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Abstract

Yttrium monoxide (YO) is a possible member of a large family of rare earth monoxides

having the rock salt structure. [f\Wasipredicted folbe stable above 10/GPa‘and to be superconducting

-. Using first principles calculations, we predicted the stability of yttrium monoxide at
pressures above 8.6 GPa and at high temperature. Guided by these predictions, we successfully
synthesized bulk YO in the rock salt structure (Fm-3m) at 15 GPa and 1600 °C. YO is very
metastable (both thermodynamically and kinetically) at ambient conditions and decomposes
rapidly on heating. Our combined experimental and computational approach enabled us to obtain
consistent results for the formation enthalpy and lattice constant of bulk YO. The predicted
enthalpy of formation for the reaction Y + Y203 = 3YO is 32.7 kJ/mol, and experiments yield a
value of 35.7 kJ/mol, with an estimated uncertainty of = 5 %. YO in the rock salt structure has a
refined lattice constant of 4.872 + 0.008 A and a molar volume of 17.41 = 0.08 cm’ mol". From
these, we calculated the entropy and P-T slope of the reaction. Through this comprehensive
investigation, we explored the synthesis and decomposition of a challenging metastable phase
which is stabilized under high pressure conditions. Moreover, we have gained valuable insights
into the thermodynamics and physical properties of YO. These findings highlight the importance
of leveraging pressure as an additional dimension in materials synthesis and underscore the
potential of using first principles calculations to guide experiments involving highly metastable

materials.
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Introduction

Rare earth (RE) oxides and their thermodynamics are important in applications ranging
from superconductors to lasers to thermal barrier coatings and ceramics'™. The term RE includes
lanthanide metals, but also may be extended to scandium and yttrium . The inclusion of yttrium
containing oxides with other rare earth oxides has led to important discoveries. Substituting Y in
rare earth barium copper oxide (REBCO, to obtain YBCO) compounds resulted in the discovery
of the first superconductor with a critical temperature above the boiling point of liquid nitrogen?,
and yttrium garnets with aluminum and iron (YAG and YIG), often doped with other lanthanides,
are important optical and magnetic materials>’:5.

Rare earth monoxides (REO) also exhibit interesting electronic and magnetic properties’
14" and are potentially important analogs for understanding the properties of actinide oxides'>.
Though their nominal stoichiometry tempts one to assign a valence of two to the RE, their actual

electronic states and electrical conductivity are more complex®!'®

. REO are interesting for
spintronics, and potentially useful as conductors and ferromagnetic semiconductors'*!"2°, Further,

LaO is superconducting and YO is a tunable semiconductor at ambient conditions'®?!. Roek salf

Monoxides of several rare earth metals — LaO?>**, CeO?, NdO?*, SmO?"%, EuO*® and
YbO? — were initially synthesized in the mid twentieth century*’, though many early syntheses
were ultimately found to produce carbides or nitrides®?%>!. Successful synthesis of these REO was
achieved at high pressure in the 1980s, though the feasibility of high pressure synthesis of the

remaining REO was questioned’>2. More recently, epitaxial thin films of many REO have been

synthesized af ambient pressure™ ' .

The successful synthesis of pure bulk YO has not been previously documented, but YO
was reported once in the 1950s as an impurity in combustion experiments with metallic yttrium?°.
YO is one of a group of yttrium oxide stoichiometries recently predicted to form under high
pressure conditions®?, and synthesis of phase pure bulk YO, along with measurement of its
structural, physical, and thermodynamic properties, offers a challenge addressable by a

combination of computational and experimental methods and defines the emphasis of this paper.
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Here we combine density functional theory (DFT) and lattice dynamics calculations with
high pressure synthesis and experimental thermochemical measurements to predict and
characterize bulk YO formation and energetics. Guided by insights gained from the calculations,
pure YO was successfully synthesized in a multi-anvil press at 15 GPa and 1600 °C (Figure 1).
Differential scanning calorimetry (DSC) with complementary high temperature oxide melt
solution calorimetry and fast scanning differential scanning calorimetry (FDSC) was used to
measure the decomposition energetics of bulk YO, which were used to construct a preliminary P-
T boundary for the reaction Y + Y203 = 3YO. The extreme metastability of YO on heating at
ambient pressure required careful analysis of calorimetric data, guided by the constraints from
computation, to obtain consistency among different measurements. This multifaceted approach

will be generally applicable to other highly metastable materials.

Experimental Methods

Calculations. We employed first-principles density functional theory (DFT)*”*® to model
Y, Y203, and YO. The electronic structures were calculated using the Vienna Ab initio Simulation
Package (VASP)*>* with the projector-augmented-wave (PAW)*' implementation. The
exchange-correlation energy was determined using the generalized gradient approximation
(GGA), in the form known as Perdew—Burke—Ernzerhof (PBE)*. The pseudopotentials used were
the Y sv pseudopotential, with the inner core 4s and 4p electrons relaxed, and standard O
pseudopotential.

Under the quasi-harmonic approximation, we performed lattice dynamics calculations
using the ATAT package®’. The Gibbs free energy for the reaction Y (P63/mmc) + Y203 (C-type)
= 3YO (rocksalt) was computed at 0 Kelvin at pressures of 5, 10, 15 and 20 GPa and values at
each pressure are presented in Figure 2.

High pressure synthesis. Y203 powder (99.9 %, Alfa Aesar) was annealed at 1000 °C
immediately before transfer to a nitrogen filled glovebox. Y metal (99.6 % (metal), mesh 40, Alfa
Aesar) was received packed under Ar and opened in the glovebox. The phase analysis of Y metal
was performed by XRD in a sealed holder. Y was confirmed to be in the hexagonal P63/mmc
phase. The particle size <420 um (40 mesh) was chosen based on our observation that higher purity

Nd and Y metals with smaller particle size from the same supplier were in fact fluorite type metal
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hydrides, and, if used as a precursor for high pressure synthesis, produced oxyhydrides rather than
rock salt monoxides.

Y metal and Y203 were mixed in nominal stoichiometry YOo.96 to account for possible
surface oxidation of Y metal. The powders were loaded into either a 3 mm or 2 mm cubic boron
nitride (cBN) capsule. Compression experiments were conducted in a multi-anvil press either 14/8
or 10/5 injection molded 55 wt % MgO/spinel octahedral pressure media**. The assemblies were
compressed in WC cubic anvils with the {111} faces truncated to 8 mm or 5 mm dimensions. For
all experiments in which YO was synthesized, pressure was increased to 10-15 GPa over 12-24
hours, and the assembly was heated to 1200-1600 °C and held for 1-5 hours. Temperature was
measured directly by a type C thermocouple when the thermocouple functioned well, or estimated
by power across the sample heating leads when it did not. After heating, power was cut to the
heater resulting in quenching to ambient temperature over a few seconds and the pressure was
reduced to ambient conditions over ~10-12 hours. The recovered capsules were opened and the
YO sample pellet was cleaned minimally by breaking or scraping off remaining large pieces of the
capsule to remove residue and minimize impurity. The sample was then moved to a nitrogen
atmosphere. The optimal experimental conditions for high temperature synthesis were 15 GPa and
1600 °C. Experiments are tabulated in supplementary Table S1.

X-ray diffraction. A Bruker D2 diffractometer using Cu Ko radiation and a 1 mm scattering
shield was used to collect X-ray diffraction patterns from sample pellets. Pellets were transferred
to an atmospherically controlled holder. XRD was collected directly from the sample pellet
without powdering to avoid back-transformation. Lattice parameters were determined with GSAS

II software* using an NdO crystallographic information file (CIF) file generated by Materials

Project* and modified for YO. TheNIST'Si'standard 640C was used fo calibrateinitial instrument
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all phase pure samples, the mean of the wR is 4.44 £ 0.94 % (see Table S3 for lattice parameter
and microstructure refinement results).

Calorimetry. High temperature oxide melt solution calorimetry was conducted in a Setaram
AlexSYS calorimeter at 800 °C in sodium molybdate (3Na,O-4MoOs3) solvent. The calorimeter
was calibrated with 5 mg benzoic acid pellets (C7HsO> Sigma). YO pellets were dropped from
room temperature conditions. The dropping tube atmosphere was constantly flushed with dry air
(ProSpec) at a rate of 80 mL/min, and the solvent was stirred by bubbling air at ~35 mL/min.
Methodological details and design of the drop solution calorimeters are described elsewhere*’#%.
Thermochemical cycles for dissolution and oxidation to Y,Os3 are given in the supplementary
information in Table S4 and Table S5. Tabulated enthalpy results are given in Table S6.

Differential scanning calorimetry was conducted under vacuum in a Setaram SenSys
calorimeter coupled to the vacuum system of Micromeritics ASAP 2020 adsorption instrument. A
5.52 mg pellet of YO was degassed and heated to 550 °C at 10 °C/min in the low atmosphere
environment. The vacuum was maintained on cooling to prevent oxidation of decomposition
products. A sharp, well defined exothermic peak was observed at 180 °C during heating. No peaks
were observed during the cooling cycle. The sample was weighed and the mass after cooling was
5.35 mg, suggesting no oxidation occurred during the heating and cooling cycle. XRD patterns
were collected before and after calorimetry experiments (supplementary Figure S2).

Fast scanning differential scanning calorimetry (FDSC) was conducted in a Mettler Toledo
Flash DSC2+ on a UH1 high-temperature chip (Xensor). A scanning rate of 1000 °C/s was used
to measure heat flow on an unweighed sample with areal dimensions <100 um. The sample was
scanned under Ar with a flow rate of 20 mL/min. Two sharp peaks were observed at 280 °C and
430 °C on heating. No peaks were observed on cooling or on subsequent heating and a total of

three heating and cooling cycles were conducted and confirmed that reactions were not reversible.

Results and Discussion

To predict free energies of formation of YO in the Fm-3m structure from Y and Y>O3 as a
function of pressure, we employed DFT lattice dynamics calculations. Our calculations reveal that
YO is metastable by 32.7 kJ/mol under ambient pressure and is predicted to become stable above
8.6 GPa, as illustrated in Figure 2. The result compares favorably with other computational work

predicting stability at 9.9 GPa?%. This analysis allowed us to investigate the effects of pressure on
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the reaction and provided us with the lattice parameter for rock salt YO. These predictions support
the potential synthesis of YO and suggest recoverability of metastable YO on quenching to
ambient conditions.

Recovery was indeed achieved for essentially pure YO when synthesized in the multi-anvil
press at 15 GPa and 1600 °C. Experiments at slightly lower P-T conditions also produced some
YO, but X-ray diffraction (XRD) powder patterns from the resulting pellet included impurities,
precursor Y203 in the high pressure monoclinic structure (see supplementary material), and a
slightly larger lattice parameter than observed in the pure phase. The YO quenched from high
pressure is gold in color, has a metallic luster, and crystallizes in the rock salt structure (Figure 1),
similar to previous syntheses of other REO at high pressure in the 1980s’ and in agreement with
band calculations, which also indicates a gold color, based on low plasma frequency and low free

electron density, for the slightly oxygen deficient stoichiometry used in synthesis (Figure 4).

these values only from experiments in which essentially pure YO was synthesized. For previous

work on thin films, the reported lattice constant is 4.936—4.977 A'® which is substantially larger
than all syntheses at high pressure, but also represents a tetragonal distortion of the rock salt
structure. Lattice parameters for bulk YO are presented with bulk and thin film REO from previous
work in Figure 5. The lattice parameter for YO aligns well with the trend observed in other REO.

The thermochemistry of high pressure materials and rare earth oxides has previously been
evaluated using high temperature oxide melt solution calorimetry'**-!. In this process, the sample
is dropped from room temperature into a molten solvent at high temperature (in this case sodium

molybdate 3Na>xO-MoOs at 800 °C) in a twin Calvet-type calorimeter*’->2

and the measured heats
of drop solution are used to determine formation enthalpy from elements and/or oxide constituents.
For YO, a large variation in dissolution enthalpy was observed across several drops. Furthermore,
the enthalpy of formation of YO from Y + Y»03 appeared strongly exothermic, in contrast to the
endothermic value obtained by DFT (see data in supplementary Table S6). These observations
suggest that the YO decomposed during the seconds it took it to drop from room temperature into

the calorimeter at 800 °C. Thus, the oxide melt solution calorimetric experiments were unable to
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produce accurate values of heat of formation of YO and we concluded that the rapid decomposition
required further study and determination of enthalpy of formation by other methods.

To understand the reaction process and determine the thermochemistry of YO, we used a
combination of DSC under vacuum and FDSC. When YO was heated under vacuum in a standard
DSC, a sharp, irreversible, exothermic peak was observed at ~180 °C. Decomposition is confirmed
by comparing the mass and XRD of the sample before and after heating (see supplementary Figure
S2). The integrated decomposition enthalpy is —35.7 kJ/mol. The uncertainty is estimated at + 5
% based on previous calibrations and experiments with the instrumentation®*>* The experimental
enthalpy value agrees well with the predicted value of —32.7 kJ/mol for decomposition of YO to a
mixture of Y and Y>0Os3 from DFT and lattice dynamics calculations. To show that decomposition
happens quickly, we measured heat flow using FDSC, which enables thermal analysis at extremely
rapid heating rates. When YO was heated to 700 °C at a rate 1000 °C/s under argon flow, reactions
were observed at ~280 °C and 430 °C and are complete in less than 0.5 s from the onset of heating
(Figure 6). These results indicate a highly metastable material - one which decomposes readily at
modest temperatures and in a matter of seconds under a high heating rate. Although we did not
pursue quantitative studies of the kinetics of decomposition, it is clear that YO is extremely
metastable on heating at ambient pressure.

We determined the Gibbs free energy of the reaction from pressure and the change in molar
volume and used it to calculate the P-T boundary for the reaction. The synthesis points do not
define a reversible phase boundary but they do suggest that this boundary must lie below the points
where synthesis was successful. The lowest P-T condition at which YO was observed in XRD was
10 GPa and 1400 °C (Table 1). If this is taken as a point on the phase boundary, the total Gibbs
energy of transformation is given by:

AG®T) = AGpyy + PAV = 0. 6))
Assuming the volume change is constant and using the atomic density of Y and O in the rock salt
structure, the change in molar volume for phase boundary is given by:

AV =Vyo = (Vy metar + Vy203)/3 ()
The volume change calculated from the mean unit cell volume for YO is —4.18 cm®/mol, consistent
with DFT predictions of —4.14 cm®/mol). The Gibbs energy of the reaction is then:

AGryy = —PAV, 3)
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at P = 10 GPa, which yields a value of _ Assuming the enthalpy of the

reaction is constant, the entropy change of the reaction can be calculated from the decomposition
enthalpy from this single P-T point:

AG;XN = AHIOZXN - TAS;XN “4)
which yields _ Fitting a line with the Clapeyron slope
_ gives an estimate of the P-T phase boundary:

P(r) = (872 x 107 ) xT + 854 Gra. ®

which is plotted with synthesis data in Figure 7. The 0 K intercept is in excellent agreement with
the DFT predictions of 8.6 GPa at 0 K. The synthesis conditions, heating time, and unit cell volume
from XRD are provided in Table 1. The stability field for YO defined by the P-T boundary does
not reach atmospheric pressure, so YO is metastable at atmospheric conditions at all temperatures
and the observed temperature of the exothermic and irreversible decomposition reaction at 180 °C
is kinetically driven. On rapid heating with FDSC, there is an increase in the reaction temperature
to 280 °C and a decrease in transformation time.

Rates of formation of YO at high pressure and temperature may also be modified by
temperature conditions or kinetics. The experiment at 10 GPa and 1200 °C did not yield any YO,
however at just 200 °C higher, at 10 GPa and 1400 °C, some YO was present in the XRD pattern,
along with monoclinic (C2/m) Y203 and a weak yttrium metal signal. This may suggest the
transformation rate becomes slower as temperature decreases or may be indicative of another Y-
oxide phase boundary. The tetragonal distortion of thin films synthesized at atmospheric pressure
and small refined domain size data from this work (see Table S3) could support that hypothesis,
but more work is needed to probe the yttrium-oxygen phase space and synthesis kinetics.

These are important results for thermodynamic studies involving highly metastable
materials. YO transforms rapidly at temperatures well below the temperature of the molten solvent
in drop solution calorimetric experiments, rendering results from these experiments dubious. The
combination of standard DSC with fast scanning calorimetry showed not only that the sample
decomposed, but also that the reaction occurred on the very short timescale of the drop into the
solution calorimeter. For materials which undergo similar rapid transformations, this indicates that
normal high temperature solution calorimetric methods may not be suitable for thermodynamic
characterization because the final state of the sample when it is dropped into the calorimeter and

before it dissolves in the molten solvent is not well defined. For YO, computations guided the
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initial synthesis conditions, and allowed us to overcome this challenge by providing a check on

results from drop solution calorimetry, and ultimately corroborated DSC measurements.

potentially promising inverse relationship between critical temperature and pressure. Ref

In conclusion, we used first principles calculations to predict the high pressure stability of
YO and successfully synthesized it at high pressure and temperature. While YO decomposed on
heating and initially presented challenges to thermochemical analysis, we were able to use our
theoretical calculations to guide a series of thermochemistry experiments to obtain results in good
agreement with predictions. This highlights the importance of coupling theory and experiment and

provides a basis for thermochemical analysis of highly metastable materials.
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270  Tables and Figures

271 Table 1: Parameters and coefficients for the P-T boundary for the reaction Y + Y203 =3YO

272 presented in Figure 6.

Sample P T (°O) V unit cell Time Comment
(GPa) A% (h)
YO #1 10 1200 - 2 Mixed phases, YO not produced
YO #7* 10 1400 116.41 1 Short heating, mixed phases, including YO
YO #8 10 1400 114.37 5 Long heating, mixed phases, including YO
YO #6** 13.5 1800 117.00 1.5 Mixed phases, including YO
YO #2 13.5 1600 114.71 2 ~pure YO
YO #11™ 15 1600 114.70 2 ~pure YO

273 *indicates results after attempted powdering in glovebox and subsequent color change, **indicates anvil failure
274 during experiment (pressure blowout), indicates multiple syntheses of ~pure YO at these conditions. See

275 supplementary data for full table of experiments.
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Figure 1: Image of YO in newly-opened high-pressure capsule (a) and the recovered pellet (b)
with corresponding XRD patterns (c). Inset in (c) is the rock salt structure from Vesta — gold
spheres represent yttrium atoms, blue spheres represent oxygen atoms. YO peaks are indexed to
fcc symmetry, *DH is the amorphous peak from the domed holder for atmospheric control. YO
exhibits an environmentally imposed pellet morphology with gold color and metallic luster. The
XRD pattern suggest primarily pure YO, extra peaks are residual from the BN capsule or the Si

dome on the controlled atmosphere holder, or small amounts of Y203 impurity.
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285  Figure 2: Calculated values of reaction free energy (blue squares) and enthalpy of formation
286  (open circles) at 0 Kelvin for the reaction Y + Y203 = 3YO from molecular dynamics. The

287  reaction is predicted to occur at 8.6 GPa, when the free energy and enthalpy of reaction are 0 eV.
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Figure 4: Band structure calculation for YO. The highest occupied band indicates that the one
remaining 4d electron of Y? stays localized in the d orbital, with only a minute portion
(approximately 2 %) becoming a free electron gas. As a result, the free electron density is

extremely low, leading to an exceptionally low plasma frequency and a golden appearance.
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Figure 5 Lattice parameters for REO. Parameters from thin films are lines with

brackets representing variation in tetragonal distortion due to lattice mismatch, -
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symbols are static high pressure synthesis’, except EuO (filled pink triangle), which is from the
high-temperature reaction of Eu metal and sesquioxide®’, and NdO (filled green triangle), which
is from dynamic compression®. The open diamond is the recent DFT prediction by Yang, et al.,
20217°. Refined values for bulk YO (filled gold circle, this work) are smaller than the thin film
values like other REO (except Yb -).
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313  Figure 6: Heat flow in YO measured on a) ASAP/SenSys under vacuum at 10 °C/min and b) the
314  Flash DSC2+ on the high-temperature chip under Ar flow (20 pL/min) heated at 1000 °C/s. All
315 thermal events are irreversible. On the Flash DSC2+, the two peaks probably represent different
316  parts of the sample transforming due to the thermal gradient produced by the Flash chip. Both

317  reactions care complete by around 500 °C, indicating YO transforms in less than 0.5 s.
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Figure 7: Pressure-temperature synthesis and estimated phase boundary conditions for the
reaction Y + Y203 — 3YO. Closed circles are syntheses of pure YO: 15 GPa and 1600 °C (solid
yellow circle), 13.5 GPa and 1600 °C (solid black circle), half-filled circles are syntheses where
some YO was present: 13.5 GPa and 1800 °C (half-filled black circle) and 10 GPa and 1400 °C
(half-filled blue circle). The open blue circle is the experiment at 10 GPa and 1200 °C, which
did not produce YO. The solid black line is the P-T slope, determined from the volume change
observed in ~pure YO and entropy calculated from lowest P-T conditions at which YO was

produced (half-filled blue circle).
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