channels,
which constitutes themain functionality of the ACWmodule. CWEs
1267, 1269, and 1282 are not found within the conditional flow
properties produced by Isadora as these are no-flow properties, so
they are not present within the samples drawn from the numbered,
conditional flow properties, but we were able to verify they are
included in Isadora’s set of no-flow properties.

5.4.2 PicoRV32 Conditional Information Flow. Over PicoRV32 we
assess eighteen CWEs which we map to seven plain language de-
scriptions of the design features, as shown in Table 5.

PicoRV32 had no designer-specified signal groups so we used
comments in the code, register names, and code inspection to group
all signals. We use lower case names to denote these groups were
not defined by the designer.

• ‘out’ - Output registers
• ‘int’ - Internal registers
• ‘mem’ - Memory interface
• ‘ins’ - Instruction registers
• ‘dec’ - Decoder
• ‘dbg’ - Debug signals and state
• ‘msm’ - Main state machine

The memory interface and the main state machine were indicated
by comments in the code. The instruction registers, the decoder,
and debug all appeared under one disproportionately large section
described as the instruction decoder. Debug was grouped by name
after manual analysis found registers in this region prefixed with
‘dbg_’, ‘q_’, or ‘cached_’ to interact with and only with one another.
Instruction registers prefixed ‘instr_’ all operate similarly to each

Figure 5: Group-to-group conditional flow heatmap for Pi-
coRV32.

other and differently than the remaining decoder signals, which
were placed in the main decoder group. Internal signals were the
remaining unlabeled signals that appeared early within the design,
such as program and cycle counters and interrupt signals, and the
output registers were all signals declared as output registers.

First consider the heatmap view of PicoRV32 in Figure 5. An
interesting result visible in the heatmap is the flow isolation from
debug signals to the rest of the design. Many exploits, both known
and anticipated, target debug information leakage, and the heatmap
shows this entire class of weakness is absent from the design.

For PicoRV32 we find eight of ten sampled properties encode
CWE defined behavior to prevent common weaknesses. We present
these results in Table 6. The columns labeled by a CWE number and
a ‘+’ refer to all the CWEs given in a row of Table 5. The remaining
two Isadora properties were single source or single sink properties
representing a logical combination inside the decoder, and captured
only functional correctness.

6 DISCUSSION
In this section, we discuss the threats to validity for properties pro-
duced using Isadora, including false positives and false negatives.

False positives may be introduced by insufficient trace coverage,
by limitations of information flow tracking, or by incorrectly classi-
fying functional properties as security properties. Sampling output
properties found a 10% false positivity rate with respect to misclas-
sification. This rate is discussed in greater detail in Section 6.2.

With regard to false negatives, they fall into two cases: known
and unknown. Isadora captured all known assertions for the Sin-
gle ACW (Section 5.3). In our evaluation of the Single ACW and
PicoRV32 properties (Section 5.4), the sampled properties partially
addressed all CWEs manually determined to be relevant to the
studied designs, but no CWE was completely covered within the
sampled properties. A manual inspection of the complete set of
properties produced by Isadora is needed to rule out the possibility

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

Description 1220 1221+ 1258+ 1274+ 1280

3 Control check for first read request after reset ✓ ✓ ✓
10 Secure power-on ✓
37 Anomalies and memory control set after reset ✓ ✓ ✓ ✓
96 T via S PORT configures ACW ✓ ✓ ✓
106 Interrupts respect channel separation ✓
154 Base address not visible to P during reset ✓
163 Write transaction legality flows to P ✓
227 Write channel anomaly register updates ✓ ✓
239 Write validity respects channel separation, reset ✓ ✓
252 Read validity respects channel separation, reset ✓ ✓

Table 4: Sampled Isadora properties on Single ACW

CWE(s) Description

276-1221-1271 Correct initialization, reset, defaults
440-1234-1280-1299 Memory accesses pass validity checks
1190 Memory isolated before reset
1191-1243-1244... Debug signals do not interfer with
-1258-1295-1313 ...any other signals
1245 Hardware state machine correctness
1252-1254-1264 Data and control separation

Table 5: The 18 CWEs considered for PicoRV32

of false negatives with respect to CWEs. Unknown false negatives
can arise from limitations in trace coverage or in logical specificity.

6.1 Trace Reliance
As with any specification mining technique, Isadora relies on traces.
The second stage of Isadora relies on generating instrumented traces
with sufficient case coverage to drive information flow through all
channels present in the design. The third stage of Isadora relies
on traces to infer flow predicates. Over buggy hardware, these
predicates may form a specification describing buggy behavior.
Traces may not cover all cases that can be reached by a design or
even occur during normal design operation.

Traces may not precisely describe some design features. For
example, when considering property number 154 on the Single
ACW, one of the sampled properties, Isadora found predicates that
ARLEN_wire and AWLEN_wire are both set to be exactly 8 for any
flow to occur. This property is shown in full in Appendix A.1.

The AxLEN_wire registers set transaction burst size for reads and
writes. For transactions in write channels, the ARLEN_wire value
should be irrelevant, and this clause within the broader property
constitutes a likely false positive.

The AWLEN_wire is a different case. In a properly configured
write channel supporting transcations, this register would neces-
sarily be non-zero, and for wrapping bursts must be a power of two,
but manual inspection of the code provides no indication the value
must be precisely 8. During development we manipulated this and
other values for which similar reasoning applied, but ultimately it
was difficult to tightly define possible values for which the design

could operate but were distinct from the default test bench for this
and other signals.

While Isadora is testbench reliant, andmay be useful in testbench
generation, testbench generation is an active area of research, and
is more fully explored in related works such as Meng et al. [33],
which studies concolic testing for RTL.

6.2 Functional Properties
When using CWE-relevance as the metric, Isadora does include
functional properties in its output, as shown in Table 6. Sampling
output properties found a 10% false positivity rate with respect to
misclassification for the sampled properties from both designs, with
0 of 10 properties found to be false positives over the Single ACW
version of AKER, and 2 of 10 properties found to be false positives
over the PicoRV32 RISC-V CPU.

We attribute finding functional properties solely on RISC-V pri-
marily to differences in design and testbench. The ACW studied was
the target of validation efforts related to information flow, and the
testbench we used was developed as part of those efforts. Further,
as an access control module, by nature much of its functionality
was relevant to secure access control.

With RISC-V, a minimal test bench was used that was intended
only to run the design in an environment without access to the
full RISC-V toolchain (such as our simulation environment for
instrumented trace generation), andmuch of the designwas devoted
to behavior for which CWEs did not apply, such as logical updates
during instruction decoding. One example of an Isadora property
classified as functional is shown in Appendix A.2.

6.3 Measuring Interference
Isadora assumes the correctness of the information flow tracking
used in trace generation. Information flow tracking is an active
area of research, and is more fully explored in related works such
as Ardeshiricham et al. [6], which studies IFT for RTL.

6.4 Specification Logic
Isadora does not define temporal properties beyond a single delay
slot incorporated in the trace slices of length two. However, manual
examination of output properties suggests information flow pat-
terns during initialization, which is the first 4 cycles for AKER and

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

Description 276+ 440+ 1190 1191+ 1245 1252+

1 No decoder leakage via debug ✓
16 Instructions update state machine ✓ ✓
30 Decoder updates state machine ✓
47 No state machine leakage via debug ✓
52 SLT updates state machine ✓
66 Handling of jump and load ✓ ✓ ✓
79 Loads update state machine ✓
113 Decoder internal update
130 Write validity respects reset ✓
144 Decoder internal update

Table 6: Sampled Isadora properties on PicoRV32

first 80 for RISC-V, are highly dissimilar to later flows. During ini-
tialization, Isadora discovers flow conditions referencing registers
with unknown states. Isadora also finds concurrent flows between
elements for which no concurrent flows occur after reset. Because
conditions are inferred from comingled trace slices from during
and after initialization, the output properties may be insufficiently
precise to capture secure behavior related to this boundary.

7 RELATED WORK
7.1 Properties of Hardware Designs
Automatic extraction of security critical assertions from hardware
designs enables assertion based verification without first manually
defining properties [28]. The Iodine tool looks for possible instances
of known design patterns, such as one-hot encoding or mutual ex-
clusion between signals, and creates assertions that encode the
discovered patterns [25]. More recent papers use data mining of
simulation traces to extract more detailed assertions [11, 26] or
temporal properties [31]. Recent work has focused on mining tem-
poral properties from execution traces [13–15, 31]. A combination
of static and dynamic analysis extracts word-level properties [32].

The first security properties developed for hardware designs
weremanually crafted [9, 10, 27]. SCIFinder semi-automatically gen-
erates security-critical properties for a RISC processor design [45]
and Astarte generates security-critical properties for x86 [19]. Re-
cent hackathons have revealed the types of properties needed to find
exploitable bugs in the design of a RISC-based system-on-chip [16].

7.2 Mining Specifications for Software
The seminal work in specification mining comes from the software
domain [4] in which execution traces are examined to infer tem-
poral specifications in the form of regular expressions. Subsequent
work used both static and dynamic traces to filter out less useful
candidate specifications [42]. More recent work has tackled the
challenges posed by having imperfect execution traces [44], and by
the complexity of the search space [22, 23, 38]. Daikon, which pro-
duces invariants rather than temporal properties, learns properties
that express desired semantics of a program [20].

In the software domain a number of papers have developed
security specific specification mining tools. These tools use human

specified rules [40], observe instances of deviant behavior [20, 34,
35], or identify instances of known bugs [43].

8 CONCLUSION
We presented and implemented a methodology for creating in-
formation flow specifications of hardware designs. By combining
information flow tracking and specification mining, we are able
to produce information flow properties of a design without prior
knowledge of security agreements or specifications. We show our
implementation, Isadora, characterizes the flow relations between
all elements of a design and identifies important information flow
security properties of an SoC and a CPU according to Common
Weakness Enumerations.

9 ACKNOWLEDGMENTS
We thank our reviewers for their insightful comments and sugges-
tions. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1816637, by the Semicon-
ductor Research Corporation, and by Intel. Any opinions, findings,
conclusions, and recommendations expressed in this paper are
solely those of the authors.

REFERENCES
[1] [n.d.]. The Common Weakness Enumeration Official Webpage. https://cwe.

mitre.org/
[2] [n.d.]. Questa Advanced Simulator. https://eda.sw.siemens.com/en-US/ic/questa/

simulation/advanced-simulator/
[3] [n.d.]. Radix Coverage for Hardware Common Weakness Enumeration (CWE)

Guide. https://tortugalogic.com/wp-content/uploads/2020/03/RadixCWEGuide_
20210126.pdf.

[4] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications.
In 29th Symposium on Principles of Programming Languages (POPL) (Portland,
Oregon). ACM, 4–16. https://doi.org/10.1145/503272.503275 http://doi.acm.org/
10.1145/503272.503275.

[5] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. 2017. Clepsydra: Modeling
timing flows in hardware designs. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 147–154. https://doi.org/10.1109/ICCAD.2017.
8203772

[6] Armaiti Ardeshiricham,Wei Hu, JoshuaMarxen, and Ryan Kastner. 2017. Register
transfer level information flow tracking for provably secure hardware design. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017. 1691–1696.
https://doi.org/10.23919/DATE.2017.7927266

[7] Andrew Becker, Wei Hu, Yu Tai, Philip Brisk, Ryan Kastner, and Paolo Ienne.
2017. Arbitrary precision and complexity tradeoffs for gate-level information
flow tracking. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).
1–6. https://doi.org/10.1145/3061639.3062203

https://cwe.mitre.org/
https://cwe.mitre.org/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://tortugalogic.com/wp-content/uploads/2020/03/RadixCWEGuide_20210126.pdf
https://tortugalogic.com/wp-content/uploads/2020/03/RadixCWEGuide_20210126.pdf
https://doi.org/10.1145/503272.503275
http://doi.acm.org/10.1145/503272.503275
http://doi.acm.org/10.1145/503272.503275
https://doi.org/10.1109/ICCAD.2017.8203772
https://doi.org/10.1109/ICCAD.2017.8203772
https://doi.org/10.23919/DATE.2017.7927266
https://doi.org/10.1145/3061639.3062203

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

[8] Mohammad-Mahdi Bidmeshki and Yiorgos Makris. 2015. Toward automatic
proof generation for information flow policies in third-party hardware IP. In 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 163–168.

[9] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. 2011. Security Checkers: Detect-
ing processor malicious inclusions at runtime. In International Symposium on
Hardware-Oriented Security and Trust (HOST). IEEE, 34–39. https://doi.org/10.
1109/HST.2011.5954992

[10] Michael Brown. 2017. Cross-validation Processor Specifications. Master’s Thesis.
University of North Carolina at Chapel Hill.

[11] Po-Hsien Chang and Li C Wang. 2010. Automatic assertion extraction via se-
quential data mining of simulation traces. In 15th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 607–612.

[12] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput.
Secur. 18, 6 (Sept. 2010), 1157–1210. http://dl.acm.org/citation.cfm?id=1891823.
1891830.

[13] A. Danese, T. Ghasempouri, and G. Pravadelli. 2015. Automatic extraction of
assertions from execution traces of behavioural models. In Design, Automation
Test in Europe Conference Exhibition (DATE). 67–72. https://doi.org/10.7873/
DATE.2015.0110

[14] A. Danese, G. Pravadelli, and I. Zandonà. 2016. Automatic generation of power
state machines through dynamic mining of temporal assertions. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE). 606–611.

[15] A. Danese, N. D. Riva, and G. Pravadelli. 2017. A-TEAM: Automatic
template-based assertion miner. In 54th Design Automation Conference (DAC).
ACM/EDAC/IEEE, 1–6. https://doi.org/10.1145/3061639.3062206

[16] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi,
Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
2019. Hardfails: Insights into Software-Exploitable Hardware Bugs. In 28th
USENIX Security Symposium. USENIX Association, 213–230. https://www.usenix.
org/conference/usenixsecurity19/presentation/dessouky

[17] Calvin Deutschbein and Cynthia Sturton. 2018. Mining Security Critical Lin-
ear Temporal Logic Specifications for Processors. In International Workshop
on Microprocessor and SoC Test, Security, and Verification (MTV). IEEE. https:
//ieeexplore.ieee.org/document/8746060

[18] C. Deutschbein and C. Sturton. 2020. Evaluating Security SpecificationMining for
a CISC Architecture. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 164–175. https://doi.org/10.1109/HOST45689.2020.
9300291

[19] Calvin Deutschbein and Cynthia Sturton. 2020. Evaluating Security Specification
Mining for a CISC Architecture. In Symposium on Hardware Oriented Security
and Trust (HOST). IEEE.

[20] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Science of Computer Programming 69,
1-3 (Dec. 2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015 http://dx.doi.
org/10.1016/j.scico.2007.01.015.

[21] Nusrat Farzana, Fahim Rahman, Mark Tehranipoor, and Farimah Farahmandi.
2019. SoC Security Verification using Property Checking. In 2019 IEEE Interna-
tional Test Conference (ITC). 1–10. https://doi.org/10.1109/ITC44170.2019.9000170

[22] Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of Gen-
eral Temporal Properties from Dynamic Traces. In 16th International Sympo-
sium on Foundations of Software Engineering (FSE) (Atlanta, Georgia). ACM,
339–349. https://doi.org/10.1145/1453101.1453150 http://doi.acm.org/10.1145/
1453101.1453150.

[23] Mark Gabel and Zhendong Su. 2008. Symbolic Mining of Temporal Specifica-
tions. In 30th International Conference on Software Engineering (ICSE) (Leipzig,
Germany). ACM, 51–60. https://doi.org/10.1145/1368088.1368096 http://doi.acm.
org/10.1145/1368088.1368096.

[24] Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and Sandeep Chakra-
vorty. 2005. IODINE: a tool to automatically infer dynamic invariants for hard-
ware designs. In 42nd annual Design Automation Conference. ACM, 775–778.
http://xenon.stanford.edu/~hangal/iodine.html

[25] Sudheendra Hangal, Sridhar Narayanan, Naveen Chandra, and Sandeep Chakra-
vorty. 2005. IODINE: A tool to automatically infer dynamic invariants for hard-
ware designs. In 42nd Design Automation Conference (DAC). IEEE.

[26] Stav Hertz, David Sheridan, and Shobha Vasudevan. 2013. Mining hardware
assertions with guidance from static analysis. Transactions on Computer-Aided
Design of Integrated Circuits and Systems 32, 6 (2013), 952–965.

[27] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith. 2015.
SPECS: A Lightweight RuntimeMechanism for Protecting Software from Security-
Critical Processor Bugs. In Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (Istanbul,
Turkey). ACM, 517–529. https://doi.org/10.1145/2694344.2694366 http://doi.acm.
org/10.1145/2694344.2694366.

[28] Wei Hu, Alric Althoff, Armaiti Ardeshiricham, and Ryan Kastner. 2016. To-
wards property driven hardware security. In 2016 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV). IEEE, 51–56.

[29] Wei Hu, Armaiti Ardeshiricham, Mustafa S Gobulukoglu, Xinmu Wang, and
Ryan Kastner. 2018. Property Specific Information Flow Analysis for Hardware
Security Verification (ICCAD ’18). ACM. https://doi.org/10.1145/3240765.3240839

[30] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood,
and Ryan Kastner. 2014. Gate-Level Information Flow Tracking for Security
Lattices. ACM Trans. Des. Autom. Electron. Syst. 20, 1, Article 2 (Nov. 2014),
25 pages. https://doi.org/10.1145/2676548 https://doi.org/10.1145/2676548.

[31] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. 2010. Scalable Specification
Mining for Verification and Diagnosis. In 47th Design Automation Conference
(DAC) (Anaheim, California). ACM, 755–760. http://doi.acm.org/10.1145/1837274.
1837466.

[32] L. Liu, C. Lin, and S. Vasudevan. 2012. Word level feature discovery to enhance
quality of assertion mining. In International Conference on Computer-Aided Design
(ICCAD). IEEE/ACM, 210–217.

[33] Xingyu Meng, Shamik Kundu, Arun K. Kanuparthi, and Kanad Basu. 2021. RTL-
ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021),
1–1. https://doi.org/10.1109/TCAD.2021.3066560

[34] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding
File System Bugs. In 25th Symposium on Operating Systems Principles (SOSP)
(Monterey, California). ACM, 361–377. https://doi.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422.

[35] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
2009. Automatically Patching Errors in Deployed Software. In 22nd Sympo-
sium on Operating Systems Principles (SOSP) (Big Sky, Montana, USA). ACM,
87–102. https://doi.org/10.1145/1629575.1629585 http://doi.acm.org/10.1145/
1629575.1629585.

[36] Christian Pilato, Kaijie Wu, Siddharth Garg, Ramesh Karri, and Francesco Regaz-
zoni. 2019. TaintHLS: High-Level Synthesis for Dynamic Information Flow
Tracking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 5 (2019), 798–808. https://doi.org/10.1109/TCAD.2018.2834421

[37] Mayank Rawat, Sujit Kumar Muduli, and Pramod Subramanyan. 2020. Mining
Hyperproperties from Behavioral Traces. In 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SOC). 88–93. https://doi.org/10.
1109/VLSI-SOC46417.2020.9344106

[38] G. Reger, H. Barringer, and D. Rydeheard. 2013. A pattern-based approach to
parametric specification mining. In 28th International Conference on Automated
Software Engineering (ASE). IEEE/ACM, 658–663. https://doi.org/10.1109/ASE.
2013.6693129

[39] Francesco Restuccia, Andres Meza, and Ryan Kastner. 2021. AKER: A Design
and Verification Framework for Safe and Secure SoC Access Control. CoRR
abs/2106.13263 (2021). arXiv:2106.13263 https://arxiv.org/abs/2106.13263

[40] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008.
AutoISES: Automatically Inferring Security Specifications and Detecting Viola-
tions. In 17th USENIX Security Symposium (San Jose, CA). USENIX Association,
379–394. http://dl.acm.org/citation.cfm?id=1496711.1496737.

[41] Wei Hu, A. Becker, A. Ardeshiricham, Yu Tai, P. Ienne, D. Mu, and R. Kastner. 2016.
Imprecise security: Quality and complexity tradeoffs for hardware information
flow tracking. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 1–8. https://doi.org/10.1145/2966986.2967046

[42] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications for
Error Detection. In 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (Edinburgh, UK). Springer-Verlag,
461–476. https://doi.org/10.1007/978-3-540-31980-1_30 http://dx.doi.org/10.
1007/978-3-540-31980-1_30.

[43] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. 2011. Vulnerability Ex-
trapolation: Assisted Discovery of Vulnerabilities Using Machine Learning. In
5th USENIX Conference on Offensive Technologies (WOOT) (San Francisco, CA).
USENIX Association, 13–13. http://dl.acm.org/citation.cfm?id=2028052.2028065.

[44] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining Temporal API Rules from Imperfect Traces. In 28th
International Conference on Software Engineering (ICSE) (Shanghai, China). ACM,
282–291. https://doi.org/10.1145/1134285.1134325 http://doi.acm.org/10.1145/
1134285.1134325.

[45] Rui Zhang, Natalie Stanley, Chris Griggs, Andrew Chi, and Cynthia Sturton.
2017. Identifying Security Critical Properties for the Dynamic Verification of a
Processor. In Architectural Support for Prog. Lang. and Operating Sys. (ASPLOS).
ACM.

A SAMPLE PROPERTIES
In this section we show examples of Isadora output.

https://doi.org/10.1109/HST.2011.5954992
https://doi.org/10.1109/HST.2011.5954992
http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://doi.org/10.7873/DATE.2015.0110
https://doi.org/10.7873/DATE.2015.0110
https://doi.org/10.1145/3061639.3062206
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://ieeexplore.ieee.org/document/8746060
https://ieeexplore.ieee.org/document/8746060
https://doi.org/10.1109/HOST45689.2020.9300291
https://doi.org/10.1109/HOST45689.2020.9300291
https://doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/ITC44170.2019.9000170
https://doi.org/10.1145/1453101.1453150
http://doi.acm.org/10.1145/1453101.1453150
http://doi.acm.org/10.1145/1453101.1453150
https://doi.org/10.1145/1368088.1368096
http://doi.acm.org/10.1145/1368088.1368096
http://doi.acm.org/10.1145/1368088.1368096
http://xenon.stanford.edu/~hangal/iodine.html
https://doi.org/10.1145/2694344.2694366
http://doi.acm.org/10.1145/2694344.2694366
http://doi.acm.org/10.1145/2694344.2694366
https://doi.org/10.1145/3240765.3240839
https://doi.org/10.1145/2676548
https://doi.org/10.1145/2676548
http://doi.acm.org/10.1145/1837274.1837466
http://doi.acm.org/10.1145/1837274.1837466
https://doi.org/10.1109/TCAD.2021.3066560
https://doi.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422
https://doi.org/10.1145/1629575.1629585
http://doi.acm.org/10.1145/1629575.1629585
http://doi.acm.org/10.1145/1629575.1629585
https://doi.org/10.1109/TCAD.2018.2834421
https://doi.org/10.1109/VLSI-SOC46417.2020.9344106
https://doi.org/10.1109/VLSI-SOC46417.2020.9344106
https://doi.org/10.1109/ASE.2013.6693129
https://doi.org/10.1109/ASE.2013.6693129
https://arxiv.org/abs/2106.13263
https://arxiv.org/abs/2106.13263
http://dl.acm.org/citation.cfm?id=1496711.1496737
https://doi.org/10.1145/2966986.2967046
https://doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dl.acm.org/citation.cfm?id=2028052.2028065
https://doi.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

A.1 Case 154: ACW Security Property

case 154: 2_121_250_379_543
src in {w_base_addr_wire, M_AXI_AWREADY_wire,
AW_CH_DIS, w_max_outs_wire, AW_ILLEGAL_REQ,
w_num_trans_wire, AW_STATE, AW_CH_EN}
=/=>
snk in {M_AXI_WDATA}
unless
0 != _inv_ in {ADDR_LSB, ARESETN, M_AXI_ARBURST_wire,
M_AXI_ARCACHE_wire, M_AXI_ARLEN_wire, M_AXI_ARREADY,
M_AXI_ARSIZE_wire, M_AXI_AWBURST_wire,
M_AXI_AWCACHE_wire, M_AXI_AWLEN_wire, M_AXI_AWREADY,
M_AXI_AWSIZE_wire, M_AXI_BREADY, M_AXI_BREADY_wire,
M_AXI_WREADY, M_AXI_WREADY_wire, M_AXI_WSTRB_wire,
OPT_MEM_ADDR_BITS, S_AXI_CTRL_BREADY,
S_AXI_CTRL_RREADY, data_val_wire, r_burst_len_wire,
r_displ_wire, r_max_outs_wire, r_num_trans_wire,
r_phase_wire, w_burst_len_wire, w_displ_wire,
w_max_outs_wire, w_num_trans_wire, w_phase_wire}

Figure 6: An example of an Isadora property, Case 154, over
the Single ACW

To consider the output properties of Isadora, Figures 6 shows
an example of Isadora output, Case 154 of the 303 output proper-
ties over the ACW module. This a case that was sampled during
evaluation. Here the condition predicates shown are register equal-
ity testing versus zero. Other predicates are captured within the
workflow but not propagated to individual properties formatted for
output.

A visible difference between an Isadora output property and
the property grammar of Section 2 is that at output stage Isadora
properties may specify multiple source registers, may consider
multiple sink registers though do not do so in this case, and may
contain multiple invariants as conditions.

Case 154 includes an example of a flow condition between inter-
nal and peripheral visible signals in addition to specifying other
aspects of design behavior. This is similar to the example of write
readiness from Section 2, but in Case 154, the flow is from the in-
ternal signal to the peripheral, though the power state predicate is
identical. Of note, as in the case of write readiness, this flow occurs
exclusively within the write channel, as denoted by the “W” present
in ready wire and the data register.

AWREADY_int =/=> WDATA unless (ARESETN ≠ 0)

A.1.1 Security Relevance. Under the working definition of security
properties for Isadora, where internal signals and peripheral signals
should not flow to one another unless ACW is not undergoing a
reset, this single source, single sink, single invariant description of
behavior composed from an Isadora output property establishes
Case 154 as a security property under the working definition. Case
154 describes signals marked as sensitive by designers, both labeled
as such within the design using comments and present within secu-
rity properties they specified, and differs from a designer provided
property only in the specific pairing of registers.

A.2 Case 144: ACW Functional Property
One example of an Isadora property classified as functional, with
truncated flow conditions, is presented in Figure 7, and captures a
logical update to an internal decoder signal. This additional shows
an example of a property overmultiple sinks, a single source, and for
which there are predicates capturing both equality and inequality
to zero.

case 144: 128
src in {instr_lw}
=/=>
snk in {is_slti_blt_slt, is_sltiu_bltu_sltu}
unless
0 == _r_ in {alu_eq, alu_shl, alu_shr, ... }
0 != _r_ in {alu_add_sub, alu_lts, alu_ltu, ... }

Figure 7: An example of an Isadora property, Case 144, over
RISC-V.

	Abstract
	1 Introduction
	2 Properties
	2.1 Tracking Information Flow
	2.2 Information Flow Restrictions
	2.3 Information Flow Conditions
	2.4 Grammar of Properties

	3 Methodology
	3.1 Generating Traces with Information Flow Tracking
	3.2 Identifying All Flows
	3.3 Mining for Flow Conditions
	3.4 Postprocessing

	4 Implementation
	5 Evaluation
	5.1 Designs
	5.2 Time Cost
	5.3 Designer Specified Security Properties
	5.4 Automatic Property Generation

	6 Discussion
	6.1 Trace Reliance
	6.2 Functional Properties
	6.3 Measuring Interference
	6.4 Specification Logic

	7 Related Work
	7.1 Properties of Hardware Designs
	7.2 Mining Specifications for Software

	8 Conclusion
	9 Acknowledgments
	References
	A Sample Properties
	A.1 Case 154: ACW Security Property
	A.2 Case 144: ACW Functional Property

