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Abstract—Aging in face images is a type of intra-class variation that has a stronger impact on the performance of biometric
recognition systems than other modalities (such as iris scans and fingerprints). Improving the robustness of automated face recognition
systems with respect to aging requires high quality longitudinal datasets that should contain images belonging to a large number of
individuals collected across a long time span, ideally decades apart. Unfortunately, there is a dearth of such good operational quality
longitudinal datasets. Synthesizing longitudinal data that meet these requirements can be achieved using modern generative models.
However, these tools may produce unrealistic artifacts or compromise the biometric quality of the age-edited images. In this work, we
simulate facial aging and de-aging by leveraging text-to-image diffusion models with the aid of few-shot fine-tuning and intuitive textual
prompting. Our method is supervised using identity-preserving loss functions that ensure biometric utility preservation while imparting
a high degree of visual realism. We ablate our method using different datasets, state-of-the art face matchers and age classification
networks. Our empirical analysis validates the success of the proposed method compared to existing schemes. Our code is available at
https://github.com/sudban3089/ID-Preserving-Facial-Aging.git
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1 INTRODUCTION

F ACE recognition is affected by intra-class variations (varia-
tions within the same individual) due to pose, illumination

and expression, commonly known as PIE. Biological aging, on the
other hand, is an intrinsic form of intra-class variation affected by
genetic, demographic and environmental factors. Although several
methods exist to compensate for the PIE variations, facial aging
is a major factor that affects automated face recognition (FR) sys-
tems [22], [28], [44]. Developing FR systems that are robust to ag-
ing variations would essentially require high quality longitudinal
datasets: images of a large number of individuals spanning several
years, ideally decades. This will help the automated ML algorithm
to effectively learn and model the variations in face images with
time. However, there are practical limitations to collecting such
data for a representative population over an extended duration.
Some longitudinal datasets such as MORPH [6], AgeDB [43]
and CACD [13] exist but are often constrained by either a short
duration for which the images were collected or were collected
in-the-wild. For example, MORPH (academic licensed) dataset
contains longitudinal samples of only 317 subjects from a total of
∼13K subjects over a period of five years [11].

Collecting longitudinal data can be a tedious process; alterna-
tively, digital simulation can aid in generating age edited images
seamlessly [31]. Numerous software-based age progression ap-
proaches exist such as, manual age-editing tools, e.g., YouCam
Makeup, FaceApp, and AgingBooth [1], [19], and more recently,
GAN-based generative models, e.g., AttGAN, Cafe-GAN, Talk-to-
Edit [23], [29], [33], [37], [58]. However, we find that generative
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models often struggle to correctly model biological aging, which is
a complex process, resulting in inconsistent synthetic images that
may contain unnatural artifacts. Moreover, training high quality
GANs for adjusting facial attributes themselves require a large
amount of training data (with or without age labels). We observe
that some datasets may provide ground truth age labels, while in
other cases, they might need to be inferred using age prediction
tools. Age labels corresponding to web-scraped images may not
be correct and can result in incorrect age modeling. Therefore, we
propose to use a text-to-image generator that relies on a small set
of images with assigned age groups (instead of exact age values)
to learn the change in facial features as an individual transitions
through different phases in their life beginning with childhood
and adolescence, advancing to middle age, and culminating in
old age. Our objective is to first learn the mapping between text
description that indicates a specific age category, and the visual
cues that appear in a face image of individuals belonging to that
age, and subsequently apply the learned mapping to perform facial
aging/de-aging for any individual.

When successfully implemented, identity-preserving facial ag-
ing simulation can be used in several settings:
1. Curate large-scale longitudinal datasets: Digital age pro-
gression can easily produce age simulated faces from an existing
dataset at a large-scale, thus, alleviating cumbersome data collec-
tion. Longitudinal datasets can help improve the robustness of the
face matchers by effectively modeling the intra-class variations.
2. Social media application: Digital editing filters are widely
used for creative pursuits to improve the visual aesthetcis of facial
images, e.g., change hair color, whiten teeth, add make up, etc.
Facial aging, is also a type of attribute editing operation that
allows an individual to envision how their appearance changes
with age [53].
3. Forensic analysis: Facial age progression is a critical tool

https://github.com/sudban3089/ID-Preserving-Facial-Aging.git
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used in investigating cases of missing individuals and help re-
locating them even after significant time has transpired [51].
Photosketch [34] was developed in 1991 and used by National
Center for Missing and Exploited Children and FBI.
Our Approach. Existing generative models often struggle to
manipulate the age attribute and preserve facial identity. They also
require auxiliary age classifiers and/or extensive training data with
longitudinal age variations. To address both of the above issues, we
propose a new latent generative model for simulating high-quality
facial aging, while simultaneously preserving biometric identity.
The high level algorithmic idea is to fine-tune latent text-to-image
diffusion models (such as Stable Diffusion [48]) with novel losses
(cosine, contrastive and biometric losses) that help preserve facial
identity. See Fig. 1 for an overview of our method.

The proposed method requires: (i) a pre-trained latent dif-
fusion model (see Sec. 2), (ii) a small set (numbering ≈ 10-
20) of training face images of an individual, and (iii) a small
auxiliary set (numbering ≈ 600) of image-caption pairs. The pairs
contain facial images of individuals and captions indicating their
corresponding age. This auxiliary set of image-caption pairs serve
as the regularization set. The individuals in the training set and
the regularization set are disjoint. We use the training images
during fine-tuning to learn the identity-specific information of the
individual, and the regularization images with captions to learn
the association between an image (face) and its caption (age).
Finally, we simulate age regression and progression of the trained
individual using a text prompt specifying the target age. See the
details of our method in Sec. 3.
Main contributions.
• We adapt latent diffusion models to perform age regression and

progression in face images. We introduce two key ideas: an
identity-preserving loss (in addition to perceptual loss), and a
small regularization set of image-caption pairs to resolve the
limitations posed by existing GAN-based methods.

• As a secondary finding, we show that face recognition classifiers
may benefit by fine-tuning on generated images with significant
age variations as indicated in [47].

• We conduct experiments on CelebA, LFW and AgeDB datasets
and perform evaluations to demonstrate that the synthesized
images i) appear visually compelling in terms of aging and
de-aging through qualitative analysis and automated age pre-
dictor, and ii) match with the original subject with respect
to human evaluators and automated face matchers, namely
ArcFace and AdaFace. We demonstrate that our method outper-
forms GAN-based age editing methods, namely, IPCGAN [52],
AttGAN [23] and Talk-to-Edit [29] as well as a diffusion model-
based framework, ProFusion [62], and improves upon the work
done in [10] in terms of methodology and empirical analysis.

Summary. We extend our previous work [10] as follows:
• Methodology

(i) We upgrade the stable diffusion model from SDv1.4 to
SDv1.5. Both models were trained on v1.2 as base model
but v1.5 was trained for larger number of steps compared to
v1.4 (595K steps vs. 225K steps) resulting in improved pho-
torealism of images1. We select SDv1.5 instead of SDv2.0 as
existing reports and our findings indicate the former generates
higher quality face images than the latter.
(ii) We utilize cosine embedding loss function in the diffusion
model and compare with contrastive and biometric losses.

1https://huggingface.co/runwayml/stable-diffusion-v1-5

We use the cosine embedding loss to supplement the prior
preservation loss. Our rationale for using cosine embedding
loss stems from the paper CosFace [55] that learns better
identity mapping using the cosine angular margin between
facial embedding.

• Experimental validation
(i) We use a new dataset, LFW (Labelled Faces in the
Wild) [27], a popular benchmark for face recognition algo-
rithms. We use 100 subjects, each subject having 10 images
from the LFW dataset to perform age simulation.
(ii) We further supplement biometric evaluation using a sec-
ond matcher, AdaFace [30], in addition to ArcFace. The new
face matcher aids in studying the variations in performance
across face matchers.
(iii) Finally, we introduce a new baseline that relies on
diffusion models for image customization, namely, ProFu-
sion [62]. [10] outperformed GAN-based age editing meth-
ods. In this work, (i) we assess how the proposed method
fares in comparison to another diffusion model, and (ii) we
examine whether to opt for regularization-free (ProFusion) or
regularized (DreamBooth) framework for generating identity-
preserving realistic human faces.

2 RELATED WORK

Existing work on automated age progression explored a variety of
architectures, including recurrent ones [56] and GANs. Recurrent
face network uses a gated recurrent unit to model the intermediate
stages of age progression that result in smoother optical flow
and higher quality age-edited images. [58] uses a hierarchy of
discriminators to preserve the reconstruction details, age and
identity. STGAN [37] utilizes selective transfer units that accepts
the difference between the target and source attribute vector as
input, resulting in more controlled manipulation of the attribute.
Cafe-GAN [33] utilizes complementary attention features to focus
on the regions pertinent to the target attribute while preserving the
remaining details. HRFAE [59] encodes an input image to a set of
age-invariant features and an age-specific modulation vector. The
age-specific modulation vector re-weights the encoded features
depending on the target age and then passes it to a decoder unit
that edits the image. CUSP [21] uses a custom structure preserving
module that masks the irrelevant regions for better facial structure
preservation in the generated images. The method performs style
and content disentanglement while conditioning the generated
image on the target age. ChildGAN [12] is inspired from the self-
attention GAN and uses one-hot encoding of age labels and gender
labels appended to the noise vector to perform age translation in
images of young children. Guidance via Masking-Based Attention
(GMBA) [42] is a GAN-based framework that incorporates an
age-aware guidance module to modulate between age-specific and
age-irrelevant attributes to perform facial age editing. Other GAN-
based age editing methods include A3GAN [40], Age Progression
and Regression with spatial attention [36], Attribute-aware ag-
ing [39], Wavelet age synthesis [35], Lifespan synthesis [45]
and CAE-aging [61]. We also highlight three recent methods that
also use diffusion models for face generation. In DCFace [31],
the authors propose a dual condition synthetic face generator to
allow control over simulating intra-class (within same individual)
and inter-class (across different individuals) variations. In [46],
the authors explore suitable prompts for generating realistic faces
using stable diffusion and investigate their quality. Finally, a con-
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Fig. 1: Overview of the proposed method. The proposed method needs a fixed Regularization Set comprising facial images with age
variations and a variable Training Set comprising facial images of a target individual. The latent diffusion module (comprising a VAE,
U-Net and CLIP-text encoder) learns the concept of age progression from the regularization images and the identity-specific information
from the training images. We use biometric, cosine and contrastive losses in the network for identity preservation. At inference, the
user prompts the trained model using a rare token associated with the trained target subject and the desired age to perform age editing.

current work that uses an age-aware fine tuning of latent diffusion
model by using prompt engineering and a localized age editing
using attention control [16]. Existing methods either require input
age labels or do not explicitly enforce identity preservation [16] or
focus on synthetic identity generation [31]. Photoverse [14] uses
explicit facial identity loss for retaining details while performing
editing using prompts.

We focus on four methods in our comparisons. IPCGAN [52]
uses a conditional GAN with an identity preserving module
and an age classifier to perform image-to-image style transfer
for age-editing. AttGAN [23] performs binary facial attribute
manipulation by modeling the relationship between the attributes
and the latent representation of the face. The network enables
high quality facial attribute editing while controlling the attribute
intensity and style. Talk-to-Edit [29] provides fine-grained facial
attribute editing via dialog interaction, similar to our approach.
The method uses a language encoder to convert the user’s request
into an ‘editing encoding’ that encapsulates information about
the degree and direction of change of the target attribute, and
seeks user feedback to iteratively edit the desired attribute. The
authors use the semantic field to preserve attribute localization and
an identity-keeping loss for maintaining identities. All the above
methods are GAN-based age progression schemes. Additionally,
we use a diffusion model-specific age editing framework for
comparison. We use ProFusion [62], a regularization-free text-to-
image customization method that combines an encoder, known
as PromptNet, and a novel sampling technique called Fusion
sampling. It avoids the problem of over-fitting that is typically
handled by fine-tuning using multiple images belonging to the
same entity in existing diffusion-based image re-contextualization
by leveraging Fusion sampling at the time of inference. The
authors claim that elimination of regularization helps in enhanced

retention of fine-grained details in the image while significantly
reducing the training time.

Recently, work has been done in [10] that uses a special class
of latent diffusion model, known as DreamBooth [49] that has
gained attention for realistic image re-contextualization for facial
age editing. The authors utilize text-to-image generative models
for learning the task of age-specific image generation. They
integrate identity-specific loss with prior preservation loss (refer
to Sec. 3) and evaluated on CelebA and AgeDB datasets in terms
of biometric matching. They further compared with GAN-based
age editing methods and showed that their method significantly
outperformed the SoTA by reducing the False Non-Match Rate
by 44%. In this paper, we improve upon the work done in [10]
by updating to a recent model and modifying the loss function;
conducting extensive ablation with new dataset, face matcher and
comparing our method with another diffusion-based framework.

3 PROPOSED METHOD

Although a suite of age editing methods exist in the literature
as discussed above, the majority of them focuses on perceptual
quality instead of biometric quality. A subset of latent space ma-
nipulation methods struggle with ‘real’ face images and generate
unrealistic outputs. Existing works reiterate that age progression is
a smooth but non-deterministic process that requires incremental
evolution to effectively transition between ages. This motivates
the use of diffusion models, which naturally model the underlying
data distribution by incrementally adding and removing noise. We
start with a brief mathematical overview.
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Fig. 2: Our framework learns the association between the visual appearance of an image with respect to a specific age group (e.g.,
child) and transfers it to an individual while preserving their identity.

3.1 Preliminaries

Denoising diffusion probabilistic models (DDPMs) [26] perform
the following steps: 1) a forward diffusion process x0

>>ηt−−−→ xt
2

that incrementally adds Gaussian noise, η sampled from a normal
distribution, N (0, I), to the clean data, x0 sampled from a real
distribution, p(x) over t time steps. 2) a backward denoising
process x0

<<ηt←−−− xt
2 that attempts to recover the clean

data from the corrupted or noisy data xt by approximating the
conditional probability distribution, p(xt−1 | xt). The conditional
probability distribution is parameterized by mean and variance.
But for a fixed variance, the neural network needs to only estimate
the mean of the conditional probability distribution. To make the
process simpler, the forward and backward processes can be con-
sidered analogous to variational auto-encoders (VAE), resulting in
adoption of evidence lower bound (ELBO) to estimate the mean of
the denoising process. See [32] for further details about VAE and
ELBO. This further simplifies the objective function to minimizing
the mean squared error between the actual and predicted noise.
Latent Diffusion Models. Denoising Probabilistic Models
(DPMs) belong to the class of likelihood-based models that
typically operate directly in pixel space, and therefore optimiz-
ing a high-resolution image generating DPM is computationally
expensive during training as well as during inference due to
sequential evaluations. This paved the way for Latent Diffusion
Models (LDMs) [48] that apply the diffusion process on the
latent representations that are considerably lower dimensional
than the original data. Latent diffusion generates high quality
images while reducing the computational complexity. It comprises
three modules, namely, an autoenocder (VAE), U-Net and a text-
encoder. LDMs perform two stages of training. In the first stage,
the encoder in the VAE converts the image into a low dimensional
latent representation, i.e., the encoder downsamples the input
x ∈ RH×W×3 in the RGB space to a latent representation,
z ∈ Rh×w×c by a factor f = H

h = W
w . The latent representation

is fed as the input to the U-Net model. The U-Net model estimates
the noise to recover the high resolution de-noised output from
the decoder of the VAE. The authors in [48] further added
cross-attention layers in the U-Net backbone allowing it to use
text embedding produced by the text encoder as a conditional

2>> denotes noise addition while << denotes noise removal.

input. The text input is provided as a user-defined prompt that is
transformed into text embedding via the text encoder. The cross-
attention mechanism enhances the overall generative capability
of the diffusion models resulting in high-resolution image syn-
thesis while combining the input (image) and condition (text) in
the latent space. DreamBooth [49] uses frozen text and image
encoder and fine-tunes the diffusion model with a training set
of images to learn a specific entity and a regularization set to
learn a specific concept. The identity loss between the latent
representations is backpropagated through the diffusion model to
learn entity-specific cues, which is transferred during inference
to the output image guided by the text prompt that indicates the
subject token, class word and desired attribute. Refer to Fig. 2 that
provides a detailed outline of the proposed framework involving
each component of the LDM for fine-tuning.

In this work, we focus on DreamBooth [49], a latent diffusion
model that fine-tunes a text-to-image diffusion framework for
re-contextualization of a single subject. To accomplish this, it
requires (i) a few images of the subject, and (ii) text prompts
containing a unique identifier and the class label of the subject.
The class label denotes a collective representation of multiple
instances while the subject will correspond to a specific example
belonging to the class. The objective is to associate a unique token
or a rare identifier to each subject (a specific instance of a class)
and then recreate images of the same subject in different contexts
as guided by the text prompts. The class label harnesses the prior
knowledge of the trained diffusion framework for that specific
class. Incorrect class labels or missing class labels may result in
inferior outputs [49]. The unique token acts as a reference to the
particular subject, and needs to be rare enough to avoid conflict
with other concepts. The authors use a set of rare tokens corre-
sponding to a sequence of 3 or fewer Unicode characters and the
T5-XXL tokenizer. See [49] for more details. DreamBooth uses a
class-specific prior preservation loss to increase the variability of
generated images while ensuring minimal deviation between the
target subject and the output images. The original training loss can
be written as follows.

Ex,c,t[wt∥fθ(gt(x), c)− x∥22+
λwt′∥fθ(gt′(x′), cclass)− x′∥22].

(1)

The first term in Eqn. 1 denotes the squared error between the
ground-truth images, x, (training set) and the generated im-
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ages, fθ(gt(x), c). Here, fθ(·, ·) denotes the pre-trained diffusion
model (parameterized by θ) that generates images for a noise
map and a conditioning vector. The noise map is obtained as
gt(x) = αtx + σtη, where η ∼ N (0, I), and αt, σt, wt are
diffusion control parameters at time step t ∼ U[0, 1]. The condi-
tioning vector c is generated using a text encoder for a user-defined
prompt. The second term refers to the prior-preservation compo-
nent using generated images that represents the prior knowledge
of the trained model for the specific class. The term is weighted
by a scalar value, λ = 1. The conditioning vector in the second
term, cclass, corresponds to the class label.

3.2 Methodology
DreamBooth works effectively with the aid of prior preservation
for synthesizing images of dogs, cats, cartoons, etc. But in this
work, we are focusing on human face images that contain intricate
structural and textural details. Although the class label ‘person’
can capture human-like features, this may not be adequate to
capture identity-specific features that vary across individuals.
Therefore, we include an identity-preserving term in the loss func-
tion. The identity-preserving component minimizes the distance
between the biometric features from the original and generated
images as follows.

Ex,c,t[wt∥fθ(gt(x), c)− x∥22+
λwt′∥fθ(gt′(x′), cclass)− x′∥22+
λbB(fθ(gt(x), cclass),x)].

(2)

We use this new loss to fine-tune the VAE. The third term in
Eqn. 2 refers to the biometric loss computed between the ground-
truth image of the subject, x, and the generated image weighted by
λb. Note that fθ(gt′(x), cclass) uses the training set (i.e., images
of an individual subject), whereas fθ(gt′(x

′), cclass) uses the
regularization set that contains representative images of a class.
Here, B(·, ·) computes the L1 distance between the biometric
features extracted from a pair of images (close to zero for same
subjects, higher values correspond to different subjects). We use a
pre-trained VGGFace [5] feature extractor, such that,

B(i, j) = ∥V GGFace(i)− V GGFace(j)∥1 .

Now, we turn to target-specific fine-tuning. The implementa-
tion used in our work [3], [20] uses a frozen VAE and a text-
encoder while keeping the U-Net model unfrozen. U-Net de-
noises the latent representation produced by the encoder of VAE,
gt(x) = zt = αtx+ σtη. Therefore, we use identity-preserving
contrastive loss using the latent representation. We adopted the
SimCLR [15] framework that uses a normalized temperature-
scaled cross-entropy loss between positive and negative pairs of
augmented latent representations, denoted by S(·, ·) in Eqn. 3.
Temperature-scaled cross entropy loss used in contrastive learning
is a popular choice for pulling similar embeddings closer while
pushing away dissimilar embeddings. We compute the contrastive
loss between the latent representation of the noise-free inputs
(z0) and the de-noised outputs (zt) with a weight term λs and
a temperature value = 0.5. Refer to [15] for more details. The
contrastive loss between the latent representation in the U-Net
architecture enables us to fine-tune the diffusion model for each
subject as follows.

Ex,c,t[wt∥fθ(gt(x), c)− x∥22+
λwt′∥fθ(gt′(x′), cclass)− x′∥22 + λsS(zt, z0)].

(3)

Cosine embedding loss function computes the cosine dis-
tance between embeddings if they belong to the same class as
1 − cos(x1, x2) or max(cos(x1, x2), 0) − m, if they belong
to different classes, where x1 and x2 are a pair of embeddings
and m is a margin value varying between [−1, 1]. During fine-
tuning, the outputs from the U-Net module after reverse de-
noising should be similar the inputs prior to forward noise addition
which is analogous to the working principle of CosFace [55].
Their framework focuses on minimizing intra-class variance and
maximizing inter-class variance via L2 normalization of the facial
embedding and cosine decision margin maximization. Inspired by
this approach, we incorporated the cosine embedding loss function
between the de-noised and noisy latent representations, C(·, ·) with
a regularization parameter, λc in fine-tuning as follows.

Ex,c,t[wt∥fθ(gt(x), c)− x∥22+
λwt′∥fθ(gt′(x′), cclass)− x′∥22 + λcC(zt, z0)].

(4)

In addition to customizing the losses, we use the regularization
set to impart the concept of facial age progression and regression
to the latent diffusion model. The regularization set contains repre-
sentative images of a class, in our case, ‘person’. A regularization
set comprising face images selected from the internet would have
sufficed if our goal was to generate realistic faces as done in [46].
However, our task involves learning the concept of aging and de-
aging, and then apply it to any individual. To accomplish this task,
we use face images from different age groups and then pair it
with one-word captions that indicate the age group of the person
depicted in the image. The captions correspond to one of the
six age groups: ‘child’, ‘teenager’, ‘youngadults’, ‘middleaged’,
‘elderly’, and ‘old’. We could have used numbers as age groups,
for example, twenties, forties or sixties, but we found that a
language description is more suitable than a numeric identifier.
Another reason for pairing these age descriptions with the images
is that we can use these same age identifiers while prompting the
diffusion model during inference (photo of a ⟨ token ⟩ ⟨ class
label ⟩ as ⟨ age group ⟩). We use the following six prompts during
inference. 1) photo of a sks person as child, 2) photo of a sks
person as teenager, 3) photo of a sks person as youngadults, 4)
photo of a sks person as middleaged, 5) photo of a sks person as
elderly, and 6) photo of a sks person as old. We have explored
other tokens (see Sec. 5.4).

4 EXPERIMENTS

Setup and implementation details. We conduct experiments
using DreamBooth implemented using Stable Diffusion v1.4 and
v1.5 [3]. The model uses CLIP’s [2] text encoder trained on laion-
aesthetics v2 5+ and a vector quantized VAE [54] to accomplish
the task of age progression. The text encoder stays frozen while
training the diffusion model. We use three datasets, namely,
CelebA [41], AgeDB [43] and LFW [27]. We use 2,258 face
images belonging to 100 subjects from the CelebA dataset, 659
images belonging to 100 subjects from the AgeDB dataset and
1,000 images belonging to 100 subjects from the LFW dataset
to form the ‘training set’. CelebA and LFW does not contain
age information, except a binary ‘Young’ attribute annotation.
We do not have ground-truth for evaluating the generated images
synthesized from the CelebA dataset. On the other hand, AgeDB
dataset comprises images with exact age values. We then select the
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original child teenager youngadults middleaged elderly old

Fig. 3: Illustration of age edited images generated from the CelebA dataset.

original child teenager youngadults middleaged elderly old

Fig. 4: Illustration of age edited images generated from the AgeDB dataset.

original child teenager youngadults middleaged elderly old

Fig. 5: Illustration of age edited images generated from the LFW dataset.

age group that has the highest number of images as the training
set, and the remaining images as the testing set.

We use a regularization set comprising image-caption pairs
where each face image is associated with a caption indicating its
corresponding age label. We use 612 images belonging to 375
subjects from the CelebA-Dialog [29] dataset,where the authors
provide fine-grained annotations of age distributions. We convert
the distribution to categorical labels to be uses as captions. We
refer to them as {Child: <15 years, Teenager: 15-30 years,
Youngadults: 30-40 years, Middleaged: 40-50 years, Elderly: 50-
65 years and Old: >65 years}. We use 612 (102×6) images in the
subject disjoint regularization set. We use the fixed regularization
set across all three datasets — CelebA, LFW and AgeDB.

The success of generating high quality images often depend on
effectively prompting the diffusion model during inference. The

text prompt at the time of inference needs a rare token/identifier
that is associated with the concept learnt during fine-tuning. We
use four different rare tokens {wzx, sks, ams, ukj} [8] in this work.

We use the implementation of DreamBooth using stable
diffusion in [3] and used the following hyperparameters. We
adopt a learning rate = 1e-6, number of training steps = 800,
embedding dimensionality in autoencoder = 4, and batch size
= 8. The generated images are of size 512 × 512. We use
λ = 1, λb = λc = λs = 0.1 (refer to Eqns. 2, 3 and 4).
We generate 8 samples at inference. However, we perform a
facial quality assessment using EQFace [38] to limit the number
of generated face images to 4, such that, each generated image
contains a single face with frontal pose. We adopt a threshold
of 0.4, and retain the generated images if quality exceeds the
threshold, else, discard them. Training each subject requires ∼5-8
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mins. on a A100 GPU.
We perform qualitative evaluation of the generated images by

conducting a user study involving 26 volunteers. The volunteers
are shown a set of 10 face images (original) and then 10 generated
sets; each set contains five images belonging to five age groups
(excluding old), resulting in a total of 60 images. They are
assigned two tasks: 1) identify the individual from the original
set who appears most similar to the subject in the generated set;
2) assign each of the five generated images to the five age groups
they are most likely to belong to. We compute the proportion of
correct face recognition and age group assessment.

TABLE 1: Biometric matching on CelebA and AgeDB datasets
for aging and de-aging using SDv1.4 and wzx token between
Original-Modified images. We report FNMR @FMR = 0.01/0.1%.

Age group CelebA AgeDB
child 0.60/0.29 0.73/0.54
teenager 0.34/0.12 0.42/0.14
youngadults 0.31/0.10 0.33/0.09
middleaged 0.30/0.10 0.27/0.06
elderly 0.29/0.11 0.34/0.09
old 0.32/0.12 0.46/0.12

Further, we perform quantitative evaluation of the generated
outputs using the ArcFace [18] matcher (with RetinaFace [17]
detector) and AdaFace [30] matcher (different from VGGFace
used in identity-preserving biometric loss). We utilize the genuine
(intra-class) and imposter (inter-class) scores to compute Detec-
tion Error Trade-off (DET) curves and report the False Non-Match
Rate (FNMR) at a False Match Rate (FMR) of 0.01% and 0.1%.

5 RESULTS

5.1 Biometric performance evaluation
We report the biometric matching performance using the ArcFace
matcher between original and modified images in Table 1 for
the CelebA and AgeDB datasets. Our observations indicate that
the method performs better on the CelebA dataset than the
AgeDB dataset. See examples of generated images in Figs. 3
and 4. In AgeDB, we have a gallery set separate from the
training set. We use them as ground-truth for evaluation and
refer this as the ‘imputation’ result. As anticipated, we observe
modest performance across a majority of the age groups barring
‘child’. We had only 28 images from 18 subjects (out of 100)
corresponding to child group, and some of the images were of
extremely poor quality, thereby resulting in an abnormal high
value of FNMR. In CelebA, we do not have access to ground-
truths, so we perform biometric matching with disjoint samples
of the subject not used in the training set. We refer this as the
‘simulation’ result. We observe that the generated images using
contrastive loss (Eqn. 3) successfully accomplish aging/de-aging
but achieve modest matching results with an average FNMR=0.36
@FMR=0.01 and FNMR= 0.14 @FMR=0.1%. We believe that
the ArcFace matcher is typically not trained on generated images,
and therefore, struggles to perform matching between the original
gallery and generated age-edited probe images.

To test our hypothesis, we conduct an additional experiment
of fine-tuning the ArcFace model on subject disjoint age-edited
images (∼3,400) and then repeat the matching experiments for
the CelebA dataset. We report the original-original, modified-
modified, original-modified (before fine-tuning ArcFace) and

Matching scenarios FNMR@FMR=0.01/0.1%
Ori-Ori 0.14/0.07
Mod-Mod 0.02/0.01
Ori-Mod (w/o fine-tune) 0.41/0.16
Ori-Mod (w/ fine-tune) 0.03/0.01

Fig. 6: (Top:) DET curves of face matching using generated im-
ages from the CelebA dataset. (Bottom:) Recognition performance
in the table indicating FNMR @ FMR=0.01/0.1%. The age-edited
images are generated using the wzx token with contrastive loss.

modified-modified (after fine-tuning ArcFace) face matching per-
formance and the corresponding DET curves in Fig. 6 for the con-
trastive loss and wzx token combination. Note that there is a sig-
nificant improvement in face matching performance between the
modified-modified images and original-modified images after fine-
tuning. We achieve FNMR=3% @FMR=0.01% and FNMR=1%
@FMR = 0.1% with the fine-tuned face matcher on the age-
edited images. The fine-tuned face matcher drastically improves
when comparing original-modified images, thus, demonstrating
the utility of synthetic images in improving robustness of face
matchers as suggested in [47].

We illustrate examples of generated images belonging to the
LFW dataset in Fig. 5. See the biometric matching results of
SDv1.5 model on CelebA and LFW for sks and wzx tokens in
Fig. 7. In this set of experiments, we randomly selected a subset
of three images that were used for fine-tuning the diffusion model
(SDv1.5) as the gallery set and then computed the biometric
matching performance for the six age groups. Additionally, we use
a reconstruction prompt, i.e., “photo of a sks person” and “photo
of a wzx person” that ideally outputs images with subtle variations
as the input training set. The objective of this prompt is to measure
the fidelity of identity preservation in absence of age variations.
Our findings indicate that the SDv1.5 model performs better on
the CelebA than LFW dataset.

5.2 Comparison of auxiliary loss functions

We compare three loss functions: 1) VGGFace-based Biometric
loss, 2) Contrastive loss and 3) Cosine embedding loss. We ob-
serve a reduction in FNMR up to 46% @FMR=0.01% when using
contrastive loss with respect to biometric loss, and a reduction
in FNMR up to 3% @FMR=0.1% with respect to cosine loss
averaged across all age groups computed on the CelebA dataset.
See Fig. 8. We explored different values of λb, λc and λs,
= {0.01, 0.1, 1, 10}, and observe 0.1 produces the best results
for all three hyper-parameters (higher values of hyper-parameters
were resulting in over-smooth generated images).
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Fig. 7: ArcFace matcher performance on CelebA and LFW for sks and wzx tokens using SDv1.5.

(a) Biometric (b) Cosine (c) Contrastive

Fig. 8: Comparison of auxiliary loss functions (VGGFace-based biometric loss vs. Cosine loss vs. Contrastive loss) in terms of DET
curves that indicate that contrastive loss marginally outperforms cosine embedding loss, while both contrastive and cosine embedding
losses outperform VGGFace-based biometric loss.

5.3 User study

We collected 26 responses from the user study. Rank-1 biometric
identification accuracy (averaged across the total number of re-
sponses) is equal to 78.8%. The correct identification accuracy of
the age groups are: child = 99.6%, teenager = 72.7%, youngadults
= 68.1%, middleaged = 70.7% and elderly = 93.8%. The users
were able to successfully distinguish between generated images
from different age groups with reasonably high accuracy.

(a) sks (b) ukj (c) wzx (d) ams

Fig. 9: Comparison of images generated using different tokens.

5.4 Effect of rare tokens

We use four tokens in this work, namely, {sks, ukj, ams, wzx},
for the sake of brevity. We observe sks and wzx tokens result
in visually compelling results compared to the remaining two
tokens, and have been used for further evaluation. Note these
tokens are condensed representations provided by the tokenizer
that are determined by identifying rare phrases in the vocabulary
(see Fig. 9). Additionally, we evaluate the effect of the token and
the class label in the prompt in Fig. 10; removing the token results
in lapse in identity-specific features.

5.5 Effect of demographics

Age: The generated images can capture different age groups well
if the training set contains images in the middle-aged category.
We observe that if training set images comprise mostly elderly
images, then the method struggles to render images in the other
end of the spectrum, i.e., the child category, and vice-versa. See
Fig. 11. We also observe that we obtain visually compelling results
of advanced aging when we use ‘elderly’ in the prompt instead of
‘old’.

Sex: The generated images can effectively translate the train-
ing images into older age groups for men compared to women.
This can be due to the use of makeup in the training images.
Ethnicity: We do not observe any strong effects of ethnicity/race
variations in the outputs. See Fig. 12.

TABLE 2: AdaFace performance on CelebA and LFW datasets
using SDv1.5. We report FNMR @FMR = 0.01/0.1%.

Age group CelebA LFW
sks wzx sks wzx

child 0.03/0.02 0.04/0.02 0.10/0.04 0.07/0.06
teenager 0.04/0.03 0.05/0.04 0.04/0.04 0.07/0.06
youngadults 0.04/0.03 0.06/0.04 0.05/0.04 0.07/0.06
middleaged 0.04/0.03 0.05/0.04 0.06/0.06 0.06/0.05
elderly 0.05/0.04 0.05/0.04 0.05/0.05 0.07/0.07
old 0.06/0.04 0.06/0.05 0.05/0.04 0.07/0.06

5.6 Effect of variations in face matchers

To study the variations in the performance of face matchers, we
utilize another face matcher, namely, AdaFace [30] to compare
and contrast withe ArcFace. The reason for selecting AdaFace is
because it integrates the quality of the face images while learning
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original

Fig. 10: Impact of token (wzx) and class label (person) on generated images: “photo of a person” (left) vs. “photo of a wzx person”
(right). Note the token is strongly associated with a specific identity belonging to that class.

Fig. 11: Failure cases for simulating ages in the child (top row)
and old (bottom row) age groups.

Fig. 12: Examples of generated images pertaining to diverse sex
and ethnicity for ‘child’ group.

the facial embedding for recognition, and is shown to outperform
ArcFace on challenging data. We conduct this experiment on
CelebA and LFW datasets using sks and wzx tokens. We first
present the results of AdaFace on both LFW and CelebA in
Table 2. Next, we compare the performance between ArcFace and
AdaFace, specifically, on the CelebA dataset in Table 3. We ob-
serve that AdaFace outperforms ArcFace by 16% @FMR=0.01%
and by 4% @FMR=0.1%. AdaFace is supervised by image quality
which is influenced by several factors such as, resolution, illumina-
tion, expression and pose variations. Additionally, introducing age
variations in the face images may produce some visual artifacts
such as wrinkles that may affect texture of the face and can
impair genuine matches. AdaFace therefore performs better than
ArcFace. We further observe AdaFace performs worse on LFW
compared to CelebA because we use aligned and cropped images
from the CelebA that are of higher quality than the LFW images
resulting in an increase in FNMR by 12% @FMR=0.01% and by

TABLE 3: Performance variations in face matchers — ArcFace vs.
AdaFace in terms of FNMR@FMR=0.01/0.1% on CelebA dataset
using SDv1.5 with wzx token.

Age
group

ArcFace
@FMR(%)=0.01/0.1

AdaFace
@FMR(%)=0.01/0.1

Reconstructed 0.16/0.06 0.02/0.02
child 0.35/0.12 0.02/0.04
teenager 0.29/0.10 0.04/0.05
youngadults 0.26/0.09 0.04/0.06
middleaged 0.25/0.09 0.04/0.05
elderly 0.22/0.10 0.04/0.06
old 0.23/0.11 0.05/0.06
Average 0.20/0.09 0.04/0.05

9% @FMR=0.1% when computed on the Reconstructed images,
i.e., without any age editing.

5.7 Effect of variations in diffusion models

We compare the two diffusion models used in this work in Fig. 13.
We compute the biometric scores between genuine pairs, i.e.,
images belonging to the same individual and we averaged it
across all the six age groups, and then plot the histogram of
the scores. We observe that SDv1.5 results in lower genuine dis-
tance/dissimilarity scores compared to SDv1.4 model indicating
better generative capability for fine-tuning while retaining original
identity characteristics.

Fig. 13: Variations in genuine scores between SDv1.4 and SDv1.5
with contrastive loss on the CelebA dataset. We observe SDv1.5
outperforms SDv1.4 resulting in lower distance.

5.8 Comparison with existing methods

We use IPCGAN [52], AttGAN [23] and Talk-to-Edit [29]— three
GAN-based methods for comparison. We use the pre-trained mod-
els provided by the authors. As IPCGAN was trained on the CACD
dataset [13], we fine-tune our method on 62 subjects from the
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CACD dataset. We observe an FNMR=2% (IPCGAN), compared
to FNMR=11% (Ours) @FMR=0.01. IPCGAN defaults to the
original when it fails to perform aging or de-aging resulting in
spuriously low FNMR. We apply AttGAN and Talk-to-Edit on the
CelebA dataset. See comparison between generated images of pro-
posed and baseline methods, and biometric matching performance
in Fig. 15. We observe that the proposed method (contrastive loss,
sks) outperforms AttGAN by 19% on ‘young’ images and by 7%
on ‘old’ images @FMR=0.01. AttGAN can only edit to young or
old ages. Further, we observe that the method outperforms Talk-
to-Edit (ToE) by an average FNMR =44% at @FMR=0.01. The
different age groups are simulated using a target value parameter in
Talk-to-Edit that varies from 0 to 5, each value representing an age
group. We observe several cases of inconsistent outputs in ToE.
We compare with ProFusion [62] a regularization-free diffusion
framework that uses a single test image and creates augmentations
of it at inference time for fine-tuning. It is pre-trained on FFHQ
dataset. We randomly sample one of the training images for each
subject from the CelebA dataset and use it on ProFusion with
the following hyperparameters: cfg=7.0 (guidance from image),
ref cfg=5.0 (guidance from prompt), refine cfg =7.0 (guidance
for fusion step sampling) and number of sampling steps=100 to
follow as close as possible as the hyperparameters used during
Dreambooth inference. See Fig. 16 to compare between images
generated by ProFusion and our method. Although ProFusion
is much faster than DreamBooth, but lags behind our method
both in terms of perceptual and biometric utility by 18%FNMR
@FMR=0.01%. Our findings indicate reliable age editing while
maintaining biometric fidelity requires regularization provided by
DreamBooth as evidenced by the superior biometric matching
performance.

Fig. 14: Comparison of outputs produced by IPCGAN and our
method for a male-presenting image (top) and a female-presenting
image (bottom).

5.9 Additional evaluation

We perform additional evaluation in terms of age prediction and
automated image quality assessment.

5.9.1 Age prediction
We evaluate the outputs of our method by performing age pre-
diction. First, we present statistical analysis of the age predicted

original AttGAN
Talk-to-
Edit

Pro-
posed AttGAN

Talk-to-
Edit

Pro-
posed

Age group
Methods

AttGAN Talk-to-Edit Proposed
child - 0.99/0.40 0.56/0.26
teenager - 1.0/0.50 0.29/0.10
youngadults 0.47/0.20 0.70/0.21 0.28/0.08
middleaged - 0.51/0.13 0.27/0.09
elderly - 0.83/0.39 0.25/0.09
old 0.31/0.11 0.56/0.22 0.29/0.11
Average 0.39/0.15 0.76/0.31 0.32/0.12

Fig. 15: (Top): Comparison of ‘young’ outputs (columns 2-4) and
‘old’ outputs (columns 5-7) generated by the proposed method
with baselines: AttGAN and Talk-to-Edit. The original images are
in the first column. (Bottom): Biometric matching in terms of
FNMR @FMR = 0.01/0.1%.

Age group
Methods

ProFusion Ours (SDv1.4) Ours (SDv1.5)
child 0.63/0.32 0.56/0.26 0.33/0.14
teenager 0.38/0.18 0.29/0.10 0.23/0.08
youngadults 0.36/0.13 0.28/0.08 0.20/0.08
middleaged 0.39/0.14 0.27/0.09 0.21/0.08
elderly 0.35/0.12 0.25/0.09 0.20/0.09
old 0.37/0.13 0.29/0.11 0.20/0.10
Average 0.41/0.17 0.32/0.12 0.23/0.09

Fig. 16: (Top): Comparison of outputs produced by ProFusion
and the proposed method (SDv1.4 and SDv1.5) using sks. The
original images are in the first column. (Bottom): Biometric
matching in terms of FNMR @FMR = 0.01/0.1%. ‘Reconstructed’
corresponds to outputs without age-editing.

using deepface [9] library for images generated using SDv1.5
in Fig. 17. We observe that the reconstructed images conform
mostly to the middleaged group which can be considered as the
age group of the training images. We observe a gradual increase
in the predicted median age values across the age groups. Second,
we compare the performance of our method with IPCGAN [52] in
terms of age prediction. We observe the images synthesized by our
method result in wider dispersion of age predictions compared to
the original images and the IPCGAN-generated images, indicating
successful age editing. See Fig. 18.
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Fig. 17: Box plot of ages computed for generated images using
SDv1.5. ‘Reconstructed’ corresponds to generating the images of
the subject to be fine-tuned without subjecting it to age variations.
The reconstructed images have the median age value consistent
with the middleaged group (indicated by the dashed line).

Fig. 18: Age prediction shows that our method generates images
with a wider age dispersion compared to original CACD images
and IPCGAN-generated images.

5.9.2 Image quality evaluation

We have conducted evaluations to compute image (perceptual)
quality in terms of FID (lower is better) and IS (higher is better)
metrics using the implementation in [7]. On CelebA dataset, using
the sks token, we achieve a FID = 39.54 and an IS = 3.2±0.15;
using the wzx token, we achieve a FID = 42.14 and an IS =
3.2±0.14. We provide the IS metrics for each age group and
reconstructed images in Table 4.

As FID/IS scores are known to produce biased evaluations
against Diffusion model [50], we augment our evaluation with a
CLIP-based score. CLIPScore [25] measures the cosine similarity
between image and text embedding and weighs it by a scalar term,
and denotes the semantic similarity between images and their
corresponding captions. We used the six captions corresponding
to each age groups and the corresponding age-edited images. We
used the implementation outlined in Hugging Face [4] with stable
diffusion v1.4 and openai/clip-vit-large-patch14 (ViT-L/14) text-
encoder. We observed an average CLIPScore = 18.34. This score

TABLE 4: Inception score (with standard deviation) for different
age-edited and un-edited (reconstructed) images produced by the
proposed method on the CelebA dataset for sks and wzx tokens.

Age group sks wzx
reconstructed 2.9 ± 0.31 2.8 ± 0.29
child 3.1 ± 0.4 3.0 ± 0.5
teenager 2.7 ± 0.26 2.7 ± 0.23
youngadults 2.8 ± 0.22 2.9 ± 0.27
middleaged 2.9 ± 0.36 2.9 ± 0.25
elderly 2.9 ± 0.18 3.0 ± 0.31
old 2.9 ± 0.22 2.9 ± 0.23

can vary with the CLIP text encoder, diffusion model architecture
and the detail of the prompt.

5.10 Ablation Study

We conduct ablation by evaluating the generated outputs by (i)
varying the number of training images for fine-tuning diffusion,
and (ii) varying the number of sampling steps during inference.

5.10.1 Effect of varying number of training images

To assess the effect of varying the size of the training set, we
conduct the following experiment. We vary the number of training
images as {10, 20, 30} and fine-tuned DreamBooth [49] for the
same 10 subjects in each case, with identity-preserving loss and
regularization set for age editing. We then performed biometric
evaluation using the ArcFace matcher and presented the respective
DET curves in Fig. 19. Although higher number of training images
seem to benefit matching performance in some of the age groups,
we observe that with ∼20 training images per subject we can
obtain successful matching across all age groups. Refer to child
age group that has higher error rate when 30 images are used for
training than 20 images.

5.10.2 Effect of varying number of sampling steps

During inference, we select values such as ddim steps that in-
dicate the number of sampling steps required by the Denoising
Diffusion Implicit Model (DDIM)-based sampler, n samples that
indicate the number of samples produced for each prompt. In
our experiments, we used ddim steps=100 and n samples=8 with
deterministic sampling option. The inference speed will be faster
if we reduce the number of samples to 1 (same as GANs) and
the number of sampling steps without compromising the quality
of the age-edited images (see Fig. 20). Alternatively, we can use
a different sampler such as DPM (Denoising Probabilistic Model
Solver) and DPM++ that are faster than DDIM.
Key Findings. We summarize our observations.

• We observe that the proposed latent diffusion-guided age
editing is able to preserve (i) biometric utility (ii) perceptual
quality, and (iii) age-specific facial cues. We use ArcFace and
AdaFace as automated face matchers; FID, IS and CLIPScore
as perceptual quality metrics; open-source library as age es-
timator. We further augment it with human-based evaluation
that performs well on both identification and age estimation.
We achieve an FNMR=3% @FMR=0.01% and FNMR=1%
@ FMR=0.1% by fine-tuning ArcFace on age edited images.

• We conduct extensive experiments on multiple datasets using
different loss functions and model architectures to perform
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(a) 10 images (b) 20 images (c) 30 images

Fig. 19: Comparison of biometric matching in terms of DET curves as a function of variation of number of training images. We note
that increasing number of training images improve matching performance for some of the age groups (teenager and middleaged).

Fig. 20: Age-edited images for different number of sampling steps
(ddim steps={25, 50, 100}), number of samples (n samples=1)
with deterministic sampling. Adequate sampling steps are needed
to ensure convergence and preservation of finer details in the
face, such as eyes. See the red bounding box for enhanced detail
preservation such as corneal reflections.

facial age editing. Overall, SDv1.5 with contrastive loss and
cosine embedding loss performs comparably.

• We compare our method with state-of-the-art GAN and dif-
fusion based age editing methods. Our method outperforms
them by a significant margin (by 18% on ProFusion and 44%
on Talk-to-Edit).

• We analyze the effect of number of training images and
sampling steps and observe that ∼ 20 training images and
∼ 100 steps are adequate for synthesizing high-quality age-
edited images. We observe no strong variation in terms of sex
and ethnicity on the generated images.

• Limitations: First, we observe that if the images in the
training set pertain to only a single age, say old-age then
the method struggles to generate images on the other side
of the spectrum, i.e., child. Second, our method requires
multiple images of the same subject with different poses
and expressions for diversity. Third, the effect of rare tokens
on the generative model needs principled analysis for better
understanding and controllability of the synthesis process.

6 CONCLUSION

We present a novel facial aging and de-aging technique using
regularization-based conditional image generation via latent dif-
fusion models. We achieve this by curating a small regularization
set of image and caption pairs to teach the model the concept of
facial aging. Additionally, we enforce identity-preservation using
a novel combination of biometric, cosine and contrastive losses

to preserve biometric integrity of the original individual while
customizing their appearance to fit the target age in the prompt. We
conduct extensive experiments on three datasets (CelebA, LFW
and AgeDB), two face matchers (ArcFace and AdaFace) and two
diffusion models (SDv1.4 and SDv1.5). We compare our method
with three GAN-based age editing methods (IPCGAN, AttGAN
and Talk-to-Edit), where we achieved a significant reduction in
FNMR upto 44%. We achieved realistic age-edited faces com-
pared to ProFusion, a regularization-free diffusion model based
image customization and achieved low FNMR values by 18%.
We further boosted the performance of an existing face matcher,
ArcFace by 38% reduction in FNMR @FMR=0.01% by fine-
tuning it on synthetic age-edited images.

Future work will focus on accomplishing age editing reliably
from a single image. Current regularization-free methods struggle
between inducing age-specific changes while retaining sufficient
identity cues. Another research direction will be integrating neural
radiance fields for reliable 3D face reconstruction [60] with
diffusion models for 3D facial aging [24], [57].
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